
e imple-
rk: our

with
r gives
ective
nting
y the

to more
ut they
the do-
in the
m at-

te mo-
ts pro-
t win-
uage,
odels
allest
xperi-
Programming as an Experience:

The Inspiration for Self

Randall B. Smith and David Ungar

Sun Microsystems Laboratories
2550 Casey, Ave. MS MTV29-116
Mountain View, CA 94043, USA

randall.smith@sun.com david.ungar@sun.com

Abstract. The Self system attempts to integrate intellectual and non-intellectual aspects of programming
to create an overall experience. The language semantics, user interface, and implementation each help
create this integrated experience. The language semantics embed the programmer in a uniform world of
simple objects that can be modified without appealing to definitions of abstractions. In a similar way, the
graphical interface puts the user into a uniform world of tangible objects that can be directly manipulated
and changed without switching modes. The implementation strives to support the world-of-objects illu-
sion by minimizing perceptible pauses and by providing true source-level semantics without sacrificing
performance. As a side benefit, it encourages factoring. Although we see areas that fall short of the vision,
on the whole, the language, interface, and implementation conspire so that the Self programmer lives and
acts in a consistent and malleable world of objects.

1 Introduction

During the last decade, over a dozen papers published about Self have described the semantics, th
mentation, and the user interface. But they have not completely articulated an important part of the wo
shared vision of what programming should be. This vision focuses on the overall experience of working
a programming system, and is perhaps as much a feeling thing as it is an intellectual thing. This pape
us a chance to talk about this underlying inspiration, to review the project, and to make a few self-refl
comments about what we might have done differently. Although the authors have the luxury of comme
from an overview perspective, the reader should keep in mind that the this work is the result of efforts b
many individuals who have worked in the Self project over the years.

1.1 Motivation

Programmers are human beings, embedded in a world of sensory experience, acting and responding
than just rational thought. Of course to be effective, programmers need logical language semantics, b
also need things like confidence, comfort, and satisfaction — aspects of experience which are beyond
main of pure logic. These concerns have traditionally been addressed separately by putting the logic
language and providing for the rest of experience with the programming environment. The Self syste
tempts to integrate the intellectual and experiential sides of programming.

In our vision, the Self programmer lives and acts in a consistent and malleable world, from the concre
tor-sensory, to the abstract, intellectual levels. At the lowest, motor-sensory level of experience, objec
vide the foundation for natural interaction. Consequently, every visual element in Self, from the larges
dow to the smallest triangle is a directly manipulable object. At the higher, semantic levels of the lang
there are many possible computational models: in order to harmonize with the sensory level, Self m
computation exclusively in terms of objects. Thus, every piece of Self data, from the largest file to the sm
number is a directly manipulable object. And, in order to ensure that these objects could be directly e



y graph-
er to a
men-

ed pro-

tation.
eing

iving
tation at

ming
plete

value.
erisk to
ith

arched,

bility
f Self
enced and manipulated, we devised a model based on “prototypes.” Just as a button can be added to an
ical object, so can a method be added to any individual object in the language, without needing to ref
class. This prototype model and the use of objects for everything requires a radically new kind of imple
tation. In Self, implementation, interface, and language were designed to work together to create a unifi
gramming experience.

In the following sections we in turn review the language semantics, the user interface, and the implemen
In each section we will try to point out where we think we succeeded and where we think we failed in b
true to the vision.

2 Language Semantics

Self was initially designed by the authors at Xerox PARC [US87]. We employed a minimalist strategy, str
to distill an essence of object and message. Self has evolved over the years in design and implemen
Stanford University and most recently at Sun Microsystems Laboratories. A user interface and program
environment built in Self are part of the system: Self today is a fairly large system, and includes a com
programming environment and user interface framework.

A computation in Self consists solely of objects which in turn consist of slots. A slot has a name and a
Slot names are always strings, but slot values can be any Self object. A slot can be marked with an ast
show that it designates aparent. Figure 1 illustrates a Self object representing a two-dimensional point w
x andy slots, a parent slot calledmyParent, and two special assignment slots,x: andy:, that are used to assign
to thex andy slots. The object’s parent has a single slot calledprint (containing a method object).

