

Python Testing with pytest
Simple, Rapid, Effective, and Scalable

by Brian Okken

Version: P1.0 (September 2017)

Copyright © 2017 The Pragmatic Programmers, LLC. This book is licensed to the individual
who purchased it. We don't copy-protect it because that would limit your ability to use it for your
own purposes. Please don't break this trust—you can use this across all of your devices but
please do not share this copy with other members of your team, with friends, or via file sharing
services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to
improve the lives of developers. We do this by creating timely, practical titles, written by
programmers for programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-
free. We pioneered the beta book concept, where you can purchase and read a book while it’s
still being written, and provide feedback to the author to help make a better book for everyone.
Free resources for all purchasers include source code downloads (if applicable), errata and
discussion forums, all available on the book's home page at pragprog.com. We’re here to make
your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just
create an account on pragprog.com (an email address and a password is all it takes) and select the
checkbox to receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price.
You can synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops,
etc.) via Dropbox. You get free updates for the life of the edition. And, of course, you can always
come back and re-download your books when needed. Ebooks bought from the Amazon Kindle
store are subject to Amazon's polices. Limitations in Amazon's file format may cause ebooks to
display differently on different devices. For more information, please see our FAQ at
pragprog.com/frequently-asked-questions/ebooks. To learn more about this book and access the
free resources, go to https://pragprog.com/book/bopytest, the book's homepage.

Thanks for your continued support,

Andy Hunt
The Pragmatic Programmers

The team that produced this book includes: Andy Hunt (Publisher)Janet Furlow (VP of
Operations)Katharine Dvorak (Development Editor)Potomac Indexing, LLC (Indexing)Nicole
Abramowitz (Copy Editor)Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/bopytest
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents
1. Acknowledgments
2. Preface

1. What Is pytest?
2. Learn pytest While Testing an Example Application
3. How This Book Is Organized
4. What You Need to Know
5. Example Code and Online Resources

3. 1. Getting Started with pytest
1. Getting pytest
2. Running pytest
3. Running Only One Test
4. Using Options
5. Exercises
6. What’s Next

4. 2. Writing Test Functions
1. Testing a Package
2. Using assert Statements
3. Expecting Exceptions
4. Marking Test Functions
5. Skipping Tests
6. Marking Tests as Expecting to Fail
7. Running a Subset of Tests
8. Parametrized Testing
9. Exercises
10. What’s Next

5. 3. pytest Fixtures
1. Sharing Fixtures Through conftest.py
2. Using Fixtures for Setup and Teardown
3. Tracing Fixture Execution with –setup-show
4. Using Fixtures for Test Data
5. Using Multiple Fixtures
6. Specifying Fixture Scope
7. Specifying Fixtures with usefixtures
8. Using autouse for Fixtures That Always Get Used
9. Renaming Fixtures
10. Parametrizing Fixtures
11. Exercises
12. What’s Next

6. 4. Builtin Fixtures
1. Using tmpdir and tmpdir_factory
2. Using pytestconfig
3. Using cache
4. Using capsys
5. Using monkeypatch
6. Using doctest_namespace
7. Using recwarn

8. Exercises
9. What’s Next

7. 5. Plugins
1. Finding Plugins
2. Installing Plugins
3. Writing Your Own Plugins
4. Creating an Installable Plugin
5. Testing Plugins
6. Creating a Distribution
7. Exercises
8. What’s Next

8. 6. Configuration
1. Understanding pytest Configuration Files
2. Changing the Default Command-Line Options
3. Registering Markers to Avoid Marker Typos
4. Requiring a Minimum pytest Version
5. Stopping pytest from Looking in the Wrong Places
6. Specifying Test Directory Locations
7. Changing Test Discovery Rules
8. Disallowing XPASS
9. Avoiding Filename Collisions
10. Exercises
11. What’s Next

9. 7. Using pytest with Other Tools
1. pdb: Debugging Test Failures
2. Coverage.py: Determining How Much Code Is Tested
3. mock: Swapping Out Part of the System
4. tox: Testing Multiple Configurations
5. Jenkins CI: Automating Your Automated Tests
6. unittest: Running Legacy Tests with pytest
7. Exercises
8. What’s Next

10. A1. Virtual Environments
11. A2. pip
12. A3. Plugin Sampler Pack

1. Plugins That Change the Normal Test Run Flow
2. Plugins That Alter or Enhance Output
3. Plugins for Static Analysis
4. Plugins for Web Development

13. A4. Packaging and Distributing Python Projects
1. Creating an Installable Module
2. Creating an Installable Package
3. Creating a Source Distribution and Wheel
4. Creating a PyPI-Installable Package

14. A5. xUnit Fixtures
1. Syntax of xUnit Fixtures
2. Mixing pytest Fixtures and xUnit Fixtures
3. Limitations of xUnit Fixtures

Copyright © 2017, The Pragmatic Bookshelf.

Early praise for Python Testing with pytest
I found Python Testing with pytest to be an eminently usable introductory guidebook to the
pytest testing framework. It is already paying dividends for me at my company.

→ Chris Shaver
VP of Product, Uprising Technology

Systematic software testing, especially in the Python community, is often either completely
overlooked or done in an ad hoc way. Many Python programmers are completely unaware of the
existence of pytest. Brian Okken takes the trouble to show that software testing with pytest is
easy, natural, and even exciting.

→ Dmitry Zinoviev
Author of Data Science Essentials in Python

This book is the missing chapter absent from every comprehensive Python book.

→ Frank Ruiz
Principal Site Reliability Engineer, Box, Inc.

Acknowledgments
I first need to thank Michelle, my wife and best friend. I wish you could see the room I get to
write in. In place of a desk, I have an antique square oak dining table to give me plenty of room
to spread out papers. There’s a beautiful glass-front bookcase with my retro space toys that
we’ve collected over the years, as well as technical books, circuit boards, and juggle balls.
Vintage aluminum paper storage bins are stacked on top with places for notes, cords, and even
leftover book-promotion rocket stickers. One wall is covered in some velvet that we purchased
years ago when a fabric store was going out of business. The fabric is to quiet the echoes when
I’m recording the podcasts. I love writing here not just because it’s wonderful and reflects my
personality, but because it’s a space that Michelle created with me and for me. She and I have
always been a team, and she has been incredibly supportive of my crazy ideas to write a blog,
start a podcast or two, and now, for the last year or so, write this book. She has made sure I’ve
had time and space for writing. When I’m tired and don’t think I have the energy to write, she
tells me to just write for twenty minutes and see how I feel then, just like she did when she
helped me get through late nights of study in college. I really, really couldn’t do this without her.

I also have two amazingly awesome, curious, and brilliant daughters, Gabriella and Sophia, who
are two of my biggest fans. Ella tells anyone talking about programming that they should listen
to my podcasts, and Phia sported a Test & Code sticker on the backpack she took to second
grade.

There are so many more people to thank.

My editor, Katharine Dvorak, helped me shape lots of random ideas and topics into a cohesive
progression, and is the reason why this is a book and not a series of blog posts stapled together. I
entered this project as a blogger, and a little too attached to lots of headings, subheadings, and
bullet points, and Katie patiently guided me to be a better writer.

Thank you to Susannah Davidson Pfalzer, Andy Hunt, and the rest of The Pragmatic Bookshelf
for taking a chance on me.

The technical reviewers have kept me honest on pytest, but also on Python style, and are the
reason why the code examples are PEP 8–compliant. Thank you to Oliver Bestwalter, Florian
Bruhin, Floris Bruynooghe, Mark Goody, Peter Hampton, Dave Hunt, Al Krinker, Lokesh
Kumar Makani, Bruno Oliveira, Ronny Pfannschmidt, Raphael Pierzina, Luciano Ramalho,
Frank Ruiz, and Dmitry Zinoviev. Many on that list are also pytest core developers and/or
maintainers of incredible pytest plugins.

I need to call out Luciano for a special thank you. Partway through the writing of this book, the
first four chapters were sent to a handful of reviewers. Luciano was one of them, and his review
was the hardest to read. I don’t think I followed all of his advice, but because of his feedback, I
re-examined and rewrote much of the first three chapters and changed the way I thought about
the rest of the book.

Thank you to the entire pytest-dev team for creating such a cool testing tool. Thank you to Oliver
Bestwalter, Florian Bruhin, Floris Bruynooghe, Dave Hunt, Holger Krekel, Bruno Oliveira,

Ronny Pfannschmidt, Raphael Pierzina, and many others for answering my pytest questions over
the years.

Last but not least, I need to thank the people who have thanked me. Occasionally people email to
let me know how what I’ve written saved them time and made their jobs easier. That’s awesome,
and pleases me to no end. Thank you.

Brian Okken
September 2017
Copyright © 2017, The Pragmatic Bookshelf.

Preface
The use of Python is increasing not only in software development, but also in fields such as data
analysis, research science, test and measurement, and other industries. The growth of Python in
many critical fields also comes with the desire to properly, effectively, and efficiently put
software tests in place to make sure the programs run correctly and produce the correct results. In
addition, more and more software projects are embracing continuous integration and including an
automated testing phase, as release cycles are shortening and thorough manual testing of
increasingly complex projects is just infeasible. Teams need to be able to trust the tests being run
by the continuous integration servers to tell them if they can trust their software enough to
release it.

Enter pytest.

What Is pytest?
A robust Python testing tool, pytest can be used for all types and levels of software testing. pytest
can be used by development teams, QA teams, independent testing groups, individuals practicing
TDD, and open source projects. In fact, projects all over the Internet have switched from unittest
or nose to pytest, including Mozilla and Dropbox. Why? Because pytest offers powerful features
such as ‘assert‘ rewriting, a third-party plugin model, and a powerful yet simple fixture model
that is unmatched in any other testing framework.

pytest is a software test framework, which means pytest is a command-line tool that
automatically finds tests you’ve written, runs the tests, and reports the results. It has a library of
goodies that you can use in your tests to help you test more effectively. It can be extended by
writing plugins or installing third-party plugins. It can be used to test Python distributions. And it
integrates easily with other tools like continuous integration and web automation.

Here are a few of the reasons pytest stands out above many other test frameworks:

Simple tests are simple to write in pytest.

Complex tests are still simple to write.

Tests are easy to read.

Tests are easy to read. (So important it’s listed twice.)

You can get started in seconds.

You use assert to fail a test, not things like self.assertEqual() or self.assertLessThan(). Just
assert.

You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and growing community. It’s
so extensible and flexible that it will easily fit into your work flow. And because it’s installed
separately from your Python version, you can use the same latest version of pytest on legacy
Python 2 (2.6 and above) and Python 3 (3.3 and above).

Learn pytest While Testing an Example Application
How would you like to learn pytest by testing silly examples you’d never run across in real life?
Me neither. We’re not going to do that in this book. Instead, we’re going to write tests against an
example project that I hope has many of the same traits of applications you’ll be testing after you
read this book.

The Tasks Project

The application we’ll look at is called Tasks. Tasks is a minimal task-tracking application with a
command-line user interface. It has enough in common with many other types of applications
that I hope you can easily see how the testing concepts you learn while developing tests against
Tasks are applicable to your projects now and in the future.

While Tasks has a command-line interface (CLI), the CLI interacts with the rest of the code
through an application programming interface (API). The API is the interface where we’ll direct
most of our testing. The API interacts with a database control layer, which interacts with a
document database—either MongoDB or TinyDB. The type of database is configured at database
initialization.

Before we focus on the API, let’s look at tasks, the command-line tool that represents the user
interface for Tasks.

Here’s an example session:

 $ tasks add 'do something' --owner Brian
 $ tasks add 'do something else'
 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 1 Brian False do something
 2 False do something else
 $ tasks update 2 --owner Brian
 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 1 Brian False do something
 2 Brian False do something else
 $ tasks update 1 --done True
 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 1 Brian True do something
 2 Brian False do something else

 $ tasks delete 1
 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 2 Brian False do something else
 $

This isn’t the most sophisticated task-management application, but it’s complicated enough to
use it to explore testing.

Test Strategy

While pytest is useful for unit testing, integration testing, system or end-to-end testing, and
functional testing, the strategy for testing the Tasks project focuses primarily on subcutaneous
functional testing. Following are some helpful definitions:

Unit test: A test that checks a small bit of code, like a function or a class, in isolation of the
rest of the system. I consider the tests in Chapter 1, Getting Started with pytest, to be unit
tests run against the Tasks data structure.

Integration test: A test that checks a larger bit of the code, maybe several classes, or a
subsystem. Mostly it’s a label used for some test larger than a unit test, but smaller than a
system test.

System test (end-to-end): A test that checks all of the system under test in an environment
as close to the end-user environment as possible.

Functional test: A test that checks a single bit of functionality of a system. A test that
checks how well we add or delete or update a task item in Tasks is a functional test.

Subcutaneous test: A test that doesn’t run against the final end-user interface, but against
an interface just below the surface. Since most of the tests in this book test against the API
layer—not the CLI—they qualify as subcutaneous tests.

How This Book Is Organized
In Chapter 1, Getting Started with pytest, you’ll install pytest and get it ready to use. You’ll then
take one piece of the Tasks project—the data structure representing a single task (a namedtuple
called Task)—and use it to test examples. You’ll learn how to run pytest with a handful of test
files. You’ll look at many of the popular and hugely useful command-line options for pytest,
such as being able to re-run test failures, stop execution after the first failure, control the stack
trace and test run verbosity, and much more.

In Chapter 2, Writing Test Functions, you’ll install Tasks locally using pip and look at how to
structure tests within a Python project. You’ll do this so that you can get to writing tests against a
real application. All the examples in this chapter run tests against the installed application,
including writing to the database. The actual test functions are the focus of this chapter, and
you’ll learn how to use assert effectively in your tests. You’ll also learn about markers, a feature
that allows you to mark many tests to be run at one time, mark tests to be skipped, or tell pytest
that we already know some tests will fail. And I’ll cover how to run just some of the tests, not
just with markers, but by structuring our test code into directories, modules, and classes, and how
to run these subsets of tests.

Not all of your test code goes into test functions. In Chapter 3, pytest Fixtures, you’ll learn how
to put test data into test fixtures, as well as set up and tear down code. Setting up system state (or
subsystem or unit state) is an important part of software testing. You’ll explore this aspect of
pytest fixtures to help get the Tasks project’s database initialized and prefilled with test data for
some tests. Fixtures are an incredibly powerful part of pytest, and you’ll learn how to use them
effectively to further reduce test code duplication and help make your test code incredibly
readable and maintainable. pytest fixtures are also parametrizable, similar to test functions, and
you’ll use this feature to be able to run all of your tests against both TinyDB and MongoDB, the
database back ends supported by Tasks.

In Chapter 4, Builtin Fixtures, you will look at some builtin fixtures provided out-of-the-box by
pytest. You will learn how pytest builtin fixtures can keep track of temporary directories and
files for you, help you test output from your code under test, use monkey patches, check for
warnings, and more.

In Chapter 5, Plugins, you’ll learn how to add command-line options to pytest, alter the pytest
output, and share pytest customizations, including fixtures, with others through writing,
packaging, and distributing your own plugins. The plugin we develop in this chapter is used to
make the test failures we see while testing Tasks just a little bit nicer. You’ll also look at how to
properly test your test plugins. How’s that for meta? And just in case you’re not inspired enough
by this chapter to write some plugins of your own, I’ve hand-picked a bunch of great plugins to
show off what’s possible in Appendix 3, Plugin Sampler Pack.

Speaking of customization, in Chapter 6, Configuration, you’ll learn how you can customize
how pytest runs by default for your project with configuration files. With a pytest.ini file, you
can do things like store command-line options so you don’t have to type them all the time, tell
pytest to not look into certain directories for test files, specify a minimum pytest version your
tests are written for, and more. These configuration elements can be put in tox.ini or setup.cfg as
well.

In the final chapter, Chapter 7, Using pytest with Other Tools, you’ll look at how you can take
the already powerful pytest and supercharge your testing with complementary tools. You’ll run
the Tasks project on multiple versions of Python with tox. You’ll test the Tasks CLI while not
having to run the rest of the system with mock. You’ll use coverage.py to see if any of the Tasks
project source code isn’t being tested. You’ll use Jenkins to run test suites and display results
over time. And finally, you’ll see how pytest can be used to run unittest tests, as well as share
pytest style fixtures with unittest-based tests.

What You Need to Know
Python

You don’t need to know a lot of Python. The examples don’t do anything super weird or
fancy.

pip

You should use pip to install pytest and pytest plugins. If you want a refresher on pip,
check out Appendix 2, pip.

A command line

I wrote this book and captured the example output using bash on a Mac laptop. However,
the only commands I use in bash are cd to go to a specific directory, and pytest, of course.
Since cd exists in Windows cmd.exe and all unix shells that I know of, all examples should
be runnable on whatever terminal-like application you choose to use.

That’s it, really. You don’t need to be a programming expert to start writing automated software
tests with pytest.

Example Code and Online Resources
The examples in this book were written using Python 3.6 and pytest 3.2. pytest 3.2 supports
Python 2.6, 2.7, and Python 3.3+.

The source code for the Tasks project, as well as for all of the tests shown in this book, is
available through a link[1] on the book’s web page at pragprog.com.[2] You don’t need to
download the source code to understand the test code; the test code is presented in usable form in
the examples. But to follow along with the Tasks project, or to adapt the testing examples to test
your own project (more power to you!), you must go to the book’s web page to download the
Tasks project. Also available on the book’s web page is a link to post errata[3] and a discussion
forum.[4]

I’ve been programming for over twenty-five years, and nothing has made me love writing test
code as much as pytest. I hope you learn a lot from this book, and I hope that you’ll end up
loving test code as much as I do.

Footnotes

[1]

https://pragprog.com/titles/bopytest/source_code

[2]

https://pragprog.com/titles/bopytest

[3]

https://pragprog.com/titles/bopytest/errata

[4]

https://forums.pragprog.com/forums/438

Copyright © 2017, The Pragmatic Bookshelf.

https://pragprog.com/titles/bopytest/source_code
https://pragprog.com/titles/bopytest
https://pragprog.com/titles/bopytest/errata
https://forums.pragprog.com/forums/438

Chapter 1
Getting Started with pytest
This is a test:

ch1/test_one.py
 def test_passing():
 assert (1, 2, 3) == (1, 2, 3)

This is what it looks like when it’s run:

 $ cd /path/to/code/ch1
 $ pytest test_one.py
 ===================== test session starts ======================
 collected 1 items

 test_one.py .

 =================== 1 passed in 0.01 seconds ===================

The dot after test_one.py means that one test was run and it passed. If you need more
information, you can use -v or --verbose:

 $ pytest -v test_one.py
 ===================== test session starts ======================
 collected 1 items

 test_one.py::test_passing PASSED

 =================== 1 passed in 0.01 seconds ===================

If you have a color terminal, the PASSED and bottom line are green. It’s nice.

This is a failing test:

ch1/test_two.py
 def test_failing():
 assert (1, 2, 3) == (3, 2, 1)

The way pytest shows you test failures is one of the many reasons developers love pytest. Let’s
watch this fail:

 $ pytest test_two.py

(1)

http://media.pragprog.com/titles/bopytest/code/ch1/test_one.py
http://media.pragprog.com/titles/bopytest/code/ch1/test_two.py

 ===================== test session starts ======================
 collected 1 items

 test_two.py F

 =========================== FAILURES ===========================
 _________________________ test_failing _________________________

 def test_failing():
 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Use -v to get the full diff

 test_two.py:2: AssertionError
 =================== 1 failed in 0.04 seconds ===================

Cool. The failing test, test_failing, gets its own section to show us why it failed. And pytest tells
us exactly what the first failure is: index 0 is a mismatch. Much of this is in red to make it really
stand out (if you’ve got a color terminal). That’s already a lot of information, but there’s a line
that says Use -v to get the full diff. Let’s do that:

 $ pytest -v test_two.py
 ===================== test session starts ======================
 collected 1 items

 test_two.py::test_failing FAILED

 =========================== FAILURES ===========================
 _________________________ test_failing _________________________

 def test_failing():
 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Full diff:
 E - (1, 2, 3)
 E ? ^ ^
 E + (3, 2, 1)
 E ? ^ ^

 test_two.py:2: AssertionError
 =================== 1 failed in 0.04 seconds ===================

(2)

Wow. pytest adds little carets (^) to show us exactly what’s different.

If you’re already impressed with how easy it is to write, read, and run tests with pytest, and how
easy it is to read the output to see where the tests fail, well, you ain’t seen nothing yet. There’s
lots more where that came from. Stick around and let me show you why I think pytest is the
absolute best test framework available.

In the rest of this chapter, you’ll install pytest, look at different ways to run it, and run through
some of the most often used command-line options. In future chapters, you’ll learn how to write
test functions that maximize the power of pytest, how to pull setup code into setup and teardown
sections called fixtures, and how to use fixtures and plugins to really supercharge your software
testing.

But first, I have an apology. I’m sorry that the test, assert (1, 2, 3) == (3, 2, 1), is so boring.
Snore. No one would write a test like that in real life. Software tests are comprised of code that
tests other software that you aren’t always positive will work. And (1, 2, 3) == (1, 2, 3) will
always work. That’s why we won’t use overly silly tests like this in the rest of the book. We’ll
look at tests for a real software project. We’ll use an example project called Tasks that needs
some test code. Hopefully it’s simple enough to be easy to understand, but not so simple as to be
boring.

Another great use of software tests is to test your assumptions about how the software under test
works, which can include testing your understanding of third-party modules and packages, and
even builtin Python data structures. The Tasks project uses a structure called Task, which is
based on the namedtuple factory method, which is part of the standard library. The Task structure
is used as a data structure to pass information between the UI and the API. For the rest of this
chapter, I’ll use Task to demonstrate running pytest and using some frequently used command-
line options.

Here’s Task:

 from collections import namedtuple
 Task = namedtuple('Task', ['summary', 'owner', 'done', 'id'])

The namedtuple() factory function has been around since Python 2.6, but I still find that many
Python developers don’t know how cool it is. At the very least, using Task for test examples will
be more interesting than (1, 2, 3) == (1, 2, 3) or add(1, 2) == 3.

Before we jump into the examples, let’s take a step back and talk about how to get pytest and
install it.

(3)

Getting pytest
The headquarters for pytest is https://docs.pytest.org. That’s the official documentation. But it’s
distributed through PyPI (the Python Package Index) at https://pypi.python.org/pypi/pytest.

Like other Python packages distributed through PyPI, use pip to install pytest into the virtual
environment you’re using for testing:

 $ pip3 install -U virtualenv
 $ python3 -m virtualenv venv
 $ source venv/bin/activate
 $ pip install pytest

If you are not familiar with virtualenv or pip, I have got you covered. Check out Appendix 1,
Virtual Environments and Appendix 2, pip .

What About Windows, Python 2, and venv?

The example for virtualenv and pip should work on many POSIX systems, such as Linux and
macOS, and many versions of Python, including Python 2.7.9 and later.

The source venv/bin/activate line won’t work for Windows, use venv\Scripts\activate.bat instead.
Do this:

 C:\> pip3 install -U virtualenv
 C:\> python3 -m virtualenv venv
 C:\> venv\Scripts\activate.bat
 (venv) C:\> pip install pytest

For Python 3.6 and above, you may get away with using venv instead of virtualenv, and you
don’t have to install it first. It’s included in Python 3.6 and above. However, I’ve heard that some
platforms still behave better with virtualenv.

(4)

https://docs.pytest.org
https://pypi.python.org/pypi/pytest

Running pytest

 $ pytest --help
 usage: pytest [options] [file_or_dir] [file_or_dir] [...]
 ...

Given no arguments, pytest looks at your current directory and all subdirectories for test files and
runs the test code it finds. If you give pytest a filename, a directory name, or a list of those, it
looks there instead of the current directory. Each directory listed on the command line is
recursively traversed to look for test code.

For example, let’s create a subdirectory called tasks, and start with this test file:

ch1/tasks/test_three.py
 """Test the Task data type."""

 from collections import namedtuple

 Task = namedtuple('Task', ['summary', 'owner', 'done', 'id'])
 Task.__new__.__defaults__ = (None, None, False, None)

 def test_defaults():
 """Using no parameters should invoke defaults."""
 t1 = Task()
 t2 = Task(None, None, False, None)
 assert t1 == t2

 def test_member_access():
 """Check .field functionality of namedtuple."""
 t = Task('buy milk', 'brian')
 assert t.summary == 'buy milk'
 assert t.owner == 'brian'
 assert (t.done, t.id) == (False, None)

You can use __new__.__defaults__ to create Task objects without having to specify all the
fields. The test_defaults() test is there to demonstrate and validate how the defaults work.

The test_member_access() test is to demonstrate how to access members by name and not by
index, which is one of the main reasons to use namedtuples.

Let’s put a couple more tests into a second file to demonstrate the _asdict() and _replace()
functionality:

(5)

http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_three.py

ch1/tasks/test_four.py
 """Test the Task data type."""

 from collections import namedtuple

 Task = namedtuple('Task', ['summary', 'owner', 'done', 'id'])
 Task.__new__.__defaults__ = (None, None, False, None)

 def test_asdict():
 """_asdict() should return a dictionary."""
 t_task = Task('do something', 'okken', True, 21)
 t_dict = t_task._asdict()
 expected = {'summary': 'do something',
 'owner': 'okken',
 'done': True,
 'id': 21}
 assert t_dict == expected

 def test_replace():
 """replace() should change passed in fields."""
 t_before = Task('finish book', 'brian', False)
 t_after = t_before._replace(id=10, done=True)
 t_expected = Task('finish book', 'brian', True, 10)
 assert t_after == t_expected

To run pytest, you have the option to specify files and directories. If you don’t specify any files
or directories, pytest will look for tests in the current working directory and subdirectories. It
looks for files starting with test_ or ending with _test. From the ch1 directory, if you run pytest
with no commands, you’ll run four files’ worth of tests:

 $ cd /path/to/code/ch1
 $ pytest
 ===================== test session starts ======================
 collected 6 items

 test_one.py .
 test_two.py F
 tasks/test_four.py ..
 tasks/test_three.py ..

(6)

http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_four.py

 =========================== FAILURES ===========================
 _________________________ test_failing _________________________

 def test_failing():
 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Use -v to get the full diff

 test_two.py:2: AssertionError
 ============== 1 failed, 5 passed in 0.08 seconds ==============

To get just our new task tests to run, you can give pytest all the filenames you want run, or the
directory, or call pytest from the directory where our tests are:

 $ pytest tasks/test_three.py tasks/test_four.py
 ===================== test session starts ======================
 collected 4 items

 tasks/test_three.py ..
 tasks/test_four.py ..

 =================== 4 passed in 0.02 seconds ===================
 $ pytest tasks
 ===================== test session starts ======================
 collected 4 items

 tasks/test_four.py ..
 tasks/test_three.py ..

 =================== 4 passed in 0.03 seconds ===================
 $ cd /path/to/code/ch1/tasks
 $ pytest
 ===================== test session starts ======================
 collected 4 items

 test_four.py ..
 test_three.py ..

 =================== 4 passed in 0.02 seconds ===================

The part of pytest execution where pytest goes off and finds which tests to run is called test
discovery. pytest was able to find all the tests we wanted it to run because we named them

(7)

according to the pytest naming conventions. Here’s a brief overview of the naming conventions
to keep your test code discoverable by pytest:

Test files should be named test_<something>.py or <something>_test.py.
Test methods and functions should be named test_<something>.
Test classes should be named Test<Something>.

Since our test files and functions start with test_, we’re good. There are ways to alter these
discovery rules if you have a bunch of tests named differently. I’ll cover that in Chapter 6,
Configuration.

Let’s take a closer look at the output of running just one file:

 $ cd /path/to/code/ch1/tasks
 $ pytest test_three.py
 ================= test session starts ==================
 platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
 rootdir: /path/to/code/ch1/tasks, inifile:
 collected 2 items

 test_three.py ..

 =============== 2 passed in 0.01 seconds ===============

The output tells us quite a bit.

===== test session starts ====

pytest provides a nice delimiter for the start of the test session. A session is one invocation
of pytest, including all of the tests run on possibly multiple directories. This definition of
session becomes important when I talk about session scope in relation to pytest fixtures in
Specifying Fixture Scope.

platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0

platform darwin is a Mac thing. This is different on a Windows machine. The Python and
pytest versions are listed, as well as the packages pytest depends on. Both py and pluggy
are packages developed by the pytest team to help with the implementation of pytest.

rootdir: /path/to/code/ch1/tasks, inifile:

The rootdir is the topmost common directory to all of the directories being searched for
test code. The inifile (blank here) lists the configuration file being used. Configuration files
could be pytest.ini, tox.ini, or setup.cfg. You’ll look at configuration files in more detail in
Chapter 6, Configuration.

collected 2 items

These are the two test functions in the file.

(8)

test_three.py ..

The test_three.py shows the file being tested. There is one line for each test file. The two
dots denote that the tests passed—one dot for each test function or method. Dots are only
for passing tests. Failures, errors, skips, xfails, and xpasses are denoted with F, E, s, x, and
X, respectively. If you want to see more than dots for passing tests, use the -v or --verbose
option.

== 2 passed in 0.01 seconds ==

This refers to the number of passing tests and how long the entire test session took. If non-
passing tests were present, the number of each category would be listed here as well.

The outcome of a test is the primary way the person running a test or looking at the results
understands what happened in the test run. In pytest, test functions may have several different
outcomes, not just pass or fail.

Here are the possible outcomes of a test function:

PASSED (.): The test ran successfully.

FAILED (F): The test did not run successfully (or XPASS + strict).

SKIPPED (s): The test was skipped. You can tell pytest to skip a test by using either the
@pytest.mark.skip() or pytest.mark.skipif() decorators, discussed in Skipping Tests.

xfail (x): The test was not supposed to pass, ran, and failed. You can tell pytest that a test
is expected to fail by using the @pytest.mark.xfail() decorator, discussed in Marking Tests
as Expecting to Fail.

XPASS (X): The test was not supposed to pass, ran, and passed.

ERROR (E): An exception happened outside of the test function, in either a fixture,
discussed in Chapter 3, pytest Fixtures, or in a hook function, discussed in Chapter 5,
Plugins.

(9)

Running Only One Test
One of the first things you’ll want to do once you’ve started writing tests is to run just one.
Specify the file directly, and add a ::test_name, like this:

 $ cd /path/to/code/ch1
 $ pytest -v tasks/test_four.py::test_asdict
 =================== test session starts ===================
 collected 3 items

 tasks/test_four.py::test_asdict PASSED

 ================ 1 passed in 0.01 seconds =================

Now, let’s take a look at some of the options.

(10)

Using Options
We’ve used the verbose option, -v or --verbose, a couple of times already, but there are many
more options worth knowing about. We’re not going to use all of the options in this book, but
quite a few. You can see all of them with pytest --help.

The following are a handful of options that are quite useful when starting out with pytest. This is
by no means a complete list, but these options in particular address some common early desires
for controlling how pytest runs when you’re first getting started.

 $ pytest --help
 ... subset of the list ...
 -k EXPRESSION only run tests/classes which match the given
 substring expression.
 Example: -k 'test_method or test_other' matches
 all test functions and classes whose name
 contains 'test_method' or 'test_other'.
 -m MARKEXPR only run tests matching given mark expression.
 example: -m 'mark1 and not mark2'.
 -x, --exitfirst exit instantly on first error or failed test.
 --maxfail=num exit after first num failures or errors.
 --capture=method per-test capturing method: one of fd|sys|no.
 -s shortcut for --capture=no.
 --lf, --last-failed rerun only the tests that failed last time
 (or all if none failed)
 --ff, --failed-first run all tests but run the last failures first.
 -v, --verbose increase verbosity.
 -q, --quiet decrease verbosity.
 -l, --showlocals show locals in tracebacks (disabled by default).
 --tb=style traceback print mode (auto/long/short/line/native/no).
 --durations=N show N slowest setup/test durations (N=0 for all).
 --collect-only only collect tests, don't execute them.
 --version display pytest lib version and import information.
 -h, --help show help message and configuration info

–collect-only

The --collect-only option shows you which tests will be run with the given options and
configuration. It’s convenient to show this option first so that the output can be used as a
reference for the rest of the examples. If you start in the ch1 directory, you should see all of the
test functions you’ve looked at so far in this chapter:

 $ cd /path/to/code/ch1

(11)

 $ pytest --collect-only
 =================== test session starts ===================
 collected 6 items
 <Module 'test_one.py'>
 <Function 'test_passing'>
 <Module 'test_two.py'>
 <Function 'test_failing'>
 <Module 'tasks/test_four.py'>
 <Function 'test_asdict'>
 <Function 'test_replace'>
 <Module 'tasks/test_three.py'>
 <Function 'test_defaults'>
 <Function 'test_member_access'>

 ============== no tests ran in 0.03 seconds ===============

The --collect-only option is helpful to check if other options that select tests are correct before
running the tests. We’ll use it again with -k to show how that works.

-k EXPRESSION

The -k option lets you use an expression to find what test functions to run. Pretty powerful. It can
be used as a shortcut to running an individual test if its name is unique, or running a set of tests
that have a common prefix or suffix in their names. Let’s say you want to run the test_asdict()
and test_defaults() tests. You can test out the filter with --collect-only:

 $ cd /path/to/code/ch1
 $ pytest -k "asdict or defaults" --collect-only
 =================== test session starts ===================
 collected 6 items
 <Module 'tasks/test_four.py'>
 <Function 'test_asdict'>
 <Module 'tasks/test_three.py'>
 <Function 'test_defaults'>

 =================== 4 tests deselected ====================
 ============== 4 deselected in 0.03 seconds ===============

Yep. That looks like what we want. Now you can run them by removing the --collect-only:

 $ pytest -k "asdict or defaults"
 =================== test session starts ===================
 collected 6 items

(12)

 tasks/test_four.py .
 tasks/test_three.py .

 =================== 4 tests deselected ====================
 ========= 2 passed, 4 deselected in 0.03 seconds ==========

Hmm. Just dots. So they passed. But were they the right tests? One way to find out is to use -v or
--verbose:

 $ pytest -v -k "asdict or defaults"
 =================== test session starts ===================
 collected 6 items

 tasks/test_four.py::test_asdict PASSED
 tasks/test_three.py::test_defaults PASSED

 =================== 4 tests deselected ====================
 ========= 2 passed, 4 deselected in 0.02 seconds ==========

Yep. They were the correct tests.

-m MARKEXPR

Markers are one of the best ways to mark a subset of your test functions so that they can be run
together. As an example, one way to run test_replace() and test_member_access(), even though
they are in separate files, is to mark them.

You can use any marker name. Let’s say you want to use run_these_please. You’d mark a test
using the decorator @pytest.mark.run_these_please, like so:

 import pytest

 ...
 @pytest.mark.run_these_please
 def test_member_access():
 ...

Then you’d do the same for test_replace(). You can then run all the tests with the same marker
with pytest -m run_these_please:

 $ cd /path/to/code/ch1/tasks
 $ pytest -v -m run_these_please
 ================== test session starts ===================
 collected 4 items

(13)

 test_four.py::test_replace PASSED
 test_three.py::test_member_access PASSED

 =================== 2 tests deselected ===================
 ========= 2 passed, 2 deselected in 0.02 seconds =========

The marker expression doesn’t have to be a single marker. You can say things like -m "mark1
and mark2" for tests with both markers, -m "mark1 and not mark2" for tests that have mark1 but
not mark2, -m "mark1 or mark2" for tests with either, and so on. I’ll discuss markers more
completely in Marking Test Functions.

-x, –exitfirst

Normal pytest behavior is to run every test it finds. If a test function encounters a failing assert or
an exception, the execution for that test stops there and the test fails. And then pytest runs the
next test. Most of the time, this is what you want. However, especially when debugging a
problem, stopping the entire test session immediately when a test fails is the right thing to do.
That’s what the -x option does.

Let’s try it on the six tests we have so far:

 $ cd /path/to/code/ch1
 $ pytest -x
 =================== test session starts ===================
 collected 6 items

 test_one.py .
 test_two.py F

 ======================== FAILURES =========================
 ______________________ test_failing _______________________

 def test_failing():
 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Use -v to get the full diff

 test_two.py:2: AssertionError
 !!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!
 =========== 1 failed, 1 passed in 0.25 seconds ============

Near the top of the output you see that all six tests (or “items”) were collected, and in the bottom
line you see that one test failed and one passed, and pytest displays the “Interrupted” line to tell
us that it stopped.

(14)

Without -x, all six tests would have run. Let’s run it again without the -x. Let’s also use --tb=no
to turn off the stack trace, since you’ve already seen it and don’t need to see it again:

 $ cd /path/to/code/ch1
 $ pytest --tb=no
 =================== test session starts ===================
 collected 6 items

 test_one.py .
 test_two.py F
 tasks/test_four.py ..
 tasks/test_three.py ..

 =========== 1 failed, 5 passed in 0.09 seconds ============

This demonstrates that without the -x, pytest notes failure in test_two.py and continues on with
further testing.

–maxfail=num

The -x option stops after one test failure. If you want to let some failures happen, but not a ton,
use the --maxfail option to specify how many failures are okay with you.

It’s hard to really show this with only one failing test in our system so far, but let’s take a look
anyway. Since there is only one failure, if we set --maxfail=2, all of the tests should run, and --
maxfail=1 should act just like -x:

 $ cd /path/to/code/ch1
 $ pytest --maxfail=2 --tb=no
 =================== test session starts ===================
 collected 6 items

 test_one.py .
 test_two.py F
 tasks/test_four.py ..
 tasks/test_three.py ..

 =========== 1 failed, 5 passed in 0.08 seconds ============
 $ pytest --maxfail=1 --tb=no
 =================== test session starts ===================
 collected 6 items

 test_one.py .
 test_two.py F

(15)

 !!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!
 =========== 1 failed, 1 passed in 0.19 seconds ============

Again, we used --tb=no to turn off the traceback.

-s and –capture=method

The -s flag allows print statements—or really any output that normally would be printed to stdout
—to actually be printed to stdout while the tests are running. It is a shortcut for --capture=no.
This makes sense once you understand that normally the output is captured on all tests. Failing
tests will have the output reported after the test runs on the assumption that the output will help
you understand what went wrong. The -s or --capture=no option turns off output capture. When
developing tests, I find it useful to add several print() statements so that I can watch the flow of
the test.

Another option that may help you to not need print statements in your code is -l/--showlocals,
which prints out the local variables in a test if the test fails.

Other options for capture method are --capture=fd and --capture=sys. The --capture=sys option
replaces sys.stdout/stderr with in-mem files. The --capture=fd option points file descriptors 1 and
2 to a temp file.

I’m including descriptions of sys and fd for completeness. But to be honest, I’ve never needed or
used either. I frequently use -s. And to fully describe how -s works, I needed to touch on capture
methods.

We don’t have any print statements in our tests yet; a demo would be pointless. However, I
encourage you to play with this a bit so you see it in action.

–lf, –last-failed

When one or more tests fails, having a convenient way to run just the failing tests is helpful for
debugging. Just use --lf and you’re ready to debug:

 $ cd /path/to/code/ch1
 $ pytest --lf
 =================== test session starts ===================
 run-last-failure: rerun last 1 failures
 collected 6 items

 test_two.py F

 ======================== FAILURES =========================
 ______________________ test_failing _______________________

 def test_failing():

(16)

 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Use -v to get the full diff

 test_two.py:2: AssertionError
 =================== 5 tests deselected ====================
 ========= 1 failed, 5 deselected in 0.08 seconds ==========

This is great if you’ve been using a --tb option that hides some information and you want to re-
run the failures with a different traceback option.

–ff, –failed-first

The --ff/--failed-first option will do the same as --last-failed, and then run the rest of the tests that
passed last time:

 $ cd /path/to/code/ch1
 $ pytest --ff --tb=no
 =================== test session starts ===================
 run-last-failure: rerun last 1 failures first
 collected 6 items

 test_two.py F
 test_one.py .
 tasks/test_four.py ..
 tasks/test_three.py ..

 =========== 1 failed, 5 passed in 0.09 seconds ============

Usually, test_failing() from test_two.py is run after test_one.py. However, because
test_failing() failed last time, --ff causes it to be run first.

-v, –verbose

The -v/--verbose option reports more information than without it. The most obvious difference is
that each test gets its own line, and the name of the test and the outcome are spelled out instead
of indicated with just a dot.

We’ve used it quite a bit already, but let’s run it again for fun in conjunction with --ff and --
tb=no:

 $ cd /path/to/code/ch1
 $ pytest -v --ff --tb=no
 =================== test session starts ===================

(17)

 run-last-failure: rerun last 1 failures first
 collected 6 items

 test_two.py::test_failing FAILED
 test_one.py::test_passing PASSED
 tasks/test_four.py::test_asdict PASSED
 tasks/test_four.py::test_replace PASSED
 tasks/test_three.py::test_defaults PASSED
 tasks/test_three.py::test_member_access PASSED

 =========== 1 failed, 5 passed in 0.07 seconds ============

With color terminals, you’d see red FAILED and green PASSED outcomes in the report as well.

-q, –quiet

The -q/--quiet option is the opposite of -v/--verbose; it decreases the information reported. I like
to use it in conjunction with --tb=line, which reports just the failing line of any failing tests.

Let’s try -q by itself:

 $ cd /path/to/code/ch1
 $ pytest -q
 .F....
 ======================== FAILURES =========================
 ______________________ test_failing _______________________

 def test_failing():
 > assert (1, 2, 3) == (3, 2, 1)
 E assert (1, 2, 3) == (3, 2, 1)
 E At index 0 diff: 1 != 3
 E Full diff:
 E - (1, 2, 3)
 E ? ^ ^
 E + (3, 2, 1)
 E ? ^ ^

 test_two.py:2: AssertionError
 1 failed, 5 passed in 0.08 seconds

The -q option makes the output pretty terse, but it’s usually enough. We’ll use the -q option
frequently in the rest of the book (as well as --tb=no) to limit the output to what we are
specifically trying to understand at the time.

(18)

-l, –showlocals

If you use the -l/--showlocals option, local variables and their values are displayed with
tracebacks for failing tests.

So far, we don’t have any failing tests that have local variables. If I take the test_replace() test
and change

 t_expected = Task('finish book', 'brian', True, 10)

to

 t_expected = Task('finish book', 'brian', True, 11)

the 10 and 11 should cause a failure. Any change to the expected value will cause a failure. But
this is enough to demonstrate the command-line option --l/--showlocals:

 $ cd /path/to/code/ch1
 $ pytest -l tasks
 =================== test session starts ===================
 collected 4 items

 tasks/test_four.py .F
 tasks/test_three.py ..

 ======================== FAILURES =========================
 ______________________ test_replace _______________________

 def test_replace():
 t_before = Task('finish book', 'brian', False)
 t_after = t_before._replace(id=10, done=True)
 t_expected = Task('finish book', 'brian', True, 11)
 > assert t_after == t_expected
 E AssertionError: assert Task(summary=...e=True, id=10) == Task(
 summary='...e=True, id=11)
 E At index 3 diff: 10 != 11
 E Use -v to get the full diff

 t_after = Task(summary='finish book', owner='brian', done=True, id=10)
 t_before = Task(summary='finish book', owner='brian', done=False, id=None)
 t_expected = Task(summary='finish book', owner='brian', done=True, id=11)

(19)

 tasks/test_four.py:20: AssertionError
 =========== 1 failed, 3 passed in 0.08 seconds ============

The local variables t_after, t_before, and t_expected are shown after the code snippet, with the
value they contained at the time of the failed assert.

–tb=style

The --tb=style option modifies the way tracebacks for failures are output. When a test fails,
pytest lists the failures and what’s called a traceback, which shows you the exact line where the
failure occurred. Although tracebacks are helpful most of time, there may be times when they get
annoying. That’s where the --tb=style option comes in handy. The styles I find useful are short,
line, and no. short prints just the assert line and the E evaluated line with no context; line keeps
the failure to one line; no removes the traceback entirely.

Let’s leave the modification to test_replace() to make it fail and run it with different traceback
styles.

--tb=no removes the traceback entirely:

 $ cd /path/to/code/ch1
 $ pytest --tb=no tasks
 =================== test session starts ===================
 collected 4 items

 tasks/test_four.py .F
 tasks/test_three.py ..

 =========== 1 failed, 3 passed in 0.04 seconds ============

--tb=line in many cases is enough to tell what’s wrong. If you have a ton of failing tests, this
option can help to show a pattern in the failures:

 $ pytest --tb=line tasks
 =================== test session starts ===================
 collected 4 items

 tasks/test_four.py .F
 tasks/test_three.py ..

 ======================== FAILURES =========================
 /path/to/code/ch1/tasks/test_four.py:20:
 AssertionError: assert Task(summary=...e=True, id=10) == Task(
 summary='...e=True, id=11)
 =========== 1 failed, 3 passed in 0.05 seconds ============

(20)

The next step up in verbose tracebacks is --tb=short:

 $ pytest --tb=short tasks
 =================== test session starts ===================
 collected 4 items

 tasks/test_four.py .F
 tasks/test_three.py ..

 ======================== FAILURES =========================
 ______________________ test_replace _______________________
 tasks/test_four.py:20: in test_replace
 assert t_after == t_expected
 E AssertionError: assert Task(summary=...e=True, id=10) == Task(
 summary='...e=True, id=11)
 E At index 3 diff: 10 != 11
 E Use -v to get the full diff
 =========== 1 failed, 3 passed in 0.04 seconds ============

That’s definitely enough to tell you what’s going on.

There are three remaining traceback choices that we haven’t covered so far.

pytest --tb=long will show you the most exhaustive, informative traceback possible. pytest --
tb=auto will show you the long version for the first and last tracebacks, if you have multiple
failures. This is the default behavior. pytest --tb=native will show you the standard library
traceback without any extra information.

–durations=N

The --durations=N option is incredibly helpful when you’re trying to speed up your test suite. It
doesn’t change how your tests are run; it reports the slowest N number of tests/setups/teardowns
after the tests run. If you pass in --durations=0, it reports everything in order of slowest to fastest.

None of our tests are long, so I’ll add a time.sleep(0.1) to one of the tests. Guess which one:

 $ cd /path/to/code/ch1
 $ pytest --durations=3 tasks
 ================= test session starts =================
 collected 4 items

 tasks/test_four.py ..
 tasks/test_three.py ..

(21)

 ============== slowest 3 test durations ===============
 0.10s call tasks/test_four.py::test_replace
 0.00s setup tasks/test_three.py::test_defaults
 0.00s teardown tasks/test_three.py::test_member_access
 ============== 4 passed in 0.13 seconds ===============

The slow test with the extra sleep shows up right away with the label call, followed by setup and
teardown. Every test essentially has three phases: call, setup, and teardown. Setup and teardown
are also called fixtures and are a chance for you to add code to get data or the software system
under test into a precondition state before the test runs, as well as clean up afterwards if
necessary. I cover fixtures in depth in Chapter 3, pytest Fixtures.

–version

The --version option shows the version of pytest and the directory where it’s installed:

 $ pytest --version
 This is pytest version 3.0.7, imported from
 /path/to/venv/lib/python3.5/site-packages/pytest.py

Since we installed pytest into a virtual environment, pytest will be located in the site-packages
directory of that virtual environment.

-h, –help

The -h/--help option is quite helpful, even after you get used to pytest. Not only does it show you
how to use stock pytest, but it also expands as you install plugins to show options and
configuration variables added by plugins.

The -h option shows:

usage: pytest [options] [file_or_dir] [file_or_dir] [...]

Command-line options and a short description, including options added via plugins

A list of options available to ini style configuration files, which I’ll discuss more in
Chapter 6, Configuration

A list of environmental variables that can affect pytest behavior (also discussed in Chapter
6, Configuration)

A reminder that pytest --markers can be used to see available markers, discussed in
Chapter 2, Writing Test Functions

A reminder that pytest --fixtures can be used to see available fixtures, discussed in Chapter
3, pytest Fixtures

The last bit of information the help text displays is this note:

(22)

 (shown according to specified file_or_dir or current dir if not specified)

This note is important because the options, markers, and fixtures can change based on which
directory or test file you’re running. This is because along the path to a specified file or directory,
pytest may find conftest.py files that can include hook functions that create new options, fixture
definitions, and marker definitions.

The ability to customize the behavior of pytest in conftest.py files and test files allows
customized behavior local to a project or even a subset of the tests for a project. You’ll learn
about conftest.py and ini files such as pytest.ini in Chapter 6, Configuration.

(23)

Exercises
1. Create a new virtual environment using python -m virtualenv or python -m venv. Even if

you know you don’t need virtual environments for the project you’re working on, humor
me and learn enough about them to create one for trying out things in this book. I resisted
using them for a very long time, and now I always use them. Read Appendix 1, Virtual
Environments if you’re having any difficulty.

2. Practice activating and deactivating your virtual environment a few times.

$ source venv/bin/activate
$ deactivate

On Windows:

C:\Users\okken\sandbox>venv\scripts\activate.bat
C:\Users\okken\sandbox>deactivate

3. Install pytest in your new virtual environment. See Appendix 2, pip if you have any
trouble. Even if you thought you already had pytest installed, you’ll need to install it into
the virtual environment you just created.

4. Create a few test files. You can use the ones we used in this chapter or make up your own.
Practice running pytest against these files.

5. Change the assert statements. Don’t just use assert something == something_else; try
things like:

assert 1 in [2, 3, 4]
assert a < b
assert ’fizz’ not in ’fizzbuzz’

(24)

What’s Next
In this chapter, we looked at where to get pytest and the various ways to run it. However, we
didn’t discuss what goes into test functions. In the next chapter, we’ll look at writing test
functions, parametrizing them so they get called with different data, and grouping tests into
classes, modules, and packages.

Copyright © 2017, The Pragmatic Bookshelf.

(25)

Chapter 2
Writing Test Functions
In the last chapter, you got pytest up and running. You saw how to run it against files and
directories and how many of the options worked. In this chapter, you’ll learn how to write test
functions in the context of testing a Python package. If you’re using pytest to test something
other than a Python package, most of this chapter still applies.

We’re going to write tests for the Tasks package. Before we do that, I’ll talk about the structure
of a distributable Python package and the tests for it, and how to get the tests able to see the
package under test. Then I’ll show you how to use assert in tests, how tests handle unexpected
exceptions, and testing for expected exceptions.

Eventually, we’ll have a lot of tests. Therefore, you’ll learn how to organize tests into classes,
modules, and directories. I’ll then show you how to use markers to mark which tests you want to
run and discuss how builtin markers can help you skip tests and mark tests as expecting to fail.
Finally, I’ll cover parametrizing tests, which allows tests to get called with different data.

(26)

Testing a Package
We’ll use the sample project, Tasks, as discussed in The Tasks Project, to see how to write test
functions for a Python package. Tasks is a Python package that includes a command-line tool of
the same name, tasks.

Appendix 4, Packaging and Distributing Python Projects includes an explanation of how to
distribute your projects locally within a small team or globally through PyPI, so I won’t go into
detail of how to do that here; however, let’s take a quick look at what’s in the Tasks project and
how the different files fit into the story of testing this project.

Following is the file structure for the Tasks project:

 tasks_proj/
 ├── CHANGELOG.rst
 ├── LICENSE
 ├── MANIFEST.in
 ├── README.rst
 ├── setup.py
 ├── src
 │ └── tasks
 │ ├── __init__.py
 │ ├── api.py
 │ ├── cli.py
 │ ├── config.py
 │ ├── tasksdb_pymongo.py
 │ └── tasksdb_tinydb.py
 └── tests
 ├── conftest.py
 ├── pytest.ini
 ├── func
 │ ├── __init__.py
 │ ├── test_add.py
 │ └── ...
 └── unit
 ├── __init__.py
 ├── test_task.py
 └── ...

I included the complete listing of the project (with the exception of the full list of test files) to
point out how the tests fit in with the rest of the project, and to point out a few files that are of
key importance to testing, namely conftest.py, pytest.ini, the various __init__.py files, and
setup.py.

(27)

All of the tests are kept in tests and separate from the package source files in src. This isn’t a
requirement of pytest, but it’s a best practice.

All of the top-level files, CHANGELOG.rst, LICENSE, README.rst, MANIFEST.in, and
setup.py, are discussed in more detail in Appendix 4, Packaging and Distributing Python
Projects. Although setup.py is important for building a distribution out of a package, it’s also
crucial for being able to install a package locally so that the package is available for import.

Functional and unit tests are separated into their own directories. This is an arbitrary decision and
not required. However, organizing test files into multiple directories allows you to easily run a
subset of tests. I like to keep functional and unit tests separate because functional tests should
only break if we are intentionally changing functionality of the system, whereas unit tests could
break during a refactoring or an implementation change.

The project contains two types of __init__.py files: those found under the src/ directory and those
found under tests/. The src/tasks/__init__.py file tells Python that the directory is a package. It
also acts as the main interface to the package when someone uses import tasks. It contains code
to import specific functions from api.py so that cli.py and our test files can access package
functionality like tasks.add() instead of having to do tasks.api.add().

The tests/func/__init__.py and tests/unit/__init__.py files are empty. They tell pytest to go up
one directory to look for the root of the test directory and to look for the pytest.ini file.

The pytest.ini file is optional. It contains project-wide pytest configuration. There should be at
most only one of these in your project. It can contain directives that change the behavior of
pytest, such as setting up a list of options that will always be used. You’ll learn all about
pytest.ini in Chapter 6, Configuration.

The conftest.py file is also optional. It is considered by pytest as a “local plugin” and can contain
hook functions and fixtures. Hook functions are a way to insert code into part of the pytest
execution process to alter how pytest works. Fixtures are setup and teardown functions that run
before and after test functions, and can be used to represent resources and data used by the tests.
(Fixtures are discussed in Chapter 3, pytest Fixtures and Chapter 4, Builtin Fixtures, and hook
functions are discussed in Chapter 5, Plugins.) Hook functions and fixtures that are used by tests
in multiple subdirectories should be contained in tests/conftest.py. You can have multiple
conftest.py files; for example, you can have one at tests and one for each subdirectory under
tests.

If you haven’t already done so, you can download a copy of the source code for this project on
the book’s website.[5] Alternatively, you can work on your own project with a similar structure.

Installing a Package Locally

The test file, tests/test_task.py, contains the tests we worked on in Running pytest, in files
test_three.py and test_four.py. I’ve just renamed it here to something that makes more sense for
what it’s testing and copied everything into one file. I also removed the definition of the Task
data structure, because that really belongs in api.py.

Here is test_task.py:

ch2/tasks_proj/tests/unit/test_task.py

(28)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/unit/test_task.py

 """Test the Task data type."""
 from tasks import Task

 def test_asdict():
 """_asdict() should return a dictionary."""
 t_task = Task('do something', 'okken', True, 21)
 t_dict = t_task._asdict()
 expected = {'summary': 'do something',
 'owner': 'okken',
 'done': True,
 'id': 21}
 assert t_dict == expected

 def test_replace():
 """replace() should change passed in fields."""
 t_before = Task('finish book', 'brian', False)
 t_after = t_before._replace(id=10, done=True)
 t_expected = Task('finish book', 'brian', True, 10)
 assert t_after == t_expected

 def test_defaults():
 """Using no parameters should invoke defaults."""
 t1 = Task()
 t2 = Task(None, None, False, None)
 assert t1 == t2

 def test_member_access():
 """Check .field functionality of namedtuple."""
 t = Task('buy milk', 'brian')
 assert t.summary == 'buy milk'
 assert t.owner == 'brian'
 assert (t.done, t.id) == (False, None)

The test_task.py file has this import statement:

 from tasks import Task

The best way to allow the tests to be able to import tasks or from tasks import something is to
install tasks locally using pip. This is possible because there’s a setup.py file present to direct

(29)

pip.

Install tasks either by running pip install . or pip install -e . from the tasks_proj directory. Or you
can run pip install -e tasks_proj from one directory up:

 $ cd /path/to/code
 $ pip install ./tasks_proj/
 $ pip install --no-cache-dir ./tasks_proj/
 Processing ./tasks_proj
 Collecting click (from tasks==0.1.0)
 Downloading click-6.7-py2.py3-none-any.whl (71kB)
 ...
 Collecting tinydb (from tasks==0.1.0)
 Downloading tinydb-3.4.0.tar.gz
 Collecting six (from tasks==0.1.0)
 Downloading six-1.10.0-py2.py3-none-any.whl
 Installing collected packages: click, tinydb, six, tasks
 Running setup.py install for tinydb ... done
 Running setup.py install for tasks ... done
 Successfully installed click-6.7 six-1.10.0 tasks-0.1.0 tinydb-3.4.0

If you only want to run tests against tasks, this command is fine. If you want to be able to modify
the source code while tasks is installed, you need to install it with the -e option (for “editable”):

 $ pip install -e ./tasks_proj/
 Obtaining file:///path/to/code/tasks_proj
 Requirement already satisfied: click in
 /path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
 Requirement already satisfied: tinydb in
 /path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
 Requirement already satisfied: six in
 /path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
 Installing collected packages: tasks
 Found existing installation: tasks 0.1.0
 Uninstalling tasks-0.1.0:
 Successfully uninstalled tasks-0.1.0
 Running setup.py develop for tasks
 Successfully installed tasks

Now let’s try running tests:

 $ cd /path/to/code/ch2/tasks_proj/tests/unit
 $ pytest test_task.py
 ===================== test session starts ======================

(30)

 collected 4 items

 test_task.py

 =================== 4 passed in 0.01 seconds ===================

The import worked! The rest of our tests can now safely use import tasks. Now let’s write some
tests.

(31)

Using assert Statements
When you write test functions, the normal Python assert statement is your primary tool to
communicate test failure. The simplicity of this within pytest is brilliant. It’s what drives a lot of
developers to use pytest over other frameworks.

If you’ve used any other testing framework, you’ve probably seen various assert helper
functions. For example, the following is a list of a few of the assert forms and assert helper
functions:

pytest unittest

assert something assertTrue(something)

assert a == b assertEqual(a, b)

assert a <= b assertLessEqual(a, b)

… …

With pytest, you can use assert <expression> with any expression. If the expression would
evaluate to False if converted to a bool, the test would fail.

pytest includes a feature called assert rewriting that intercepts assert calls and replaces them with
something that can tell you more about why your assertions failed. Let’s see how helpful this
rewriting is by looking at a few assertion failures:

ch2/tasks_proj/tests/unit/test_task_fail.py
 """Use the Task type to show test failures."""
 from tasks import Task

 def test_task_equality():
 """Different tasks should not be equal."""
 t1 = Task('sit there', 'brian')
 t2 = Task('do something', 'okken')
 assert t1 == t2

 def test_dict_equality():

(32)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/unit/test_task_fail.py

 """Different tasks compared as dicts should not be equal."""
 t1_dict = Task('make sandwich', 'okken')._asdict()
 t2_dict = Task('make sandwich', 'okkem')._asdict()
 assert t1_dict == t2_dict

All of these tests fail, but what’s interesting is the traceback information:

 $ cd /path/to/code/ch2/tasks_proj/tests/unit
 $ pytest test_task_fail.py
 ===================== test session starts =====================
 collected 2 items

 test_task_fail.py FF

 ========================== FAILURES ===========================
 _____________________ test_task_equality ______________________

 def test_task_equality():
 t1 = Task('sit there', 'brian')
 t2 = Task('do something', 'okken')
 > assert t1 == t2
 E AssertionError: assert Task(summary=...alse, id=None) ==
 Task(summary='...alse, id=None)
 E At index 0 diff: 'sit there' != 'do something'
 E Use -v to get the full diff

 test_task_fail.py:6: AssertionError
 _____________________ test_dict_equality ______________________

 def test_dict_equality():
 t1_dict = Task('make sandwich', 'okken')._asdict()
 t2_dict = Task('make sandwich', 'okkem')._asdict()
 > assert t1_dict == t2_dict
 E AssertionError: assert OrderedDict([...('id', None)]) ==
 OrderedDict([(...('id', None)])
 E Omitting 3 identical items, use -v to show
 E Differing items:
 E {'owner': 'okken'} != {'owner': 'okkem'}
 E Use -v to get the full diff

 test_task_fail.py:11: AssertionError
 ================== 2 failed in 0.06 seconds ===================

(33)

Wow. That’s a lot of information. For each failing test, the exact line of failure is shown with a >
pointing to the failure. The E lines show you extra information about the assert failure to help
you figure out what went wrong.

I intentionally put two mismatches in test_task_equality(), but only the first was shown in the
previous code. Let’s try it again with the -v flag, as suggested in the error message:

 $ pytest -v test_task_fail.py::test_task_equality
 ===================== test session starts =====================
 collected 3 items

 test_task_fail.py::test_task_equality FAILED

 ========================== FAILURES ===========================
 _____________________ test_task_equality ______________________

 def test_task_equality():
 t1 = Task('sit there', 'brian')
 t2 = Task('do something', 'okken')
 > assert t1 == t2
 E AssertionError: assert Task(summary=...alse, id=None) ==
 Task(summary='...alse, id=None)
 E At index 0 diff: 'sit there' != 'do something'
 E Full diff:
 E - Task(summary='sit there', owner='brian', done=False, id=None)
 E ? ^^^ ^^^ ^^^^
 E + Task(summary='do something', owner='okken', done=False, id=None)
 E ? +++ ^^^ ^^^ ^^^^

 test_task_fail.py:6: AssertionError
 ================== 1 failed in 0.07 seconds ===================

Well, I think that’s pretty darned cool. pytest not only found both differences, but it also showed
us exactly where the differences are.

This example only used equality assert; many more varieties of assert statements with awesome
trace debug information are found on the pytest.org website.[6]

(34)

Expecting Exceptions
Exceptions may be raised in a few places in the Tasks API. Let’s take a quick peek at the
functions found in tasks/api.py:

 def add(task): # type: (Task) -> int
 def get(task_id): # type: (int) -> Task
 def list_tasks(owner=None): # type: (str|None) -> list of Task
 def count(): # type: (None) -> int
 def update(task_id, task): # type: (int, Task) -> None
 def delete(task_id): # type: (int) -> None
 def delete_all(): # type: () -> None
 def unique_id(): # type: () -> int
 def start_tasks_db(db_path, db_type): # type: (str, str) -> None
 def stop_tasks_db(): # type: () -> None

There’s an agreement between the CLI code in cli.py and the API code in api.py as to what types
will be sent to the API functions. These API calls are a place where I’d expect exceptions to be
raised if the type is wrong.

To make sure these functions raise exceptions if called incorrectly, let’s use the wrong type in a
test function to intentionally cause TypeError exceptions, and use with pytest.raises(<expected
exception>), like this:

ch2/tasks_proj/tests/func/test_api_exceptions.py
 import pytest
 import tasks

 def test_add_raises():
 """add() should raise an exception with wrong type param."""
 with pytest.raises(TypeError):
 tasks.add(task='not a Task object')

In test_add_raises(), the with pytest.raises(TypeError): statement says that whatever is in the next
block of code should raise a TypeError exception. If no exception is raised, the test fails. If the
test raises a different exception, it fails.

We just checked for the type of exception in test_add_raises(). You can also check the
parameters to the exception. For start_tasks_db(db_path, db_type), not only does db_type need
to be a string, it really has to be either ’tiny’ or ’mongo’. You can check to make sure the
exception message is correct by adding as excinfo:

ch2/tasks_proj/tests/func/test_api_exceptions.py
 def test_start_tasks_db_raises():

(35)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py
http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py

 """Make sure unsupported db raises an exception."""
 with pytest.raises(ValueError) as excinfo:
 tasks.start_tasks_db('some/great/path', 'mysql')
 exception_msg = excinfo.value.args[0]
 assert exception_msg == "db_type must be a 'tiny' or 'mongo'"

This allows us to look at the exception more closely. The variable name you put after as (excinfo
in this case) is filled with information about the exception, and is of type ExceptionInfo.

In our case, we want to make sure the first (and only) parameter to the exception matches a
string.

(36)

Marking Test Functions
pytest provides a cool mechanism to let you put markers on test functions. A test can have more
than one marker, and a marker can be on multiple tests.

Markers make sense after you see them in action. Let’s say we want to run a subset of our tests
as a quick “smoke test” to get a sense for whether or not there is some major break in the system.
Smoke tests are by convention not all-inclusive, thorough test suites, but a select subset that can
be run quickly and give a developer a decent idea of the health of all parts of the system.

To add a smoke test suite to the Tasks project, we can add @mark.pytest.smoke to some of the
tests. Let’s add it to a couple of tests in test_api_exceptions.py (note that the markers smoke and
get aren’t built into pytest; I just made them up):

ch2/tasks_proj/tests/func/test_api_exceptions.py
 @pytest.mark.smoke
 def test_list_raises():
 """list() should raise an exception with wrong type param."""
 with pytest.raises(TypeError):
 tasks.list_tasks(owner=123)

 @pytest.mark.get
 @pytest.mark.smoke
 def test_get_raises():
 """get() should raise an exception with wrong type param."""
 with pytest.raises(TypeError):
 tasks.get(task_id='123')

Now, let’s run just those tests that are marked with -m marker_name:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v -m 'smoke' test_api_exceptions.py
 ===================== test session starts ======================
 collected 7 items

 test_api_exceptions.py::test_list_raises PASSED
 test_api_exceptions.py::test_get_raises PASSED

 ====================== 5 tests deselected ======================
 ============ 2 passed, 5 deselected in 0.03 seconds ============
 $ pytest -v -m 'get' test_api_exceptions.py
 ===================== test session starts ======================

(37)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py

 collected 7 items

 test_api_exceptions.py::test_get_raises PASSED

 ====================== 6 tests deselected ======================
 ============ 1 passed, 6 deselected in 0.01 seconds ============

Remember that -v is short for --verbose and lets us see the names of the tests that are run. Using -
m ’smoke’ runs both tests marked with @pytest.mark.smoke. Using -m ’get’ runs the one test
marked with @pytest.mark.get. Pretty straightforward.

It gets better. The expression after -m can use and, or, and not to combine multiple markers:

 $ pytest -v -m 'smoke and get' test_api_exceptions.py
 ===================== test session starts ======================
 collected 7 items

 test_api_exceptions.py::test_get_raises PASSED

 ====================== 6 tests deselected ======================
 ============ 1 passed, 6 deselected in 0.03 seconds ============

That time we only ran the test that had both smoke and get markers. We can use not as well:

 $ pytest -v -m 'smoke and not get' test_api_exceptions.py
 ===================== test session starts ======================
 collected 7 items

 test_api_exceptions.py::test_list_raises PASSED

 ====================== 6 tests deselected ======================
 ============ 1 passed, 6 deselected in 0.03 seconds ============

The addition of -m ’smoke and not get’ selected the test that was marked with
@pytest.mark.smoke but not @pytest.mark.get.

Filling Out the Smoke Test

The previous tests don’t seem like a reasonable smoke test suite yet. We haven’t actually touched
the database or added any tasks. Surely a smoke test would do that.

Let’s add a couple of tests that look at adding a task, and use one of them as part of our smoke
test suite:

ch2/tasks_proj/tests/func/test_add.py
 import pytest

(38)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add.py

 import tasks
 from tasks import Task

 def test_add_returns_valid_id():
 """tasks.add(<valid task>) should return an integer."""
 # GIVEN an initialized tasks db
 # WHEN a new task is added
 # THEN returned task_id is of type int
 new_task = Task('do something')
 task_id = tasks.add(new_task)
 assert isinstance(task_id, int)

 @pytest.mark.smoke
 def test_added_task_has_id_set():
 """Make sure the task_id field is set by tasks.add()."""
 # GIVEN an initialized tasks db
 # AND a new task is added
 new_task = Task('sit in chair', owner='me', done=True)
 task_id = tasks.add(new_task)

 # WHEN task is retrieved
 task_from_db = tasks.get(task_id)

 # THEN task_id matches id field
 assert task_from_db.id == task_id

Both of these tests have the comment GIVEN an initialized tasks db, and yet there is no database
initialized in the test. We can define a fixture to get the database initialized before the test and
cleaned up after the test:

ch2/tasks_proj/tests/func/test_add.py
 @pytest.fixture(autouse=True)
 def initialized_tasks_db(tmpdir):
 """Connect to db before testing, disconnect after."""
 # Setup : start db
 tasks.start_tasks_db(str(tmpdir), 'tiny')

 yield # this is where the testing happens

 # Teardown : stop db
 tasks.stop_tasks_db()

(39)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add.py

The fixture, tmpdir, used in this example is a builtin fixture. You’ll learn all about builtin fixtures
in Chapter 4, Builtin Fixtures, and you’ll learn about writing your own fixtures and how they
work in Chapter 3, pytest Fixtures, including the autouse parameter used here.

autouse as used in our test indicates that all tests in this file will use the fixture. The code before
the yield runs before each test; the code after the yield runs after the test. The yield can return
data to the test if desired. You’ll look at all that and more in later chapters, but here we need
some way to set up the database for testing, so I couldn’t wait any longer to show you a fixture.
(pytest also supports old-fashioned setup and teardown functions, like what is used in unittest
and nose, but they are not nearly as fun. However, if you are curious, they are described in
Appendix 5, xUnit Fixtures.)

Let’s set aside fixture discussion for now and go to the top of the project and run our smoke test
suite:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest -v -m 'smoke'
 ===================== test session starts ======================
 collected 56 items

 tests/func/test_add.py::test_added_task_has_id_set PASSED
 tests/func/test_api_exceptions.py::test_list_raises PASSED
 tests/func/test_api_exceptions.py::test_get_raises PASSED

 ===================== 53 tests deselected ======================
 =========== 3 passed, 53 deselected in 0.11 seconds ============

This shows that marked tests from different files can all run together.

(40)

Skipping Tests
While the markers discussed in Marking Test Functions were names of your own choosing,
pytest includes a few helpful builtin markers: skip, skipif, and xfail. I’ll discuss skip and skipif in
this section, and xfail in the next.

The skip and skipif markers enable you to skip tests you don’t want to run. For example, let’s say
we weren’t sure how tasks.unique_id() was supposed to work. Does each call to it return a
different number? Or is it just a number that doesn’t exist in the database already?

First, let’s write a test (note that the initialized_tasks_db fixture is in this file, too; it’s just not
shown here):

ch2/tasks_proj/tests/func/test_unique_id_1.py
 import pytest
 import tasks

 def test_unique_id():
 """Calling unique_id() twice should return different numbers."""
 id_1 = tasks.unique_id()
 id_2 = tasks.unique_id()
 assert id_1 != id_2

Then give it a run:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest test_unique_id_1.py
 ===================== test session starts ======================
 collected 1 item s

 test_unique_id_1.py F

 =========================== FAILURES ===========================
 ________________________ test_unique_id ________________________

 def test_unique_id():
 """Calling unique_id() twice should return different numbers."""
 id_1 = tasks.unique_id()
 id_2 = tasks.unique_id()
 > assert id_1 != id_2
 E assert 1 != 1

(41)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_1.py

 test_unique_id_1.py:12: AssertionError
 =================== 1 failed in 0.06 seconds ===================

Hmm. Maybe we got that wrong. After looking at the API a bit more, we see that the docstring
says """Return an integer that does not exist in the db.""".

We could just change the test. But instead, let’s just mark the first one to get skipped for now:

ch2/tasks_proj/tests/func/test_unique_id_2.py
 @pytest.mark.skip(reason='misunderstood the API')
 def test_unique_id_1():
 """Calling unique_id() twice should return different numbers."""
 id_1 = tasks.unique_id()
 id_2 = tasks.unique_id()
 assert id_1 != id_2

 def test_unique_id_2():
 """unique_id() should return an unused id."""
 ids = []
 ids.append(tasks.add(Task('one')))
 ids.append(tasks.add(Task('two')))
 ids.append(tasks.add(Task('three')))
 # grab a unique id
 uid = tasks.unique_id()
 # make sure it isn't in the list of existing ids
 assert uid not in ids

Marking a test to be skipped is as simple as adding @pytest.mark.skip() just above the test
function.

Let’s run again:

 $ pytest -v test_unique_id_2.py
 =========================== test session starts ===========================
 collected 2 items

 test_unique_id_2.py::test_unique_id_1 SKIPPED
 test_unique_id_2.py::test_unique_id_2 PASSED

 =================== 1 passed, 1 skipped in 0.02 seconds ===================

Now, let’s say that for some reason we decide the first test should be valid also, and we intend to
make that work in version 0.2.0 of the package. We can leave the test in place and use skipif
instead:

(42)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_2.py

ch2/tasks_proj/tests/func/test_unique_id_3.py
 @pytest.mark.skipif(tasks.__version__ < '0.2.0',
 reason='not supported until version 0.2.0')
 def test_unique_id_1():
 """Calling unique_id() twice should return different numbers."""
 id_1 = tasks.unique_id()
 id_2 = tasks.unique_id()
 assert id_1 != id_2

The expression we pass into skipif() can be any valid Python expression. In this case, we’re
checking the package version.

We included reasons in both skip and skipif. It’s not required in skip, but it is required in skipif. I
like to include a reason for every skip, skipif, or xfail.

Here’s the output of the changed code:

 $ pytest test_unique_id_3.py
 =========================== test session starts ===========================
 collected 2 items

 test_unique_id_3.py s.

 =================== 1 passed, 1 skipped in 0.02 seconds ===================

The s. shows that one test was skipped and one test passed.

We can see which one with -v:

 $ pytest -v test_unique_id_3.py
 =========================== test session starts ===========================
 collected 2 items

 test_unique_id_3.py::test_unique_id_1 SKIPPED
 test_unique_id_3.py::test_unique_id_2 PASSED

 =================== 1 passed, 1 skipped in 0.03 seconds ===================

But we still don’t know why. We can see those reasons with -rs:

 $ pytest -rs test_unique_id_3.py
 ======================== test session starts ========================
 collected 2 items

 test_unique_id_3.py s.

(43)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_3.py

 ====================== short test summary info ======================
 SKIP [1] func/test_unique_id_3.py:5: not supported until version 0.2.0

 ================ 1 passed, 1 skipped in 0.03 seconds ================

The -r chars option has this help text:

 $ pytest --help
 ...
 -r chars

 show extra test summary info as specified by chars
 (f)ailed, (E)error, (s)skipped, (x)failed, (X)passed,
 (p)passed, (P)passed with output, (a)all except pP.
 ...

It’s not only helpful for understanding test skips, but also you can use it for other test outcomes
as well.

(44)

Marking Tests as Expecting to Fail
With the skip and skipif markers, a test isn’t even attempted if skipped. With the xfail marker,
we are telling pytest to run a test function, but that we expect it to fail. Let’s modify our
unique_id() test again to use xfail:

ch2/tasks_proj/tests/func/test_unique_id_4.py
 @pytest.mark.xfail(tasks.__version__ < '0.2.0',
 reason='not supported until version 0.2.0')
 def test_unique_id_1():
 """Calling unique_id() twice should return different numbers."""
 id_1 = tasks.unique_id()
 id_2 = tasks.unique_id()
 assert id_1 != id_2

 @pytest.mark.xfail()
 def test_unique_id_is_a_duck():
 """Demonstrate xfail."""
 uid = tasks.unique_id()
 assert uid == 'a duck'

 @pytest.mark.xfail()
 def test_unique_id_not_a_duck():
 """Demonstrate xpass."""
 uid = tasks.unique_id()
 assert uid != 'a duck'

The first test is the same as before, but with xfail. The next two tests are listed as xfail, and differ
only by == vs. !=. So one of them is bound to pass.

Running this shows:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest test_unique_id_4.py
 ======================== test session starts ========================
 collected 4 items

 test_unique_id_4.py xxX.

 ========== 1 passed, 2 xfailed, 1 xpassed in 0.07 seconds ===========

(45)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_4.py

The x is for XFAIL, which means “expected to fail.” The capital X is for XPASS or “expected to
fail but passed.”

--verbose lists longer descriptions:

 $ pytest -v test_unique_id_4.py
 ======================== test session starts ========================
 collected 4 items

 test_unique_id_4.py::test_unique_id_1 xfail
 test_unique_id_4.py::test_unique_id_is_a_duck xfail
 test_unique_id_4.py::test_unique_id_not_a_duck XPASS
 test_unique_id_4.py::test_unique_id_2 PASSED

 ========== 1 passed, 2 xfailed, 1 xpassed in 0.08 seconds ===========

You can configure pytest to report the tests that pass but were marked with xfail to be reported as
FAIL. This is done in a pytest.ini file:

 [pytest]
 xfail_strict=true

I’ll discuss pytest.ini more in Chapter 6, Configuration.

(46)

Running a Subset of Tests
I’ve talked about how you can place markers on tests and run tests based on markers. You can
run a subset of tests in several other ways. You can run all of the tests, or you can select a single
directory, file, class within a file, or an individual test in a file or class. You haven’t seen test
classes used yet, so you’ll look at one in this section. You can also use an expression to match
test names. Let’s take a look at these.

A Single Directory

To run all the tests from one directory, use the directory as a parameter to pytest:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest tests/func --tb=no
 ===================== test session starts ======================
 collected 50 items

 tests/func/test_add.py ..
 tests/func/test_add_variety.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id_1.py F
 tests/func/test_unique_id_2.py s.
 tests/func/test_unique_id_3.py s.
 tests/func/test_unique_id_4.py xxX.

 1 failed, 44 passed, 2 skipped, 2 xfailed, 1 xpassed in 0.26 seconds

An important trick to learn is that using -v gives you the syntax for how to run a specific
directory, class, and test.