When sending a message, if no slot name matches within the receiving object, its parent’s slots are se
and then slots in the parent’s parent, and so on. Thus our point object can respond to the messagesx, y, x:, y:,
andmyParent, plus the messageprint , because itinherits theprint slot from its parent. In Self, any object
can potentially be a parent for any number of children, or it can be a child of any object. This uniform a
of any object to participate in any role of inheritance contributes to the consistency and malleability o
and, we hope, contributes to the programmer’s comfort, confidence, and satisfaction.

myParent*

x

y

print ...

...

x:

y:

<-

<-

Figure 1. A Self point has x and y slots, with x: and y: slots con-
taining the assignment primitive for changing x and y. The slot
myParent carries a “parent” denotation (shown as an asterisk).
Parent slots are an inheritance link, indicating how message
lookup continues beyond the object’s slots. For example, this
point object will respond to a print message, because it inherits
a print slot from the parent.



s a
merely
a slot

ation
t used.
carbon-
nly the

] does
; it is
when
sual.

e
or level
d; we
it. We
ssign-
ntainer-
ontainer

ming
unifies
differ-
a point

run
with

istinc-
cheme
in and

avior. In
the dis-

in that
bjects
imitive
psu-
t mir-
t or the
ould

ould it

taining

for
In addition to slots, a Self object can include code. Such objects are calledmethods; since they do what meth-
ods in other languages do. For example, the object in theprint slot above includes code and thus serves a
method. However in Self, any object can be regarded as a method; a “data” object contains code that
returns itself. This viewpoint serves to unify computation with data access: when an object is found in
as a result of a message send it isrun; data returns itself, while a method invokes its code. Thus when theprint
message is sent to our point object, the code in the print slot’s method will run immediately. This unific
reinforces the interpretation that the experience of the client matters, not the inner details of the objec
For example, some soda machines dispense pre-mixed soda, while others dynamically mix syrup and
ated water on demand. The user does not care to become involved in the distinction, what matters is o
end product, be it soda or the result of a computation.

Of course Self is not the only language that unifies access and computation. For example Beta [MMN93
too. From a traditional computer science viewpoint, this unification serves to provide data abstraction
impossible to tell, even from within an abstraction, whether some value is stored or computed. However
designing Self we also sought to unify assignment and computation; this unification is slightly more unu
Assignment in Self is performed with assignment slots, such asx: andy:, which contain a special method
(symbolized by the arrow), that takes an argument (in addition to the receiver) and stuffs it in either thx or
y slot. This desire for access/assignment symmetry can be interpreted as arising from the sensory-mot
of experience. From the time we are children, experience and manipulation are inextricably intertwine
best experience an object when we can touch it, pick it up, turn it over, push its buttons, or even taste
believe that the notion of a container is a fundamental intuition that humans share and that by unifying a
ment and computation in the same way as access and computation, Self allows abstraction over co
hood; since all containers are inspected or filled by sending messages; any object may pretend to be a c
while employing a different implementation.

A contrast between Self and Beta may illustrate the role that our concern for a particular kind of program
experience played in the language design. In Beta, data takes two forms: values and references. Beta
accessing values with computation and also unifies assignment of values with computation, but uses a
ent syntax for accessing or changing references. For example, a data attribute containing a reference to
would be accessed by sayingpt[]-> but a method in the receiver returning a reference to a point would be
by pt->. Giving the programmer two forms of data can be seen as giving the programmer more tools
which to work. More tools can of course be a good thing, but since in our opinion, the value/reference d
tion does not really exist at the sensory-motor level of experience, we chose a slightly less elaborate s
with a single kind of data structuring mechanism. We also believe there are advantages to uniformity
of itself.

The design of slots in Self has proven to be challenging because of the unified access to state and beh
Self the same message can be sent to either read a data slot or run a method in the slot. Where should
tinction be maintained? We have taken the position that method objects are fundamentally different,
they run non-trivial code whereas data objects just return themselves. Still, this behavior of method o
means that they cannot be directly manipulated because they would run. So we have had to invent pr
objects calledmirrors as a way of indirectly mentioning methods. Mirrors can be better justified as enca
lators of reflective operations and as relieving each object of the burden of inheriting such behavior. Bu
rors can hamper uniformity; it is sometimes unclear whether a method should take a mirror as argumen
object itself. Another approach to unifying invocation and access would be to add a bit to a slot that w
record whether or not the slot was a method or data slot. This approach has its own problems: what w
mean to put 17 into a method slot? In our opinion, this issue is not fully resolved.