 $ pytest -v tests/func --tb=no
 ===================== test session starts ======================
 collected 50 items

 tests/func/test_add.py::test_add_returns_valid_id PASSED
 tests/func/test_add.py::test_added_task_has_id_set PASSED
 ...
 tests/func/test_api_exceptions.py::test_add_raises PASSED
 tests/func/test_api_exceptions.py::test_list_raises PASSED
 tests/func/test_api_exceptions.py::test_get_raises PASSED
 ...
 tests/func/test_unique_id_1.py::test_unique_id FAILED

(47)

 tests/func/test_unique_id_2.py::test_unique_id_1 SKIPPED
 tests/func/test_unique_id_2.py::test_unique_id_2 PASSED
 ...
 tests/func/test_unique_id_4.py::test_unique_id_1 xfail
 tests/func/test_unique_id_4.py::test_unique_id_is_a_duck xfail
 tests/func/test_unique_id_4.py::test_unique_id_not_a_duck XPASS
 tests/func/test_unique_id_4.py::test_unique_id_2 PASSED

 1 failed, 44 passed, 2 skipped, 2 xfailed, 1 xpassed in 0.30 seconds

You’ll see the syntax listed here in the next few examples.

A Single Test File/Module

To run a file full of tests, list the file with the relative path as a parameter to pytest:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest tests/func/test_add.py
 =========================== test session starts ===========================
 collected 2 items

 tests/func/test_add.py ..

 ======================== 2 passed in 0.05 seconds =========================

We’ve been doing this for a while.

A Single Test Function

To run a single test function, add :: and the test function name:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest -v tests/func/test_add.py::test_add_returns_valid_id
 =========================== test session starts ===========================
 collected 3 items

 tests/func/test_add.py::test_add_returns_valid_id PASSED

 ======================== 1 passed in 0.02 seconds =========================

Use -v so you can see which function was run.

A Single Test Class

(48)

Test classes are a way to group tests that make sense to be grouped together. Here’s an example:

ch2/tasks_proj/tests/func/test_api_exceptions.py
 class TestUpdate():
 """Test expected exceptions with tasks.update()."""

 def test_bad_id(self):
 """A non-int id should raise an excption."""
 with pytest.raises(TypeError):
 tasks.update(task_id={'dict instead': 1},
 task=tasks.Task())

 def test_bad_task(self):
 """A non-Task task should raise an excption."""
 with pytest.raises(TypeError):
 tasks.update(task_id=1, task='not a task')

Since these are two related tests that both test the update() function, it’s reasonable to group them
in a class. To run just this class, do like we did with functions and add ::, then the class name to
the file parameter:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest -v tests/func/test_api_exceptions.py::TestUpdate
 =========================== test session starts ===========================
 collected 7 items

 tests/func/test_api_exceptions.py::TestUpdate::test_bad_id PASSED
 tests/func/test_api_exceptions.py::TestUpdate::test_bad_task PASSED

 ======================== 2 passed in 0.03 seconds =========================

A Single Test Method of a Test Class

If you don’t want to run all of a test class—just one method—just add another :: and the method
name:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest -v tests/func/test_api_exceptions.py::TestUpdate::test_bad_id
 ===================== test session starts ======================
 collected 1 item

 tests/func/test_api_exceptions.py::TestUpdate::test_bad_id PASSED

 =================== 1 passed in 0.03 seconds ===================

(49)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py

Grouping Syntax Shown by Verbose Listing

Remember that the syntax for how to run a subset of tests by directory, file,
function, class, and method doesn’t have to be memorized. The format is the same
as the test function listing when you run pytest -v.

A Set of Tests Based on Test Name

The -k option enables you to pass in an expression to run tests that have certain names specified
by the expression as a substring of the test name. You can use and, or, and not in your expression
to create complex expressions.

For example, we can run all of the functions that have _raises in their name:

 $ cd /path/to/code/ch2/tasks_proj
 $ pytest -v -k _raises
 ===================== test session starts ======================
 collected 56 items

 tests/func/test_api_exceptions.py::test_add_raises PASSED
 tests/func/test_api_exceptions.py::test_list_raises PASSED
 tests/func/test_api_exceptions.py::test_get_raises PASSED
 tests/func/test_api_exceptions.py::test_delete_raises PASSED
 tests/func/test_api_exceptions.py::test_start_tasks_db_raises PASSED

 ===================== 51 tests deselected ======================
 =========== 5 passed, 51 deselected in 0.07 seconds ============

We can use and and not to get rid of the test_delete_raises() from the session:

 $ pytest -v -k "_raises and not delete"
 ===================== test session starts ======================
 collected 56 items

 tests/func/test_api_exceptions.py::test_add_raises PASSED
 tests/func/test_api_exceptions.py::test_list_raises PASSED
 tests/func/test_api_exceptions.py::test_get_raises PASSED
 tests/func/test_api_exceptions.py::test_start_tasks_db_raises PASSED

 ===================== 52 tests deselected ======================
 =========== 4 passed, 52 deselected in 0.06 seconds ============

(50)

In this section, you learned how to run specific test files, directories, classes, and functions, and
how to use expressions with -k to run specific sets of tests. In the next section, you’ll learn how
one test function can turn into many test cases by allowing the test to run multiple times with
different test data.

(51)

Parametrized Testing
Sending some values through a function and checking the output to make sure it’s correct is a
common pattern in software testing. However, calling a function once with one set of values and
one check for correctness isn’t enough to fully test most functions. Parametrized testing is a way
to send multiple sets of data through the same test and have pytest report if any of the sets failed.

To help understand the problem parametrized testing is trying to solve, let’s take a simple test for
add():

ch2/tasks_proj/tests/func/test_add_variety.py
 import pytest
 import tasks
 from tasks import Task

 def test_add_1():
 """tasks.get() using id returned from add() works."""
 task = Task('breathe', 'BRIAN', True)
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 # everything but the id should be the same
 assert equivalent(t_from_db, task)

 def equivalent(t1, t2):
 """Check two tasks for equivalence."""
 # Compare everything but the id field
 return ((t1.summary == t2.summary) and
 (t1.owner == t2.owner) and
 (t1.done == t2.done))

 @pytest.fixture(autouse=True)
 def initialized_tasks_db(tmpdir):
 """Connect to db before testing, disconnect after."""
 tasks.start_tasks_db(str(tmpdir), 'tiny')
 yield
 tasks.stop_tasks_db()

When a Task object is created, its id field is set to None. After it’s added and retrieved from the
database, the id field will be set. Therefore, we can’t just use == to check to see if our task was
added and retrieved correctly. The equivalent() helper function checks all but the id field. The

(52)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

autouse fixture is included to make sure the database is accessible. Let’s make sure the test
passes:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_1
 ===================== test session starts ======================
 collected 1 item

 test_add_variety.py::test_add_1 PASSED

 =================== 1 passed in 0.03 seconds ===================

The test seems reasonable. However, it’s just testing one example task. What if we want to test
lots of variations of a task? No problem. We can use @pytest.mark.parametrize(argnames,
argvalues) to pass lots of data through the same test, like this:

ch2/tasks_proj/tests/func/test_add_variety.py
 @pytest.mark.parametrize('task',
 [Task('sleep', done=True),
 Task('wake', 'brian'),
 Task('breathe', 'BRIAN', True),
 Task('exercise', 'BrIaN', False)])
 def test_add_2(task):
 """Demonstrate parametrize with one parameter."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)

The first argument to parametrize() is a string with a comma-separated list of names—’task’, in
our case. The second argument is a list of values, which in our case is a list of Task objects.
pytest will run this test once for each task and report each as a separate test:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_2
 ===================== test session starts ======================
 collected 4 items

 test_add_variety.py::test_add_2[task0] PASSED
 test_add_variety.py::test_add_2[task1] PASSED
 test_add_variety.py::test_add_2[task2] PASSED
 test_add_variety.py::test_add_2[task3] PASSED

 =================== 4 passed in 0.05 seconds ===================

This use of parametrize() works for our purposes. However, let’s pass in the tasks as tuples to see

(53)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

how multiple test parameters would work:

ch2/tasks_proj/tests/func/test_add_variety.py
 @pytest.mark.parametrize('summary, owner, done',
 [('sleep', None, False),
 ('wake', 'brian', False),
 ('breathe', 'BRIAN', True),
 ('eat eggs', 'BrIaN', False),
])
 def test_add_3(summary, owner, done):
 """Demonstrate parametrize with multiple parameters."""
 task = Task(summary, owner, done)
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)

When you use types that are easy for pytest to convert into strings, the test identifier uses the
parameter values in the report to make it readable:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_3
 ===================== test session starts ======================
 collected 4 items

 test_add_variety.py::test_add_3[sleep-None-False] PASSED
 test_add_variety.py::test_add_3[wake-brian-False] PASSED
 test_add_variety.py::test_add_3[breathe-BRIAN-True] PASSED
 test_add_variety.py::test_add_3[eat eggs-BrIaN-False] PASSED

 =================== 4 passed in 0.05 seconds ===================

You can use that whole test identifier—called a node in pytest terminology—to re-run the test if
you want:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_3[sleep-None-False]
 ===================== test session starts ======================
 collected 1 item

 test_add_variety.py::test_add_3[sleep-None-False] PASSED

 =================== 1 passed in 0.02 seconds ===================

Be sure to use quotes if there are spaces in the identifier:

(54)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v "test_add_variety.py::test_add_3[eat eggs-BrIaN-False]"
 ===================== test session starts ======================
 collected 1 item

 test_add_variety.py::test_add_3[eat eggs-BrIaN-False] PASSED

 =================== 1 passed in 0.03 seconds ===================

Now let’s go back to the list of tasks version, but move the task list to a variable outside the
function:

ch2/tasks_proj/tests/func/test_add_variety.py
 tasks_to_try = (Task('sleep', done=True),
 Task('wake', 'brian'),
 Task('wake', 'brian'),
 Task('breathe', 'BRIAN', True),
 Task('exercise', 'BrIaN', False))

 @pytest.mark.parametrize('task', tasks_to_try)
 def test_add_4(task):
 """Slightly different take."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)

It’s convenient and the code looks nice. But the readability of the output is hard to interpret:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_4
 ===================== test session starts ======================
 collected 5 items

 test_add_variety.py::test_add_4[task0] PASSED
 test_add_variety.py::test_add_4[task1] PASSED
 test_add_variety.py::test_add_4[task2] PASSED
 test_add_variety.py::test_add_4[task3] PASSED
 test_add_variety.py::test_add_4[task4] PASSED

 =================== 5 passed in 0.05 seconds ===================

The readability of the multiple parameter version is nice, but so is the list of Task objects. To
compromise, we can use the ids optional parameter to parametrize() to make our own identifiers

(55)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

for each task data set. The ids parameter needs to be a list of strings the same length as the
number of data sets. However, because we assigned our data set to a variable name, tasks_to_try,
we can use it to generate ids:

ch2/tasks_proj/tests/func/test_add_variety.py
 task_ids = ['Task({},{},{})'.format(t.summary, t.owner, t.done)
 for t in tasks_to_try]

 @pytest.mark.parametrize('task', tasks_to_try, ids=task_ids)
 def test_add_5(task):
 """Demonstrate ids."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)

Let’s run that and see how it looks:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_5
 ===================== test session starts ======================
 collected 5 items

 test_add_variety.py::test_add_5[Task(sleep,None,True)] PASSED
 test_add_variety.py::test_add_5[Task(wake,brian,False)0] PASSED
 test_add_variety.py::test_add_5[Task(wake,brian,False)1] PASSED
 test_add_variety.py::test_add_5[Task(breathe,BRIAN,True)] PASSED
 test_add_variety.py::test_add_5[Task(exercise,BrIaN,False)] PASSED

 =================== 5 passed in 0.04 seconds ===================

And these test identifiers can be used to run tests:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v "test_add_variety.py::test_add_5[Task(exercise,BrIaN,False)]"
 ===================== test session starts ======================
 collected 1 item

 test_add_variety.py::test_add_5[Task(exercise,BrIaN,False)] PASSED

 =================== 1 passed in 0.03 seconds ===================

We definitely need quotes for these identifiers; otherwise, the brackets and parentheses will
confuse the shell.

(56)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

You can apply parametrize() to classes as well. When you do that, the same data sets will be sent
to all test methods in the class:

ch2/tasks_proj/tests/func/test_add_variety.py
 @pytest.mark.parametrize('task', tasks_to_try, ids=task_ids)
 class TestAdd():
 """Demonstrate parametrize and test classes."""

 def test_equivalent(self, task):
 """Similar test, just within a class."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)
 def test_valid_id(self, task):
 """We can use the same data or multiple tests."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert t_from_db.id == task_id

Here it is in action:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::TestAdd
 ===================== test session starts ======================
 collected 10 items

 test_add_variety.py::TestAdd::test_equivalent[Task(sleep,None,True)] PASSED
 test_add_variety.py::TestAdd::test_equivalent[Task(wake,brian,False)0] PASSED
 test_add_variety.py::TestAdd::test_equivalent[Task(wake,brian,False)1] PASSED
 test_add_variety.py::TestAdd::test_equivalent[Task(breathe,BRIAN,True)] PASSED
 test_add_variety.py::TestAdd::test_equivalent[Task(exercise,BrIaN,False)] PASSED
 test_add_variety.py::TestAdd::test_valid_id[Task(sleep,None,True)] PASSED
 test_add_variety.py::TestAdd::test_valid_id[Task(wake,brian,False)0] PASSED
 test_add_variety.py::TestAdd::test_valid_id[Task(wake,brian,False)1] PASSED
 test_add_variety.py::TestAdd::test_valid_id[Task(breathe,BRIAN,True)] PASSED
 test_add_variety.py::TestAdd::test_valid_id[Task(exercise,BrIaN,False)] PASSED

 ================== 10 passed in 0.08 seconds ===================

You can also identify parameters by including an id right alongside the parameter value when
passing in a list within the @pytest.mark.parametrize() decorator. You do this with
pytest.param(<value>, id="something") syntax:

ch2/tasks_proj/tests/func/test_add_variety.py

(57)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py

 @pytest.mark.parametrize('task', [
 pytest.param(Task('create'), id='just summary'),
 pytest.param(Task('inspire', 'Michelle'), id='summary/owner'),
 pytest.param(Task('encourage', 'Michelle', True), id='summary/owner/done')])
 def test_add_6(task):
 """Demonstrate pytest.param and id."""
 task_id = tasks.add(task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, task)

In action:

 $ cd /path/to/code/ch2/tasks_proj/tests/func
 $ pytest -v test_add_variety.py::test_add_6
 =================== test session starts ====================
 collected 3 items

 test_add_variety.py::test_add_6[just summary] PASSED
 test_add_variety.py::test_add_6[summary/owner] PASSED
 test_add_variety.py::test_add_6[summary/owner/done] PASSED

 ================= 3 passed in 0.05 seconds =================

This is useful when the id cannot be derived from the parameter value.

(58)

Exercises

1. Download the project for this chapter, tasks_proj, from the book’s webpage[7] and make
sure you can install it locally with pip install /path/to/tasks_proj.

2. Explore the tests directory.
3. Run pytest with a single file.
4. Run pytest against a single directory, such as tasks_proj/tests/func. Use pytest to run tests

individually as well as a directory full at a time. There are some failing tests there. Do you
understand why they fail?

5. Add xfail or skip markers to the failing tests until you can run pytest from the tests
directory with no arguments and no failures.

6. We don’t have any tests for tasks.count() yet, among other functions. Pick an untested API
function and think of which test cases we need to have to make sure it works correctly.

7. What happens if you try to add a task with the id already set? There are some missing
exception tests in test_api_exceptions.py. See if you can fill in the missing exceptions. (It’s
okay to look at api.py for this exercise.)

(59)

What’s Next
You’ve run through a lot of the power of pytest in this chapter. Even with just what’s covered
here, you can start supercharging your test suites. In many of the examples, you used a fixture
called initialized_tasks_db. Fixtures can separate retrieving and/or generating test data from the
real guts of a test function. They can also separate common code so that multiple test functions
can use the same setup. In the next chapter, you’ll take a deep dive into the wonderful world of
pytest fixtures.

Footnotes

[5]

https://pragprog.com/titles/bopytest/source_code

[6]

http://doc.pytest.org/en/latest/example/reportingdemo.html

[7]

https://pragprog.com/titles/bopytest/source_code

Copyright © 2017, The Pragmatic Bookshelf.

(60)

https://pragprog.com/titles/bopytest/source_code
http://doc.pytest.org/en/latest/example/reportingdemo.html
https://pragprog.com/titles/bopytest/source_code

Chapter 3
pytest Fixtures
Now that you’ve seen the basics of pytest, let’s turn our attention to fixtures, which are essential
to structuring test code for almost any non-trivial software system. Fixtures are functions that are
run by pytest before (and sometimes after) the actual test functions. The code in the fixture can
do whatever you want it to. You can use fixtures to get a data set for the tests to work on. You
can use fixtures to get a system into a known state before running a test. Fixtures are also used to
get data ready for multiple tests.

Here’s a simple fixture that returns a number:

ch3/test_fixtures.py
 import pytest

 @pytest.fixture()
 def some_data():
 """Return answer to ultimate question."""
 return 42

 def test_some_data(some_data):
 """Use fixture return value in a test."""
 assert some_data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a fixture. When you
include the fixture name in the parameter list of a test function, pytest knows to run it before
running the test. Fixtures can do work, and can also return data to the test function.

The test test_some_data() has the name of the fixture, some_data, as a parameter. pytest will see
this and look for a fixture with this name. Naming is significant in pytest. pytest will look in the
module of the test for a fixture of that name. It will also look in conftest.py files if it doesn’t find
it in this file.

Before we start our exploration of fixtures (and the conftest.py file), I need to address the fact
that the term fixture has many meanings in the programming and test community, and even in the
Python community. I use “fixture,” “fixture function,” and “fixture method” interchangeably to
refer to the @pytest.fixture() decorated functions discussed in this chapter. Fixture can also be
used to refer to the resource that is being set up by the fixture functions. Fixture functions often
set up or retrieve some data that the test can work with. Sometimes this data is considered a
fixture. For example, the Django community often uses fixture to mean some initial data that gets
loaded into a database at the start of an application.

Regardless of other meanings, in pytest and in this book, test fixtures refer to the mechanism

(61)

http://media.pragprog.com/titles/bopytest/code/ch3/test_fixtures.py

pytest provides to allow the separation of “getting ready for” and “cleaning up after” code from
your test functions.

pytest fixtures are one of the unique core features that make pytest stand out above other test
frameworks, and are the reason why many people switch to and stay with pytest. However,
fixtures in pytest are different than fixtures in Django and different than the setup and teardown
procedures found in unittest and nose. There are a lot of features and nuances about fixtures.
Once you get a good mental model of how they work, they will seem easy to you. However, you
have to play with them a while to get there, so let’s get started.

(62)

Sharing Fixtures Through conftest.py
You can put fixtures into individual test files, but to share fixtures among multiple test files, you
need to use a conftest.py file somewhere centrally located for all of the tests. For the Tasks
project, all of the fixtures will be in tasks_proj/tests/conftest.py.

From there, the fixtures can be shared by any test. You can put fixtures in individual test files if
you want the fixture to only be used by tests in that file. Likewise, you can have other conftest.py
files in subdirectories of the top tests directory. If you do, fixtures defined in these lower-level
conftest.py files will be available to tests in that directory and subdirectories. So far, however,
the fixtures in the Tasks project are intended to be available to any test. Therefore, putting all of
our fixtures in the conftest.py file at the test root, tasks_proj/tests, makes the most sense.

Although conftest.py is a Python module, it should not be imported by test files. Don’t import
conftest from anywhere. The conftest.py file gets read by pytest, and is considered a local plugin,
which will make sense once we start talking about plugins in Chapter 5, Plugins. For now, think
of tests/conftest.py as a place where we can put fixtures used by all tests under the tests directory.

Next, let’s rework some our tests for tasks_proj to properly use fixtures.

(63)

Using Fixtures for Setup and Teardown
Most of the tests in the Tasks project will assume that the Tasks database is already set up and
running and ready. And we should clean things up at the end if there is any cleanup needed. And
maybe also disconnect from the database. Luckily, most of this is taken care of within the tasks
code with tasks.start_tasks_db(<directory to store db>, ’tiny’ or ’mongo’) and
tasks.stop_tasks_db(); we just need to call them at the right time, and we need a temporary
directory.

Fortunately, pytest includes a cool fixture called tmpdir that we can use for testing and don’t
have to worry about cleaning up. It’s not magic, just good coding by the pytest folks. (Don’t
worry; we look at tmpdir and it’s session-scoped relative tmpdir_factory in more depth in Using
tmpdir and tmpdir_factory.)

Given those pieces, this fixture works nicely:

ch3/a/tasks_proj/tests/conftest.py
 import pytest
 import tasks
 from tasks import Task

 @pytest.fixture()
 def tasks_db(tmpdir):
 """Connect to db before tests, disconnect after."""
 # Setup : start db
 tasks.start_tasks_db(str(tmpdir), 'tiny')

 yield # this is where the testing happens

 # Teardown : stop db
 tasks.stop_tasks_db()

The value of tmpdir isn’t a string—it’s an object that represents a directory. However, it
implements __str__, so we can use str() to get a string to pass to start_tasks_db(). We’re still
using ’tiny’ for TinyDB, for now.

A fixture function runs before the tests that use it. However, if there is a yield in the function, it
stops there, passes control to the tests, and picks up on the next line after the tests are done.
Therefore, think of the code above the yield as “setup” and the code after yield as “teardown.”
The code after the yield, the “teardown,” is guaranteed to run regardless of what happens during
the tests. We’re not returning any data with the yield in this fixture. But you can.

Let’s change one of our tasks.add() tests to use this fixture:

ch3/a/tasks_proj/tests/func/test_add.py

(64)

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/func/test_add.py

 import pytest
 import tasks
 from tasks import Task

 def test_add_returns_valid_id(tasks_db):
 """tasks.add(<valid task>) should return an integer."""
 # GIVEN an initialized tasks db
 # WHEN a new task is added
 # THEN returned task_id is of type int
 new_task = Task('do something')
 task_id = tasks.add(new_task)
 assert isinstance(task_id, int)

The main change here is that the extra fixture in the file has been removed, and we’ve added
tasks_db to the parameter list of the test. I like to structure tests in a GIVEN/WHEN/THEN
format using comments, especially when it isn’t obvious from the code what’s going on. I think
it’s helpful in this case. Hopefully, GIVEN an initialized tasks db helps to clarify why tasks_db
is used as a fixture for the test.

Make Sure Tasks Is Installed

We’re still writing tests to be run against the Tasks project in this chapter, which
was first installed in Chapter 2. If you skipped that chapter, be sure to install tasks
with cd code; pip install ./tasks_proj/.

(65)

Tracing Fixture Execution with –setup-show
If you run the test from the last section, you don’t get to see what fixtures are run:

 $ cd /path/to/code/
 $ pip install ./tasks_proj/ # if not installed yet
 $ cd /path/to/code/ch3/a/tasks_proj/tests/func
 $ pytest -v test_add.py -k valid_id
 ===================== test session starts ======================
 collected 3 items

 test_add.py::test_add_returns_valid_id PASSED

 ====================== 2 tests deselected ======================
 ============ 1 passed, 2 deselected in 0.02 seconds ============

When I’m developing fixtures, I like to see what’s running and when. Fortunately, pytest
provides a command-line flag, --setup-show, that does just that:

 $ pytest --setup-show test_add.py -k valid_id
 ===================== test session starts ======================
 collected 3 items

 test_add.py
 SETUP S tmpdir_factory
 SETUP F tmpdir (fixtures used: tmpdir_factory)
 SETUP F tasks_db (fixtures used: tmpdir)
 func/test_add.py::test_add_returns_valid_id
 (fixtures used: tasks_db, tmpdir, tmpdir_factory).
 TEARDOWN F tasks_db
 TEARDOWN F tmpdir
 TEARDOWN S tmpdir_factory

 ====================== 2 tests deselected ======================
 ============ 1 passed, 2 deselected in 0.02 seconds ============

Our test is in the middle, and pytest designates a SETUP and TEARDOWN portion to each
fixture. Going from test_add_returns_valid_id up, you see that tmpdir ran before the test. And
before that, tmpdir_factory. Apparently, tmpdir uses it as a fixture.

The F and S in front of the fixture names indicate scope. F for function scope, and S for session
scope. I’ll talk about scope in Specifying Fixture Scope.

(66)

Using Fixtures for Test Data
Fixtures are a great place to store data to use for testing. You can return anything. Here’s a
fixture returning a tuple of mixed type:

ch3/test_fixtures.py
 @pytest.fixture()
 def a_tuple():
 """Return something more interesting."""
 return (1, 'foo', None, {'bar': 23})

 def test_a_tuple(a_tuple):
 """Demo the a_tuple fixture."""
 assert a_tuple[3]['bar'] == 32

Since test_a_tuple() should fail (23 != 32), we can see what happens when a test with a fixture
fails:

 $ cd /path/to/code/ch3
 $ pytest test_fixtures.py::test_a_tuple
 ===================== test session starts ======================
 collected 1 item

 test_fixtures.py F

 =========================== FAILURES ===========================
 _________________________ test_a_tuple _________________________

 a_tuple = (1, 'foo', None, {'bar': 23})

 def test_a_tuple(a_tuple):
 """Demo the a_tuple fixture."""
 > assert a_tuple[3]['bar'] == 32
 E assert 23 == 32

 test_fixtures.py:43: AssertionError
 =================== 1 failed in 0.07 seconds ===================

Along with the stack trace section, pytest reports the value parameters of the function that raised
the exception or failed an assert. In the case of tests, the fixtures are parameters to the test, and

(67)

http://media.pragprog.com/titles/bopytest/code/ch3/test_fixtures.py

are therefore reported with the stack trace.

What happens if the assert (or any exception) happens in the fixture?

 $ pytest -v test_fixtures.py::test_other_data
 ===================== test session starts ======================
 collected 1 item

 test_fixtures.py::test_other_data ERROR

 ============================ ERRORS ============================
 ______________ ERROR at setup of test_other_data _______________

 @pytest.fixture()
 def some_other_data():
 """Raise an exception from fixture."""
 x = 43
 > assert x == 42
 E assert 43 == 42

 test_fixtures.py:24: AssertionError
 =================== 1 error in 0.04 seconds ====================

A couple of things happen. The stack trace shows correctly that the assert happened in the fixture
function. Also, test_other_data is reported not as FAIL, but as ERROR. This distinction is great.
If a test ever fails, you know the failure happened in the test proper, and not in any fixture it
depends on.

But what about the Tasks project? For the Tasks project, we could probably use some data
fixtures, perhaps different lists of tasks with various properties:

ch3/a/tasks_proj/tests/conftest.py
 # Reminder of Task constructor interface
 # Task(summary=None, owner=None, done=False, id=None)
 # summary is required
 # owner and done are optional
 # id is set by database

 @pytest.fixture()
 def tasks_just_a_few():
 """All summaries and owners are unique."""
 return (
 Task('Write some code', 'Brian', True),
 Task("Code review Brian's code", 'Katie', False),

(68)

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py

 Task('Fix what Brian did', 'Michelle', False))

 @pytest.fixture()
 def tasks_mult_per_owner():
 """Several owners with several tasks each."""
 return (
 Task('Make a cookie', 'Raphael'),
 Task('Use an emoji', 'Raphael'),
 Task('Move to Berlin', 'Raphael'),

 Task('Create', 'Michelle'),
 Task('Inspire', 'Michelle'),
 Task('Encourage', 'Michelle'),

 Task('Do a handstand', 'Daniel'),
 Task('Write some books', 'Daniel'),
 Task('Eat ice cream', 'Daniel'))

You can use these directly from tests, or you can use them from other fixtures. Let’s use them to
build up some non-empty databases to use for testing.

(69)

Using Multiple Fixtures
You’ve already seen that tmpdir uses tmpdir_factory. And you used tmpdir in our tasks_db
fixture. Let’s keep the chain going and add some specialized fixtures for non-empty tasks
databases:

ch3/a/tasks_proj/tests/conftest.py
 @pytest.fixture()
 def db_with_3_tasks(tasks_db, tasks_just_a_few):
 """Connected db with 3 tasks, all unique."""
 for t in tasks_just_a_few:
 tasks.add(t)

 @pytest.fixture()
 def db_with_multi_per_owner(tasks_db, tasks_mult_per_owner):
 """Connected db with 9 tasks, 3 owners, all with 3 tasks."""
 for t in tasks_mult_per_owner:
 tasks.add(t)

These fixtures all include two fixtures each in their parameter list: tasks_db and a data set. The
data set is used to add tasks to the database. Now tests can use these when you want the test to
start from a non-empty database, like this:

ch3/a/tasks_proj/tests/func/test_add.py
 def test_add_increases_count(db_with_3_tasks):
 """Test tasks.add() affect on tasks.count()."""
 # GIVEN a db with 3 tasks
 # WHEN another task is added
 tasks.add(Task('throw a party'))

 # THEN the count increases by 1
 assert tasks.count() == 4

This also demonstrates one of the great reasons to use fixtures: to focus the test on what you’re
actually testing, not on what you had to do to get ready for the test. I like using comments for
GIVEN/WHEN/THEN and trying to push as much GIVEN into fixtures for two reasons. First, it
makes the test more readable and, therefore, more maintainable. Second, an assert or exception
in the fixture results in an ERROR, while an assert or exception in a test function results in a
FAIL. I don’t want test_add_increases_count() to FAIL if database initialization failed. That
would just be confusing. I want a FAIL for test_add_increases_count() to only be possible if
add() really failed to alter the count. Let’s trace it and see all the fixtures run:

 $ cd /path/to/code/ch3/a/tasks_proj/tests/func

(70)

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/func/test_add.py

 $ pytest --setup-show test_add.py::test_add_increases_count
 ===================== test session starts ======================
 collected 1 item

 test_add.py
 SETUP S tmpdir_factory
 SETUP F tmpdir (fixtures used: tmpdir_factory)
 SETUP F tasks_db (fixtures used: tmpdir)
 SETUP F tasks_just_a_few
 SETUP F db_with_3_tasks (fixtures used: tasks_db, tasks_just_a_few)
 func/test_add.py::test_add_increases_count
 (fixtures used: db_with_3_tasks, tasks_db, tasks_just_a_few,
 tmpdir, tmpdir_factory).
 TEARDOWN F db_with_3_tasks
 TEARDOWN F tasks_just_a_few
 TEARDOWN F tasks_db
 TEARDOWN F tmpdir
 TEARDOWN S tmpdir_factory

 =================== 1 passed in 0.04 seconds ===================

There are those F’s and S’s for function and session scope again. Let’s learn about those next.

(71)

Specifying Fixture Scope
Fixtures include an optional parameter called scope, which controls how often a fixture gets set
up and torn down. The scope parameter to @pytest.fixture() can have the values of function,
class, module, or session. The default scope is function. The tasks_db fixture and all of the
fixtures so far don’t specify a scope. Therefore, they are function scope fixtures.

Here’s a rundown of each scope value:

scope=’function’

Run once per test function. The setup portion is run before each test using the fixture. The
teardown portion is run after each test using the fixture. This is the default scope used
when no scope parameter is specified.

scope=’class’

Run once per test class, regardless of how many test methods are in the class.

scope=’module’

Run once per module, regardless of how many test functions or methods or other fixtures
in the module use it.

scope=’session’

Run once per session. All test methods and functions using a fixture of session scope share
one setup and teardown call.

Here’s how the scope values look in action:

ch3/test_scope.py
 """Demo fixture scope."""

 import pytest

 @pytest.fixture(scope='function')
 def func_scope():
 """A function scope fixture."""

 @pytest.fixture(scope='module')
 def mod_scope():
 """A module scope fixture."""

(72)

http://media.pragprog.com/titles/bopytest/code/ch3/test_scope.py

 @pytest.fixture(scope='session')
 def sess_scope():
 """A session scope fixture."""

 @pytest.fixture(scope='class')
 def class_scope():
 """A class scope fixture."""

 def test_1(sess_scope, mod_scope, func_scope):
 """Test using session, module, and function scope fixtures."""

 def test_2(sess_scope, mod_scope, func_scope):
 """Demo is more fun with multiple tests."""

 @pytest.mark.usefixtures('class_scope')
 class TestSomething():
 """Demo class scope fixtures."""

 def test_3(self):
 """Test using a class scope fixture."""

 def test_4(self):
 """Again, multiple tests are more fun."""

Let’s use --setup-show to demonstrate that the number of times a fixture is called and when the
setup and teardown are run depend on the scope:

 $ cd /path/to/code/ch3
 $ pytest --setup-show test_scope.py
 ======================== test session starts ========================
 collected 4 items

 test_scope.py
 SETUP S sess_scope
 SETUP M mod_scope
 SETUP F func_scope
 test_scope.py::test_1
 (fixtures used: func_scope, mod_scope, sess_scope).
 TEARDOWN F func_scope

(73)

 SETUP F func_scope
 test_scope.py::test_2
 (fixtures used: func_scope, mod_scope, sess_scope).
 TEARDOWN F func_scope
 SETUP C class_scope
 test_scope.py::TestSomething::()::test_3 (fixtures used: class_scope).
 test_scope.py::TestSomething::()::test_4 (fixtures used: class_scope).
 TEARDOWN C class_scope
 TEARDOWN M mod_scope
 TEARDOWN S sess_scope

 ===================== 4 passed in 0.01 seconds ======================

Now you get to see not just F and S for function and session, but also C and M for class and
module.

Scope is defined with the fixture. I know this is obvious from the code, but it’s an important
point to make sure you fully grok. The scope is set at the definition of a fixture, and not at the
place where it’s called. The test functions that use a fixture don’t control how often a fixture is
set up and torn down.

Fixtures can only depend on other fixtures of their same scope or wider. So a function scope
fixture can depend on other function scope fixtures (the default, and used in the Tasks project so
far). A function scope fixture can also depend on class, module, and session scope fixtures, but
you can’t go in the reverse order.

Changing Scope for Tasks Project Fixtures

With this knowledge of scope, let’s now change the scope of some of the Task project fixtures.

So far, we haven’t had a problem with test times. But it seems like a waste to set up a temporary
directory and new connection to a database for every test. As long as we can ensure an empty
database when needed, that should be sufficient.

To have something like tasks_db be session scope, you need to use tmpdir_factory, since tmpdir
is function scope and tmpdir_factory is session scope. Luckily, this is just a one-line code change
(well, two if you count tmpdir -> tmpdir_factory in the parameter list):

ch3/b/tasks_proj/tests/conftest.py
 import pytest
 import tasks
 from tasks import Task

 @pytest.fixture(scope='session')
 def tasks_db_session(tmpdir_factory):
 """Connect to db before tests, disconnect after."""

(74)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py

 temp_dir = tmpdir_factory.mktemp('temp')
 tasks.start_tasks_db(str(temp_dir), 'tiny')
 yield
 tasks.stop_tasks_db()

 @pytest.fixture()
 def tasks_db(tasks_db_session):
 """An empty tasks db."""
 tasks.delete_all()

Here we changed tasks_db to depend on tasks_db_session, and we deleted all the entries to make
sure it’s empty. Because we didn’t change its name, none of the fixtures or tests that already
include it have to change.

The data fixtures just return a value, so there really is no reason to have them run all the time.
Once per session is sufficient:

ch3/b/tasks_proj/tests/conftest.py
 # Reminder of Task constructor interface
 # Task(summary=None, owner=None, done=False, id=None)
 # summary is required
 # owner and done are optional
 # id is set by database
 @pytest.fixture(scope='session')
 def tasks_just_a_few():
 """All summaries and owners are unique."""
 return (
 Task('Write some code', 'Brian', True),
 Task("Code review Brian's code", 'Katie', False),
 Task('Fix what Brian did', 'Michelle', False))

 @pytest.fixture(scope='session')
 def tasks_mult_per_owner():
 """Several owners with several tasks each."""
 return (
 Task('Make a cookie', 'Raphael'),
 Task('Use an emoji', 'Raphael'),
 Task('Move to Berlin', 'Raphael'),

 Task('Create', 'Michelle'),
 Task('Inspire', 'Michelle'),

(75)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py

 Task('Encourage', 'Michelle'),

 Task('Do a handstand', 'Daniel'),
 Task('Write some books', 'Daniel'),
 Task('Eat ice cream', 'Daniel'))

Now, let’s see if all of these changes work with our tests:

 $ cd /path/to/code/ch3/b/tasks_proj
 $ pytest
 ===================== test session starts ======================
 collected 55 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id.py .
 tests/unit/test_task.py

 ================== 55 passed in 0.17 seconds ===================

Looks like it’s all good. Let’s trace the fixtures for one test file to see if the different scoping
worked as expected:

 $ pytest --setup-show tests/func/test_add.py
 ======================== test session starts ========================
 collected 3 items

 tests/func/test_add.py
 SETUP S tmpdir_factory
 SETUP S tasks_db_session (fixtures used: tmpdir_factory)
 SETUP F tasks_db (fixtures used: tasks_db_session)
 tests/func/test_add.py::test_add_returns_valid_id
 (fixtures used: tasks_db, tasks_db_session, tmpdir_factory).
 TEARDOWN F tasks_db
 SETUP F tasks_db (fixtures used: tasks_db_session)
 tests/func/test_add.py::test_added_task_has_id_set
 (fixtures used: tasks_db, tasks_db_session, tmpdir_factory).
 TEARDOWN F tasks_db
 SETUP F tasks_db (fixtures used: tasks_db_session)
 SETUP S tasks_just_a_few
 SETUP F db_with_3_tasks (fixtures used: tasks_db, tasks_just_a_few)

(76)

 tests/func/test_add.py::test_add_increases_count
 (fixtures used: db_with_3_tasks, tasks_db, tasks_db_session,
 tasks_just_a_few, tmpdir_factory).
 TEARDOWN F db_with_3_tasks
 TEARDOWN F tasks_db
 TEARDOWN S tasks_just_a_few
 TEARDOWN S tasks_db_session
 TEARDOWN S tmpdir_factory

 ===================== 3 passed in 0.03 seconds ======================

Yep. Looks right. tasks_db_session is called once per session, and the quicker tasks_db now just
cleans out the database before each test.

(77)

Specifying Fixtures with usefixtures
So far, if you wanted a test to use a fixture, you put it in the parameter list. You can also mark a
test or a class with @pytest.mark.usefixtures(’fixture1’, ’fixture2’). usefixtures takes a string that
is composed of a comma-separated list of fixtures to use. It doesn’t make sense to do this with
test functions—it’s just more typing. But it does work well for test classes:

ch3/test_scope.py
 @pytest.mark.usefixtures('class_scope')
 class TestSomething():
 """Demo class scope fixtures."""

 def test_3(self):
 """Test using a class scope fixture."""

 def test_4(self):
 """Again, multiple tests are more fun."""

Using usefixtures is almost the same as specifying the fixture name in the test method parameter
list. The one difference is that the test can use the return value of a fixture only if it’s specified in
the parameter list. A test using a fixture due to usefixtures cannot use the fixture’s return value.