The treatment of assignment slots in Self is also a bit troublesome. A Self assignment slot is a slot con
a special primitive (the same one for all assignment slots), which uses thename of the slot(very odd) to find
a corresponding data slotin the same object(also odd). This treatment leads to all sorts of special rules,



e code
of a
nguage
t object

n Self,
ogram-
e all the
fining

orm
ntation

no spe-
imple-

block
lf, such

itional

ptions
these
rpreted,
y for
float,

iscov-
For ex-
faster

more

re con-
bout its
ciently.
m dec-
d type
instance it is illegal to have an object contain an assignment slot without a corresponding data slot, so th
that removes slots is riddled with extra checks. Also, this treatment fails to capture the intuitive notion
container. Other prototype-based languages address this issue by having a slot-pair be an entity in the la
and casting an assignable slot as such a slot pair. Another alternative might be to make the assignmen
have a slot identifying its target, so that in principle any slot could assign to any other.

Messages can have extra arguments in addition to the receiver. For example,3 + 4sends the message+ to the
object3, with 4 as argument. In contrast to many other object-oriented languages numbers are objects i
just as in Smalltalk. Because languages like Smalltalk or Self do arithmetic by sending messages, pr
mers are free to add new numeric data types to the language, and the new types can inherit and reus
existing numeric code. Adding complex numbers or matrices to the system is straightforward: after de
a+ slot for matrices, the user could have the matrix freely inherit from some slot with code that sends+. Code
that sends+ would then work for matrices as well as for integers. Self’s juxtaposition of a simple and unif
language (objects for numbers and messages for arithmetic in this case) with a sophisticated impleme
permits the programmer to inhabit a more consistent and malleable computational universe.

There is more to be said about the language: new Self objects are made simply by copying—there are
cial class objects for instantiation (see the later section entitled Prototypes and Classes). The current
mentation allows multiple inheritance, which requires a strategy for dealing with multiple parents. It has
closure objects, and threads. (A few constructs that would be somewhat obscure in a language like Se
as methods contained in the local slots of methods, are not yet supported by the implementation.)

2.1 Discussion

Our desire to provide a certain kind of programming experience has colored Self’s stance on some trad
issues:

Type Declarations.In order to understand the design of the Self language it helps to examine the assum
that underlie language design. In the beginning, there were FORTRAN, ALGOL and Lisp. In all three of
languages the programmer only has to say what is necessary to execute programs. Since Lisp was inte
no type information was supplied at all. Since ALGOL and FORTRAN were compiled, it was necessar
programmers to specify primitive type information, such as whether a variable contained an integer or a
in order for the compiler to generate the correct instructions. As compiled languages evolved, it was d
ered that by adding more static declarations, the compiler could sometimes create more efficient code.
ample, in PL/I procedures had to be explicitly declared to be recursive, so that the compiler could use a
procedure prologue for the non-recursive ones.

Programmers noticed that this static declarative information could be of great value in making a program
understandable. Until then, the main benefit of declarations had been to the compiler, but with Simula1 and
PASCAL a movement was born; using declarations both to benefit human readers and compilers.

In our opinion, this trend has been a mixed blessing, especially where object-oriented languages a
cerned. The problem is that the information a human needs to understand a program, or to reason a
correctness, is not necessarily the same information that a compiler needs to make a program run effi
But most languages with declarations confuse these two issues, either limiting the efficiency gained fro
larations, or, more frequently hindering code reuse to such an extent that algorithms get duplicated an
systems subverted.

1 SimulaTM is a trademark of a.s. Simula



y are
r might
o the

age,
plexity

oper in-
ment.
the in-

fea-
me ex-
or Self
es into

olution
ethod-
ed

le al-
nt for a
be part
annot

Self’s
wer-

, if he
Self therefore distinguishes between concrete and abstract types. Concrete types (embodied bymaps) are
completely hidden from the Self programmer. Maps are only visible to the implementation, where the
used as an efficiency mechanism. Abstract types on the other hand are notions that the programme
think about. Self has no particular type manifestation in the language: declarative information is left t
environment. For example, one language level notion of abstract type, theclone family, is used in the work of
Agesen et. al. [APS93] in their Self type inference work. There is no clone family object in the Self langu
but such objects can be created and used by the programming environment. In order to structure com
and provide the freest environment possible, we have layered the design so that the Self language pr
cludes only information needed to execute the program, leaving declarative information to the environ
This design keeps the language small, simplifies the pedagogy, and allows users to potentially extend
tensional domain of discourse.