(78)

http://media.pragprog.com/titles/bopytest/code/ch3/test_scope.py

Using autouse for Fixtures That Always Get Used
So far in this chapter, all of the fixtures used by tests were named by the tests (or used
usefixtures for that one class example). However, you can use autouse=True to get a fixture to
run all of the time. This works well for code you want to run at certain times, but tests don’t
really depend on any system state or data from the fixture. Here’s a rather contrived example:

ch3/test_autouse.py
 """Demonstrate autouse fixtures."""

 import pytest
 import time

 @pytest.fixture(autouse=True, scope='session')
 def footer_session_scope():
 """Report the time at the end of a session."""
 yield
 now = time.time()
 print('--')
 print('finished : {}'.format(time.strftime('%d %b %X', time.localtime(now))))
 print('-----------------')

 @pytest.fixture(autouse=True)
 def footer_function_scope():
 """Report test durations after each function."""
 start = time.time()
 yield
 stop = time.time()
 delta = stop - start
 print('\ntest duration : {:0.3} seconds'.format(delta))

 def test_1():
 """Simulate long-ish running test."""
 time.sleep(1)

 def test_2():
 """Simulate slightly longer test."""

(79)

http://media.pragprog.com/titles/bopytest/code/ch3/test_autouse.py

 time.sleep(1.23)

We want to add test times after each test, and the date and current time at the end of the session.
Here’s what these look like:

 $ cd /path/to/code/ch3
 $ pytest -v -s test_autouse.py
 ===================== test session starts ======================
 collected 2 items

 test_autouse.py::test_1 PASSED
 test duration : 1.0 seconds

 test_autouse.py::test_2 PASSED
 test duration : 1.24 seconds
 --
 finished : 25 Jul 16:18:27

 =================== 2 passed in 2.25 seconds ===================

The autouse feature is good to have around. But it’s more of an exception than a rule. Opt for
named fixtures unless you have a really great reason not to.

Now that you’ve seen autouse in action, you may be wondering why we didn’t use it for
tasks_db in this chapter. In the Tasks project, I felt it was important to keep the ability to test
what happens if we try to use an API function before db initialization. It should raise an
appropriate exception. But we can’t test this if we force good initialization on every test.

(80)

Renaming Fixtures
The name of a fixture, listed in the parameter list of tests and other fixtures using it, is usually the
same as the function name of the fixture. However, pytest allows you to rename fixtures with a
name parameter to @pytest.fixture():

ch3/test_rename_fixture.py
 """Demonstrate fixture renaming."""

 import pytest

 @pytest.fixture(name='lue')
 def ultimate_answer_to_life_the_universe_and_everything():
 """Return ultimate answer."""
 return 42

 def test_everything(lue):
 """Use the shorter name."""
 assert lue == 42

Here, lue is now the fixture name, instead of fixture_with_a_name_much_longer_than_lue. That
name even shows up if we run it with --setup-show:

 $ pytest --setup-show test_rename_fixture.py
 ======================== test session starts ========================
 collected 1 items

 test_rename_fixture.py
 SETUP F lue
 test_rename_fixture.py::test_everything_2 (fixtures used: lue).
 TEARDOWN F lue

 ===================== 1 passed in 0.01 seconds ======================

If you need to find out where lue is defined, you can add the pytest option --fixtures and give it
the filename for the test. It lists all the fixtures available for the test, including ones that have
been renamed:

 $ pytest --fixtures test_rename_fixture.py
 ======================== test session starts =======================
 ...

(81)

http://media.pragprog.com/titles/bopytest/code/ch3/test_rename_fixture.py

 ---------- fixtures defined from test_rename_fixture -----------
 lue
 Return ultimate answer.

 ================= no tests ran in 0.01 seconds =================

Most of the output is omitted—there’s a lot there. Luckily, the fixtures we defined are at the
bottom, along with where they are defined. We can use this to look up the definition of lue. Let’s
use that in the Tasks project:

 $ cd /path/to/code/ch3/b/tasks_proj
 $ pytest --fixtures tests/func/test_add.py
 ======================== test session starts ========================
 ...
 tmpdir_factory
 Return a TempdirFactory instance for the test session.
 tmpdir
 Return a temporary directory path object which is
 unique to each test function invocation, created as
 a sub directory of the base temporary directory.
 The returned object is a `py.path.local`_path object.

 ------------------ fixtures defined from conftest -------------------
 tasks_db_session
 Connect to db before tests, disconnect after.
 tasks_db
 An empty tasks db.
 tasks_just_a_few
 All summaries and owners are unique.
 tasks_mult_per_owner
 Several owners with several tasks each.
 db_with_3_tasks
 Connected db with 3 tasks, all unique.
 db_with_multi_per_owner
 Connected db with 9 tasks, 3 owners, all with 3 tasks.

 =================== no tests ran in 0.01 seconds ====================

Cool. All of our conftest.py fixtures are there. And at the bottom of the builtin list is the tmpdir
and tmpdir_factory that we used also.

(82)

Parametrizing Fixtures
In Parametrized Testing, we parametrized tests. We can also parametrize fixtures. We still use
our list of tasks, list of task identifiers, and an equivalence function, just as before:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
 import pytest
 import tasks
 from tasks import Task

 tasks_to_try = (Task('sleep', done=True),
 Task('wake', 'brian'),
 Task('breathe', 'BRIAN', True),
 Task('exercise', 'BrIaN', False))

 task_ids = ['Task({},{},{})'.format(t.summary, t.owner, t.done)
 for t in tasks_to_try]

 def equivalent(t1, t2):
 """Check two tasks for equivalence."""
 return ((t1.summary == t2.summary) and
 (t1.owner == t2.owner) and
 (t1.done == t2.done))

But now, instead of parametrizing the test, we will parametrize a fixture called a_task:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
 @pytest.fixture(params=tasks_to_try)
 def a_task(request):
 """Using no ids."""
 return request.param

 def test_add_a(tasks_db, a_task):
 """Using a_task fixture (no ids)."""
 task_id = tasks.add(a_task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, a_task)

The request listed in the fixture parameter is another builtin fixture that represents the calling
state of the fixture. You’ll explore it more in the next chapter. It has a field param that is filled in

(83)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py
http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py

with one element from the list assigned to params in @pytest.fixture(params=tasks_to_try).

The a_task fixture is pretty simple—it just returns the request.param as its value to the test using
it. Since our task list has four tasks, the fixture will be called four times, and then the test will get
called four times:

 $ cd /path/to/code/ch3/b/tasks_proj/tests/func
 $ pytest -v test_add_variety2.py::test_add_a
 ===================== test session starts ======================
 collected 4 items

 test_add_variety2.py::test_add_a[a_task0] PASSED
 test_add_variety2.py::test_add_a[a_task1] PASSED
 test_add_variety2.py::test_add_a[a_task2] PASSED
 test_add_variety2.py::test_add_a[a_task3] PASSED

 =================== 4 passed in 0.03 seconds ===================

We didn’t provide ids, so pytest just made up some names by appending a number to the name of
the fixture. However, we can use the same string list we used when we parametrized our tests:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
 @pytest.fixture(params=tasks_to_try, ids=task_ids)
 def b_task(request):
 """Using a list of ids."""
 return request.param

 def test_add_b(tasks_db, b_task):
 """Using b_task fixture, with ids."""
 task_id = tasks.add(b_task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, b_task)

This gives us better identifiers:

 $ pytest -v test_add_variety2.py::test_add_b
 ===================== test session starts ======================
 collected 4 items

 test_add_variety2.py::test_add_b[Task(sleep,None,True)] PASSED
 test_add_variety2.py::test_add_b[Task(wake,brian,False)] PASSED
 test_add_variety2.py::test_add_b[Task(breathe,BRIAN,True)] PASSED
 test_add_variety2.py::test_add_b[Task(exercise,BrIaN,False)] PASSED

(84)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py

 =================== 4 passed in 0.04 seconds ===================

We can also set the ids parameter to a function we write that provides the identifiers. Here’s what
it looks like when we use a function to generate the identifiers:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
 def id_func(fixture_value):
 """A function for generating ids."""
 t = fixture_value
 return 'Task({},{},{})'.format(t.summary, t.owner, t.done)

 @pytest.fixture(params=tasks_to_try, ids=id_func)
 def c_task(request):
 """Using a function (id_func) to generate ids."""
 return request.param

 def test_add_c(tasks_db, c_task):
 """Use fixture with generated ids."""
 task_id = tasks.add(c_task)
 t_from_db = tasks.get(task_id)
 assert equivalent(t_from_db, c_task)

The function will be called from the value of each item from the parametrization. Since the
parametrization is a list of Task objects, id_func() will be called with a Task object, which allows
us to use the namedtuple accessor methods to access a single Task object to generate the
identifier for one Task object at a time. It’s a bit cleaner than generating a full list ahead of time,
and looks the same:

 $ pytest -v test_add_variety2.py::test_add_c
 ===================== test session starts ======================
 collected 4 items

 test_add_variety2.py::test_add_c[Task(sleep,None,True)] PASSED
 test_add_variety2.py::test_add_c[Task(wake,brian,False)] PASSED
 test_add_variety2.py::test_add_c[Task(breathe,BRIAN,True)] PASSED
 test_add_variety2.py::test_add_c[Task(exercise,BrIaN,False)] PASSED

 =================== 4 passed in 0.04 seconds ===================

With parametrized functions, you get to run that function multiple times. But with parametrized
fixtures, every test function that uses that fixture will be called multiple times. Very powerful.

(85)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py

Parametrizing Fixtures in the Tasks Project

Now, let’s see how we can use parametrized fixtures in the Tasks project. So far, we used
TinyDB for all of the testing. But we want to keep our options open until later in the project.
Therefore, any code we write, and any tests we write, should work with both TinyDB and with
MongoDB.

The decision (in the code) of which database to use is isolated to the start_tasks_db() call in the
tasks_db_session fixture:

ch3/b/tasks_proj/tests/conftest.py
 import pytest
 import tasks
 from tasks import Task

 @pytest.fixture(scope='session')
 def tasks_db_session(tmpdir_factory):
 """Connect to db before tests, disconnect after."""
 temp_dir = tmpdir_factory.mktemp('temp')
 tasks.start_tasks_db(str(temp_dir), 'tiny')
 yield
 tasks.stop_tasks_db()

 @pytest.fixture()
 def tasks_db(tasks_db_session):
 """An empty tasks db."""
 tasks.delete_all()

The db_type parameter in the call to start_tasks_db() isn’t magic. It just ends up switching which
subsystem gets to be responsible for the rest of the database interactions:

tasks_proj/src/tasks/api.py
 def start_tasks_db(db_path, db_type): # type: (str, str) -> None
 """Connect API functions to a db."""
 if not isinstance(db_path, string_types):
 raise TypeError('db_path must be a string')
 global _tasksdb
 if db_type == 'tiny':
 import tasks.tasksdb_tinydb
 _tasksdb = tasks.tasksdb_tinydb.start_tasks_db(db_path)
 elif db_type == 'mongo':
 import tasks.tasksdb_pymongo

(86)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/tasks_proj/src/tasks/api.py

 _tasksdb = tasks.tasksdb_pymongo.start_tasks_db(db_path)
 else:
 raise ValueError("db_type must be a 'tiny' or 'mongo'")

To test MongoDB, we need to run all the tests with db_type set to mongo. A small change does
the trick:

ch3/c/tasks_proj/tests/conftest.py
 import pytest
 import tasks
 from tasks import Task

 #@pytest.fixture(scope='session', params=['tiny',])
 @pytest.fixture(scope='session', params=['tiny', 'mongo'])
 def tasks_db_session(tmpdir_factory, request):
 """Connect to db before tests, disconnect after."""
 temp_dir = tmpdir_factory.mktemp('temp')
 tasks.start_tasks_db(str(temp_dir), request.param)
 yield # this is where the testing happens
 tasks.stop_tasks_db()

 @pytest.fixture()
 def tasks_db(tasks_db_session):
 """An empty tasks db."""
 tasks.delete_all()

Here I added params=[’tiny’,’mongo’] to the fixture decorator. I added request to the parameter
list of temp_db, and I set db_type to request.param instead of just picking ’tiny’ or ’mongo’.

When you set the --verbose or -v flag with pytest running parametrized tests or parametrized
fixtures, pytest labels the different runs based on the value of the parametrization. And because
the values are already strings, that works great.

Installing MongoDB

To follow along with MongoDB testing, make sure MongoDB and pymongo are
installed. I’ve been testing with the community edition of MongoDB, found at
https://www.mongodb.com/download-center. pymongo is installed with pip—pip
install pymongo. However, using MongoDB is not necessary to follow along with
the rest of the book; it’s used in this example and in a debugger example in Chapter
7.

(87)

http://media.pragprog.com/titles/bopytest/code/ch3/c/tasks_proj/tests/conftest.py
https://www.mongodb.com/download-center

Here’s what we have so far:

 $ cd /path/to/code/ch3/c/tasks_proj
 $ pip install pymongo
 $ pytest -v --tb=no
 ===================== test session starts ======================
 collected 92 items

 test_add.py::test_add_returns_valid_id[tiny] PASSED
 test_add.py::test_added_task_has_id_set[tiny] PASSED
 test_add.py::test_add_increases_count[tiny] PASSED
 test_add_variety.py::test_add_1[tiny] PASSED
 test_add_variety.py::test_add_2[tiny-task0] PASSED
 test_add_variety.py::test_add_2[tiny-task1] PASSED
 ...
 test_add.py::test_add_returns_valid_id[mongo] FAILED
 test_add.py::test_added_task_has_id_set[mongo] FAILED
 test_add.py::test_add_increases_count[mongo] PASSED
 test_add_variety.py::test_add_1[mongo] FAILED
 test_add_variety.py::test_add_2[mongo-task0] FAILED
 ...
 ============= 42 failed, 50 passed in 4.94 seconds =============

Hmm. Bummer. Looks like we’ll need to do some debugging before we let anyone use the
Mongo version. You’ll take a look at how to debug this in pdb: Debugging Test Failures. Until
then, we’ll use the TinyDB version.

(88)

Exercises
1. Create a test file called test_fixtures.py.
2. Write a few data fixtures—functions with the @pytest.fixture() decorator—that return

some data. Perhaps a list, or a dictionary, or a tuple.
3. For each fixture, write at least one test function that uses it.
4. Write two tests that use the same fixture.
5. Run pytest --setup-show test_fixtures.py. Are all the fixtures run before every test?
6. Add scope=’module’ to the fixture from Exercise 4.
7. Re-run pytest --setup-show test_fixtures.py. What changed?
8. For the fixture from Exercise 6, change return <data> to yield <data>.
9. Add print statements before and after the yield.

10. Run pytest -s -v test_fixtures.py. Does the output make sense?

(89)

What’s Next
The pytest fixture implementation is flexible enough to use fixtures like building blocks to build
up test setup and teardown, and to swap in and out different chunks of the system (like swapping
in Mongo for TinyDB). Because fixtures are so flexible, I use them heavily to push as much of
the setup of my tests into fixtures as I can.

In this chapter, you looked at pytest fixtures you write yourself, as well as a couple of builtin
fixtures, tmpdir and tmpdir_factory. You’ll take a closer look at the builtin fixtures in the next
chapter.

Copyright © 2017, The Pragmatic Bookshelf.

(90)

Chapter 4
Builtin Fixtures
In the previous chapter, you looked at what fixtures are, how to write them, and how to use them
for test data as well as setup and teardown code. You also used conftest.py for sharing fixtures
between tests in multiple test files. By the end of Chapter 3, pytest Fixtures, the Tasks project
had these fixtures: tasks_db_session, tasks_just_a_few, tasks_mult_per_owner, tasks_db,
db_with_3_tasks, and db_with_multi_per_owner defined in conftest.py to be used by any test
function in the Tasks project that needed them.

Reusing common fixtures is such a good idea that the pytest developers included some
commonly needed fixtures with pytest. You’ve already seen tmpdir and tmpdir_factory in use by
the Tasks project in Changing Scope for Tasks Project Fixtures. You’ll take a look at them in
more detail in this chapter.

The builtin fixtures that come prepackaged with pytest can help you do some pretty useful things
in your tests easily and consistently. For example, in addition to handling temporary files, pytest
includes builtin fixtures to access command-line options, communicate between tests sessions,
validate output streams, modify environmental variables, and interrogate warnings. The builtin
fixtures are extensions to the core functionality of pytest. Let’s now take a look at several of the
most often used builtin fixtures one by one.

(91)

Using tmpdir and tmpdir_factory
The tmpdir and tmpdir_factory builtin fixtures are used to create a temporary file system
directory before your test runs, and remove the directory when your test is finished. In the Tasks
project, we needed a directory to store the temporary database files used by MongoDB and
TinyDB. However, because we want to test with temporary databases that don’t survive past a
test session, we used tmpdir and tmpdir_factory to do the directory creation and cleanup for us.

If you’re testing something that reads, writes, or modifies files, you can use tmpdir to create files
or directories used by a single test, and you can use tmpdir_factory when you want to set up a
directory for many tests.

The tmpdir fixture has function scope, and the tmpdir_factory fixture has session scope. Any
individual test that needs a temporary directory or file just for the single test can use tmpdir. This
is also true for a fixture that is setting up a directory or file that should be recreated for each test
function.

Here’s a simple example using tmpdir:

ch4/test_tmpdir.py
 def test_tmpdir(tmpdir):
 # tmpdir already has a path name associated with it
 # join() extends the path to include a filename
 # the file is created when it's written to
 a_file = tmpdir.join('something.txt')

 # you can create directories
 a_sub_dir = tmpdir.mkdir('anything')

 # you can create files in directories (created when written)
 another_file = a_sub_dir.join('something_else.txt')

 # this write creates 'something.txt'
 a_file.write('contents may settle during shipping')

 # this write creates 'anything/something_else.txt'
 another_file.write('something different')

 # you can read the files as well
 assert a_file.read() == 'contents may settle during shipping'
 assert another_file.read() == 'something different'

The value returned from tmpdir is an object of type py.path.local.[8] This seems like everything
we need for temporary directories and files. However, there’s one gotcha. Because the tmpdir

(92)

http://media.pragprog.com/titles/bopytest/code/ch4/test_tmpdir.py

fixture is defined as function scope, you can’t use tmpdir to create folders or files that should
stay in place longer than one test function. For fixtures with scope other than function (class,
module, session), tmpdir_factory is available.

The tmpdir_factory fixture is a lot like tmpdir, but it has a different interface. As discussed in
Specifying Fixture Scope, function scope fixtures run once per test function, module scope
fixtures run once per module, class scope fixtures run once per class, and test scope fixtures run
once per session. Therefore, resources created in session scope fixtures have a lifetime of the
entire session.

To see how similar tmpdir and tmpdir_factory are, I’ll modify the tmpdir example just enough to
use tmpdir_factory instead:

ch4/test_tmpdir.py
 def test_tmpdir_factory(tmpdir_factory):
 # you should start with making a directory
 # a_dir acts like the object returned from the tmpdir fixture
 a_dir = tmpdir_factory.mktemp('mydir')

 # base_temp will be the parent dir of 'mydir'
 # you don't have to use getbasetemp()
 # using it here just to show that it's available
 base_temp = tmpdir_factory.getbasetemp()
 print('base:', base_temp)

 # the rest of this test looks the same as the 'test_tmpdir()'
 # example except I'm using a_dir instead of tmpdir

 a_file = a_dir.join('something.txt')
 a_sub_dir = a_dir.mkdir('anything')
 another_file = a_sub_dir.join('something_else.txt')

 a_file.write('contents may settle during shipping')
 another_file.write('something different')

 assert a_file.read() == 'contents may settle during shipping'
 assert another_file.read() == 'something different'

The first line uses mktemp(’mydir’) to create a directory and saves it in a_dir. For the rest of the
function, you can use a_dir just like the tmpdir returned from the tmpdir fixture.

In the second line of the tmpdir_factory example, the getbasetemp() function returns the base
directory used for this session. The print statement is in the example so you can see where the
directory is on your system. Let’s see where it is:

 $ cd /path/to/code/ch4

(93)

http://media.pragprog.com/titles/bopytest/code/ch4/test_tmpdir.py

 $ pytest -q -s test_tmpdir.py::test_tmpdir_factory
 base: /private/var/folders/53/zv4j_zc506x2xq25l31qxvxm0000gn\
 /T/pytest-of-okken/pytest-732
 .
 1 passed in 0.04 seconds

This base directory is system- and user-dependent, and pytest-NUM changes with an
incremented NUM for every session. The base directory is left alone after a session, but pytest
cleans them up and only the most recent few temporary base directories are left on the system,
which is great if you need to inspect the files after a test run.

You can also specify your own base directory if you need to with pytest --basetemp=mydir.

Using Temporary Directories for Other Scopes

We get session scope temporary directories and files from the tmpdir_factory fixture, and
function scope directories and files from the tmpdir fixture. But what about other scopes? What
if we need a module or a class scope temporary directory? To do this, we create another fixture
of the scope we want and have it use tmpdir_factory.

For example, suppose we have a module full of tests, and many of them need to be able to read
some data from a json file. We could put a module scope fixture in either the module itself, or in
a conftest.py file that sets up the data file like this:

ch4/authors/conftest.py
 """Demonstrate tmpdir_factory."""

 import json
 import pytest

 @pytest.fixture(scope='module')
 def author_file_json(tmpdir_factory):
 """Write some authors to a data file."""
 python_author_data = {
 'Ned': {'City': 'Boston'},
 'Brian': {'City': 'Portland'},
 'Luciano': {'City': 'Sau Paulo'}
 }

 file = tmpdir_factory.mktemp('data').join('author_file.json')
 print('file:{}'.format(str(file)))

 with file.open('w') as f:
 json.dump(python_author_data, f)

(94)

http://media.pragprog.com/titles/bopytest/code/ch4/authors/conftest.py

 return file

The author_file_json() fixture creates a temporary directory called data and creates a file called
author_file.json within the data directory. It then writes the python_author_data dictionary as
json. Because this is a module scope fixture, the json file will only be created once per module
that has a test using it:

ch4/authors/test_authors.py
 """Some tests that use temp data files."""
 import json

 def test_brian_in_portland(author_file_json):
 """A test that uses a data file."""
 with author_file_json.open() as f:
 authors = json.load(f)
 assert authors['Brian']['City'] == 'Portland'

 def test_all_have_cities(author_file_json):
 """Same file is used for both tests."""
 with author_file_json.open() as f:
 authors = json.load(f)
 for a in authors:
 assert len(authors[a]['City']) > 0

Both tests will use the same json file. If one test data file works for multiple tests, there’s no use
recreating it for both.

(95)

http://media.pragprog.com/titles/bopytest/code/ch4/authors/test_authors.py

Using pytestconfig
With the pytestconfig builtin fixture, you can control how pytest runs through command-line
arguments and options, configuration files, plugins, and the directory from which you launched
pytest. The pytestconfig fixture is a shortcut to request.config, and is sometimes referred to in the
pytest documentation as “the pytest config object.”

To see how pytestconfig works, you’ll look at how to add a custom command-line option and
read the option value from within a test. You can read the value of command-line options
directly from pytestconfig, but to add the option and have pytest parse it, you need to add a hook
function. Hook functions, which I cover in more detail in Chapter 5, Plugins, are another way to
control how pytest behaves and are used frequently in plugins. However, adding a custom
command-line option and reading it from pytestconfig is common enough that I want to cover it
here.

We’ll use the pytest hook pytest_addoption to add a couple of options to the options already
available in the pytest command line:

ch4/pytestconfig/conftest.py
 def pytest_addoption(parser):
 parser.addoption("--myopt", action="store_true",
 help="some boolean option")
 parser.addoption("--foo", action="store", default="bar",
 help="foo: bar or baz")

Adding command-line options via pytest_addoption should be done via plugins or in the
conftest.py file at the top of your project directory structure. You shouldn’t do it in a test
subdirectory.

The options --myopt and --foo <value> were added to the previous code, and the help string was
modified, as shown here:

 $ cd /path/to/code/ch4/pytestconfig
 $ pytest --help
 usage: pytest [options] [file_or_dir] [file_or_dir] [...]
 ...
 custom options:
 --myopt some boolean option
 --foo=FOO foo: bar or baz
 ...

Now we can access those options from a test:

ch4/pytestconfig/test_config.py
 import pytest

(96)

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py

 def test_option(pytestconfig):
 print('"foo" set to:', pytestconfig.getoption('foo'))
 print('"myopt" set to:', pytestconfig.getoption('myopt'))

Let’s see how this works:

 $ pytest -s -q test_config.py::test_option
 "foo" set to: bar
 "myopt" set to: False
 .
 1 passed in 0.01 seconds
 $ pytest -s -q --myopt test_config.py::test_option
 "foo" set to: bar
 "myopt" set to: True
 .
 1 passed in 0.01 seconds
 $ pytest -s -q --myopt --foo baz test_config.py::test_option
 "foo" set to: baz
 "myopt" set to: True
 .
 1 passed in 0.01 seconds

Because pytestconfig is a fixture, it can also be accessed from other fixtures. You can make
fixtures for the option names, if you like, like this:

ch4/pytestconfig/test_config.py
 @pytest.fixture()
 def foo(pytestconfig):
 return pytestconfig.option.foo

 @pytest.fixture()
 def myopt(pytestconfig):
 return pytestconfig.option.myopt

 def test_fixtures_for_options(foo, myopt):
 print('"foo" set to:', foo)
 print('"myopt" set to:', myopt)

You can also access builtin options, not just options you add, as well as information about how
pytest was started (the directory, the arguments, and so on).

(97)

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py

Here’s an example of a few configuration values and options:

ch4/pytestconfig/test_config.py
 def test_pytestconfig(pytestconfig):
 print('args :', pytestconfig.args)
 print('inifile :', pytestconfig.inifile)
 print('invocation_dir :', pytestconfig.invocation_dir)
 print('rootdir :', pytestconfig.rootdir)
 print('-k EXPRESSION :', pytestconfig.getoption('keyword'))
 print('-v, --verbose :', pytestconfig.getoption('verbose'))
 print('-q, --quiet :', pytestconfig.getoption('quiet'))
 print('-l, --showlocals:', pytestconfig.getoption('showlocals'))
 print('--tb=style :', pytestconfig.getoption('tbstyle'))

You’ll use pytestconfig again when I demonstrate ini files in Chapter 6, Configuration.

(98)

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py

Using cache
Usually we testers like to think about each test as being as independent as possible from other
tests. We want to make sure order dependencies don’t creep in. We want to be able to run or
rerun any test in any order and get the same result. We also want test sessions to be repeatable
and to not change behavior based on previous test sessions.

However, sometimes passing information from one test session to the next can be quite useful.
When we do want to pass information to future test sessions, we can do it with the cache builtin
fixture.

The cache fixture is all about storing information about one test session and retrieving it in the
next. A great example of using the powers of cache for good is the builtin functionality of --last-
failed and --failed-first. Let’s take a look at how the data for these flags is stored using cache.

Here’s the help text for the --last-failed and --failed-first options, as well as a couple of cache
options:

 $ pytest --help
 ...
 --lf, --last-failed rerun only the tests that failed at the last run (or
 all if none failed)
 --ff, --failed-first run all tests but run the last failures first. This
 may re-order tests and thus lead to repeated fixture
 setup/teardown
 --cache-show show cache contents, don't perform collection or tests
 --cache-clear remove all cache contents at start of test run.
 ...

To see these in action, we’ll use these two tests:

ch4/cache/test_pass_fail.py
 def test_this_passes():
 assert 1 == 1

 def test_this_fails():
 assert 1 == 2

Let’s run them using --verbose to see the function names, and --tb=no to hide the stack trace:

 $ cd /path/to/code/ch4/cache
 $ pytest --verbose --tb=no test_pass_fail.py
 ==================== test session starts ====================
 collected 2 items

(99)

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_pass_fail.py

 test_pass_fail.py::test_this_passes PASSED
 test_pass_fail.py::test_this_fails FAILED

 ============ 1 failed, 1 passed in 0.05 seconds =============

If you run them again with the --ff or --failed-first flag, the tests that failed previously will be run
first, followed by the rest of the session:

 $ pytest --verbose --tb=no --ff test_pass_fail.py
 ==================== test session starts ====================
 run-last-failure: rerun last 1 failures first
 collected 2 items

 test_pass_fail.py::test_this_fails FAILED
 test_pass_fail.py::test_this_passes PASSED

 ============ 1 failed, 1 passed in 0.04 seconds =============

Or you can use --lf or --last-failed to just run the tests that failed the last time:

 $ pytest --verbose --tb=no --lf test_pass_fail.py
 ==================== test session starts ====================
 run-last-failure: rerun last 1 failures
 collected 2 items

 test_pass_fail.py::test_this_fails FAILED

 ==================== 1 tests deselected =====================
 ========== 1 failed, 1 deselected in 0.05 seconds ===========

Before we look at how the failure data is being saved and how you can use the same mechanism,
let’s look at another example that makes the value of --lf and --ff even more obvious.

Here’s a parametrized test with one failure:

ch4/cache/test_few_failures.py
 """Demonstrate -lf and -ff with failing tests."""

 import pytest
 from pytest import approx

 testdata = [
 # x, y, expected

(100)

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_few_failures.py

 (1.01, 2.01, 3.02),
 (1e25, 1e23, 1.1e25),
 (1.23, 3.21, 4.44),
 (0.1, 0.2, 0.3),
 (1e25, 1e24, 1.1e25)
]

 @pytest.mark.parametrize("x,y,expected", testdata)
 def test_a(x, y, expected):
 """Demo approx()."""
 sum_ = x + y
 assert sum_ == approx(expected)

And the output:

 $ cd /path/to/code/ch4/cache
 $ pytest -q test_few_failures.py
 .F...
 ====================== FAILURES ======================
 ____________ test_a[1e+25-1e+23-1.1e+25] _____________

 x = 1e+25, y = 1e+23, expected = 1.1e+25

 @pytest.mark.parametrize("x,y,expected", testdata)
 def test_a(x,y,expected):
 sum_ = x + y
 > assert sum_ == approx(expected)
 E assert 1.01e+25 == 1.1e+25 ± 1.1e+19
 E + where 1.1e+25 ± 1.1e+19 = approx(1.1e+25)

 test_few_failures.py:17: AssertionError
 1 failed, 4 passed in 0.06 seconds

Maybe you can spot the problem right off the bat. But let’s pretend the test is longer and more
complicated, and it’s not obvious what’s wrong. Let’s run the test again to see the failure again.
You can specify the test case on the command line:

 $ pytest -q "test_few_failures.py::test_a[1e+25-1e+23-1.1e+25]"

If you don’t want to copy/paste or there are multiple failed cases you’d like to rerun, --lf is much
easier. And if you’re really debugging a test failure, another flag that might make things easier is
--showlocals, or -l for short:

(101)

 $ pytest -q --lf -l test_few_failures.py
 F
 ====================== FAILURES ======================
 ____________ test_a[1e+25-1e+23-1.1e+25] _____________

 x = 1e+25, y = 1e+23, expected = 1.1e+25

 @pytest.mark.parametrize("x,y,expected", testdata)
 def test_a(x,y,expected):
 sum_ = x + y
 > assert sum_ == approx(expected)
 E assert 1.01e+25 == 1.1e+25 ± 1.1e+19
 E + where 1.1e+25 ± 1.1e+19 = approx(1.1e+25)

 expected = 1.1e+25
 sum_ = 1.01e+25
 x = 1e+25
 y = 1e+23

 test_few_failures.py:17: AssertionError
 ================= 4 tests deselected =================
 1 failed, 4 deselected in 0.05 seconds

The reason for the failure should be more obvious now.

To pull off the trick of remembering what test failed last time, pytest stores test failure
information from the last test session. You can see the stored information with --cache-show:

 $ pytest --cache-show
 ===================== test session starts ======================
 ------------------------- cache values -------------------------
 cache/lastfailed contains:
 {'test_few_failures.py::test_a[1e+25-1e+23-1.1e+25]': True}

 ================= no tests ran in 0.00 seconds =================

Or you can look in the cache dir:

 $ cat .cache/v/cache/lastfailed
 {
 "test_few_failures.py::test_a[1e+25-1e+23-1.1e+25]": true
 }

You can pass in --clear-cache to clear the cache before the session.

(102)

The cache can be used for more than just --lf and --ff. Let’s make a fixture that records how long
tests take, saves the times, and on the next run, reports an error on tests that take longer than, say,
twice as long as last time.

The interface for the cache fixture is simply

 cache.get(key, default)
 cache.set(key, value)

By convention, key names start with the name of your application or plugin, followed by a /, and
continuing to separate sections of the key name with /’s. The value you store can be anything that
is convertible to json, since that’s how it’s represented in the .cache directory.

Here’s our fixture used to time tests:

ch4/cache/test_slower.py
 @pytest.fixture(autouse=True)
 def check_duration(request, cache):
 key = 'duration/' + request.node.nodeid.replace(':', '_')
 # nodeid's can have colons
 # keys become filenames within .cache
 # replace colons with something filename safe
 start_time = datetime.datetime.now()
 yield
 stop_time = datetime.datetime.now()
 this_duration = (stop_time - start_time).total_seconds()
 last_duration = cache.get(key, None)
 cache.set(key, this_duration)
 if last_duration is not None:
 errorstring = "test duration over 2x last duration"
 assert this_duration <= last_duration * 2, errorstring

The fixture is autouse, so it doesn’t need to be referenced from the test. The request object is
used to grab the nodeid for use in the key. The nodeid is a unique identifier that works even with
parametrized tests. We prepend the key with ’duration/’ to be good cache citizens. The code
above yield runs before the test function; the code after yield happens after the test function.

Now we need some tests that take different amounts of time:

ch4/cache/test_slower.py
 @pytest.mark.parametrize('i', range(5))
 def test_slow_stuff(i):
 time.sleep(random.random())

Because you probably don’t want to write a bunch of tests for this, I used random and
parametrization to easily generate some tests that sleep for a random amount of time, all shorter
than a second. Let’s see it run a couple of times:

(103)

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower.py
http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower.py

 $ cd /path/to/code/ch4/cache
 $ pytest -q --cache-clear test_slower.py

 5 passed in 2.10 seconds
 $ pytest -q --tb=line test_slower.py
 .E..E.E.

 ============================ ERRORS ============================
 ___________ ERROR at teardown of test_slow_stuff[0] ____________
 E AssertionError: test duration over 2x last duration
 assert 0.954312 <= (0.380536 * 2)
 ___________ ERROR at teardown of test_slow_stuff[2] ____________
 E AssertionError: test duration over 2x last duration
 assert 0.821745 <= (0.152405 * 2)
 ___________ ERROR at teardown of test_slow_stuff[3] ____________
 E AssertionError: test duration over 2x last duration
 assert 1.001032 <= (0.36674 * 2)
 5 passed, 3 error in 3.83 seconds

Well, that was fun. Let’s see what’s in the cache:

 $ pytest -q --cache-show
 ------------------------- cache values -------------------------
 cache/lastfailed contains:
 {'test_slower.py::test_slow_stuff[0]': True,
 'test_slower.py::test_slow_stuff[2]': True,
 'test_slower.py::test_slow_stuff[3]': True}
 duration/test_slower.py__test_slow_stuff[0] contains:
 0.954312
 duration/test_slower.py__test_slow_stuff[1] contains:
 0.915539
 duration/test_slower.py__test_slow_stuff[2] contains:
 0.821745
 duration/test_slower.py__test_slow_stuff[3] contains:
 1.001032
 duration/test_slower.py__test_slow_stuff[4] contains:
 0.031884

 no tests ran in 0.01 seconds

You can easily see the duration data separate from the cache data due to the prefixing of cache

(104)

data names. However, it’s interesting that the lastfailed functionality is able to operate with one
cache entry. Our duration data is taking up one cache entry per test. Let’s follow the lead of
lastfailed and fit our data into one entry.

We are reading and writing to the cache for every test. We could split up the fixture into a
function scope fixture to measure durations and a session scope fixture to read and write to the
cache. However, if we do this, we can’t use the cache fixture because it has function scope.
Fortunately, a quick peek at the implementation on GitHub[9] reveals that the cache fixture is
simply returning request.config.cache. This is available in any scope.

Here’s one possible refactoring of the same functionality:

ch4/cache/test_slower_2.py
 Duration = namedtuple('Duration', ['current', 'last'])

 @pytest.fixture(scope='session')
 def duration_cache(request):
 key = 'duration/testdurations'
 d = Duration({}, request.config.cache.get(key, {}))
 yield d
 request.config.cache.set(key, d.current)

 @pytest.fixture(autouse=True)
 def check_duration(request, duration_cache):
 d = duration_cache
 nodeid = request.node.nodeid
 start_time = datetime.datetime.now()
 yield
 duration = (datetime.datetime.now() - start_time).total_seconds()
 d.current[nodeid] = duration
 if d.last.get(nodeid, None) is not None:
 errorstring = "test duration over 2x last duration"
 assert duration <= (d.last[nodeid] * 2), errorstring

The duration_cache fixture is session scope. It reads the previous entry or an empty dictionary if
there is no previous cached data, before any tests are run. In the previous code, we saved both the
retrieved dictionary and an empty one in a namedtuple called Duration with accessors current
and last. We then passed that namedtuple to the check_duration fixture, which is function scope
and runs for every test function. As the test runs, the same namedtuple is passed to each test, and
the times for the current test runs are stored in the d.current dictionary. At the end of the test
session, the collected current dictionary is saved in the cache.

After running it a couple of times, let’s look at the saved cache:

(105)

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower_2.py

 $ pytest -q --cache-clear test_slower_2.py

 5 passed in 2.80 seconds
 $ pytest -q --tb=no test_slower_2.py
 ...E..E
 5 passed, 2 error in 1.97 seconds
 $ pytest -q --cache-show
 ------------------------- cache values -------------------------
 cache/lastfailed contains:
 {'test_slower_2.py::test_slow_stuff[2]': True,
 'test_slower_2.py::test_slow_stuff[4]': True}
 duration/testdurations contains:
 {'test_slower_2.py::test_slow_stuff[0]': 0.145404,
 'test_slower_2.py::test_slow_stuff[1]': 0.199585,
 'test_slower_2.py::test_slow_stuff[2]': 0.696492,
 'test_slower_2.py::test_slow_stuff[3]': 0.202118,
 'test_slower_2.py::test_slow_stuff[4]': 0.657917}

 no tests ran in 0.01 seconds

That looks better.

(106)

Using capsys
The capsys builtin fixture provides two bits of functionality: it allows you to retrieve stdout and
stderr from some code, and it disables output capture temporarily. Let’s take a look at retrieving
stdout and stderr.

Suppose you have a function to print a greeting to stdout:

ch4/cap/test_capsys.py
 def greeting(name):
 print('Hi, {}'.format(name))

You can’t test it by checking the return value. You have to test stdout somehow. You can test the
output by using capsys:

ch4/cap/test_capsys.py
 def test_greeting(capsys):
 greeting('Earthling')
 out, err = capsys.readouterr()
 assert out == 'Hi, Earthling\n'
 assert err == ''

 greeting('Brian')
 greeting('Nerd')
 out, err = capsys.readouterr()
 assert out == 'Hi, Brian\nHi, Nerd\n'
 assert err == ''

The captured stdout and stderr are retrieved from capsys.redouterr(). The return value is
whatever has been captured since the beginning of the function, or from the last time it was
called.