Minimalism. Why have we tried to keep the Self language minimal? It is always tempting to add a new
ture that handles some example better. Although the feature had made it possible to directly handle so
amples, the burden it imposed in all reasoning about programs was just too much. We abandoned it f
3.0. Although adding features seems good, every new concept burdens every programmer who com
contact with the language.

We have learned the hard way that smaller is better and that examples can be deceptive. Early in the ev
of Self we made three mistakes: prioritized multiple inheritance, the sender-path tie-breaker rule, and m
holder-based privacy semantics.1 Each was motivated by a compelling example [CUCH91]. We prioritiz

multiple parent slots in order to support a mix-in style of programming. The sender-path tie-breaker ru
lows two disjoint objects to be used as parents, for example a rectangle parent and a tree node pare
VLSI cell object. The method-holder-based privacy semantics allowed objects with the same parents to
of the same encapsulation domain, thereby supporting binary operations in a way that Smalltalk c
[CUCH91].

But each feature also caused us no end of confusion. The prioritization of multiple parents implied that
“resend” (call-next-method) lookup had to be prepared to backup down parent links in order to follow lo

1 In all fairness, the first author was across the Atlantic at the time and had nothing to do with it. On the other hand
had not wandered off maybe these mistakes could have been avoided.

More examples with direct solutions

more fe
atures

Figure 2. As more features are embedded in the language, the programmer
gets to do more things immediately. But complexity grows with each feature:
how the fundamental language elements interact with each other must be de-
fined, so complexity growth can be combinatorial. Such complexity makes the
basic language harder to learn, and can make it harder to use by forcing the
programmer to make a choice among implementation options, a choice which
may have to be revisited later.

Greater learning time

More policy decisions
to make and revisit



expe-
ount of
e clear

good
ome-

gner’s

nd mal-
is re-

truction
sisten-
el that it

ogram

ypes.
ent of
i93a],
ich an
s-based
) debate.

sent in
e it de-
rticular
aring
so pro-
hich

ces of a
totype
n-

tire hi-
-based
in Self
the en-
flex-
level

iting
n.

ability

copied.
ifferent
priority paths. The resultant semantics took five pages to write down, but we persevered. After a year’s
rience with the features, we found that each of the members of the Self group had wasted no small am
time chasing “compiler bugs” that were merely unforeseen consequences of these features. It becam
that the language had strayed from its original path.

We now believe that when features, rules, or elaborations are motivated by particular examples, it is a
bet that their addition will be a mistake. The second author once coined the term “architect’s trap” for s
thing similar in the field of computer architecture; this phenomenon might be called “the language desi
trap.”

If examples cannot be trusted, what do we think should motivate the language designer? Consistency a
leability. When there is only one way of doing things, it is easier to modify and reuse code. When code
used, programs are easier to change and most importantly, shrink. When a program shrinks its cons
and maintenance requires fewer people which allows for more opportunities for reuse to be found. Con
cy leads to reuse, reuse leads to conciseness, conciseness leads to understanding. That is why we fe
is hard to justify any type system that impedes reusability; the resultant duplication leads to a bigger pr
that is then harder to understand and to get right. Such type systems can be self-defeating.1

Prototypes and Classes.There are now several fairly mature object-oriented languages based on protot
(For overviews see [Blas94], [DMC92], and [SLS94].) These languages differ somewhat in their treatm
semantic issues like privacy, copying, and the role of inheritance. (One notable system, Kevo [Ta
[Tai92], [Tai93] does not have delegation or inheritance at all.) All these languages have a model in wh
object is in a important sense self-contained. Prototypes are often presented as an alternative to clas
language designs, so the subject of prototypes vs. classes can serve as point of (usually good natured

However, depending on how one defines “class,” one may or may not think that classes are already pre
a prototype based system. Some (e.g. [Blas94]) see a Self prototype as playing the role of class, sinc
termines the structure of its copies. Others note that much of the current Self system is organized in a pa
way, using what we call “traits” objects in many places to provide common state and behavior for sh
among children. Such sharing is reminiscent of that provided by a class. However, classes normally al
vide the description of an instance’s implementation, and a “new” method for instantiation, neither of w
are found in a traits object.

In a class-based system, any change (such as a new instance variable) to a class will affect new instan
subclass. In Self, a change to a prototype (such as a new slot) will not affect anything other than the pro
itself (and its subsequent direct copies).2 So we have implemented a “copy-down” mechanism in the enviro
ment to share implementation information. It allows the programmer to add and remove slots to an en
erarchy of prototypes in a single operation. Functionality that is provided at the language level in class
systems has risen to the programming environment level in Self. In general, the simple object model
means that some functionality omitted from the language may go back into the environment. Because
vironment is built out of Self objects, the copy-down policy can be changed by the programmer. But such
ibility comes with a price. Now, there are two interfaces for adding slots to objects, the simple language
and the copying-down Self-object level. This loss of uniformity could be a source of confusion when wr
a program that needs to add slots to objects. Only time will tell if the flexibility is worth the complicatio

1 However, by emphasizing the ability to express intuitive relationships, such as covariant specialization, over the
to do all checking statically, it is possible to do a better job. See [MMM90].

2 Self prototypes are not really special objects, they are distinguished only by the fact that, by convention, they are
Any copy of the prototype would serve as a prototype equally well. Some other prototype-based systems take a d
approach.



ype-
nviron-
in the
appear
elf ob-
orks
rictions
mizes,

ition of
ily that
t did
his case
d out of
nguag-

ly, it is
other
any of
cannot
A brief examination of the emulation of classes in Self will serve to illuminate both the nature of a protot
based object model and the trade-off between implementing concepts in the language versus in the e
ment. In order to make a Self shared parent look more like a class, one could create a “new” method
shared parent. This method could make a copy of some internal reference to a prototype, and so would
to be an instantiation device. Figure 3 suggests how one might start to make a Smalltalk class out of S
jects. Mario Wolczko has built a more complete implementation of this, and has shown [Wol95] that it w
quite well: he can read in Smalltalk source code and execute it as a Self program. There are certain rest
on the Smalltalk source, but thanks to Self’s implementation technology, once the code adaptively opti
the Self version of Smalltalk code will generally run faster than the Smalltalk version.

Do prototype-based systems like Self have classes? The answer would seem to be that if your defin
class is not satisfied by the existing language elements, you can probably build something quite eas
would make you happy. (It would be difficult to do this kind of trick in a prototype-based language tha
not have an inheritance mechanism.) Of course, almost any language can emulate any other, but in t
the classes are built directly out of the prototype-based objects so directly that the classes constructe
Self objects run faster that those built-in to Smalltalk. General meta-object issues in prototype-based la
es are tackled by the Moostrap system [Mul95].

The use of traits might be seen as a carryover from the Self group’s Smalltalk experience. Interesting
likely that our old habits might not have done Self justice (as observed in [DMC92].) There are many
ways to organize Self objects other than by prototypes inheriting from a chain of traits parents, and m
these ways avoid a problem with the traits organization: a traits object appears to be an object but in fact

parent*

class

instVar1

instVar2

superclass

classVariables*

instVarNames

methodDictionary

new

parent1*

parent2*

method1

method2

proto

^ proto copy

instances

class

parent*

class

instVar1

instVar2

Figure 3. This figure suggests how Self objects might be composed to form
Smalltalk-like class structures as demonstrated more completely by Wolczko
[Wol95]]. He shows that, with some caveats, Smalltalk code can be read into
a Self system, parsed into Self objects, then executed with significant perfor-
mance benefits, thanks to the Self’s dynamically optimizing virtual machine.

instantiation
method

classVar1

classVar2



respond
bably
lan-

e effects
e par-
niform
rogram-

t some
urrent
iples
w

ing ap-

g es-
typ-

o make
rovide

are no
nteed

ents

sub-
ical of
rovide
feel
ed to

faces
ace by
hown
e first
rph hi-
ange the
yout

nd can
hysically
gible
respond to most of its messages. For example the point traits object lacks x and y slots and so cannot
to printString, since its printString slot contains a method intended to be shared by point objects. We pro
would have done better to put more effort into exploring other organizations. When investigating a new
guage, your old habits can lead you astray.