The previous example only used stdout. Let’s look at an example using stderr:

ch4/cap/test_capsys.py
 def yikes(problem):
 print('YIKES! {}'.format(problem), file=sys.stderr)

 def test_yikes(capsys):
 yikes('Out of coffee!')
 out, err = capsys.readouterr()
 assert out == ''
 assert 'Out of coffee!' in err

(107)

http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py

pytest usually captures the output from your tests and the code under test. This includes print
statements. The captured output is displayed for failing tests only after the full test session is
complete. The -s option turns off this feature, and output is sent to stdout while the tests are
running. Usually this works great, as it’s the output from the failed tests you need to see in order
to debug the failures. However, you may want to allow some output to make it through the
default pytest output capture, to print some things without printing everything. You can do this
with capsys. You can use capsys.disabled() to temporarily let output get past the capture
mechanism.

Here’s an example:

ch4/cap/test_capsys.py
 def test_capsys_disabled(capsys):
 with capsys.disabled():
 print('\nalways print this')
 print('normal print, usually captured')

Now, ’always print this’ will always be output:

 $ cd /path/to/code/ch4/cap
 $ pytest -q test_capsys.py::test_capsys_disabled

 always print this
 .
 1 passed in 0.01 seconds
 $ pytest -q -s test_capsys.py::test_capsys_disabled

 always print this
 normal print, usually captured
 .
 1 passed in 0.00 seconds

As you can see, always print this shows up with or without output capturing, since it’s being
printed from within a with capsys.disabled() block. The other print statement is just a normal
print statement, so normal print, usually captured is only seen in the output when we pass in the -
s flag, which is a shortcut for --capture=no, turning off output capture.

(108)

http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py

Using monkeypatch
A “monkey patch” is a dynamic modification of a class or module during runtime. During
testing, “monkey patching” is a convenient way to take over part of the runtime environment of
the code under test and replace either input dependencies or output dependencies with objects or
functions that are more convenient for testing. The monkeypatch builtin fixture allows you to do
this in the context of a single test. And when the test ends, regardless of pass or fail, the original
unpatched is restored, undoing everything changed by the patch. It’s all very hand-wavy until we
jump into some examples. After looking at the API, we’ll look at how monkeypatch is used in
test code.

The monkeypatch fixture provides the following functions:

setattr(target, name, value=<notset>, raising=True): Set an attribute.

delattr(target, name=<notset>, raising=True): Delete an attribute.

setitem(dic, name, value): Set a dictionary entry.

delitem(dic, name, raising=True): Delete a dictionary entry.

setenv(name, value, prepend=None): Set an environmental variable.

delenv(name, raising=True): Delete an environmental variable.

syspath_prepend(path): Prepend path to sys.path, which is Python’s list of import
locations.

chdir(path): Change the current working directory.

The raising parameter tells pytest whether or not to raise an exception if the item doesn’t already
exist. The prepend parameter to setenv() can be a character. If it is set, the value of the
environmental variable will be changed to value + prepend + <old value>.

To see monkeypatch in action, let’s look at code that writes a dot configuration file. The
behavior of some programs can be changed with preferences and values set in a dot file in a
user’s home directory. Here’s a bit of code that reads and writes a cheese preferences file:

ch4/monkey/cheese.py
 import os
 import json

 def read_cheese_preferences():
 full_path = os.path.expanduser('~/.cheese.json')
 with open(full_path, 'r') as f:
 prefs = json.load(f)
 return prefs

(109)

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/cheese.py

 def write_cheese_preferences(prefs):
 full_path = os.path.expanduser('~/.cheese.json')
 with open(full_path, 'w') as f:
 json.dump(prefs, f, indent=4)

 def write_default_cheese_preferences():
 write_cheese_preferences(_default_prefs)
 _default_prefs = {
 'slicing': ['manchego', 'sharp cheddar'],
 'spreadable': ['Saint Andre', 'camembert',
 'bucheron', 'goat', 'humbolt fog', 'cambozola'],
 'salads': ['crumbled feta']
 }

Let’s take a look at how we could test write_default_cheese_preferences(). It’s a function that
takes no parameters and doesn’t return anything. But it does have a side effect that we can test. It
writes a file to the current user’s home directory.

One approach is to just let it run normally and check the side effect. Suppose I already have tests
for read_cheese_preferences() and I trust them, so I can use them in the testing of
write_default_cheese_preferences():

ch4/monkey/test_cheese.py
 def test_def_prefs_full():
 cheese.write_default_cheese_preferences()
 expected = cheese._default_prefs
 actual = cheese.read_cheese_preferences()
 assert expected == actual

One problem with this is that anyone who runs this test code will overwrite their own cheese
preferences file. That’s not good.

If a user has HOME set, os.path.expanduser() replaces ~ with whatever is in a user’s HOME
environmental variable. Let’s create a temporary directory and redirect HOME to point to that
new temporary directory:

ch4/monkey/test_cheese.py
 def test_def_prefs_change_home(tmpdir, monkeypatch):
 monkeypatch.setenv('HOME', tmpdir.mkdir('home'))
 cheese.write_default_cheese_preferences()
 expected = cheese._default_prefs
 actual = cheese.read_cheese_preferences()

(110)

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py

 assert expected == actual

This is a pretty good test, but relying on HOME seems a little operating-system dependent. And
a peek into the documentation online for expanduser() has some troubling information, including
“On Windows, HOME and USERPROFILE will be used if set, otherwise a combination
of….”[10] Dang. That may not be good for someone running the test on Windows. Maybe we
should take a different approach.

Instead of patching the HOME environmental variable, let’s patch expanduser:

ch4/monkey/test_cheese.py
 def test_def_prefs_change_expanduser(tmpdir, monkeypatch):
 fake_home_dir = tmpdir.mkdir('home')
 monkeypatch.setattr(cheese.os.path, 'expanduser',
 (lambda x: x.replace('~', str(fake_home_dir))))
 cheese.write_default_cheese_preferences()
 expected = cheese._default_prefs
 actual = cheese.read_cheese_preferences()
 assert expected == actual

During the test, anything in the cheese module that calls os.path.expanduser() gets our lambda
expression instead. This little function uses the regular expression module function re.sub to
replace ~ with our new temporary directory. Now we’ve used setenv() and setattr() to do
patching of environmental variables and attributes. Next up, setitem().

Let’s say we’re worried about what happens if the file already exists. We want to be sure it gets
overwritten with the defaults when write_default_cheese_preferences() is called:

ch4/monkey/test_cheese.py
 def test_def_prefs_change_defaults(tmpdir, monkeypatch):
 # write the file once
 fake_home_dir = tmpdir.mkdir('home')
 monkeypatch.setattr(cheese.os.path, 'expanduser',
 (lambda x: x.replace('~', str(fake_home_dir))))
 cheese.write_default_cheese_preferences()
 defaults_before = copy.deepcopy(cheese._default_prefs)

 # change the defaults
 monkeypatch.setitem(cheese._default_prefs, 'slicing', ['provolone'])
 monkeypatch.setitem(cheese._default_prefs, 'spreadable', ['brie'])
 monkeypatch.setitem(cheese._default_prefs, 'salads', ['pepper jack'])
 defaults_modified = cheese._default_prefs

 # write it again with modified defaults
 cheese.write_default_cheese_preferences()

(111)

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py

 # read, and check
 actual = cheese.read_cheese_preferences()
 assert defaults_modified == actual
 assert defaults_modified != defaults_before

Because _default_prefs is a dictionary, we can use monkeypatch.setitem() to change dictionary
items just for the duration of the test.

We’ve used setenv(), setattr(), and setitem(). The del forms are pretty similar. They just delete an
environmental variable, attribute, or dictionary item instead of setting something. The last two
monkeypatch methods pertain to paths.

syspath_prepend(path) prepends a path to sys.path, which has the effect of putting your new path
at the head of the line for module import directories. One use for this would be to replace a
system-wide module or package with a stub version. You can then use
monkeypatch.syspath_prepend() to prepend the directory of your stub version and the code under
test will find the stub version first.

chdir(path) changes the current working directory during the test. This would be useful for
testing command-line scripts and other utilities that depend on what the current working
directory is. You could set up a temporary directory with whatever contents make sense for your
script, and then use monkeypatch.chdir(the_tmpdir).

You can also use the monkeypatch fixture functions in conjunction with unittest.mock to
temporarily replace attributes with mock objects. You’ll look at that in Chapter 7, Using pytest
with Other Tools.

(112)

Using doctest_namespace
The doctest module is part of the standard Python library and allows you to put little code
examples inside docstrings for a function and test them to make sure they work. You can have
pytest look for and run doctest tests within your Python code by using the --doctest-modules flag.
With the doctest_namespace builtin fixture, you can build autouse fixtures to add symbols to the
namespace pytest uses while running doctest tests. This allows docstrings to be much more
readable. doctest_namespace is commonly used to add module imports into the namespace,
especially when Python convention is to shorten the module or package name. For instance,
numpy is often imported with import numpy as np.

Let’s play with an example. Let’s say we have a module named unnecessary_math.py with
multiply() and divide() methods that we really want to make sure everyone understands clearly.
So we throw some usage examples in both the file docstring and the docstrings of the functions:

ch4/dt/1/unnecessary_math.py
 """
 This module defines multiply(a, b) and divide(a, b).

 >>> import unnecessary_math as um

 Here's how you use multiply:

 >>> um.multiply(4, 3)
 12
 >>> um.multiply('a', 3)
 'aaa'

 Here's how you use divide:

 >>> um.divide(10, 5)
 2.0
 """

 def multiply(a, b):
 """
 Returns a multiplied by b.

 >>> um.multiply(4, 3)
 12
 >>> um.multiply('a', 3)

(113)

http://media.pragprog.com/titles/bopytest/code/ch4/dt/1/unnecessary_math.py

 'aaa'
 """
 return a * b

 def divide(a, b):
 """
 Returns a divided by b.

 >>> um.divide(10, 5)
 2.0
 """
 return a / b

Since the name unnecessary_math is long, we decide to use um instead by using import
unnecessary_math as um in the top docstring. The code in the docstrings of the functions doesn’t
include the import statement, but continue with the um convention. The problem is that pytest
treats each docstring with code as a different test. The import in the top docstring will allow the
first part to pass, but the code in the docstrings of the functions will fail:

 $ cd /path/to/code/ch4/dt/1
 $ pytest -v --doctest-modules --tb=short unnecessary_math.py
 ======================== test session starts ========================
 collected 3 items

 unnecessary_math.py::unnecessary_math PASSED
 unnecessary_math.py::unnecessary_math.divide FAILED
 unnecessary_math.py::unnecessary_math.multiply FAILED

 ============================= FAILURES
==============================

 _________________ [doctest] unnecessary_math.divide _________________
 031
 032 Returns a divided by b.
 033
 034 >>> um.divide(10, 5)
 UNEXPECTED EXCEPTION: NameError("name 'um' is not defined",)
 Traceback (most recent call last):
 ...
 File "<doctest unnecessary_math.divide[0]>", line 1, in <module>

 NameError: name 'um' is not defined

(114)

 /path/to/code/ch4/dt/1/unnecessary_math.py:34: UnexpectedException
 ________________ [doctest] unnecessary_math.multiply ________________
 022
 023 >>> um.multiply(4, 3)
 UNEXPECTED EXCEPTION: NameError("name 'um' is not defined",)
 Traceback (most recent call last):
 ...
 File "<doctest unnecessary_math.multiply[0]>", line 1, in <module>

 NameError: name 'um' is not defined

 /path/to/code/ch4/dt/1/unnecessary_math.py:23: UnexpectedException
 ================ 2 failed, 1 passed in 0.03 seconds =================

One way to fix it is to put the import statement in each docstring:

ch4/dt/2/unnecessary_math.py
 def multiply(a, b):
 """
 Returns a multiplied by b.

 >>> import unnecessary_math as um
 >>> um.multiply(4, 3)
 12
 >>> um.multiply('a', 3)
 'aaa'
 """
 return a * b

 def divide(a, b):
 """
 Returns a divided by b.

 >>> import unnecessary_math as um
 >>> um.divide(10, 5)
 2.0
 """
 return a / b

This definitely fixes the problem:

 $ cd /path/to/code/ch4/dt/2

(115)

http://media.pragprog.com/titles/bopytest/code/ch4/dt/2/unnecessary_math.py

 $ pytest -v --doctest-modules --tb=short unnecessary_math.py
 ======================== test session starts ========================
 collected 3 items

 unnecessary_math.py::unnecessary_math PASSED
 unnecessary_math.py::unnecessary_math.divide PASSED
 unnecessary_math.py::unnecessary_math.multiply PASSED

 ===================== 3 passed in 0.03 seconds ======================

However, it also clutters the docstrings, and doesn’t add any real value to readers of the code.

The builtin fixture doctest_namespace, used in an autouse fixture at a top-level conftest.py file,
will fix the problem without changing the source code:

ch4/dt/3/conftest.py
 import pytest
 import unnecessary_math

 @pytest.fixture(autouse=True)
 def add_um(doctest_namespace):
 doctest_namespace['um'] = unnecessary_math

This tells pytest to add the um name to the doctest_namespace and have it be the value of the
imported unnecessary_math module. With this in place in the conftest.py file, any doctests found
within the scope of this conftest.py file will have the um symbol defined.

I’ll cover running doctest from pytest more in Chapter 7, Using pytest with Other Tools.

(116)

http://media.pragprog.com/titles/bopytest/code/ch4/dt/3/conftest.py

Using recwarn
The recwarn builtin fixture is used to examine warnings generated by code under test. In Python,
you can add warnings that work a lot like assertions, but are used for things that don’t need to
stop execution. For example, suppose we want to stop supporting a function that we wish we had
never put into a package but was released for others to use. We can put a warning in the code and
leave it there for a release or two:

ch4/test_warnings.py
 import warnings
 import pytest

 def lame_function():
 warnings.warn("Please stop using this", DeprecationWarning)
 # rest of function

We can make sure the warning is getting issued correctly with a test:

ch4/test_warnings.py
 def test_lame_function(recwarn):
 lame_function()
 assert len(recwarn) == 1
 w = recwarn.pop()
 assert w.category == DeprecationWarning
 assert str(w.message) == 'Please stop using this'

The recwarn value acts like a list of warnings, and each warning in the list has a category,
message, filename, and lineno defined, as shown in the code.

The warnings are collected at the beginning of the test. If that is inconvenient because the portion
of the test where you care about warnings is near the end, you can use recwarn.clear() to clear
out the list before the chunk of the test where you do care about collecting warnings.

In addition to recwarn, pytest can check for warnings with pytest.warns():

ch4/test_warnings.py
 def test_lame_function_2():
 with pytest.warns(None) as warning_list:
 lame_function()

 assert len(warning_list) == 1
 w = warning_list.pop()
 assert w.category == DeprecationWarning
 assert str(w.message) == 'Please stop using this'

(117)

http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py
http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py
http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py

The pytest.warns() context manager provides an elegant way to demark what portion of the code
you’re checking warnings. The recwarn fixture and the pytest.warns() context manager provide
similar functionality, though, so the decision of which to use is purely a matter of taste.

(118)

Exercises
1. In ch4/cache/test_slower.py, there is an autouse fixture called check_duration(). Copy it

into ch3/tasks_proj/tests/conftest.py.
2. Run the tests in Chapter 3.
3. For tests that are really fast, 2x really fast is still really fast. Instead of 2x, change the

fixture to check for 0.1 second plus 2x the last duration.
4. Run pytest with the modified fixture. Do the results seem reasonable?

(119)

What’s Next
In this chapter, you looked at many of pytest’s builtin fixtures. Next, you’ll take a closer look at
plugins. The nuance of writing large plugins could be a book in itself; however, small custom
plugins are a regular part of the pytest ecosystem.

Footnotes

[8]

http://py.readthedocs.io/en/latest/path.html

[9]

https://github.com/pytest-dev/pytest/blob/master/_pytest/cacheprovider.py

[10]

https://docs.python.org/3.6/library/os.path.html#os.path.expanduser

Copyright © 2017, The Pragmatic Bookshelf.

(120)

http://py.readthedocs.io/en/latest/path.html
https://github.com/pytest-dev/pytest/blob/master/_pytest/cacheprovider.py
https://docs.python.org/3.6/library/os.path.html#os.path.expanduser

Chapter 5
Plugins
As powerful as pytest is right out of the box, it gets even better when you add plugins to the mix.
The pytest code base is structured with customization and extensions, and there are hooks
available to allow modifications and improvements through plugins.

It might surprise you to know that you’ve already written some plugins if you’ve worked through
the previous chapters in this book. Any time you put fixtures and/or hook functions into a
project’s top-level conftest.py file, you created a local conftest plugin. It’s just a little bit of extra
work to convert these conftest.py files into installable plugins that you can share between
projects, with other people, or with the world.

We will start this chapter looking at where to look for third-party plugins. Quite a few plugins
are available, so there’s a decent chance someone has already written the change you want to
make to pytest. Since we will be looking at open source plugins, if a plugin does almost what
you want to do but not quite, you can fork it, or use it as a reference for creating your own
plugin. While this chapter is about creating your own plugins, Appendix 3, Plugin Sampler Pack
is included to give you a taste of what’s possible.

In this chapter, you’ll learn how to create plugins, and I’ll point you in the right direction to test,
package, and distribute them. The full topic of Python packaging and distribution is probably a
book of its own, so we won’t cover everything. But you’ll get far enough to be able to share
plugins with your team. I’ll also discuss some shortcuts to getting PyPI–distributed plugins up
with the least amount of work.

(121)

Finding Plugins
You can find third-party pytest plugins in several places. The plugins listed in Appendix 3,
Plugin Sampler Pack are all available for download from PyPI. However, that’s not the only
place to look for great pytest plugins.

https://docs.pytest.org/en/latest/plugins.html

The main pytest documentation site has a page that talks about installing and using pytest
plugins, and lists a few common plugins.

https://pypi.python.org

The Python Package Index (PyPI) is a great place to get lots of Python packages, but it is
also a great place to find pytest plugins. When looking for pytest plugins, it should work
pretty well to enter “pytest,” “pytest-,” or “-pytest” into the search box, since most pytest
plugins either start with “pytest-,” or end in “-pytest.”

https://github.com/pytest-dev

The “pytest-dev” group on GitHub is where the pytest source code is kept. It’s also where
you can find some popular pytest plugins that are intended to be maintained long-term by
the pytest core team.

(122)

Installing Plugins
pytest plugins are installed with pip, just like other Python packages. However, you can use pip
in several different ways to install plugins.

Install from PyPI

As PyPI is the default location for pip, installing plugins from PyPI is the easiest method. Let’s
install the pytest-cov plugin:

 $ pip install pytest-cov

This installs the latest stable version from PyPI.

Install a Particular Version from PyPI

If you want a particular version of a plugin, you can specify the version after ‘==‘:

 $ pip install pytest-cov==2.4.0

Install from a .tar.gz or .whl File

Packages on PyPI are distributed as zipped files with the extensions .tar.gz and/or .whl. These are
often referred to as “tar balls” and “wheels.” If you’re having trouble getting pip to work with
PyPI directly (which can happen with firewalls and other network complications), you can
download either the .tar.gz or the .whl and install from that.

You don’t have to unzip or anything; just point pip at it:

 $ pip install pytest-cov-2.4.0.tar.gz
 # or
 $ pip install pytest_cov-2.4.0-py2.py3-none-any.whl

Install from a Local Directory

You can keep a local stash of plugins (and other Python packages) in a local or shared directory
in .tar.gz or .whl format and use that instead of PyPI for installing plugins:

 $ mkdir some_plugins
 $ cp pytest_cov-2.4.0-py2.py3-none-any.whl some_plugins/
 $ pip install --no-index --find-links=./some_plugins/ pytest-cov

The --no-index tells pip to not connect to PyPI. The --find-links=./some_plugins/ tells pip to look
in the directory called some_plugins. This technique is especially useful if you have both third-

(123)

party and your own custom plugins stored locally, and also if you’re creating new virtual
environments for continuous integration or with tox. (We’ll talk about both tox and continuous
integration in Chapter 7, Using pytest with Other Tools.)

Note that with the local directory install method, you can install multiple versions and specify
which version you want by adding == and the version number:

 $ pip install --no-index --find-links=./some_plugins/ pytest-cov==2.4.0

Install from a Git Repository

You can install plugins directly from a Git repository—in this case, GitHub:

 $ pip install git+https://github.com/pytest-dev/pytest-cov

You can also specify a version tag:

 $ pip install git+https://github.com/pytest-dev/pytest-cov@v2.4.0

Or you can specify a branch:

 $ pip install git+https://github.com/pytest-dev/pytest-cov@master

Installing from a Git repository is especially useful if you’re storing your own work within Git,
or if the plugin or plugin version you want isn’t on PyPI.

(124)

Writing Your Own Plugins
Many third-party plugins contain quite a bit of code. That’s one of the reasons we use them—to
save us the time to develop all of that code ourselves. However, for your specific coding domain,
you’ll undoubtedly come up with special fixtures and modifications that help you test. Even a
handful of fixtures that you want to share between a couple of projects can be shared easily by
creating a plugin. You can share those changes with multiple projects—and possibly the rest of
the world—by developing and distributing your own plugins. It’s pretty easy to do so. In this
section, we’ll develop a small modification to pytest behavior, package it as a plugin, test it, and
look into how to distribute it.

Plugins can include hook functions that alter pytest’s behavior. Because pytest was developed
with the intent to allow plugins to change quite a bit about the way pytest behaves, a lot of hook
functions are available. The hook functions for pytest are specified on the pytest documentation
site.[11]

For our example, we’ll create a plugin that changes the way the test status looks. We’ll also
include a command-line option to turn on this new behavior. We’re also going to add some text
to the output header. Specifically, we’ll change all of the FAILED status indicators to
“OPPORTUNITY for improvement,” change F to O, and add “Thanks for running the tests” to
the header. We’ll use the --nice option to turn the behavior on.

To keep the behavior changes separate from the discussion of plugin mechanics, we’ll make our
changes in conftest.py before turning it into a distributable plugin. You don’t have to start
plugins this way. But frequently, changes you only intended to use on one project will become
useful enough to share and grow into a plugin. Therefore, we’ll start by adding functionality to a
conftest.py file, then, after we get things working in conftest.py, we’ll move the code to a
package.

Let’s go back to the Tasks project. In Expecting Exceptions, we wrote some tests that made sure
exceptions were raised if someone called an API function incorrectly. Looks like we missed at
least a few possible error conditions.

Here are a couple more tests:

ch5/a/tasks_proj/tests/func/test_api_exceptions.py
 import pytest
 import tasks
 from tasks import Task

 @pytest.mark.usefixtures('tasks_db')
 class TestAdd():
 """Tests related to tasks.add()."""

 def test_missing_summary(self):
 """Should raise an exception if summary missing."""

(125)

http://media.pragprog.com/titles/bopytest/code/ch5/a/tasks_proj/tests/func/test_api_exceptions.py

 with pytest.raises(ValueError):
 tasks.add(Task(owner='bob'))

 def test_done_not_bool(self):
 """Should raise an exception if done is not a bool."""
 with pytest.raises(ValueError):
 tasks.add(Task(summary='summary', done='True'))

Let’s run them to see if they pass:

 $ cd /path/to/code/ch5/a/tasks_proj
 $ pytest
 ===================== test session starts ======================
 collected 57 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py .F.......
 tests/func/test_unique_id.py .
 tests/unit/test_task.py

 =========================== FAILURES ===========================
 __________________ TestAdd.test_done_not_bool __________________

 self = <func.test_api_exceptions.TestAdd object at 0x103a71a20>

 def test_done_not_bool(self):
 """Should raise an exception if done is not a bool."""
 with pytest.raises(ValueError):
 > tasks.add(Task(summary='summary', done='True'))
 E Failed: DID NOT RAISE <class 'ValueError'>

 tests/func/test_api_exceptions.py:20: Failed
 ============= 1 failed, 56 passed in 0.28 seconds ==============

Let’s run it again with -v for verbose. Since you’ve already seen the traceback, you can turn that
off with --tb=no.

And now let’s focus on the new tests with -k TestAdd, which works because there aren’t any
other tests with names that contain “TestAdd.”

 $ cd /path/to/code/ch5/a/tasks_proj/tests/func
 $ pytest -v --tb=no test_api_exceptions.py -k TestAdd

(126)

 ===================== test session starts ======================
 collected 9 items

 test_api_exceptions.py::TestAdd::test_missing_summary PASSED
 test_api_exceptions.py::TestAdd::test_done_not_bool FAILED

 ====================== 7 tests deselected ======================
 ======= 1 failed, 1 passed, 7 deselected in 0.07 seconds =======

We could go off and try to fix this test (and we should later), but now we are focused on trying to
make failures more pleasant for developers.

Let’s start by adding the “thank you” message to the header, which you can do with a pytest
hook called pytest_report_header().

ch5/b/tasks_proj/tests/conftest.py
 def pytest_report_header():
 """Thank tester for running tests."""
 return "Thanks for running the tests."

Obviously, printing a thank-you message is rather silly. However, the ability to add information
to the header can be extended to add a username and specify hardware used and versions under
test. Really, anything you can convert to a string, you can stuff into the test header.

Next, we’ll change the status reporting for tests to change F to O and FAILED to
OPPORTUNITY for improvement. There’s a hook function that allows for this type of
shenanigans: pytest_report_teststatus():

ch5/b/tasks_proj/tests/conftest.py
 def pytest_report_teststatus(report):
 """Turn failures into opportunities."""
 if report.when == 'call' and report.failed:
 return (report.outcome, 'O', 'OPPORTUNITY for improvement')

And now we have just the output we were looking for. A test session with no --verbose flag
shows an O for failures, er, improvement opportunities:

 $ cd /path/to/code/ch5/b/tasks_proj/tests/func
 $ pytest --tb=no test_api_exceptions.py -k TestAdd
 ===================== test session starts ======================
 Thanks for running the tests.
 collected 9 items

 test_api_exceptions.py .O

 ====================== 7 tests deselected ======================

(127)

http://media.pragprog.com/titles/bopytest/code/ch5/b/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch5/b/tasks_proj/tests/conftest.py

 ======= 1 failed, 1 passed, 7 deselected in 0.06 seconds =======

And the -v or --verbose flag will be nicer also:

 $ pytest -v --tb=no test_api_exceptions.py -k TestAdd
 ===================== test session starts ======================
 Thanks for running the tests.
 collected 9 items

 test_api_exceptions.py::TestAdd::test_missing_summary PASSED
 test_api_exceptions.py::TestAdd::test_done_not_bool OPPORTUNITY for improvement

 ====================== 7 tests deselected ======================
 ======= 1 failed, 1 passed, 7 deselected in 0.07 seconds =======

The last modification we’ll make is to add a command-line option, --nice, to only have our status
modifications occur if --nice is passed in:

ch5/c/tasks_proj/tests/conftest.py
 def pytest_addoption(parser):
 """Turn nice features on with --nice option."""
 group = parser.getgroup('nice')
 group.addoption("--nice", action="store_true",
 help="nice: turn failures into opportunities")

 def pytest_report_header():
 """Thank tester for running tests."""
 if pytest.config.getoption('nice'):
 return "Thanks for running the tests."

 def pytest_report_teststatus(report):
 """Turn failures into opportunities."""
 if report.when == 'call':
 if report.failed and pytest.config.getoption('nice'):
 return (report.outcome, 'O', 'OPPORTUNITY for improvement')

This is a good place to note that for this plugin, we are using just a couple of hook functions.
There are many more, which can be found on the main pytest documentation site.[12]

We can manually test our plugin just by running it against our example file. First, with no --nice
option, to make sure just the username shows up:

 $ cd /path/to/code/ch5/c/tasks_proj/tests/func

(128)

http://media.pragprog.com/titles/bopytest/code/ch5/c/tasks_proj/tests/conftest.py

 $ pytest --tb=no test_api_exceptions.py -k TestAdd
 ===================== test session starts ======================
 collected 9 items

 test_api_exceptions.py .F

 ====================== 7 tests deselected ======================
 ======= 1 failed, 1 passed, 7 deselected in 0.07 seconds =======

Now with --nice:

 $ pytest --nice --tb=no test_api_exceptions.py -k TestAdd
 ===================== test session starts ======================
 Thanks for running the tests.
 collected 9 items

 test_api_exceptions.py .O

 ====================== 7 tests deselected ======================
 ======= 1 failed, 1 passed, 7 deselected in 0.07 seconds =======

And with --nice and --verbose:

 $ pytest -v --nice --tb=no test_api_exceptions.py -k TestAdd
 ===================== test session starts ======================
 Thanks for running the tests.
 collected 9 items

 test_api_exceptions.py::TestAdd::test_missing_summary PASSED
 test_api_exceptions.py::TestAdd::test_done_not_bool OPPORTUNITY for improvement

 ====================== 7 tests deselected ======================
 ======= 1 failed, 1 passed, 7 deselected in 0.06 seconds =======

Great! All of the changes we wanted are done with about a dozen lines of code in a conftest.py
file. Next, we’ll move this code into a plugin structure.

(129)

Creating an Installable Plugin
The process for sharing plugins with others is well-defined. Even if you never put your own
plugin up on PyPI, by walking through the process, you’ll have an easier time reading the code
from open source plugins and be better equipped to judge if they will help you or not.

It would be overkill to fully cover Python packaging and distribution in this book, as the topic is
well documented elsewhere.[13][14] However, it’s a small task to go from the local config plugin
we created in the previous section to something pip-installable.

First, we need to create a new directory to put our plugin code. It does not matter what you call
it, but since we are making a plugin for the “nice” flag, let’s call it pytest-nice. We will have two
files in this new directory: pytest_nice.py and setup.py. (The tests directory will be discussed in
Testing Plugins.)

 pytest-nice
 ├── LICENCE
 ├── README.rst
 ├── pytest_nice.py
 ├── setup.py
 └── tests
 ├── conftest.py
 └── test_nice.py

In pytest_nice.py, we’ll put the exact contents of our conftest.py that were related to this feature
(and take it out of the tasks_proj/tests/conftest.py):

ch5/pytest-nice/pytest_nice.py
 """Code for pytest-nice plugin."""

 import pytest

 def pytest_addoption(parser):
 """Turn nice features on with --nice option."""
 group = parser.getgroup('nice')
 group.addoption("--nice", action="store_true",
 help="nice: turn FAILED into OPPORTUNITY for improvement")

 def pytest_report_header():
 """Thank tester for running tests."""
 if pytest.config.getoption('nice'):
 return "Thanks for running the tests."

(130)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/pytest_nice.py

 def pytest_report_teststatus(report):
 """Turn failures into opportunities."""
 if report.when == 'call':
 if report.failed and pytest.config.getoption('nice'):
 return (report.outcome, 'O', 'OPPORTUNITY for improvement')

In setup.py, we need a very minimal call to setup():

ch5/pytest-nice/setup.py
 """Setup for pytest-nice plugin."""

 from setuptools import setup

 setup(
 name='pytest-nice',
 version='0.1.0',
 description='A pytest plugin to turn FAILURE into OPPORTUNITY',
 url='https://wherever/you/have/info/on/this/package',
 author='Your Name',
 author_email='your_email@somewhere.com',
 license='proprietary',
 py_modules=['pytest_nice'],
 install_requires=['pytest'],
 entry_points={'pytest11': ['nice = pytest_nice',], },
)

You’ll want more information in your setup if you’re going to distribute to a wide audience or
online. However, for a small team or just for yourself, this will suffice.

You can include many more parameters to setup(); we only have the required fields. The version
field is the version of this plugin. And it’s up to you when you bump the version. The url field is
required. You can leave it out, but you get a warning if you do. The author and author_email
fields can be replaced with maintainer and maintainer_email, but one of those pairs needs to be
there. The license field is a short text field. It can be one of the many open source licenses, your
name or company, or whatever is appropriate for you. The py_modules entry lists pytest_nice as
our one and only module for this plugin. Although it’s a list and you could include more than one
module, if I had more than one, I’d use packages instead and put all the modules inside a
directory.

So far, all of the parameters to setup() are standard and used for all Python installers. The piece
that is different for pytest plugins is the entry_points parameter. We have listed entry_points=
{’pytest11’: [’nice = pytest_nice’,], },. The entry_points feature is standard for setuptools, but
pytest11 is a special identifier that pytest looks for. With this line, we are telling pytest that nice
is the name of our plugin, and pytest_nice is the name of the module where our plugin lives. If

(131)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/setup.py

we had used a package, our entry here would be:

 entry_points={'pytest11': ['name_of_plugin = myproject.pluginmodule',], },

I haven’t talked about the README.rst file yet. Some form of README is a requirement by
setuptools. If you leave it out, you’ll get this:

 ...
 warning: sdist: standard file not found: should have one of README,
 README.rst, README.txt
 ...

Keeping a README around as a standard way to include some information about a project is a
good idea anyway. Here’s what I’ve put in the file for pytest-nice:

ch5/pytest-nice/README.rst
 pytest-nice : A pytest plugin
 =============================

 Makes pytest output just a bit nicer during failures.

 Features

 - Includes user name of person running tests in pytest output.
 - Adds ``--nice`` option that:

 - turns ``F`` to ``O``
 - with ``-v``, turns ``FAILURE`` to ``OPPORTUNITY for improvement``

 Installation

 Given that our pytest plugins are being saved in .tar.gz form in the
 shared directory PATH, then install like this:

 ::

 $ pip install PATH/pytest-nice-0.1.0.tar.gz
 $ pip install --no-index --find-links PATH pytest-nice

 Usage

(132)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/README.rst

 ::

 $ pytest --nice

There are lots of opinions about what should be in a README. This is a rather minimal version,
but it works.

(133)

Testing Plugins
Plugins are code that needs to be tested just like any other code. However, testing a change to a
testing tool is a little tricky. When we developed the plugin code in Writing Your Own Plugins,
we tested it manually by using a sample test file, running pytest against it, and looking at the
output to make sure it was right. We can do the same thing in an automated way using a plugin
called pytester that ships with pytest but is disabled by default.

Our test directory for pytest-nice has two files: conftest.py and test_nice.py. To use pytester, we
need to add just one line to conftest.py:

ch5/pytest-nice/tests/conftest.py
 """pytester is needed for testing plugins."""
 pytest_plugins = 'pytester'

This turns on the pytester plugin. We will be using a fixture called testdir that becomes available
when pytester is enabled.

Often, tests for plugins take on the form we’ve described in manual steps:

1. Make an example test file.
2. Run pytest with or without some options in the directory that contains our example file.
3. Examine the output.
4. Possibly check the result code—0 for all passing, 1 for some failing.

Let’s look at one example:

ch5/pytest-nice/tests/test_nice.py
 def test_pass_fail(testdir):

 # create a temporary pytest test module
 testdir.makepyfile("""
 def test_pass():
 assert 1 == 1

 def test_fail():
 assert 1 == 2
 """)

 # run pytest
 result = testdir.runpytest()

 # fnmatch_lines does an assertion internally
 result.stdout.fnmatch_lines([
 '*.F', # . for Pass, F for Fail

(134)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py

])

 # make sure that that we get a '1' exit code for the testsuite
 assert result.ret == 1

The testdir fixture automatically creates a temporary directory for us to put test files. It has a
method called makepyfile() that allows us to put in the contents of a test file. In this case, we are
creating two tests: one that passes and one that fails.

We run pytest against the new test file with testdir.runpytest(). You can pass in options if you
want. The return value can then be examined further, and is of type RunResult.[15]

Usually, I look at stdout and ret. For checking the output like we did manually, use
fnmatch_lines, passing in a list of strings that we want to see in the output, and then making sure
that ret is 0 for passing sessions and 1 for failing sessions. The strings passed into fnmatch_lines
can include glob wildcards. We can use our example file for more tests. Instead of duplicating
that code, let’s make a fixture:

ch5/pytest-nice/tests/test_nice.py
 @pytest.fixture()
 def sample_test(testdir):
 testdir.makepyfile("""
 def test_pass():
 assert 1 == 1

 def test_fail():
 assert 1 == 2
 """)
 return testdir

Now, for the rest of the tests, we can use sample_test as a directory that already contains our
sample test file. Here are the tests for the other option variants:

ch5/pytest-nice/tests/test_nice.py
 def test_with_nice(sample_test):
 result = sample_test.runpytest('--nice')
 result.stdout.fnmatch_lines(['*.O',]) # . for Pass, O for Fail
 assert result.ret == 1

 def test_with_nice_verbose(sample_test):
 result = sample_test.runpytest('-v', '--nice')
 result.stdout.fnmatch_lines([
 '*::test_fail OPPORTUNITY for improvement',
])
 assert result.ret == 1

(135)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py

 def test_not_nice_verbose(sample_test):
 result = sample_test.runpytest('-v')
 result.stdout.fnmatch_lines(['*::test_fail FAILED'])
 assert result.ret == 1

Just a couple more tests to write. Let’s make sure our thank-you message is in the header:

ch5/pytest-nice/tests/test_nice.py
 def test_header(sample_test):
 result = sample_test.runpytest('--nice')
 result.stdout.fnmatch_lines(['Thanks for running the tests.'])

 def test_header_not_nice(sample_test):
 result = sample_test.runpytest()
 thanks_message = 'Thanks for running the tests.'
 assert thanks_message not in result.stdout.str()

This could have been part of the other tests also, but I like to have it in a separate test so that one
test checks one thing.

Finally, let’s check the help text:

ch5/pytest-nice/tests/test_nice.py
 def test_help_message(testdir):
 result = testdir.runpytest('--help')

 # fnmatch_lines does an assertion internally
 result.stdout.fnmatch_lines([
 'nice:',
 '*--nice*nice: turn FAILED into OPPORTUNITY for improvement',
])

I think that’s a pretty good check to make sure our plugin works.