3 The User Interface and Programming Environment

Self is an unusually pure object-oriented language, because it uses objects and messages to achieve th
of flow control, variable scoping, and primitive data types. This maniacal devotion to the object-messag
adigm is intended to match a devotion to a user interface based on concrete, direct manipulation of u
graphical objects. By matching the language to the user interface, we hope to create an experience of p
ming that can be learned more easily, and can be performed with less cognitive overhead.

The notion of direct manipulation has been around for many years now, and it is interesting to note tha
of the earlier prototype-based systems were visual programming environments [BD81], [Smi87]. The c
Self user interface [SMU95], [MS95] enhances the sense of direct manipulation by employing two princ
we callstructural reification, andlive editing. We will define these principles, and show with an example ho
the interface brings the feeling of direct object experience to the task of creating objects and assembl
plications.

3.1 Structural reification

The fundamental kind of display object in Self is called a “morph,” a term borrowed from Greek meanin
sentially “thing.” Self provides a hierarchy of morphs. The root of the hierarchy is embodied in the proto
ical morph, which appears as a kind of golden colored rectangle. Other object systems might choose t
the root of the graphical hierarchy an abstract class with no instances. But prototype systems usually p
generic examples of abstractions. This is an important part of the structural reification principle: there
invisible display objects. Any descendant of the root morph (or any other morph for that matter) is guara
to be a fully functional graphical entity. It will inherit methods for displaying and responding to input ev
that enable it to be directly manipulated.

In keeping with the principle of structural reification, any morph can have “submorphs” attached to it. A
morphs acts as though it is glued to the surface of its hosting morph. Composite graphical structure typ
direct manipulation interfaces arises through the morph-submorph hierarchy. Again, many systems p
compositing with special “group” objects which are normally invisible. But because we want things to
very solid and direct, we chose to follow a simple metaphor of sticking morphs together as though glu
each other.

A final part of structural reification arises from the approach to submorph layout. Graphical user inter
often require that subparts be lined up in a column or row. Self’s graphical elements are organized in sp
“layout” objects that force their submorphs to line up as rows or columns. John Maloney [MS95] has s
how to create efficient “row and column morphs” as children of the generic morph. These objects ar
class, tangible elements in the interface. They embody their layout policy as visible parts of the submo
erarchy, so the user need only be able to access the submorphs in a structure in order to inspect or ch
layout in some way. A possible price of this uniformity is paid by a user who does not wish to see the la
mechanism, but is confronted with it anyway.

An example in section 3.3 will illustrate how structural reification assures that any morph can be seen a
be grabbed, moved and inspected, and assures that graphical composition and layout constraints are p
present in the interface. Structural reification is an important part of making programming feel more tan
and direct.



e sys-
elieve
Self’s

orph.
dit the
morph
oint on

ove
rs are
vesti-

n ob-
erac-

orphs
t wait!

is al-
tingly
ecome
menu

rface.
wing
feel-

e func-
hich
ct “out-
-level

abeled
iddle-
g atoms
gone

r selects
sition.
3.2 Live Editing

Live editing simply means that at any time, an object can be directly changed by the user. Any interactiv
tem that allows arbitrary runtime changes to its objects has a degree of support for live editing. But we b
Self provides an unusually direct interface to such live changes. The key to live editing is provided by
“meta menu,” a menu that can pop up when the user holds the third mouse button while pointing to a m
The meta menu contains items such as “resize,” dismiss,” and “change color” which allow the user to e
object directly. There are also menu elements that enable the user to “embed” the morph into the sub
structure of a morph behind it, and menu elements that give access to the submorph hierarchy at any p
the screen.

The “outliner” menu item creates a language-level view of the morph under the mouse1. This view shows all
of the slots in an object, and provides a full set of editing functionality. With an outliner you can add or rem
slots, rename them, or edit their contents. Code for a method in a slot can be textually edited: outline
important tools for programmers. Access to the outliner through the meta menu makes it possible to in
gate the language-level object behind any graphical object on the screen.

The outliner supports the live editing principle by letting the user manipulate and edit slots, even while a
ject is “in use.” The example below illustrates how a slot can be “carried” from one object to another, int
tively modifying their language level structure.