To run the tests, let’s start in our pytest-nice directory and make sure our plugin is installed. We
do this either by installing the .zip.gz file or installing the current directory in editable mode:

 $ cd /path/to/code/ch5/pytest-nice/
 $ pip install .
 Processing /path/to/code/ch5/pytest-nice
 Requirement already satisfied: pytest in
 /path/to/venv/lib/python3.6/site-packages (from pytest-nice==0.1.0)

(136)

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py

 Requirement already satisfied: py>=1.4.33 in
 /path/to/venv/lib/python3.6/site-packages (from pytest->pytest-nice==0.1.0)
 Requirement already satisfied: setuptools in
 /path/to/venv/lib/python3.6/site-packages (from pytest->pytest-nice==0.1.0)
 Building wheels for collected packages: pytest-nice
 Running setup.py bdist_wheel for pytest-nice ... done
 ...
 Successfully built pytest-nice
 Installing collected packages: pytest-nice
 Successfully installed pytest-nice-0.1.0

Now that it’s installed, let’s run the tests:

 $ pytest -v
 ===================== test session starts ======================
 plugins: nice-0.1.0
 collected 7 items

 tests/test_nice.py::test_pass_fail PASSED
 tests/test_nice.py::test_with_nice PASSED
 tests/test_nice.py::test_with_nice_verbose PASSED
 tests/test_nice.py::test_not_nice_verbose PASSED
 tests/test_nice.py::test_header PASSED
 tests/test_nice.py::test_header_not_nice PASSED
 tests/test_nice.py::test_help_message PASSED

 =================== 7 passed in 0.34 seconds ===================

Yay! All the tests pass. We can uninstall it just like any other Python package or pytest plugin:

 $ pip uninstall pytest-nice
 Uninstalling pytest-nice-0.1.0:
 /path/to/venv/lib/python3.6/site-packages/pytest-nice.egg-link
 ...
 Proceed (y/n)? y
 Successfully uninstalled pytest-nice-0.1.0

A great way to learn more about plugin testing is to look at the tests contained in other pytest
plugins available through PyPI.

(137)

Creating a Distribution
Believe it or not, we are almost done with our plugin. From the command line, we can use this
setup.py file to create a distribution:

 $ cd /path/to/code/ch5/pytest-nice
 $ python setup.py sdist
 running sdist
 running egg_info
 creating pytest_nice.egg-info
 ...
 running check
 creating pytest-nice-0.1.0
 ...
 creating dist
 Creating tar archive
 ...
 $ ls dist
 pytest-nice-0.1.0.tar.gz

(Note that sdist stands for “source distribution.”)

Within pytest-nice, a dist directory contains a new file called pytest-nice-0.1.0.tar.gz. This file
can now be used anywhere to install our plugin, even in place:

 $ pip install dist/pytest-nice-0.1.0.tar.gz
 Processing ./dist/pytest-nice-0.1.0.tar.gz
 ...
 Installing collected packages: pytest-nice
 Successfully installed pytest-nice-0.1.0

However, you can put your .tar.gz files anywhere you’ll be able to get at them to use and share.

Distributing Plugins Through a Shared Directory

pip already supports installing packages from shared directories, so all we have to do to
distribute our plugin through a shared directory is pick a location we can remember and put the
.tar.gz files for our plugins there. Let’s say we put pytest-nice-0.1.0.tar.gz into a directory called
myplugins.

To install pytest-nice from myplugins:

 $ pip install --no-index --find-links myplugins pytest-nice

(138)

The --no-index tells pip to not go out to PyPI to look for what you want to install. The --find-
links myplugins tells PyPI to look in myplugins for packages to install. And of course, pytest-
nice is what we want to install.

If you’ve done some bug fixes and there are newer versions in myplugins, you can upgrade by
adding --upgrade:

 $ pip install --upgrade --no-index --find-links myplugins pytest-nice

This is just like any other use of pip, but with the --no-index --find-links myplugins added.

Distributing Plugins Through PyPI

If you want to share your plugin with the world, there are a few more steps we need to do.
Actually, there are quite a few more steps. However, because this book isn’t focused on
contributing to open source, I recommend checking out the thorough instruction found in the
Python Packaging User Guide.[16]

When you are contributing a pytest plugin, another great place to start is by using the
cookiecutter-pytest-plugin[17]:

 $ pip install cookiecutter
 $ cookiecutter https://github.com/pytest-dev/cookiecutter-pytest-plugin

This project first asks you some questions about your plugin. Then it creates a good directory for
you to explore and fill in with your code. Walking through this is beyond the scope of this book;
however, please keep this project in mind. It is supported by core pytest folks, and they will
make sure this project stays up to date.

(139)

Exercises
In ch4/cache/test_slower.py, there is an autouse fixture called check_duration(). You used it in
the Chapter 4 exercises as well. Now, let’s make a plugin out of it.

1. Create a directory named pytest-slower that will hold the code for the new plugin, similar
to the directory described in Creating an Installable Plugin.

2. Fill out all the files of the directory to make pytest-slower an installable plugin.
3. Write some test code for the plugin.
4. Take a look at the Python Package Index[18] and search for “pytest-.” Find a pytest plugin

that looks interesting to you.
5. Install the plugin you chose and try it out on Tasks tests.

(140)

What’s Next
You’ve used conftest.py a lot so far in this book. There are also configuration files that affect
how pytest runs, such as pytest.ini. In the next chapter, you’ll run through the different
configuration files and learn what you can do there to make your testing life easier.

Footnotes

[11]

http://doc.pytest.org/en/latest/_modules/_pytest/hookspec.html

[12]

https://docs.pytest.org/en/latest/writing_plugins.html

[13]

http://python-packaging.readthedocs.io

[14]

https://www.pypa.io

[15]

https://docs.pytest.org/en/latest/writing_plugins.html#_pytest.pytester.RunResult

[16]

https://packaging.python.org/distributing

[17]

https://github.com/pytest-dev/cookiecutter-pytest-plugin

[18]

https://pypi.python.org/pypi

Copyright © 2017, The Pragmatic Bookshelf.

(141)

http://doc.pytest.org/en/latest/_modules/_pytest/hookspec.html
https://docs.pytest.org/en/latest/writing_plugins.html
http://python-packaging.readthedocs.io
https://www.pypa.io
https://docs.pytest.org/en/latest/writing_plugins.html#_pytest.pytester.RunResult
https://packaging.python.org/distributing
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://pypi.python.org/pypi

Chapter 6
Configuration
So far in this book, I’ve talked about the various non-test files that affect pytest mostly in
passing, with the exception of conftest.py, which I covered quite thoroughly in Chapter 5,
Plugins. In this chapter, we’ll take a look at the configuration files that affect pytest, discuss how
pytest changes its behavior based on them, and make some changes to the configuration files of
the Tasks project.

(142)

Understanding pytest Configuration Files
Before I discuss how you can alter pytest’s default behavior, let’s run down all of the non-test
files in pytest and specifically who should care about them. Everyone should know about these:

pytest.ini: This is the primary pytest configuration file that allows you to change default
behavior. Since there are quite a few configuration changes you can make, a big chunk of
this chapter is about the settings you can make in pytest.ini.

conftest.py: This is a local plugin to allow hook functions and fixtures for the directory
where the conftest.py file exists and all subdirectories. conftest.py files are covered
Chapter 5, Plugins.

__init__.py: When put into every test subdirectory, this file allows you to have identical
test filenames in multiple test directories. We’ll look at an example of what can go wrong
without __init__.py files in test directories in Avoiding Filename Collisions.

If you use tox, you’ll be interested in:

tox.ini: This file is similar to pytest.ini, but for tox. However, you can put your pytest
configuration here instead of having both a tox.ini and a pytest.ini file, saving you one
configuration file. Tox is covered in Chapter 7, Using pytest with Other Tools.

If you want to distribute a Python package (like Tasks), this file will be of interest:

setup.cfg: This is a file that’s also in ini file format and affects the behavior of setup.py.
It’s possible to add a couple of lines to setup.py to allow you to run python setup.py test
and have it run all of your pytest tests. If you are distributing a package, you may already
have a setup.cfg file, and you can use that file to store pytest configuration. You’ll see how
in Appendix 4, Packaging and Distributing Python Projects.

Regardless of which file you put your pytest configuration in, the format will mostly be the
same.

For pytest.ini:

ch6/format/pytest.ini
 [pytest]
 addopts = -rsxX -l --tb=short --strict
 xfail_strict = true
 ... more options ...

For tox.ini:

ch6/format/tox.ini
 ... tox specific stuff ...

 [pytest]

(143)

http://media.pragprog.com/titles/bopytest/code/ch6/format/pytest.ini
http://media.pragprog.com/titles/bopytest/code/ch6/format/tox.ini

 addopts = -rsxX -l --tb=short --strict
 xfail_strict = true
 ... more options ...

For setup.cfg:

ch6/format/setup.cfg
 ... packaging specific stuff ...

 [tool:pytest]
 addopts = -rsxX -l --tb=short --strict
 xfail_strict = true
 ... more options ...

The only difference is that the section header for setup.cfg is [tool:pytest] instead of [pytest].

List the Valid ini-file Options with pytest –help

You can get a list of all the valid settings for pytest.ini from pytest --help:

 $ pytest --help
 ...
 [pytest] ini-options in the first pytest.ini|tox.ini|setup.cfg file found:

 markers (linelist) markers for test functions
 norecursedirs (args) directory patterns to avoid for recursion
 testpaths (args) directories to search for tests when no files or
 directories are given in the command line.
 usefixtures (args) list of default fixtures to be used with this project
 python_files (args) glob-style file patterns for Python test module discovery
 python_classes (args) prefixes or glob names for Python test class discovery
 python_functions (args) prefixes or glob names for Python test function and
 method discovery
 xfail_strict (bool) default for the strict parameter of xfail markers
 when not given explicitly (default: False)
 doctest_optionflags (args) option flags for doctests
 addopts (args) extra command line options
 minversion (string) minimally required pytest version
 ...

You’ll look at all of these settings in this chapter, except doctest_optionflags, which is covered in
Chapter 7, Using pytest with Other Tools.

Plugins Can Add ini-file Options

(144)

http://media.pragprog.com/titles/bopytest/code/ch6/format/setup.cfg

The previous settings list is not a constant. It is possible for plugins (and conftest.py files) to add
ini file options. The added options will be added to the pytest --help output as well.

Now, let’s explore some of the configuration changes we can make with the builtin ini file
settings available from core pytest.

(145)

Changing the Default Command-Line Options
You’ve used a lot of command-line options for pytest so far, like -v/--verbose for verbose output
and -l/--showlocals to see local variables with the stack trace for failed tests. You may find
yourself always using some of those options—or preferring to use them—for a project. If you set
addopts in pytest.ini to the options you want, you don’t have to type them in anymore. Here’s a
set I like:

 [pytest]
 addopts = -rsxX -l --tb=short --strict

The -rsxX tells pytest to report the reasons for all tests that skipped, xfailed, or xpassed. The -l
tells pytest to report the local variables for every failure with the stacktrace. The --tb=short
removes a lot of the stack trace. It leaves the file and line number, though. The --strict option
disallows markers to be used if they aren’t registered in a config file. You’ll see how to do that in
the next section.

(146)

Registering Markers to Avoid Marker Typos
Custom markers, as discussed in Marking Test Functions, are great for allowing you to mark a
subset of tests to run with a specific marker. However, it’s too easy to misspell a marker and end
up having some tests marked with @pytest.mark.smoke and some marked with
@pytest.mark.somke. By default, this isn’t an error. pytest just thinks you created two markers.
This can be fixed, however, by registering markers in pytest.ini, like this:

 [pytest]
 markers =
 smoke: Run the smoke test functions for tasks project
 get: Run the test functions that test tasks.get()

With these markers registered, you can now also see them with pytest --markers with their
descriptions:

 $ cd /path/to/code/ch6/b/tasks_proj/tests
 $ pytest --markers
 @pytest.mark.smoke: Run the smoke test test functions

 @pytest.mark.get: Run the test functions that test tasks.get()

 @pytest.mark.skip(reason=None): skip the ...

 ...

If markers aren’t registered, they won’t show up in the --markers list. With them registered, they
show up in the list, and if you use --strict, any misspelled or unregistered markers show up as an
error. The only difference between ch6/a/tasks_proj and ch6/b/tasks_proj is the contents of the
pytest.ini file. It’s empty in ch6/a. Let’s try running the tests without registering any markers:

 $ cd /path/to/code/ch6/a/tasks_proj/tests
 $ pytest --strict --tb=line
 ===================== test session starts ======================
 collected 45 items / 2 errors

 ============================ ERRORS ============================
 ______________ ERROR collecting func/test_add.py _______________
 func/test_add.py:20: in <module>
 @pytest.mark.smoke
 ...
 E AttributeError: 'smoke' not a registered marker
 _________ ERROR collecting func/test_api_exceptions.py _________

(147)

 func/test_api_exceptions.py:30: in <module>
 @pytest.mark.smoke
 ...
 E AttributeError: 'smoke' not a registered marker
 !!!!!!!!!!! Interrupted: 2 errors during collection !!!!!!!!!!!!
 =================== 2 error in 0.24 seconds ====================

If you use markers in pytest.ini to register your markers, you may as well add --strict to your
addopts while you’re at it. You’ll thank me later. Let’s go ahead and add a pytest.ini file to the
tasks project:

ch6/b/tasks_proj/tests/pytest.ini
 [pytest]
 addopts = -rsxX -l --tb=short --strict
 markers =
 smoke: Run the smoke test test functions
 get: Run the test functions that test tasks.get()

This has a combination of flags I prefer over the defaults: -rsxX to report which tests skipped,
xfailed, or xpassed, --tb=short for a shorter traceback for failures, and --strict to only allow
declared markers. And then a list of markers to allow for the project.

This should allow us to run tests, including the smoke tests:

 $ cd /path/to/code/ch6/b/tasks_proj/tests
 $ pytest --strict -m smoke
 ===================== test session starts ======================
 collected 57 items

 func/test_add.py .
 func/test_api_exceptions.py ..

 ===================== 54 tests deselected ======================
 =========== 3 passed, 54 deselected in 0.06 seconds ============

(148)

http://media.pragprog.com/titles/bopytest/code/ch6/b/tasks_proj/tests/pytest.ini

Requiring a Minimum pytest Version
The minversion setting enables you to specify a minimum pytest version you expect for your
tests. For instance, I like to use approx() when testing floating point numbers for “close enough”
equality in tests. But this feature didn’t get introduced into pytest until version 3.0. To avoid
confusion, I add the following to projects that use approx():

 [pytest]
 minversion = 3.0

This way, if someone tries to run the tests using an older version of pytest, an error message
appears.

(149)

Stopping pytest from Looking in the Wrong Places
Did you know that one of the definitions of “recurse” is to swear at your code twice? Well, no.
But, it does mean to traverse subdirectories. In the case of pytest, test discovery traverses many
directories recursively. But there are some directories you just know you don’t want pytest
looking in.

The default setting for norecurse is ’.* build dist CVS _darcs {arch} and *.egg. Having ’.*’ is a
good reason to name your virtual environment ’.venv’, because all directories starting with a dot
will not be traversed. However, I have a habit of naming it venv, so I could add that to
norecursedirs.

In the case of the Tasks project, you could list src in there also, because having pytest look for
test files there would just be a waste of time.

 [pytest]
 norecursedirs = .* venv src *.egg dist build

When overriding a setting that already has a useful value, like this setting, it’s a good idea to
know what the defaults are and put the ones back you care about, as I did in the previous code
with *.egg dist build.

The norecursedirs is kind of a corollary to testpaths, so let’s look at that next.

(150)

Specifying Test Directory Locations
Whereas norecursedirs tells pytest where not to look, testpaths tells pytest where to look.
testspaths is a list of directories relative to the root directory to look in for tests. It’s only used if a
directory, file, or nodeid is not given as an argument.

Suppose for the Tasks project we put pytest.ini in the tasks_proj directory instead of under tests:

 tasks_proj/
 ├── pytest.ini
 ├── src
 │ └── tasks
 │ ├── api.py
 │ └── ...
 └── tests
 ├── conftest.py
 ├── func
 │ ├── __init__.py
 │ ├── test_add.py
 │ ├── ...
 └── unit
 ├── __init__.py
 ├── test_task.py
 └── ...

It could then make sense to put tests in testpaths:

 [pytest]
 testpaths = tests

Now, as long as you start pytest from the tasks_proj directory, pytest will only look in
tasks_proj/tests. My problem with this is that I often bounce around a test directory during test
development and debugging, so I can easily test a subdirectory or file without typing out the
whole path. Therefore, for me, this setting doesn’t help much with interactive testing.

However, it’s great for tests launched from a continuous integration server or from tox. In those
cases, you know that the root directory is going to be fixed, and you can list directories relative
to that fixed root. These are also the cases where you really want to squeeze your test times, so
shaving a bit off of test discovery is awesome.

At first glance, it might seem silly to use both testpaths and norecursedirs at the same time.
However, as you’ve seen, testspaths doesn’t help much with interactive testing from different
parts of the file system. In those cases, norecursedirs can help. Also, if you have directories with
tests that don’t contain tests, you could use norecursedirs to avoid those. But really, what would
be the point of putting extra directories in tests that don’t have tests?

(151)

Changing Test Discovery Rules
pytest finds tests to run based on certain test discovery rules. The standard test discovery rules
are:

Start at one or more directory. You can specify filenames or directory names on the
command line. If you don’t specify anything, the current directory is used.

Look in the directory and all subdirectories recursively for test modules.

A test module is a file with a name that looks like test_*.py or *_test.py.

Look in test modules for functions that start with test_.

Look for classes that start with Test. Look for methods in those classes that start with test_
but don’t have an __init__ method.

These are the standard discovery rules; however, you can change them.

python_classes

The usual test discovery rule for pytest and classes is to consider a class a potential test class if it
starts with Test*. The class also can’t have an __init__() function. But what if we want to name
our test classes <something>Test or <something>Suite? That’s where python_classes comes in:

 [pytest]
 python_classes = *Test Test* *Suite

This enables us to name classes like this:

 class DeleteSuite():
 def test_delete_1():
 ...

 def test_delete_2():
 ...

python_files

Like pytest_classes, python_files modifies the default test discovery rule, which is to look for
files that start with test_* or end in *_test.

Let’s say you have a custom test framework in which you named all of your test files
check_<something>.py. Seems reasonable. Instead of renaming all of your files, just add a line to

(152)

pytest.ini like this:

 [pytest]
 python_files = test_* *_test check_*

Easy peasy. Now you can migrate your naming convention gradually if you want to, or just leave
it as check_*.

python_functions

python_functions acts like the previous two settings, but for test function and method names. The
default is test_*. To add check_*—you guessed it—do this:

 [pytest]
 python_functions = test_* check_*

Now the pytest naming conventions don’t seem that restrictive, do they? If you don’t like the
default naming convention, just change it. However, I encourage you to have a better reason.
Migrating hundreds of test files is definitely a good reason.

(153)

Disallowing XPASS
Setting xfail_strict = true causes tests marked with @pytest.mark.xfail that don’t fail to be
reported as an error. I think this should always be set. For more information on the xfail marker,
go to Marking Tests as Expecting to Fail.

(154)

Avoiding Filename Collisions
The utility of having __init__.py files in every test subdirectory of a project confused me for a
long time. However, the difference between having these and not having these is simple. If you
have __init__.py files in all of your test subdirectories, you can have the same test filename show
up in multiple directories. If you don’t, you can’t. That’s it. That’s the effect on you.

Here’s an example. Directory a and b both have the file, test_foo.py. It doesn’t matter what these
files have in them, but for this example, they look like this:

ch6/dups/a/test_foo.py
 def test_a():
 pass
ch6/dups/b/test_foo.py
 def test_b():
 pass

With a directory structure like this:

 dups
 ├── a
 │ └── test_foo.py
 └── b
 └── test_foo.py

These files don’t even have the same content, but it’s still mucked up. Running them individually
will be fine, but running pytest from the dups directory won’t work:

 $ cd /path/to/code/ch6/dups
 $ pytest a
 ================== test session starts ==================
 collected 1 items

 a/test_foo.py .

 =============== 1 passed in 0.01 seconds ================
 $ pytest b
 ================== test session starts ==================
 collected 1 items

 b/test_foo.py .

 =============== 1 passed in 0.01 seconds ================

(155)

http://media.pragprog.com/titles/bopytest/code/ch6/dups/a/test_foo.py
http://media.pragprog.com/titles/bopytest/code/ch6/dups/b/test_foo.py

 $ pytest
 ================== test session starts ==================
 collected 1 items / 1 errors

 ======================== ERRORS =========================
 ____________ ERROR collecting b/test_foo.py _____________
 import file mismatch:
 imported module 'test_foo' has this __file__ attribute:
 /path/to/code/ch6/dups/a/test_foo.py
 which is not the same as the test file we want to collect:
 /path/to/code/ch6/dups/b/test_foo.py
 HINT: remove __pycache__ / .pyc files and/or use a unique basename
 for your test file modules
 !!!!!!!! Interrupted: 1 errors during collection !!!!!!!!
 ================ 1 error in 0.15 seconds ================

That error message doesn’t really make it clear what went wrong.

To fix this test, just add empty __init__.py files in the subdirectories. Here, the example directory
dups_fixed is the same as dups, but with __init__.py files added:

 dups_fixed/
 ├── a
 │ ├── __init__.py
 │ └── test_foo.py
 └── b
 ├── __init__.py
 └── test_foo.py

Now, let’s try this again from the top level in dups_fixed:

 $ cd /path/to/code/ch6/dups_fixed
 $ pytest
 ================== test session starts ==================
 collected 2 items

 a/test_foo.py .
 b/test_foo.py .

 =============== 2 passed in 0.01 seconds ================

There, all better. You might say to yourself that you’ll never have duplicate filenames, so it
doesn’t matter. That’s fine. But projects grow and test directories grow, and do you really want
to wait until it happens to you before you fix it? I say just put those files in there as a habit and

(156)

don’t worry about it again.

(157)

Exercises
In Chapter 5, Plugins, you created a plugin called pytest-nice that included a --nice command-
line option. Let’s extend that to include a pytest.ini option called nice.

1. Add the following line to the pytest_addoption hook function in pytest_nice.py:

parser.addini(’nice’, type=’bool’, help=’Turn failures into opportunities.’)

2. The places in the plugin that use getoption() will have to also call getini(’nice’). Make
those changes.

3. Manually test this by adding nice to a pytest.ini file.

4. Don’t forget the plugin tests. Add a test to verify that the setting ‘nice’ from pytest.ini
works correctly.

5. Add the tests to the plugin tests directory. You’ll need to look up some extra pytester
functionality.[19]

(158)

What’s Next
While pytest is extremely powerful on its own—especially so with plugins—it also integrates
well with other software development and software testing tools. In the next chapter, you’ll look
at using pytest in conjunction with other powerful testing tools.

Footnotes

[19]

https://docs.pytest.org/en/latest/_modules/_pytest/pytester.html#Testdir

Copyright © 2017, The Pragmatic Bookshelf.

(159)

https://docs.pytest.org/en/latest/_modules/_pytest/pytester.html#Testdir

Chapter 7
Using pytest with Other Tools
You don’t usually use pytest on its own, but rather in a testing environment with other tools. This
chapter looks at other tools that are often used in combination with pytest for effective and
efficient testing. While this is by no means an exhaustive list, the tools discussed here give you a
taste of the power of mixing pytest with other tools.

(160)

pdb: Debugging Test Failures
The pdb module is the Python debugger in the standard library. You use --pdb to have pytest
start a debugging session at the point of failure. Let’s look at pdb in action in the context of the
Tasks project.

In Parametrizing Fixtures, we left the Tasks project with a few failures:

 $ cd /path/to/code/ch3/c/tasks_proj
 $ pytest --tb=no -q
 ...FF.FFFF
 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.FFF...........
 42 failed, 54 passed in 4.74 seconds

Before we look at how pdb can help us debug this test, let’s take a look at the pytest options
available to help speed up debugging test failures, which we first looked at in Using Options:

--tb=[auto/long/short/line/native/no]: Controls the traceback style.
-v / --verbose: Displays all the test names, passing or failing.
-l / --showlocals: Displays local variables alongside the stacktrace.
-lf / --last-failed: Runs just the tests that failed last.
-x / --exitfirst: Stops the tests session with the first failure.
--pdb: Starts an interactive debugging session at the point of failure.

Installing MongoDB

As mentioned in Chapter 3, pytest Fixtures, running the MongoDB tests requires
installing MongoDB and pymongo. I’ve been testing with the Community Server
edition found at https://www.mongodb.com/download-center. pymongo is installed
with pip: pip install pymongo. However, this is the last example in the book that
uses MongoDB. To try out the debugger without using MongoDB, you could run
the pytest commands from code/ch2/, as this directory also contains a few failing
tests.

We just ran the tests from code/ch3/c to see that some of them were failing. We didn’t see the
tracebacks or the test names because --tb=no turns off tracebacks, and we didn’t have --verbose
turned on. Let’s re-run the failures (at most three of them) with verbose:

 $ pytest --tb=no --verbose --lf --maxfail=3
 ===================== test session starts ======================
 run-last-failure: rerun last 42 failures
 collected 96 items

 tests/func/test_add.py::test_add_returns_valid_id[mongo] FAILED

(161)

https://www.mongodb.com/download-center

 tests/func/test_add.py::test_added_task_has_id_set[mongo] FAILED
 tests/func/test_add_variety.py::test_add_1[mongo] FAILED

 !!!!!!!!!!!! Interrupted: stopping after 3 failures !!!!!!!!!!!!
 ===================== 54 tests deselected ======================
 =========== 3 failed, 54 deselected in 3.14 seconds ============

Now we know which tests are failing. Let’s look at just one of them by using -x, including the
traceback by not using --tb=no, and showing the local variables with -l:

 $ pytest -v --lf -l -x
 ===================== test session starts ======================
 run-last-failure: rerun last 42 failures
 collected 96 items

 tests/func/test_add.py::test_add_returns_valid_id[mongo] FAILED

 =========================== FAILURES ===========================
 _______________ test_add_returns_valid_id[mongo] _______________

 tasks_db = None

 def test_add_returns_valid_id(tasks_db):
 """tasks.add(<valid task>) should return an integer."""
 # GIVEN an initialized tasks db
 # WHEN a new task is added
 # THEN returned task_id is of type int
 new_task = Task('do something')
 task_id = tasks.add(new_task)
 > assert isinstance(task_id, int)
 E AssertionError: assert False
 E + where False = isinstance(ObjectId('59783baf8204177f24cb1b68'), int)

 new_task = Task(summary='do something', owner=None, done=False, id=None)
 task_id = ObjectId('59783baf8204177f24cb1b68')
 tasks_db = None

 tests/func/test_add.py:16: AssertionError
 !!!!!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!!!
 ===================== 54 tests deselected ======================
 =========== 1 failed, 54 deselected in 2.47 seconds ============

Quite often this is enough to understand the test failure. In this particular case, it’s pretty clear

(162)

that task_id is not an integer—it’s an instance of ObjectId. ObjectId is a type used by MongoDB
for object identifiers within the database. My intention with the tasksdb_pymongo.py layer was
to hide particular details of the MongoDB implementation from the rest of the system. Clearly, in
this case, it didn’t work.

However, we want to see how to use pdb with pytest, so let’s pretend that it wasn’t obvious why
this test failed. We can have pytest start a debugging session and start us right at the point of
failure with --pdb:

 $ pytest -v --lf -x --pdb
 ===================== test session starts ======================
 run-last-failure: rerun last 42 failures
 collected 96 items

 tests/func/test_add.py::test_add_returns_valid_id[mongo] FAILED
 >>>>>>>>>>>>>>>>>>>>>>>>>> traceback >>>>>>>>>>>>>>>>>>>>>>>>>>>

 tasks_db = None

 def test_add_returns_valid_id(tasks_db):
 """tasks.add(<valid task>) should return an integer."""
 # GIVEN an initialized tasks db
 # WHEN a new task is added
 # THEN returned task_id is of type int
 new_task = Task('do something')
 task_id = tasks.add(new_task)
 > assert isinstance(task_id, int)
 E AssertionError: assert False
 E + where False = isinstance(ObjectId('59783bf48204177f2a786893'), int)

 tests/func/test_add.py:16: AssertionError
 >>>>>>>>>>>>>>>>>>>>>>>>> entering PDB >>>>>>>>>>>>>>>>>>>>>>>>>
 > /path/to/code/ch3/c/tasks_proj/tests/func/test_add.py(16)
 > test_add_returns_valid_id()
 -> assert isinstance(task_id, int)
 (Pdb)

Now that we are at the (Pdb) prompt, we have access to all of the interactive debugging features
of pdb. When looking at failures, I regularly use these commands:

p/print expr: Prints the value of exp.

pp expr: Pretty prints the value of expr.

l/list: Lists the point of failure and five lines of code above and below.

(163)

l/list begin,end: Lists specific line numbers.

a/args: Prints the arguments of the current function with their values. (This is helpful when
in a test helper function.)

u/up: Moves up one level in the stack trace.

d/down: Moves down one level in the stack trace.

q/quit: Quits the debugging session.

Other navigation commands like step and next aren’t that useful since we are sitting right at an
assert statement. You can also just type variable names and get the values.

You can use p/print expr similar to the -l/--showlocals option to see values within the function:

 (Pdb) p new_task
 Task(summary='do something', owner=None, done=False, id=None)
 (Pdb) p task_id
 ObjectId('59783bf48204177f2a786893')
 (Pdb)

Now you can quit the debugger and continue on with testing.

 (Pdb) q

 !!!!!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!!!
 ===================== 54 tests deselected ======================
 ========== 1 failed, 54 deselected in 123.40 seconds ===========

If we hadn’t used -x, pytest would have opened pdb again at the next failed test. More
information about using the pdb module is available in the Python documentation.[20]

(164)

Coverage.py: Determining How Much Code Is Tested
Code coverage is a measurement of what percentage of the code under test is being tested by a
test suite. When you run the tests for the Tasks project, some of the Tasks functionality is
executed with every test, but not all of it. Code coverage tools are great for telling you which
parts of the system are being completely missed by tests.

Coverage.py is the preferred Python coverage tool that measures code coverage. You’ll use it to
check the Tasks project code under test with pytest.

Before you use coverage.py, you need to install it. I’m also going to have you install a plugin
called pytest-cov that will allow you to call coverage.py from pytest with some extra pytest
options. Since coverage is one of the dependencies of pytest-cov, it is sufficient to install pytest-
cov, as it will pull in coverage.py:

 $ pip install pytest-cov
 Collecting pytest-cov
 Using cached pytest_cov-2.5.1-py2.py3-none-any.whl
 Collecting coverage>=3.7.1 (from pytest-cov)
 Using cached coverage-4.4.1-cp36-cp36m-macosx_10_10_x86_64.whl
 ...
 Installing collected packages: coverage, pytest-cov
 Successfully installed coverage-4.4.1 pytest-cov-2.5.1

Let’s run the coverage report on version 2 of Tasks. If you still have the first version of the Tasks
project installed, uninstall it and install version 2:

 $ pip uninstall tasks
 Uninstalling tasks-0.1.0:
 /path/to/venv/bin/tasks
 /path/to/venv/lib/python3.6/site-packages/tasks.egg-link
 Proceed (y/n)? y
 Successfully uninstalled tasks-0.1.0
 $ cd /path/to/code/ch7/tasks_proj_v2
 $ pip install -e .
 Obtaining file:///path/to/code/ch7/tasks_proj_v2
 ...
 Installing collected packages: tasks
 Running setup.py develop for tasks
 Successfully installed tasks
 $ pip list
 ...
 tasks (0.1.1, /path/to/code/ch7/tasks_proj_v2/src)
 ...

(165)

Now that the next version of Tasks is installed, we can run our baseline coverage report:

 $ cd /path/to/code/ch7/tasks_proj_v2
 $ pytest --cov=src
 ===================== test session starts ======================
 plugins: mock-1.6.2, cov-2.5.1
 collected 62 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id.py .
 tests/unit/test_cli.py
 tests/unit/test_task.py

 ---------- coverage: platform darwin, python 3.6.2-final-0 -----------
 Name Stmts Miss Cover
 --
 src/tasks/__init__.py 2 0 100%
 src/tasks/api.py 79 22 72%
 src/tasks/cli.py 45 14 69%
 src/tasks/config.py 18 12 33%
 src/tasks/tasksdb_pymongo.py 74 74 0%
 src/tasks/tasksdb_tinydb.py 32 4 88%
 --
 TOTAL 250 126 50%

 ================== 62 passed in 0.47 seconds ===================

Since the current directory is tasks_proj_v2 and the source code under test is all within src,
adding the option --cov=src generates a coverage report for that specific directory under test
only.

As you can see, some of the files have pretty low, to even 0%, coverage. These are good
reminders: tasksdb_pymongo.py is at 0% because we’ve turned off testing for MongoDB in this
version. Some of the others are pretty low. The project will definitely have to put tests in place
for all of these areas before it’s ready for prime time.

A couple of files I thought would have a higher coverage percentage are api.py and
tasksdb_tinydb.py. Let’s look at tasksdb_tinydb.py and see what’s missing. I find the best way to
do that is to use the HTML reports.

(166)

If you run coverage.py again with --cov-report=html, an HTML report is generated:

 $ pytest --cov=src --cov-report=html
 ===================== test session starts ======================
 plugins: mock-1.6.2, cov-2.5.1
 collected 62 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id.py .
 tests/unit/test_cli.py
 tests/unit/test_task.py

 ---------- coverage: platform darwin, python 3.6.2-final-0 -----------
 Coverage HTML written to dir htmlcov

 ================== 62 passed in 0.45 seconds ===================

You can then open htmlcov/index.html in a browser, which shows the output in the following
screen:

Clicking on tasksdb_tinydb.py shows a report for the one file. The top of the report shows the
percentage of lines covered, plus how many lines were covered and how many are missing, as
shown in the following screen:

(167)

Scrolling down, you can see the missing lines, as shown in the next screen:

Even though this screen isn’t the complete page for this file, it’s enough to tell us that:

1. We’re not testing list_tasks() with owner set.
2. We’re not testing update() or delete().
3. We may not be testing unique_id() thoroughly enough.

Great. We can put those on our testing to-do list, along with testing the config system.

While code coverage tools are extremely useful, striving for 100% coverage can be dangerous.
When you see code that isn’t tested, it might mean a test is needed. But it also might mean that
there’s some functionality of the system that isn’t needed and could be removed. Like all
software development tools, code coverage analysis does not replace thinking.

Quite a few more options and features of both coverage.py and pytest-cov are available. More

(168)

information can be found in the coverage.py[21] and pytest-cov[22] documentation.

(169)

mock: Swapping Out Part of the System
The mock package is used to swap out pieces of the system to isolate bits of our code under test
from the rest of the system. Mock objects are sometimes called test doubles, spies, fakes, or
stubs. Between pytest’s own monkeypatch fixture (covered in Using monkeypatch) and mock,
you should have all the test double functionality you need.

Mocks Are Weird

If this is the first time you’ve encountered test doubles like mocks, stubs, and spies,
it’s gonna get real weird real fast. It’s fun though, and quite powerful.

The mock package is shipped as part of the Python standard library as unittest.mock as of Python
3.3. In earlier versions, it’s available as a separate PyPI-installable package as a rolling backport.
What that means is that you can use the PyPI version of mock with Python 2.6 through the latest
Python version and get the same functionality as the latest Python mock. However, for use with
pytest, a plugin called pytest-mock has some conveniences that make it my preferred interface to
the mock system.

For the Tasks project, we’ll use mock to help us test the command-line interface. In
Coverage.py: Determining How Much Code Is Tested, you saw that our cli.py file wasn’t being
tested at all. We’ll start to fix that now. But let’s first talk about strategy.

An early decision in the Tasks project was to do most of the functionality testing through api.py.
Therefore, it’s a reasonable decision that the command-line testing doesn’t have to be complete
functionality testing. We can have a fair amount of confidence that the system will work through
the CLI if we mock the API layer during CLI testing. It’s also a convenient decision, allowing us
to look at mocks in this section.

The implementation of the Tasks CLI uses the Click third-party command-line interface package.
[23] There are many alternatives for implementing a CLI, including Python’s builtin argparse
module. One of the reasons I chose Click is because it includes a test runner to help us test Click
applications. However, the code in cli.py, although hopefully typical of Click applications, is not
obvious.

Let’s pause and install version 3 of Tasks:

 $ cd /path/to/code/
 $ pip install -e ch7/tasks_proj_v2
 ...
 Successfully installed tasks

In the rest of this section, you’ll develop some tests for the “list” functionality. Let’s see it in
action to understand what we’re going to test:

(170)

 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 $ tasks add 'do something great'
 $ tasks add "repeat" -o Brian
 $ tasks add "again and again" --owner Okken
 $ tasks list
 ID owner done summary
 -- ----- ---- -------
 1 False do something great
 2 Brian False repeat
 3 Okken False again and again
 $ tasks list -o Brian
 ID owner done summary
 -- ----- ---- -------
 2 Brian False repeat
 $ tasks list --owner Brian
 ID owner done summary
 -- ----- ---- -------
 2 Brian False repeat

Looks pretty simple. The tasks list command lists all the tasks with a header. It prints the header
even if the list is empty. It prints just the things from one owner if -o or --owner are used. How
do we test it? Lots of ways are possible, but we’re going to use mocks.

Tests that use mocks are necessarily white-box tests, and we have to look into the code to decide
what to mock and where. The main entry point is here:

ch7/tasks_proj_v2/src/tasks/cli.py
 if __name__ == '__main__':
 tasks_cli()

That’s just a call to tasks_cli():

ch7/tasks_proj_v2/src/tasks/cli.py
 @click.group(context_settings={'help_option_names': ['-h', '--help']})
 @click.version_option(version='0.1.1')
 def tasks_cli():
 """Run the tasks application."""
 pass

Obvious? No. But hold on, it gets better (or worse, depending on your perspective). Here’s one
of the commands—the list command:

ch7/tasks_proj_v2/src/tasks/cli.py

(171)

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py

 @tasks_cli.command(name="list", help="list tasks")
 @click.option('-o', '--owner', default=None,
 help='list tasks with this owner')
 def list_tasks(owner):
 """
 List tasks in db.

 If owner given, only list tasks with that owner.
 """
 formatstr = "{: >4} {: >10} {: >5} {}"
 print(formatstr.format('ID', 'owner', 'done', 'summary'))
 print(formatstr.format('--', '-----', '----', '-------'))
 with _tasks_db():
 for t in tasks.list_tasks(owner):
 done = 'True' if t.done else 'False'
 owner = '' if t.owner is None else t.owner
 print(formatstr.format(
 t.id, owner, done, t.summary))

Once you get used to writing Click code, it’s not that bad. I’m not going to explain all of this
here, as developing command-line code isn’t the focus of the book; however, even though I’m
pretty sure I have this code right, there’s lots of room for human error. That’s why a good set of
automated tests to make sure this works correctly is important.

This list_tasks(owner) function depends on a couple of other functions: tasks_db(), which is a
context manager, and tasks.list_tasks(owner), which is the API function. We’re going to use
mock to put fake functions in place for tasks_db() and tasks.list_tasks(). Then we can call the
list_tasks method through the command-line interface and make sure it calls the tasks.list_tasks()
function correctly and deals with the return value correctly.

To stub tasks_db(), let’s look at the real implementation:

ch7/tasks_proj_v2/src/tasks/cli.py
 @contextmanager
 def _tasks_db():
 config = tasks.config.get_config()
 tasks.start_tasks_db(config.db_path, config.db_type)
 yield
 tasks.stop_tasks_db()

The tasks_db() function is a context manager that retrieves the configuration from
tasks.config.get_config(), another external dependency, and uses the configuration to start a
connection with the database. The yield releases control to the with block of list_tasks(), and
after everything is done, the database connection is stopped.

For the purpose of just testing the CLI behavior up to the point of calling API functions, we

(172)

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py

don’t need a connection to an actual database. Therefore, we can replace the context manager
with a simple stub:

ch7/tasks_proj_v2/tests/unit/test_cli.py
 @contextmanager
 def stub_tasks_db():
 yield

Because this is the first time we’ve looked at our test code for test_cli,py, let’s look at this with
all of the import statements:

ch7/tasks_proj_v2/tests/unit/test_cli.py
 from click.testing import CliRunner
 from contextlib import contextmanager
 import pytest
 from tasks.api import Task
 import tasks.cli
 import tasks.config

 @contextmanager
 def stub_tasks_db():
 yield

Those imports are for the tests. The only import needed for the stub is from contextlib import
contextmanager.

We’ll use mock to replace the real context manager with our stub. Actually, we’ll use mocker,
which is a fixture provided by the pytest-mock plugin. Let’s look at an actual test. Here’s a test
that calls tasks list:

ch7/tasks_proj_v2/tests/unit/test_cli.py
 def test_list_no_args(mocker):
 mocker.patch.object(tasks.cli, '_tasks_db', new=stub_tasks_db)
 mocker.patch.object(tasks.cli.tasks, 'list_tasks', return_value=[])
 runner = CliRunner()
 runner.invoke(tasks.cli.tasks_cli, ['list'])
 tasks.cli.tasks.list_tasks.assert_called_once_with(None)

The mocker fixture is provided by pytest-mock as a convenience interface to unittest.mock. The
first line, mocker.patch.object(tasks.cli, ’tasks_db’, new=stub_tasks_db), replaces the tasks_db()
context manager with our stub that does nothing.

The second line, mocker.patch.object(tasks.cli.tasks, ’list_tasks’, return_value=[]), replaces any
calls to tasks.list_tasks() from within tasks.cli to a default MagicMock object with a return value
of an empty list. We can use this object later to see if it was called correctly. The MagicMock
class is a flexible subclass of unittest.Mock with reasonable default behavior and the ability to

(173)

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py

specify a return value, which is what we are using in this example. The Mock and MagicMock
classes (and others) are used to mimic the interface of other code with introspection methods
built in to allow you to ask them how they were called.

The third and fourth lines of test_list_no_args() use the Click CliRunner to do the same thing as
calling tasks list on the command line.

The final line uses the mock object to make sure the API call was called correctly. The
assert_called_once_with() method is part of unittest.mock.Mock objects, which are all listed in
the Python documentation.[24]

Let’s look at an almost identical test function that checks the output:

ch7/tasks_proj_v2/tests/unit/test_cli.py
 @pytest.fixture()
 def no_db(mocker):
 mocker.patch.object(tasks.cli, '_tasks_db', new=stub_tasks_db)

 def test_list_print_empty(no_db, mocker):
 mocker.patch.object(tasks.cli.tasks, 'list_tasks', return_value=[])
 runner = CliRunner()
 result = runner.invoke(tasks.cli.tasks_cli, ['list'])
 expected_output = (" ID owner done summary\n"
 " -- ----- ---- -------\n")
 assert result.output == expected_output

This time we put the mock stubbing of tasks_db into a no_db fixture so we can reuse it more
easily in future tests. The mocking of tasks.list_tasks() is the same as before. This time, however,
we are also checking the output of the command-line action through result.output and asserting
equality to expected_output.

This assert could have been put in the first test, test_list_no_args, and we could have eliminated
the need for two tests. However, I have less faith in my ability to get CLI code correct than other
code, so separating the questions of “Is the API getting called correctly?” and “Is the action
printing the right thing?” into two tests seems appropriate.

The rest of the tests for the tasks list functionality don’t add any new concepts, but perhaps
looking at several of these makes the code easier to understand:

ch7/tasks_proj_v2/tests/unit/test_cli.py
 def test_list_print_many_items(no_db, mocker):
 many_tasks = (
 Task('write chapter', 'Brian', True, 1),
 Task('edit chapter', 'Katie', False, 2),
 Task('modify chapter', 'Brian', False, 3),
 Task('finalize chapter', 'Katie', False, 4),

(174)

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py

)
 mocker.patch.object(tasks.cli.tasks, 'list_tasks',
 return_value=many_tasks)
 runner = CliRunner()
 result = runner.invoke(tasks.cli.tasks_cli, ['list'])
 expected_output = (" ID owner done summary\n"
 " -- ----- ---- -------\n"
 " 1 Brian True write chapter\n"
 " 2 Katie False edit chapter\n"
 " 3 Brian False modify chapter\n"
 " 4 Katie False finalize chapter\n")
 assert result.output == expected_output

 def test_list_dash_o(no_db, mocker):
 mocker.patch.object(tasks.cli.tasks, 'list_tasks')
 runner = CliRunner()
 runner.invoke(tasks.cli.tasks_cli, ['list', '-o', 'brian'])
 tasks.cli.tasks.list_tasks.assert_called_once_with('brian')

 def test_list_dash_dash_owner(no_db, mocker):
 mocker.patch.object(tasks.cli.tasks, 'list_tasks')
 runner = CliRunner()
 runner.invoke(tasks.cli.tasks_cli, ['list', '--owner', 'okken'])
 tasks.cli.tasks.list_tasks.assert_called_once_with('okken')

Let’s make sure they all work:

 $ cd /path/to/code/ch7/tasks_proj_v2
 $ pytest -v tests/unit/test_cli.py
 =================== test session starts ===================
 plugins: mock-1.6.2, cov-2.5.1
 collected 5 items

 tests/unit/test_cli.py::test_list_no_args PASSED
 tests/unit/test_cli.py::test_list_print_empty PASSED
 tests/unit/test_cli.py::test_list_print_many_items PASSED
 tests/unit/test_cli.py::test_list_dash_o PASSED
 tests/unit/test_cli.py::test_list_dash_dash_owner PASSED

 ================ 5 passed in 0.06 seconds =================

(175)

Yay! They pass.

This was an extremely fast fly-through of using test doubles and mocks. If you want to use
mocks in your testing, I encourage you to read up on unittest.mock in the standard library
documentation,[25] and about pytest-mock at http://pypi.python.org.[26]

(176)

http://pypi.python.org

tox: Testing Multiple Configurations
tox is a command-line tool that allows you to run your complete suite of tests in multiple
environments. We’re going to use it to test the Tasks project in multiple versions of Python.
However, tox is not limited to just Python versions. You can use it to test with different
dependency configurations and different configurations for different operating systems.

In gross generalities, here’s a mental model for how tox works:

tox uses the setup.py file for the package under test to create an installable source distribution of
your package. It looks in tox.ini for a list of environments and then for each environment…

1. tox creates a virtual environment in a .tox directory.
2. tox pip installs some dependencies.
3. tox pip installs your package from the sdist in step 1.
4. tox runs your tests.

After all of the environments are tested, tox reports a summary of how they all did.

This makes a lot more sense when you see it in action, so let’s look at how to modify the Tasks
project to use tox to test Python 2.7 and 3.6. I chose versions 2.7 and 3.6 because they are both
already installed on my system. If you have different versions installed, go ahead and change the
envlist line to match whichever version you have or are willing to install.

The first thing we need to do to the Tasks project is add a tox.ini file at the same level as setup.py
—the top project directory. I’m also going to move anything that’s in pytest.ini into tox.ini.

Here’s the abbreviated code layout:

 tasks_proj_v2/
 ├── ...
 ├── setup.py
 ├── tox.ini
 ├── src
 │ └── tasks
 │ ├── __init__.py
 │ ├── api.py
 │ └── ...
 └── tests
 ├── conftest.py
 ├── func
 │ ├── __init__.py
 │ ├── test_add.py
 │ └── ...
 └── unit
 ├── __init__.py

(177)

 ├── test_task.py
 └── ...

Now, here’s what the tox.ini file looks like:

ch7/tasks_proj_v2/tox.ini
 # tox.ini , put in same dir as setup.py

 [tox]
 envlist = py27,py36

 [testenv]
 deps=pytest
 commands=pytest

 [pytest]
 addopts = -rsxX -l --tb=short --strict
 markers =
 smoke: Run the smoke test test functions
 get: Run the test functions that test tasks.get()

Under [tox], we have envlist = py27,py36. This is a shorthand to tell tox to run our tests using
both python2.7 and python3.6.

Under [testenv], the deps=pytest line tells tox to make sure pytest is installed. If you have
multiple test dependencies, you can put them on separate lines. You can also specify which
version to use.

The commands=pytest line tells tox to run pytest in each environment.

Under [pytest], we can put whatever we normally would want to put into pytest.ini to configure
pytest, as discussed in Chapter 6, Configuration. In this case, addopts is used to turn on extra
summary information for skips, xfails, and xpasses (-rsxX) and turn on showing local variables
in stack traces (-l). It also defaults to shortened stack traces (--tb=short) and makes sure all
markers used in tests are declared first (--strict). The markers section is where the markers are
declared.

Before running tox, you have to make sure you install it:

 $ pip install tox

This can be done within a virtual environment.

Then to run tox, just run, well, tox:

 $ cd /path/to/code/ch7/tasks_proj_v2
 $ tox
 GLOB sdist-make: /path/to/code/ch7/tasks_proj_v2/setup.py

(178)

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tox.ini

 py27 create: /path/to/code/ch7/tasks_proj_v2/.tox/py27
 py27 installdeps: pytest
 py27 inst: /path/to/code/ch7/tasks_proj_v2/.tox/dist/tasks-0.1.1.zip
 py27 installed: click==6.7,funcsigs==1.0.2,mock==2.0.0,
 pbr==3.1.1,py==1.4.34,pytest==3.2.1,
 pytest-mock==1.6.2,six==1.10.0,tasks==0.1.1,tinydb==3.4.0
 py27 runtests: PYTHONHASHSEED='1311894089'
 py27 runtests: commands[0] | pytest
 ================= test session starts ==================
 plugins: mock-1.6.2
 collected 62 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id.py .
 tests/unit/test_cli.py
 tests/unit/test_task.py

 ============== 62 passed in 0.25 seconds ===============
 py36 create: /path/to/code/ch7/tasks_proj_v2/.tox/py36
 py36 installdeps: pytest
 py36 inst: /path/to/code/ch7/tasks_proj_v2/.tox/dist/tasks-0.1.1.zip
 py36 installed: click==6.7,py==1.4.34,pytest==3.2.1,
 pytest-mock==1.6.2,six==1.10.0,tasks==0.1.1,tinydb==3.4.0
 py36 runtests: PYTHONHASHSEED='1311894089'
 py36 runtests: commands[0] | pytest
 ================= test session starts ==================
 plugins: mock-1.6.2
 collected 62 items

 tests/func/test_add.py ...
 tests/func/test_add_variety.py
 tests/func/test_add_variety2.py
 tests/func/test_api_exceptions.py
 tests/func/test_unique_id.py .

 tests/unit/test_cli.py
 tests/unit/test_task.py

 ============== 62 passed in 0.27 seconds ===============

(179)

 _______________________ summary ________________________
 py27: commands succeeded
 py36: commands succeeded
 congratulations :)

At the end, we have a nice summary of all the test environments and their outcomes:

 _________________________ summary _________________________
 py27: commands succeeded
 py36: commands succeeded
 congratulations :)

Doesn’t that give you a nice, warm, happy feeling? We got a “congratulations” and a smiley
face.

tox is much more powerful than what I’m showing here and deserves your attention if you are
using pytest to test packages intended to be run in multiple environments. For more detailed
information, check out the tox documentation.[27]

(180)

Jenkins CI: Automating Your Automated Tests

Continuous integration (CI) systems such as Jenkins[28] are frequently used to launch test suites
after each code commit. pytest includes options to generate junit.xml-formatted files required by
Jenkins and other CI systems to display test results.

Jenkins is an open source automation server that is frequently used for continuous integration.
Even though Python doesn’t need to be compiled, it’s fairly common practice to use Jenkins or
other CI systems to automate the running and reporting of Python projects. In this section, you’ll
take a look at how the Tasks project might be set up in Jenkins. I’m not going to walk through
the Jenkins installation. It’s different for every operating system, and instructions are available
on the Jenkins website.

When using Jenkins for running pytest suites, there are a few Jenkins plugins that you may find
useful. These have been installed for the example:

build-name-setter: This plugin sets the display name of a build to something other than #1,
#2, #3, and so on.

Test Results Analyzer plugin: This plugin shows the history of test execution results in a
tabular or graphical format.

You can install plugins by going to the top-level Jenkins page, which is localhost:8080/manage
for me as I’m running it locally, then clicking Manage Jenkins -> Manage Plugins -> Available.
Search for the plugin you want with the filter box. Check the box for the plugin you want. I
usually select “Install without Restart,” and then on the Installing Plugins/Upgrades page, I select
the box that says, “Restart Jenkins when installation is complete and no jobs are running.”

We’ll look at a complete configuration in case you’d like to follow along for the Tasks project.
The Jenkins project/item is a “Freestyle Project” named “tasks,” as shown in the following
screen.

The configuration is a little odd since we’re using versions of the Tasks project that look like
tasks_proj, tasks_proj_v2, and so on, instead of version control. Therefore, we need to
parametrize the project to tell each test session where to install the Tasks project and where to
find the tests. We’ll use a couple of string parameters, as shown in the next screen, to specify
those directories. (Click “This project is parametrized” to get these options available.)

(181)

Next, scroll down to Build Environment, and select “Delete workspace before build starts” and
Set Build Name. Set the name to ${start_tests_dir} #${BUILD_NUMBER}, as shown in the
next screen.

Next are the Build steps. On a Mac or Unix-like systems, select Add build step-> Execute shell.
On Windows, select Add build step->Execute Windows batch command. Since I’m on a Mac, I
used an Execute shell block to call a script, as shown here:

The content of the text box is:

(182)

 # your paths will be different
 code_path=/Users/okken/projects/book/bopytest/Book/code
 run_tests=${code_path}/ch7/jenkins/run_tests.bash
 bash -e ${run_tests} ${tasks_proj_dir} ${start_tests_dir} ${WORKSPACE}

We use a script instead of putting all of this code into the execute block in Jenkins so that any
changes can be tracked with revision control. Here’s the script:

ch7/jenkins/run_tests.bash
 #!/bin/bash

 # your paths will be different
 top_path=/Users/okken/projects/book/bopytest/Book
 code_path=${top_path}/code
 venv_path=${top_path}/venv
 tasks_proj_dir=${code_path}/$1
 start_tests_dir=${code_path}/$2
 results_dir=$3

 # click and Python 3,
 # from http://click.pocoo.org/5/python3/
 export LC_ALL=en_US.utf-8
 export LANG=en_US.utf-8

 # virtual environment
 source ${venv_path}/bin/activate

 # install project
 pip install -e ${tasks_proj_dir}

 # run tests

 cd ${start_tests_dir}
 pytest --junit-xml=${results_dir}/results.xml

The bottom line has pytest --junit-xml=${results_dir}/results.xml. The --junit-xml flag is the
only thing needed to produce the junit.xml format results file Jenkins needs.

There are other options:

 $ pytest --help | grep junit
 --junit-xml=path create junit-xml style report file at given path.
 --junit-prefix=str prepend prefix to classnames in junit-xml output
 junit_suite_name (string) Test suite name for JUnit report

(183)

http://media.pragprog.com/titles/bopytest/code/ch7/jenkins/run_tests.bash

The --junit-prefix can be used as a prefix for every test. This is useful when using tox and you
want to separate the different environment results. junit_suite_name is a config file option that
you can set in the [pytest] section of pytest.ini or tox.ini. Later we’ll see that the results will have
from (pytest) in them. To change pytest to something else, use junit_suite_name.

Next, we’ll add a post-build action: Add post-build action->Publish Junit test result report. Fill in
the Test report XMLs with results.xml, as shown in the next screen.

That’s it! Now we can run tests through Jenkins. Here are the steps:

1. Click Save.
2. Go to the top project.
3. Click “Build with Parameters.”
4. Select your directories and click Build.
5. When it’s done, hover over the title next to the ball in Build History and select Console

Output from the drop-down menu that appears. (Or click the build name and select
Console Output.)

6. Look at the output and try to figure out what went wrong.

You may be able to skip steps 5 and 6, but I never do. I’ve never set up a Jenkins job and had it
work the first time. There are usually directory permission problems or path issues or typos in
my script, and so on.

Before we look at the results, let’s run one more version to make it interesting. Click “Build with
Parameters” again. This time, keep the same project directory, but set ch2 as the start_tests_dir,
and click Build. After a refresh of the project top view, you should see the following screen:

(184)

Click inside the graph or on the “Latest Test Result” link to see an overview of the test session,
with “+” icons to expand for test failures.

Clicking on any of the failing test names shows you the individual test failure information, as
shown in the next screen. This is where you see the “(from pytest)” as part of the test name. This
is what’s controlled by the junit_suite_name in a config file.

(185)

Going back to Jenkins > tasks, you can click on Test Results Analyzer to see a view that lists
which tests haven’t been run for different sessions, along with the pass/fail status (see the
following screen):

You’ve seen how to run pytest suites with virtual environments from Jenkins, but there are quite
a few other topics to explore around using pytest and Jenkins together. You can test multiple
environments with Jenkins by either setting up separate Jenkins tasks for each environment, or
by having Jenkins call tox directly. There’s also a nice plugin called Cobertura that is able to
display coverage data from coverage.py. Check out the Jenkins documentation[29] for more
information.

(186)

unittest: Running Legacy Tests with pytest
unittest is the test framework built into the Python standard library. Its purpose is to test Python
itself, but it is often used for project testing, too. pytest works as a unittest runner, and can run
both pytest and unittest tests in the same session.

Let’s pretend that when the Tasks project started, it used unittest instead of pytest for testing.
And perhaps there are a lot of tests already written. Fortunately, you can use pytest to run
unittest-based tests. This might be a reasonable option if you are migrating your testing effort
from unittest to pytest. You can leave all the old tests as unittest, and write new ones in pytest.
You can also gradually migrate older tests as you have time, or as changes are needed. There are
a couple of issues that might trip you up in the migration, however, and I’ll address some of
those here. First, let’s look at a test written for unittest:

ch7/unittest/test_delete_unittest.py
 import unittest
 import shutil
 import tempfile
 import tasks
 from tasks import Task

 def setUpModule():
 """Make temp dir, initialize DB."""
 global temp_dir
 temp_dir = tempfile.mkdtemp()
 tasks.start_tasks_db(str(temp_dir), 'tiny')

 def tearDownModule():
 """Clean up DB, remove temp dir."""
 tasks.stop_tasks_db()
 shutil.rmtree(temp_dir)

 class TestNonEmpty(unittest.TestCase):

 def setUp(self):
 tasks.delete_all() # start empty
 # add a few items, saving ids
 self.ids = []
 self.ids.append(tasks.add(Task('One', 'Brian', True)))
 self.ids.append(tasks.add(Task('Two', 'Still Brian', False)))

(187)

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest.py

 self.ids.append(tasks.add(Task('Three', 'Not Brian', False)))

 def test_delete_decreases_count(self):
 # GIVEN 3 items
 self.assertEqual(tasks.count(), 3)
 # WHEN we delete one
 tasks.delete(self.ids[0])
 # THEN count decreases by 1
 self.assertEqual(tasks.count(), 2)

The actual test is at the bottom, test_delete_decreases_count(). The rest of the code is there for
setup and teardown. This test runs fine in unittest:

 $ cd /path/to/code/ch7/unittest
 $ python -m unittest -v test_delete_unittest.py
 test_delete_decreases_count (test_delete_unittest.TestNonEmpty) ... ok

 --
 Ran 1 test in 0.024s

 OK

It also runs fine in pytest:

 $ pytest -v test_delete_unittest.py
 ========================== test session starts ===========================
 collected 1 items

 test_delete_unittest.py::TestNonEmpty::test_delete_decreases_count PASSED

 ======================== 1 passed in 0.02 seconds ========================

This is great if you just want to use pytest as a test runner for unittest. However, our premise is
that the Tasks project is migrating to pytest. Let’s say we want to migrate tests one at a time and
run both unittest and pytest versions at the same time until we are confident in the pytest
versions. Let’s look at a rewrite for this test and then try running them both:

ch7/unittest/test_delete_pytest.py
 import tasks

 def test_delete_decreases_count(db_with_3_tasks):
 ids = [t.id for t in tasks.list_tasks()]
 # GIVEN 3 items

(188)

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_pytest.py

 assert tasks.count() == 3
 # WHEN we delete one
 tasks.delete(ids[0])
 # THEN count decreases by 1
 assert tasks.count() == 2

The fixtures we’ve been using for the Tasks project, including db_with_3_tasks introduced in
Using Multiple Fixtures, help set up the database before the test. It’s a much smaller file, even
though the test function itself is almost identical.

Both tests pass individually:

 $ pytest -q test_delete_pytest.py
 .
 1 passed in 0.01 seconds
 $ pytest -q test_delete_unittest.py
 .
 1 passed in 0.02 seconds

You can even run them together if—and only if—you make sure the unittest version runs first:

 $ pytest -v test_delete_unittest.py test_delete_pytest.py
 ========================== test session starts ===========================
 collected 2 items

 test_delete_unittest.py::TestNonEmpty::test_delete_decreases_count PASSED
 test_delete_pytest.py::test_delete_decreases_count[tiny] PASSED

 ======================== 2 passed in 0.07 seconds ========================

If you run the pytest version first, something goes haywire:

 $ pytest -v test_delete_pytest.py test_delete_unittest.py
 ========================== test session starts ===========================
 collected 2 items

 test_delete_pytest.py::test_delete_decreases_count[tiny] PASSED
 test_delete_unittest.py::TestNonEmpty::test_delete_decreases_count PASSED
 test_delete_unittest.py::TestNonEmpty::test_delete_decreases_count ERROR

 ================================= ERRORS
=================================

 _____ ERROR at teardown of TestNonEmpty.test_delete_decreases_count ______

 tmpdir_factory = <_pytest.tmpdir.TempdirFactory object at 0x1038a3128>

(189)

 request = <SubRequest 'tasks_db_session'
 for <Function 'test_delete_decreases_count[tiny]'>>

 @pytest.fixture(scope='session', params=['tiny'])
 def tasks_db_session(tmpdir_factory, request):
 temp_dir = tmpdir_factory.mktemp('temp')
 tasks.start_tasks_db(str(temp_dir), request.param)
 yield # this is where the testing happens
 > tasks.stop_tasks_db()

 conftest.py:11:
 _

 def stop_tasks_db(): # type: () -> None
 global _tasksdb
 > _tasksdb.stop_tasks_db()
 E AttributeError: 'NoneType' object has no attribute 'stop_tasks_db'

 ../tasks_proj_v2/src/tasks/api.py:104: AttributeError
 =================== 2 passed, 1 error in 0.13 seconds ====================

You can see that something goes wrong at the end, after both tests have run and passed.

Let’s use --setup-show to investigate further:

 $ pytest -q --tb=no --setup-show test_delete_pytest.py test_delete_unittest.py

 SETUP S tmpdir_factory
 SETUP S tasks_db_session (fixtures used: tmpdir_factory)[tiny]
 SETUP F tasks_db (fixtures used: tasks_db_session)
 SETUP S tasks_just_a_few
 SETUP F db_with_3_tasks (fixtures used: tasks_db, tasks_just_a_few)
 test_delete_pytest.py::test_delete_decreases_count[tiny]
 (fixtures used: db_with_3_tasks, tasks_db, tasks_db_session,
 tasks_just_a_few, tmpdir_factory).
 TEARDOWN F db_with_3_tasks
 TEARDOWN F tasks_db
 test_delete_unittest.py::TestNonEmpty::test_delete_decreases_count.
 TEARDOWN S tasks_just_a_few
 TEARDOWN S tasks_db_session[tiny]
 TEARDOWN S tmpdir_factoryE
 2 passed, 1 error in 0.08 seconds

(190)

The session scope teardown fixtures are run after all the tests, including the unittest tests. This
stumped me for a bit until I realized that the tearDownModule() in the unittest module was
shutting down the connection to the database. The tasks_db_session() teardown from pytest was
then trying to do the same thing afterward.

Fix the problem by using the pytest session scope fixture with the unittest tests. This is possible
by adding @pytest.mark.usefixtures() decorators at the class or method level:

ch7/unittest/test_delete_unittest_fix.py
 import pytest
 import unittest
 import tasks
 from tasks import Task

 @pytest.mark.usefixtures('tasks_db_session')
 class TestNonEmpty(unittest.TestCase):

 def setUp(self):
 tasks.delete_all() # start empty
 # add a few items, saving ids
 self.ids = []
 self.ids.append(tasks.add(Task('One', 'Brian', True)))
 self.ids.append(tasks.add(Task('Two', 'Still Brian', False)))
 self.ids.append(tasks.add(Task('Three', 'Not Brian', False)))
 def test_delete_decreases_count(self):
 # GIVEN 3 items
 self.assertEqual(tasks.count(), 3)
 # WHEN we delete one
 tasks.delete(self.ids[0])
 # THEN count decreases by 1
 self.assertEqual(tasks.count(), 2)

Now both unittest and pytest can cooperate and not run into each other:

 $ pytest -v test_delete_pytest.py test_delete_unittest_fix.py
 ==================== test session starts =====================
 plugins: mock-1.6.0, cov-2.5.1
 collected 2 items

 test_delete_pytest.py::test_delete_decreases_count PASSED
 test_delete_unittest_fix.py::TestNonEmpty::test_delete_decreases_count PASSED

 ================== 2 passed in 0.02 seconds ==================

(191)

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest_fix.py

Note that this is only necessary for session scope resources shared by unittest and pytest. As
discussed earlier in Marking Test Functions, you can also use pytest markers on unittest tests,
such as @pytest.mark.skip() and @pytest.mark.xfail(), and user markers like
@pytest.mark.foo().

Going back to the unittest example, we still used setUp() to save the ids of the tasks. Aside from
highlighting that getting a list of ids from tasks is obviously an overlooked API method, it also
points to a slight issue with using pytst.mark.usefixtures with unittest: we can’t pass data from a
fixture to a unittest function directly.

However, you can pass it through the cls object that is part of the request object. In the next
example, setUp() code has been moved into a function scope fixture that passes the ids through
request.cls.ids:

ch7/unittest/test_delete_unittest_fix2.py
 import pytest
 import unittest
 import tasks
 from tasks import Task

 @pytest.fixture()
 def tasks_db_non_empty(tasks_db_session, request):
 tasks.delete_all() # start empty
 # add a few items, saving ids
 ids = []
 ids.append(tasks.add(Task('One', 'Brian', True)))
 ids.append(tasks.add(Task('Two', 'Still Brian', False)))
 ids.append(tasks.add(Task('Three', 'Not Brian', False)))
 request.cls.ids = ids

 @pytest.mark.usefixtures('tasks_db_non_empty')
 class TestNonEmpty(unittest.TestCase):

 def test_delete_decreases_count(self):
 # GIVEN 3 items
 self.assertEqual(tasks.count(), 3)
 # WHEN we delete one
 tasks.delete(self.ids[0])
 # THEN count decreases by 1
 self.assertEqual(tasks.count(), 2)

The test accesses the ids list through self.ids, just like before.

(192)

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest_fix2.py

The ability to use marks has a limitation: you cannot use parametrized fixtures with unittest-
based tests. However, when looking at the last example with unittest using pytest fixtures, it’s
not that far from rewriting it in pytest form. Remove the unittest.TestCase base class and change
the self.assertEqual() calls to straight assert calls, and you’d be there.

Another limitation with running unittest with pytest is that unittest subtests will stop at the first
failure, while unittest will run each subtest, regardless of failures. When all subtests pass, pytest
runs all of them. Because you won’t see any false-positive results because of this limitation, I
consider this a minor difference.

(193)

Exercises
1. The test code in ch2 has a few intentionally failing tests. Use --pdb while running these

tests. Try it without the -x option and the debugger will open multiple times, once for each
failure.

2. Try fixing the code and rerunning tests with --lf --pdb to just run the failed tests and use
the debugger. Trying out debugging tools in a casual environment where you can play
around and not be worried about deadlines and fixes is important.

3. We noticed lots of missing tests during our coverage exploration. One topic missing is to
test tasks.update(). Write some tests of that in the func directory.

4. Run coverage.py. What other tests are missing? If you covered api.py, do you think it
would be fully tested?

5. Add some tests to test_cli.py to check the command-line interface for tasks update using
mock.

6. Run your new tests (along with all the old ones) against at least two Python versions with
tox.

7. Try using Jenkins to graph all the different tasks_proj versions and test permutations in the
chapters.

(194)

What’s Next
You are definitely ready to go out and try pytest with your own projects. And check out the
appendixes that follow. If you’ve made it this far, I’ll assume you no longer need help with pip
or virtual environments. However, you may not have looked at Appendix 3, Plugin Sampler
Pack. If you enjoyed this chapter, it deserves your time to at least skim through it. Then,
Appendix 4, Packaging and Distributing Python Projects provides a quick look at how to share
code through various levels of packaging, and Appendix 5, xUnit Fixtures covers an alternative
style of pytest fixtures that closer resembles traditional xUnit testing tools.

Also, keep in touch! Check out the book’s webpage[30] and use the discussion forum[31] and
errata[32] pages to help me keep the book lean, relevant, and easy to follow. This book is intended
to be a living document. I want to keep it up to date and relevant for every wave of new pytest
users.

Footnotes

[20]

https://docs.python.org/3/library/pdb.html

[21]

https://coverage.readthedocs.io

[22]

https://pytest-cov.readthedocs.io

[23]

http://click.pocoo.org

[24]

https://docs.python.org/dev/library/unittest.mock.html

[25]

https://docs.python.org/dev/library/unittest.mock.html

[26]

https://pypi.python.org/pypi/pytest-mock

[27]

https://tox.readthedocs.io

[28]

(195)

https://docs.python.org/3/library/pdb.html
https://coverage.readthedocs.io
https://pytest-cov.readthedocs.io
http://click.pocoo.org
https://docs.python.org/dev/library/unittest.mock.html
https://docs.python.org/dev/library/unittest.mock.html
https://pypi.python.org/pypi/pytest-mock
https://tox.readthedocs.io

https://jenkins.io

[29]

https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin

[30]

https://pragprog.com/titles/bopytest

[31]

https://forums.pragprog.com/forums/438

[32]

https://pragprog.com/titles/bopytest/errata

Copyright © 2017, The Pragmatic Bookshelf.

(196)

https://jenkins.io
https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin
https://pragprog.com/titles/bopytest
https://forums.pragprog.com/forums/438
https://pragprog.com/titles/bopytest/errata

Appendix 1
Virtual Environments
Python virtual environments enable you to set up a Python sandbox with its own set of packages
separate from the system site-packages in which to work. There are many reasons to use virtual
environments, such as if you have multiple services running with the same Python installation,
but with different packages and package version requirements. In addition, you might find it
handy to keep the dependent package requirements separate for every Python project you work
on. Virtual environments let you do that.

The PyPI version of virtualenv works in most environments. As of Python 3.3, the venv virtual
environment module is included as part of the standard library. However, some problems with
venv have been reported on Ubuntu. Since virtualenv works with Python 3.6 (and as far back as
Python 2.6) and on Ubuntu, we’ll use virtualenv in this quick overview.

Here’s how to set up a virtual environment in macOS and Linux:

 $ pip install -U virtualenv
 $ virtualenv -p /path/to/a/python.exe /path/to/env_name
 $ source /path/to/env_name/bin/activate
 (env_name) $
 ... do your work ...
 (env_name) $ deactivate

You can also drive the process from Python:

 $ python3.6 -m pip install -U virtualenv
 $ python3.6 -m virtualenv env_name
 $ source env_name/bin/activate
 (env_name) $
 ... do your work ...
 (env_name) $ deactivate

In Windows, there’s a change to the activate line:

 C:/> pip install -U virtualenv
 C:/> virtualenv -p /path/to/a/python.exe /path/to/env_name
 C:/> /path/to/env_name/Scripts/activate.bat
 (env_name) C:/>
 ... do your work ...
 (env_name) C:/> deactivate

You can do the same trick of driving everything from the Python executable on Windows as
well.

(197)

In practice, setting up a virtual environment can be done in fewer steps. For example, I don’t
often update virtualenv if I know I’ve updated it not too long ago. I also usually put the virtual
environment directory, env_name, directly in my project’s top directory.

Therefore, the steps are usually just the following:

 $ cd /path/to/my_proj
 $ virtualenv -p $(which python3.6) my_proj_venv
 $ source my_proj_venv/bin/activate
 (my_proj_venv) $
 ... do your work ...
 (my_proj_venv) $ deactivate

I’ve also seen two additional installation methods that are interesting and could work for you:

1. Put the virtual environment in the project directory (as was done in the previous code), but
name the env directory something consistent, such as venv or .venv. The benefit of this is
that you can put venv or .venv in your global .gitignore file. The downside is that the
environment name hint in the command prompt just tells you that you are using a virtual
environment, but not which one.

2. Put all virtual environments into a common directory, such as ~/venvs/. Now the
environment names will be different, letting the command prompt be more useful. You
also don’t need to worry about .gitignore, since it’s not in your project tree. Finally, this
directory is one place to look if you forget all of the projects you’re working on.

Remember, a virtual environment is a directory with links back to the python.exe file and the
pip.exe file of the site-wide Python version it’s using. But anything you install is installed in the
virtual environment directory, and not in the global site-packages directory. When you’re done
with a virtual environment, you can just delete the directory and it completely disappears.

I’ve covered the basics and common use case of virtualenv. However, virtualenv is a flexible tool
with many options. Be sure to check out virtualenv --help. It may preemptively answer questions
you may have about your specific situation. Also, the Python Packaging Authority docs on
virtualenv[33] are worth reading if you still have questions.

Footnotes

[33]

https://virtualenv.pypa.io

Copyright © 2017, The Pragmatic Bookshelf.

(198)

https://virtualenv.pypa.io

Appendix 2
pip
pip is the tool used to install Python packages, and it is installed as part of your Python
installation. pip supposedly is a recursive acronym that stands for Pip Installs Python or Pip
Installs Packages. (Programmers can be pretty nerdy with their humor.) If you have more than
one version of Python installed on your system, each version has its own pip package manager.

By default, when you run pip install something, pip will:

1. Connect to the PyPI repository at https://pypi.python.org/pypi.
2. Look for a package called something.
3. Download the appropriate version of something for your version of Python and your

system.
4. Install something into the site-packages directory of your Python installation that was used

to call pip.

This is a gross understatement of what pip does—it also does cool stuff like setting up scripts
defined by the package, wheel caching, and more.

As mentioned, each installation of Python has its own version of pip tied to it. If you’re using
virtual environments, pip and python are automatically linked to whichever Python version you
specified when creating the virtual environment. If you aren’t using virtual environments, and
you have multiple Python versions installed, such as python3.5 and python3.6, you will probably
want to use python3.5 -m pip or python3.6 -m pip instead of pip directly. It works just the same.
(For the examples in this appendix, I assume you are using virtual environments so that pip
works just fine as-is.)

To check the version of pip and which version of Python it’s tied to, use pip --version:

 (my_env) $ pip --version
 pip 9.0.1 from /path/to/code/my_env/lib/python3.6/site-packages (python 3.6)

To list the packages you have currently installed with pip, use pip list. If there’s something there
you don’t want anymore, you can uninstall it with pip uninstall something.

 (my_env) $ pip list
 pip (9.0.1)
 setuptools (36.2.7)
 wheel (0.29.0)
 (my_env) $ pip install pytest
 ...
 Installing collected packages: py, pytest
 Successfully installed py-1.4.34 pytest-3.2.1
 (my_env) $ pip list

(199)

https://pypi.python.org/pypi

 pip (9.0.1)
 py (1.4.34)
 pytest (3.2.1)
 setuptools (36.2.7)
 wheel (0.29.0)

As shown in this example, pip installs the package you want and also any dependencies that
aren’t already installed.

pip is pretty flexible. It can install things from other places, such as GitHub, your own servers, a
shared directory, or a local package you’re developing yourself, and it always sticks the packages
in site-packages unless you’re using Python virtual environments.

You can use pip to install packages with version numbers from http://pypi.python.org if it’s a
release version PyPI knows about:

 $ pip install pytest==3.2.1

You can use pip to install a local package that has a setup.py file in it:

 $ pip install /path/to/package

Use ./package_name if you are in the same directory as the package to install it locally:

 $ cd /path/just/above/package
 $ pip install my_package # pip is looking in PyPI for "my_package"
 $ pip install ./my_package # now pip looks locally

You can use pip to install packages that have been downloaded as zip files or wheels without
unpacking them.

You can also use pip to download a lot of files at once using a requirements.txt file:

 (my_env) $ cat requirements.txt
 pytest==3.2.1
 pytest-xdist==1.20.0
 (my_env) $ pip install -r requirements.txt
 ...
 Successfully installed apipkg-1.4 execnet-1.4.1 pytest-3.2.1 pytest-xdist-1.20.0

You can use pip to download a bunch of various versions into a local cache of packages, and
then point pip there instead of PyPI to install them into virtual environments later, even when
offline.

The following downloads pytest and all dependencies:

 (my_env) $ mkdir ~/.pipcache
 (my_env) $ pip download -d ~/pipcache pytest

(200)

http://pypi.python.org

 Collecting pytest
 Using cached pytest-3.2.1-py2.py3-none-any.whl
 Saved /Users/okken/pipcache/pytest-3.2.1-py2.py3-none-any.whl
 Collecting py>=1.4.33 (from pytest)
 Using cached py-1.4.34-py2.py3-none-any.whl
 Saved /Users/okken/pipcache/py-1.4.34-py2.py3-none-any.whl
 Collecting setuptools (from pytest)
 Using cached setuptools-36.2.7-py2.py3-none-any.whl
 Saved /Users/okken/pipcache/setuptools-36.2.7-py2.py3-none-any.whl
 Successfully downloaded pytest py setuptools

Later, even if you’re offline, you can install from the cache:

 (my_env) $ pip install --no-index --find-links=~/pipcache pytest
 Collecting pytest
 Collecting py>=1.4.33 (from pytest)
 ...
 Installing collected packages: py, pytest
 Successfully installed py-1.4.34 pytest-3.2.1

This is great for situations like running tox or continuous integration test suites without needing
to grab packages from PyPI. I also use this method to grab a bunch of packages before taking a
trip so that I can code on the plane.

The Python Packaging Authority documentation[34] is a great resource for more information on
pip.

Footnotes

[34]

https://pip.pypa.io

Copyright © 2017, The Pragmatic Bookshelf.

(201)

https://pip.pypa.io

Appendix 3
Plugin Sampler Pack
Plugins are the booster rockets that enable you to get even more power out of pytest. So many
useful plugins are available, it’s difficult to pick just a handful to showcase. You’ve already seen
the pytest-cov plugin in Coverage.py: Determining How Much Code Is Tested, and the pytest-
mock plugin in mock: Swapping Out Part of the System. The following plugins give you just a
taste of what else is out there.

All of the plugins featured here are available on PyPI and are installed with pip install <plugin-
name>.

(202)

Plugins That Change the Normal Test Run Flow
The following plugins in some way change how pytest runs your tests.

pytest-repeat: Run Tests More Than Once

To run tests more than once per session, use the pytest-repeat plugin.[35] This plugin is useful if
you have an intermittent failure in a test.

Following is a normal test run of tests that start with test_list from ch7/tasks _proj_v2:

 $ cd /path/to/code/ch7/tasks_proj_v2
 $ pip install .
 $ pip install pytest-repeat
 $ pytest -v -k test_list
 ===================== test session starts ======================
 plugins: repeat-0.4.1, mock-1.6.2
 collected 62 items

 tests/func/test_api_exceptions.py::test_list_raises PASSED
 tests/unit/test_cli.py::test_list_no_args PASSED
 tests/unit/test_cli.py::test_list_print_empty PASSED
 tests/unit/test_cli.py::test_list_print_many_items PASSED
 tests/unit/test_cli.py::test_list_dash_o PASSED
 tests/unit/test_cli.py::test_list_dash_dash_owner PASSED

 ===================== 56 tests deselected ======================
 =========== 6 passed, 56 deselected in 0.10 seconds ============

With the pytest-repeat plugin, you can use --count to run everything twice:

 $ pytest --count=2 -v -k test_list
 ===================== test session starts ======================
 plugins: repeat-0.4.1, mock-1.6.2
 collected 124 items

 tests/func/test_api_exceptions.py::test_list_raises[1/2] PASSED
 tests/func/test_api_exceptions.py::test_list_raises[2/2] PASSED
 tests/unit/test_cli.py::test_list_no_args[1/2] PASSED
 tests/unit/test_cli.py::test_list_no_args[2/2] PASSED
 tests/unit/test_cli.py::test_list_print_empty[1/2] PASSED
 tests/unit/test_cli.py::test_list_print_empty[2/2] PASSED

(203)

 tests/unit/test_cli.py::test_list_print_many_items[1/2] PASSED
 tests/unit/test_cli.py::test_list_print_many_items[2/2] PASSED
 tests/unit/test_cli.py::test_list_dash_o[1/2] PASSED
 tests/unit/test_cli.py::test_list_dash_o[2/2] PASSED
 tests/unit/test_cli.py::test_list_dash_dash_owner[1/2] PASSED
 tests/unit/test_cli.py::test_list_dash_dash_owner[2/2] PASSED

 ===================== 112 tests deselected =====================
 ========== 12 passed, 112 deselected in 0.16 seconds ===========

You can repeat a subset of the tests or just one, and even choose to run it 1,000 times overnight if
you want to see if you can catch the failure. You can also set it to stop on the first failure.

pytest-xdist: Run Tests in Parallel

Usually all tests run sequentially. And that’s just what you want if your tests hit a resource that
can only be accessed by one client at a time. However, if your tests do not need access to a
shared resource, you could speed up test sessions by running multiple tests in parallel. The
pytest-xdist plugin allows you to do that. You can specify multiple processors and run many tests
in parallel. You can even push off tests onto other machines and use more than one computer.

Here’s a test that takes at least a second to run, with parametrization such that it runs ten times:

appendices/xdist/test_parallel.py
 import pytest
 import time

 @pytest.mark.parametrize('x', list(range(10)))
 def test_something(x):
 time.sleep(1)

Notice that it takes over ten seconds to run normally:

 $ pip install pytest-xdist
 $ cd /path/to/code/appendices/xdist
 $ pytest test_parallel.py
 ===================== test session starts ======================
 plugins: xdist-1.20.0, forked-0.2
 collected 10 items

 test_parallel.py

 ================== 10 passed in 10.07 seconds =================

(204)

http://media.pragprog.com/titles/bopytest/code/appendices/xdist/test_parallel.py

With the pytest-xdist plugin, you can use -n numprocesses to run each test in a subprocess, and
use -n auto to automatically detect the number of CPUs on the system. Here’s the same test run
on multiple processors:

 $ pytest -n auto test_parallel.py
 ===================== test session starts ======================
 plugins: xdist-1.20.0, forked-0.2
 gw0 [10] / gw1 [10] / gw2 [10] / gw3 [10]
 scheduling tests via LoadScheduling

 ================== 10 passed in 4.27 seconds ===================

It’s not a silver bullet to speed up your test times by a factor of the number of processors you
have—there is overhead time. However, many testing scenarios enable you to run tests in
parallel. And when the tests are long, you may as well let them run in parallel to speed up your
test time.

The pytest-xdist plugin does a lot more than we’ve covered here, including the ability to offload
tests to different computers altogether, so be sure to read more about the pytest-xdist plugin[36]

on PyPI.

pytest-timeout: Put Time Limits on Your Tests

There are no normal timeout periods for tests in pytest. However, if you’re working with
resources that may occasionally disappear, such as web services, it’s a good idea to put some
time restrictions on your tests.

The pytest-timeout plugin[37] does just that. It allows you pass a timeout period on the command
line or mark individual tests with timeout periods in seconds. The mark overrides the command-
line timeout so that the test can be either longer or shorter than the timeout limit.

Let’s run the tests from the previous example (with one-second sleeps) with a half-second
timeout:

 $ cd /path/to/code/appendices/xdist
 $ pip install pytest-timeout
 $ pytest --timeout=0.5 -x test_parallel.py
 ===================== test session starts ======================
 plugins: xdist-1.20.0, timeout-1.2.0, forked-0.2
 timeout: 0.5s method: signal
 collected 10 items

 test_parallel.py F

 =========================== FAILURES ===========================
 ______________________ test_something[0] _______________________

(205)

 x = 0

 @pytest.mark.parametrize('x', list(range(10)))
 def test_something(x):
 > time.sleep(1)
 E Failed: Timeout >0.5s

 test_parallel.py:6: Failed
 !!!!!!!!!!!! Interrupted: stopping after 1 failures !!!!!!!!!!!!
 =================== 1 failed in 0.68 seconds ===================

The -x stops testing after the first failure.

(206)

Plugins That Alter or Enhance Output
These plugins don’t change how test are run, but they do change the output you see.

pytest-instafail: See Details of Failures and Errors as They Happen

Usually pytest displays the status of each test, and then after all the tests are finished, pytest
displays the tracebacks of the failed or errored tests. If your test suite is relatively fast, that might
be just fine. But if your test suite takes quite a bit of time, you may want to see the tracebacks as
they happen, rather than wait until the end. This is the functionality of the pytest-instafail plugin.
[38] When tests are run with the --instafail flag, the failures and errors appear right away.

Here’s a test with normal failures at the end:

 $ cd /path/to/code/appendices/xdist
 $ pytest --timeout=0.5 --tb=line --maxfail=2 test_parallel.py
 =================== test session starts ===================
 plugins: xdist-1.20.0, timeout-1.2.0, forked-0.2
 timeout: 0.5s method: signal
 collected 10 items

 test_parallel.py FF

 ======================== FAILURES =========================
 /path/to/code/appendices/xdist/test_parallel.py:6: Failed: Timeout >0.5s
 /path/to/code/appendices/xdist/test_parallel.py:6: Failed: Timeout >0.5s
 !!!!!!!!! Interrupted: stopping after 2 failures !!!!!!!!!!
 ================ 2 failed in 1.20 seconds =================

Here’s the same test with --instafail:

 $ pytest --instafail --timeout=0.5 --tb=line --maxfail=2 test_parallel.py
 =================== test session starts ===================
 plugins: xdist-1.20.0, timeout-1.2.0, instafail-0.3.0, forked-0.2
 timeout: 0.5s method: signal
 collected 10 items

 test_parallel.py F

 /path/to/code/appendices/xdist/test_parallel.py:6: Failed: Timeout >0.5s

 test_parallel.py F

(207)

 /path/to/code/appendices/xdist/test_parallel.py:6: Failed: Timeout >0.5s

 !!!!!!!!! Interrupted: stopping after 2 failures !!!!!!!!!!
 ================ 2 failed in 1.19 seconds =================

The --instafail functionality is especially useful for long-running test suites when someone is
monitoring the test output. You can read the test failures, including the stack trace, without
stopping the test suite.

pytest-sugar: Instafail + Colors + Progress Bar

The pytest-sugar plugin[39] lets you see status not just as characters, but also in color. It also
shows failure and error tracebacks during execution, and has a cool progress bar to the right of
the shell.

A test without sugar is shown.

And here’s the test with sugar:

The checkmarks (or x’s for failures) show up as the tests finish. The progress bars grow in real
time, too. It’s quite satisfying to watch.

pytest-emoji: Add Some Fun to Your Tests

(208)

The pytest-emoji plugin[40] allows you to replace all of the test status characters with emojis.
You can also change the emojis if you don’t like the ones picked by the plugin author. Although
this project is perhaps an example of silliness, it’s included in this list because it’s a small plugin
and is a good example on which to base your own plugins.

To demonstrate the emoji plugin in action, following is sample code that produces pass, fail,
skip, xfail, xpass, and error. Here it is with normal output and tracebacks turned off:

Here it is with verbose, -v:

Now, here is the sample code with --emoji:

And then with both -v and --emoji:

It’s a pretty fun plugin, but don’t dismiss it as silly out of hand; it allows you to change the emoji
using hook functions. It’s one of the few pytest plugins that demonstrates how to add hook
functions to plugin code.

(209)

pytest-html: Generate HTML Reports for Test Sessions

The pytest-html plugin[41] is quite useful in conjunction with continuous integration, or in
systems with large, long-running test suites. It creates a webpage to view the test results for a
pytest session. The HTML report created includes the ability to filter for type of test result:
passed, skipped, failed, errors, expected failures, and unexpected passes. You can also sort by
test name, duration, or status. And you can include extra metadata in the report, including
screenshots or data sets. If you have reporting needs greater than pass vs. fail, be sure to try out
pytest-html.

The pytest-html plugin is really easy to start. Just add --html=report_name.html:

 $ cd /path/to/code/appendices/outcomes
 $ pytest --html=report.html
 ====================== test session starts ======================
 metadata: ...
 collected 6 items

 test_outcomes.py .FxXsE

 generated html file: /path/to/code/appendices/outcomes/report.html
 ============================ ERRORS =============================
 _________________ ERROR at setup of test_error __________________

 @pytest.fixture()
 def flaky_fixture():
 > assert 1 == 2
 E assert 1 == 2

 test_outcomes.py:24: AssertionError
 =========================== FAILURES ============================
 ___________________________ test_fail ___________________________

 def test_fail():
 > assert 1 == 2
 E assert 1 == 2

 test_outcomes.py:8: AssertionError
 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.08 seconds
 $ open report.html

This produces a report that includes the information about the test session and a results and
summary page.

(210)

The following screen shows the session environment information and summary:

The next screen shows the summary and results:

(211)

The report includes JavaScript that allows you to filter and sort, and you can add extra
information to the report, including images. If you need to produce reports for test results, this
plugin is worth checking out.

(212)

Plugins for Static Analysis
Static analysis tools run checks against your code without running it. The Python community has
developed some of these tools. The following plugins allow you to run a static analysis tool
against both your code under test and the tests themselves in the same session. Static analysis
failures show up as test failures.

pytest-pycodestyle, pytest-pep8: Comply with Python’s Style Guide

PEP 8 is a style guide for Python code.[42] It is enforced for standard library code, and is used by
many—if not most—Python developers, open source or otherwise. The pycodestyle[43]

command-line tool can be used to check Python source code to see if it complies with PEP 8.
Use the pytest-pycodestyle plugin[44] to run pycodestyle on code in your project, including test
code, with the --pep8 flag. The pycodestyle tool used to be called pep8,[45] and pytest-pep8[46] is
available if you want to run the legacy tool.

pytest-flake8: Check for Style Plus Linting

While pep8 checks for style, flake8 is a full linter that also checks for PEP 8 style. The flake8
package[47] is a collection of different style and static analysis tools all rolled into one. It includes
lots of options, but has reasonable default behavior. With the pytest-flake8 plugin,[48] you can
run all of your source code and test code through flake8 and get a failure if something isn’t right.
It checks for PEP 8, as well as for logic errors. Use the --flake8 option to run flake8 during a
pytest session. You can extend flake8 with plugins that offer even more checks, such as flake8-
docstrings,[49] which adds pydocstyle checks for PEP 257, Python’s docstring conventions.[50]

(213)

Plugins for Web Development
Web-based projects have their own testing hoops to jump through. Even pytest doesn’t make
testing web applications trivial. However, quite a few pytest plugins help make it easier.

pytest-selenium: Test with a Web Browser

Selenium is a project that is used to automate control of a web browser. The pytest-selenium
plugin[51] is the Python binding for it. With it, you can launch a web browser and use it to open
URLs, exercise web applications, and fill out forms. You can also programmatically control the
browser to test a web site or web application.

pytest-django: Test Django Applications

Django is a popular Python-based web development framework. It comes with testing hooks that
allow you to test different parts of a Django application without having to use browser-based
testing. By default, the builtin testing support in Django is based on unittest. The pytest-django
plugin[52] allows you to use pytest instead of unittest to gain all the benefits of pytest. The plugin
also includes helper functions and fixtures to speed up test implementation.

pytest-flask: Test Flask Applications

Flask is another popular framework that is sometimes referred to as a microframework. The
pytest-flask plugin[53] provides a handful of fixtures to assist in testing Flask applications.

Footnotes

[35]

https://pypi.python.org/pypi/pytest-repeat

[36]

https://pypi.python.org/pypi/pytest-xdist

[37]

https://pypi.python.org/pypi/pytest-timeout

[38]

https://pypi.python.org/pypi/pytest-instafail

[39]

https://pypi.python.org/pypi/pytest-sugar

(214)

https://pypi.python.org/pypi/pytest-repeat
https://pypi.python.org/pypi/pytest-xdist
https://pypi.python.org/pypi/pytest-timeout
https://pypi.python.org/pypi/pytest-instafail
https://pypi.python.org/pypi/pytest-sugar

[40]

https://pypi.python.org/pypi/pytest-emoji

[41]

https://pypi.python.org/pypi/pytest-html

[42]

https://www.python.org/dev/peps/pep-0008

[43]

https://pypi.python.org/pypi/pycodestyle

[44]

https://pypi.python.org/pypi/pytest-pycodestyle

[45]

https://pypi.python.org/pypi/pep8

[46]

https://pypi.python.org/pypi/pytest-pep8

[47]

https://pypi.python.org/pypi/flake8

[48]

https://pypi.python.org/pypi/pytest-flake8

[49]

https://pypi.python.org/pypi/flake8-docstrings

[50]

https://www.python.org/dev/peps/pep-0257

[51]

https://pypi.python.org/pypi/pytest-selenium

[52]

https://pypi.python.org/pypi/pytest-django

[53]

(215)

https://pypi.python.org/pypi/pytest-emoji
https://pypi.python.org/pypi/pytest-html
https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pycodestyle
https://pypi.python.org/pypi/pytest-pycodestyle
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pytest-flake8
https://pypi.python.org/pypi/flake8-docstrings
https://www.python.org/dev/peps/pep-0257
https://pypi.python.org/pypi/pytest-selenium
https://pypi.python.org/pypi/pytest-django

https://pypi.python.org/pypi/pytest-flask

Copyright © 2017, The Pragmatic Bookshelf.

(216)

https://pypi.python.org/pypi/pytest-flask

Appendix 4
Packaging and Distributing Python Projects
The idea of packaging and distribution seems so serious. Most of Python has a rather informal
feeling about it, and now suddenly, we’re talking “packaging and distribution.” However,
sharing code is part of working with Python. Therefore, it’s important to learn to share code
properly with the builtin Python tools. And while the topic is bigger than what I cover here, it
needn’t be intimidating. All I’m talking about is how to share code in a way that is more
traceable and consistent than emailing zipped directories of modules.

This appendix is intended to give you a comfortable understanding of how to set up a project so
that it is installable with pip, how to create a source distribution, and how to create a wheel. This
is enough for you to be able to share your code locally with a small team. To share it further
through PyPI, I’ll refer you to some other resources. Let’s see how it’s done.

(217)

Creating an Installable Module
We’ll start by learning how to make a small project installable with pip. For a simple one-module
project, the minimal configuration is small. I don’t recommend you make it quite this small, but I
want to show a minimal structure in order to build up to something more maintainable, and also
to show how simple setup.py can be. Here’s a simple directory structure:

 some_module_proj/
 ├── setup.py
 └── some_module.py

The code we want to share is in some_module.py:

appendices/packaging/some_module_proj/some_module.py
 def some_func():
 return 42

To make it installable with pip, we need a setup.py file. This is about as bare bones as you can
get:

appendices/packaging/some_module_proj/setup.py
 from setuptools import setup

 setup(
 name='some_module',
 py_modules=['some_module']
)

One directory with one module and a setup.py file is enough to make it installable via pip:

 $ cd /path/to/code/appendices/packaging
 $ pip install ./some_module_proj
 Processing ./some_module_proj
 Installing collected packages: some-module
 Running setup.py install for some-module ... done
 Successfully installed some-module-0.0.0

And we can now use some_module from Python (or from a test):

 $ python
 Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)
 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> from some_module import some_func

(218)

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_module_proj/some_module.py
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_module_proj/setup.py

 >>> some_func()
 42
 >>> exit()

That’s a minimal setup, but it’s not realistic. If you’re sharing code, odds are you are sharing a
package. The next section builds on this to write a setup.py file for a package.

(219)

Creating an Installable Package
Let’s make this code a package by adding an __init__.py and putting the __init__.py file and
module in a directory with a package name:

 $ tree some_package_proj/
 some_package_proj/
 ├── setup.py
 └── src
 └── some_package
 ├── __init__.py
 └── some_module.py

The content of some_module.py doesn’t change. The __init__.py needs to be written to expose
the module functionality to the outside world through the package namespace. There are lots of
choices for this. I recommend skimming the two sections of the Python documentation[54] that
cover this topic.

If we do something like this in __init__.py:

 import some_package.some_module

the client code will have to specify some_module:

 import some_package
 some_package.some_module.some_func()

However, I’m thinking that some_module.py is really our API for the package, and we want
everything in it to be exposed to the package level. Therefore, we’ll use this form:

appendices/packaging/some_package_proj/src/some_package/__init__.py
 from some_package.some_module import *

Now the client code can do this instead:

 import some_package
 some_package.some_func()

We also have to change the setup.py file, but not much:

appendices/packaging/some_package_proj/setup.py
 from setuptools import setup, find_packages

 setup(
 name='some_package',

(220)

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj/src/some_package/__init__.py
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj/setup.py

 packages=find_packages(where='src'),
 package_dir={'': 'src'},
)

Instead of using py_modules, we specify packages.

This is now installable:

 $ cd /path/to/code/appendices/packaging
 $ pip install ./some_package_proj/
 Processing ./some_package_proj
 Installing collected packages: some-package
 Running setup.py install for some-package ... done
 Successfully installed some-package-0.0.0

and usable:

 $ python
 Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)
 [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>> from some_package import some_func
 >>> some_func()
 42

Our project is now installable and in a structure that’s easy to build on. You can add a tests
directory at the same level of src to add our tests if you want. However, the setup.py file is still
missing some metadata needed to create a proper source distribution or wheel. It’s just a little bit
more work to make that possible.

(221)

Creating a Source Distribution and Wheel
For personal use, the configuration shown in the previous section is enough to create a source
distribution and a wheel. Let’s try it:

 $ cd /path/to/code/appendices/packaging/some_package_proj/
 $ python setup.py sdist bdist_wheel
 running sdist
 ...
 warning: sdist: standard file not found:
 should have one of README, README.rst, README.txt

 running check
 warning: check: missing required meta-data: url

 warning: check: missing meta-data:
 either (author and author_email)
 or (maintainer and maintainer_email) must be supplied

 running bdist_wheel
 ...
 $ ls dist
 some_package-0.0.0-py3-none-any.whl some_package-0.0.0.tar.gz

Well, with some warnings, a .whl and a .tar.gz file are created. Let’s get rid of those warnings.

To do that, we need to:

Add one of these files: README, README.rst, or README.txt.
Add metadata for url.
Add metadata for either (author and author_email) or (maintainer and maintainer_email).

Let’s also add:

A version number
A license
A change log

It makes sense that you’d want these things. Including some kind of README allows people to
know how to use the package. The url, author, and author_email (or maintainer) information
makes sense to let users know who to contact if they have issues or questions about the package.
A license is important to let people know how they can distribute, contribute, and reuse the
package. And if it’s not open source, say so in the license data. To choose a license for open
source projects, I recommend looking at https://choosealicense.com.

(222)

https://choosealicense.com

Those extra bits don’t add too much work. Here’s what I’ve come up with for a minimal default.

The setup.py:

appendices/packaging/some_package_proj_v2/setup.py
 from setuptools import setup, find_packages

 setup(
 name='some_package',
 description='Demonstrate packaging and distribution',

 version='1.0',
 author='Brian Okken',
 author_email='brian@pythontesting.net',
 url='https://pragprog.com/book/bopytest/python-testing-with-pytest',

 packages=find_packages(where='src'),
 package_dir={'': 'src'},
)

You should put the terms of the licensing in a LICENSE file. All of the code in this book follows
the following license:

appendices/packaging/some_package_proj_v2/LICENSE
 Copyright (c) 2017 The Pragmatic Programmers, LLC

 All rights reserved.

 Copyrights apply to this source code.

 You may use the source code in your own projects, however the source code
 may not be used to create commercial training material, courses, books,
 articles, and the like. We make no guarantees that this source code is fit
 for any purpose.

Here’s the README.rst:

appendices/packaging/some_package_proj_v2/README.rst
 ==
 some_package: Demonstrate packaging and distribution
 ==

 ``some_package`` is the Python package to demostrate how easy it is
 to create installable, maintainable, shareable packages and distributions.

(223)

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/setup.py
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/LICENSE
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/README.rst

 It does contain one function, called ``some_func()``.

 .. code-block

 >>> import some_package
 >>> some_package.some_func()
 42

 That's it, really.

The README.rst is formatted in reStructuredText.[55] I’ve done what many have done before
me: I copied a README.rst from an open source project, removed everything I didn’t like, and
changed everything else to reflect this project.

You can also use an ASCII-formatted README.txt or README, but I’m okay with
copy/paste/edit in this instance.

I recommend also adding a change log. Here’s the start of one:

appendices/packaging/some_package_proj_v2/CHANGELOG.rst
 Changelog
 =========

 --

 1.0

 Changes:
 ~~~~~~~~
 
 - Initial version.

See http://keepachangelog.com for some great advice on what to put in your change log. All of
the changes to tasks_proj over the course of this book have been logged into a CHANGELOG.rst
file.

Let’s see if this was enough to remove the warnings:

 $ cd /path/to/code/appendices/packaging/some_package_proj_v2
 $ python setup.py sdist bdist_wheel
 running sdist
 running build

(224)

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/CHANGELOG.rst
http://keepachangelog.com


 running build_py
 creating build
 creating build/lib
 creating build/lib/some_package
 copying src/some_package/__init__.py
  -> build/lib/some_package
 copying src/some_package/some_module.py
  -> build/lib/some_package
 installing to build/bdist.macosx-10.6-intel/wheel
 running install
 running install_lib
 creating build/bdist.macosx-10.6-intel
 creating build/bdist.macosx-10.6-intel/wheel
 creating build/bdist.macosx-10.6-intel/wheel/some_package
 copying build/lib/some_package/__init__.py
  -> build/bdist.macosx-10.6-intel/wheel/some_package
 copying build/lib/some_package/some_module.py
  -> build/bdist.macosx-10.6-intel/wheel/some_package
 running install_egg_info
 Copying src/some_package.egg-info to
 build/bdist.macosx-10.6-intel/wheel/some_package-1.0-py3.6.egg-info
 running install_scripts
 creating build/bdist.macosx-10.6-intel/wheel/some_package-1.0.dist-info/WHEEL
 
 $ ls dist
 some_package-1.0-py3-none-any.whl some_package-1.0.tar.gz

Yep. No warnings.

Now, we can put the .whl and/or .tar.gz files in a local shared directory and pip install to our
heart’s content:

 $ cd /path/to/code/appendices/packaging/some_package_proj_v2
 $ mkdir ~/packages/
 $ cp dist/some_package-1.0-py3-none-any.whl ~/packages
 $ cp dist/some_package-1.0.tar.gz ~/packages
 $ pip install --no-index --find-links=~/packages some_package
 Collecting some_package
 Installing collected packages: some-package
 Successfully installed some-package-1.0
 $ pip install --no-index --find-links=./dist some_package==1.0
 Requirement already satisfied: some_package==1.0 in
 /path/to/venv/lib/python3.6/site-packages

(225)



 $

Now you can create your own stash of local project packages from your team, including multiple
versions of each, and install them almost as easily as packages from PyPI.

(226)



Creating a PyPI-Installable Package
You need to add more metadata to your setup.py to get a package ready to distribute on PyPI.
You also need to use a tool such as Twine[56] to push packages to PyPI. (Twine is a collection of
utilities to help make interacting with PyPI easy and secure. It handles authentication over
HTTPS to keep your PyPI credentials secure, and handles the uploading of packages to PyPI.)

This is now beyond the scope of this book. However, for information about how to start
contributing through PyPI, take a look at the Python Packaging User Guide[57] and the the
PyPI[58] section of the Python documentation.

Footnotes

[54]

https://docs.python.org/3/tutorial/modules.html#packages

[55]

http://docutils.sourceforge.net/rst.html

[56]

https://pypi.python.org/pypi/twine

[57]

https://python-packaging-user-guide.readthedocs.io

[58]

https://docs.python.org/3/distutils/packageindex.html

Copyright © 2017, The Pragmatic Bookshelf.

(227)

https://docs.python.org/3/tutorial/modules.html#packages
http://docutils.sourceforge.net/rst.html
https://pypi.python.org/pypi/twine
https://python-packaging-user-guide.readthedocs.io
https://docs.python.org/3/distutils/packageindex.html


Appendix 5
xUnit Fixtures
In addition to the fixture model described in Chapter 3, pytest Fixtures, pytest also supports
xUnit style fixtures, which are similar to jUnit for Java, cppUnit for C++, and so on.

Generally, xUnit frameworks use a flow of control that looks something like this:

 setup()
 test_function()
 teardown()

This is repeated for every test that will run. pytest fixtures can do anything you need this type of
configuration for and more, but if you really want to have setup() and teardown() functions,
pytest allows that, too, with some limitations.

(228)



Syntax of xUnit Fixtures
xUnit fixtures include setup()/teardown() functions for module, function, class, and method
scope:

setup_module()/teardown_module()

These run at the beginning and end of a module of tests. They run once each. The module
parameter is optional.

setup_function()/teardown_function()

These run before and after top-level test functions that are not methods of a test class. They
run multiple times, once for every test function. The function parameter is optional.

setup_class()/teardown_class()

These run before and after a class of tests. They run only once. The class parameter is
optional.

setup_method()/teardown_method()

These run before and after test methods that are part of a test class. They run multiple
times, once for every test method. The method parameter is optional.

Here is an example of all the xUnit fixtures along with a few test functions:

appendices/xunit/test_xUnit_fixtures.py
 def setup_module(module):
 print(f'\nsetup_module() for {module.__name__}')
 
 
 def teardown_module(module):
 print(f'teardown_module() for {module.__name__}')
 
 
 def setup_function(function):
 print(f'setup_function() for {function.__name__}')
 
 
 def teardown_function(function):
 print(f'teardown_function() for {function.__name__}')
 
 
 def test_1():
 print('test_1()')

(229)

http://media.pragprog.com/titles/bopytest/code/appendices/xunit/test_xUnit_fixtures.py


 
 
 def test_2():
 print('test_2()')
 
 
 class TestClass:
 @classmethod
 def setup_class(cls):
 print(f'setup_class() for class {cls.__name__}')
 
 @classmethod
 def teardown_class(cls):
 print(f'teardown_class() for {cls.__name__}')
 
 def setup_method(self, method):
 print(f'setup_method() for {method.__name__}')
 
 def teardown_method(self, method):
 print(f'teardown_method() for {method.__name__}')
 
 def test_3(self):
 print('test_3()')
 
 def test_4(self):
 print('test_4()')

I used the parameters to the fixture functions to get the name of the
module/function/class/method to pass to the print statement. You don’t have to use the parameter
names module, function, cls, and method, but that’s the convention.

Here’s the test session to help visualize the control flow:

 $ cd /path/to/code/appendices/xunit
 $ pytest -s test_xUnit_fixtures.py
 ============ test session starts =============
 plugins: mock-1.6.0, cov-2.5.1
 collected 4 items
 
 test_xUnit_fixtures.py
 setup_module() for test_xUnit_fixtures
 setup_function() for test_1
 test_1()

(230)



 .teardown_function() for test_1
 setup_function() for test_2
 test_2()
 .teardown_function() for test_2
 setup_class() for class TestClass
 setup_method() for test_3
 test_3()
 .teardown_method() for test_3
 setup_method() for test_4
 test_4()
 .teardown_method() for test_4
 teardown_class() for TestClass
 teardown_module() for test_xUnit_fixtures
 
 ========== 4 passed in 0.01 seconds ==========

(231)



Mixing pytest Fixtures and xUnit Fixtures
You can mix pytest fixtures and xUnit fixtures:

appendices/xunit/test_mixed_fixtures.py
 import pytest
 
 
 def setup_module():
 print('\nsetup_module() - xUnit')
 
 
 def teardown_module():
 print('teardown_module() - xUnit')
 
 
 def setup_function():
 print('setup_function() - xUnit')
 
 
 def teardown_function():
 print('teardown_function() - xUnit\n')
 @pytest.fixture(scope='module')
 def module_fixture():
 print('module_fixture() setup - pytest')
 yield
 print('module_fixture() teardown - pytest')
 
 
 @pytest.fixture(scope='function')
 def function_fixture():
 print('function_fixture() setup - pytest')
 yield
 print('function_fixture() teardown - pytest')
 
 
 def test_1(module_fixture, function_fixture):
 print('test_1()')
 
 
 def test_2(module_fixture, function_fixture):

(232)

http://media.pragprog.com/titles/bopytest/code/appendices/xunit/test_mixed_fixtures.py


 print('test_2()')

You can do it. But please don’t. It gets confusing. Take a look at this:

 $ cd /path/to/code/appendices/xunit
 $ pytest -s test_mixed_fixtures.py
 ============ test session starts =============
 plugins: mock-1.6.0, cov-2.5.1
 collected 2 items
 
 test_mixed_fixtures.py
 setup_module() - xUnit
 setup_function() - xUnit
 module_fixture() setup - pytest
 function_fixture() setup - pytest
 test_1()
 .function_fixture() teardown - pytest
 teardown_function() - xUnit
 
 setup_function() - xUnit
 function_fixture() setup - pytest
 test_2()
 .function_fixture() teardown - pytest
 teardown_function() - xUnit
 
 module_fixture() teardown - pytest
 teardown_module() - xUnit
 
 
 ========== 2 passed in 0.01 seconds ==========

In this example, I’ve also shown that the module, function, and method parameters to the xUnit
fixture functions are optional. I left them out of the function definition, and it still runs fine.

(233)



Limitations of xUnit Fixtures
Following are a few of the limitations of xUnit fixtures:

xUnit fixtures don’t show up in -setup-show and -setup-plan. This might seem like a small
thing, but when you start writing a bunch of fixtures and debugging them, you’ll love these
flags.

There are no session scope xUnit fixtures. The largest scope is module.

Picking and choosing which fixtures a test needs is more difficult with xUnit fixtures. If a
test is in a class that has fixtures defined, the test will use them, even if it doesn’t need to.

Nesting is at most three levels: module, class, and method.

The only way to optimize fixture usage is to create modules and classes with common
fixture requirements for all the tests in them.

No parametrization is supported at the fixture level. You can still use parametrized tests,
but xUnit fixtures cannot be parametrized.

There are enough limitations of xUnit fixtures that I strongly encourage you to forget you even
saw this appendix and stick with normal pytest fixtures.

Copyright © 2017, The Pragmatic Bookshelf.

(234)



You May Be Interested In…
Select a cover for more information

A Common-Sense Guide to Data Structures and Algorithms

If you last saw algorithms in a university course or at a job interview, you’re missing out on what
they can do for your code. Learn different sorting and searching techniques, and when to use
each. Find out how to use recursion effectively. Discover structures for specialized applications,
such as trees and graphs. Use Big O notation to decide which algorithms are best for your
production environment. Beginners will learn how to use these techniques from the start, and
experienced developers will rediscover approaches they may have forgotten.

Jay Wengrow

(218 pages) ISBN: 9781680502442 $45.95

Design It!

Don’t engineer by coincidence—design it like you mean it! Grounded by fundamentals and filled
with practical design methods, this is the perfect introduction to software architecture for
programmers who are ready to grow their design skills. Ask the right stakeholders the right
questions, explore design options, share your design decisions, and facilitate collaborative
workshops that are fast, effective, and fun. Become a better programmer, leader, and designer.
Use your new skills to lead your team in implementing software with the right capabilities—and

(235)

http://pragmaticprogrammer.com/titles/jwdsal
http://pragmaticprogrammer.com/titles/mkdsa


develop awesome software!

Michael Keeling

(350 pages) ISBN: 9781680502091 $42.50

Data Science Essentials in Python

Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-
organized dataset with this quick reference for the busy data scientist. Understand text mining,
machine learning, and network analysis; process numeric data with the NumPy and Pandas
modules; describe and analyze data using statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-stop solution covers the essential data science
you need in Python.

Dmitry Zinoviev

(224 pages) ISBN: 9781680501841 $29

Practical Programming (2nd edition)

This book is for anyone who wants to understand computer programming. You’ll learn to
program in a language that’s used in millions of smartphones, tablets, and PCs. You’ll code
along with the book, writing programs to solve real-world problems as you learn the
fundamentals of programming using Python 3. You’ll learn about design, algorithms, testing, and
debugging, and come away with all the tools you need to produce quality code. In this second
edition, we’ve updated almost all the material, incorporating the lessons we’ve learned over the
past five years of teaching Python to people new to programming.

(236)

http://pragmaticprogrammer.com/titles/dzpyds
http://pragmaticprogrammer.com/titles/gwpy2


Paul Gries, Jennifer Campbell, Jason Montojo

(400 pages) ISBN: 9781937785451 $38

Explore It!

Uncover surprises, risks, and potentially serious bugs with exploratory testing. Rather than
designing all tests in advance, explorers design and execute small, rapid experiments, using what
they learned from the last little experiment to inform the next. Learn essential skills of a master
explorer, including how to analyze software to discover key points of vulnerability, how to
design experiments on the fly, how to hone your observation skills, and how to focus your
efforts.

Elisabeth Hendrickson

(186 pages) ISBN: 9781937785024 $29

The Way of the Web Tester

This book is for everyone who needs to test the web. As a tester, you’ll automate your tests. As a
developer, you’ll build more robust solutions. And as a team, you’ll gain a vocabulary and a
means to coordinate how to write and organize automated tests for the web. Follow the testing
pyramid and level up your skills in user interface testing, integration testing, and unit testing.
Your new skills will free you up to do other, more important things while letting the computer do
the one thing it’s really good at: quickly running thousands of repetitive tasks.

Jonathan Rasmusson

(237)

http://pragmaticprogrammer.com/titles/ehxta
http://pragmaticprogrammer.com/titles/jrtest


(256 pages) ISBN: 9781680501834 $29

Your Code as a Crime Scene

Jack the Ripper and legacy codebases have more in common than you’d think. Inspired by
forensic psychology methods, this book teaches you strategies to predict the future of your
codebase, assess refactoring direction, and understand how your team influences the design.
With its unique blend of forensic psychology and code analysis, this book arms you with the
strategies you need, no matter what programming language you use.

Adam Tornhill

(218 pages) ISBN: 9781680500387 $36

The Nature of Software Development

You need to get value from your software project. You need it “free, now, and perfect.” We can’t
get you there, but we can help you get to “cheaper, sooner, and better.” This book leads you from
the desire for value down to the specific activities that help good Agile projects deliver better
software sooner, and at a lower cost. Using simple sketches and a few words, the author invites
you to follow his path of learning and understanding from a half century of software
development and from his engagement with Agile methods from their very beginning.

Ron Jeffries

(176 pages) ISBN: 9781941222379 $24

(238)

http://pragmaticprogrammer.com/titles/atcrime
http://pragmaticprogrammer.com/titles/rjnsd


Exercises for Programmers

When you write software, you need to be at the top of your game. Great programmers practice to
keep their skills sharp. Get sharp and stay sharp with more than fifty practice exercises rooted in
real-world scenarios. If you’re a new programmer, these challenges will help you learn what you
need to break into the field, and if you’re a seasoned pro, you can use these exercises to learn that
hot new language for your next gig.

Brian P. Hogan

(118 pages) ISBN: 9781680501223 $24

Creating Great Teams

People are happiest and most productive if they can choose what they work on and who they
work with. Self-selecting teams give people that choice. Build well-designed and efficient teams
to get the most out of your organization, with step-by-step instructions on how to set up teams
quickly and efficiently. You’ll create a process that works for you, whether you need to form
teams from scratch, improve the design of existing teams, or are on the verge of a big team re-
shuffle.

Sandy Mamoli and David Mole

(102 pages) ISBN: 9781680501285 $17

Mazes for Programmers

(239)

http://pragmaticprogrammer.com/titles/bhwb
http://pragmaticprogrammer.com/titles/mmteams


A book on mazes? Seriously? Yes! Not because you spend your day creating mazes, or because
you particularly like solving mazes. But because it’s fun. Remember when programming used to
be fun? This book takes you back to those days when you were starting to program, and you
wanted to make your code do things, draw things, and solve puzzles. It’s fun because it lets you
explore and grow your code, and reminds you how it feels to just think. Sometimes it feels like
you live your life in a maze of twisty little passages, all alike. Now you can code your way out.

Jamis Buck

(286 pages) ISBN: 9781680500554 $38

Good Math

Mathematics is beautiful—and it can be fun and exciting as well as practical. Good Math is your
guide to some of the most intriguing topics from two thousand years of mathematics: from
Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group
symmetry, and mechanical computation. If you’ve ever wondered what lay beyond the proofs
you struggled to complete in high school geometry, or what limits the capabilities of the
computer on your desk, this is the book for you.

Mark C. Chu-Carroll

(282 pages) ISBN: 9781937785338 $34

(240)

http://pragmaticprogrammer.com/titles/jbmaze
http://pragmaticprogrammer.com/titles/mcmath

	How This Book Is Organized
	Chapter 1Getting Started with pytest
	Chapter 2Writing Test Functions
	Chapter 3pytest Fixtures
	Chapter 4Builtin Fixtures
	Chapter 5Plugins
	Chapter 6Configuration
	Chapter 7Using pytest with Other Tools
	mock: Swapping Out Part of the System
	www.ebookcenter.ir,  phone:  66403879  مرکز کتب ديجيتال