Popping up the meta menu is the prototypical morph’s response to the third mouse button click. All m
inherit this behavior, even elements of the interface like outliners and pop-up menus themselves. Bu
Pop-up menus are impossible to click on: you find them under your mouse only when a mouse button
ready down. To release the button in preparation for the third button click causes the pop-up to frustra
disappear. Consequently, we provide a “pin down” button, which, when selected, causes the menu to b
a normal, more permanent display object. The mechanism is not new, but providing it in Self enables the
to be interactively pulled apart or otherwise modified by the user or programmer.

Live editing is partly a result of having an interactive system, but is enhanced by features in the user inte
This principle reinforces the feel that the programmer is working directly with concrete objects. The follo
example will clarify how this principle and the structural reification principle help give the programmer a
ing of a working in a uniform world of accessible, tangible objects.

3.3 Example of Direct Application Construction

Suppose the programmer (or motivated user) wishes to expand an ideal gas simulation, extending th
tionality and adding user interface controls. The simulation starts simply as a box containing “atoms” w
are bouncing around inside. Using the third mouse button, the user can invoke the meta menu, and sele
liner” to get the Self-level representation of the object (Figure 4). The outliner enables arbitrary language
changes to the ideal gas simulation.

With the outliner, the user can start to create some controls right away. In the outliner, there are slots l
“start” and “stop.” These slots can be converted into user interface buttons by selecting from the m
mouse-button pop-up menu on the slot (Figure 5). Pressing these buttons starts and stops the bouncin
in the simulation. This is an example of live editing at work: in just a few gestures, the programmer has
through the outliner to create interface elements while the simulation continues to run.

The programmer may wish to create several such buttons, and arrange them in a row. The programme
“row morph” from a palette: when the buttons are embedded into the row, they immediately snap into po

1 Lars Bak designed the outliner framework for Self.



in, the
column

rarchy.
selves

ob-
task by
Once the row of buttons is created, the programmer wishes to align the row below the gas tank. Aga
programmer can create a column frame: when the gas tank and the button row are embedded into the
frame, they line up one below the next (Figure 6)

Figure 6 also illustrates how composite graphical effects are achieved through the morph-submorph hie
The interface employs morphs down to quite a low level. The labels on buttons, for example, are them
first class morphs.

The uniformity of having “morphs all the way down” further reinforces the feel of working with concrete
jects. For example, the user may wish to replace the textual label with an icon. The user can begin this

Figure 4. In a Self window,
the user pops up the meta
menu on the ideal gas sim-
ulation (a). Selecting “out-
liner” gives the Self-level
representation to the user,
which can be carried and
placed as needed (b). (The
italic items at the bottom of
the outliner represent slot
categories that may be ex-
panded to view the slots.
Unlike slots, categories
have no language level se-
mantics and are essential-
ly a user interface conve-
nience.)

(a)

(b)

Figure 5. Composite graphical effects are achieved by embedding: any kind of
morph can be embedded in any other kind of morph. The ideal gas simulation
at left is a compound morph whose embedding relationships are shown at right.



llows
he user
atoms
ral re-
pointing to the label and invoking the meta menu. There is a menu item labeled “submorphs” which a
the user to select which morph in the collection under the mouse he wishes to denote (see Figure 7). T
can remove the label directly from the button’s surface. In a similar way, the user can select one of the
in the gas tank and duplicate it. The new atom will serve as the icon replacing the textual label. Structu
ification is at play here, making display objects accessible for direct and immediate modification.

Figure 6. The middle mouse button pop up menu on the “stop” slot (a) enables the
user to create a button for immediate use in the user interface (b). This button will be
embedded in a row morph, so that it lines up horizontally.

(a)

(b)



1

Figure 7. The user wishes to
remove the label from the
surface of a button. In this
series of operations, the
user starts by pointing to the
label, selects “submorphs”
from the meta menu, and se-
lects the label from the re-
sulting menu list. A menu of
options is presented, from
which the user selects “yank
it out”. The button, which
wraps tightly around its sub-
morphs, shrinks down to a
minimum size when it has no
submorphs.

2

3

4

5



vailable
by the
n” the
hen be

ergy
am-
energy
mmer
s. Of
move
As mentioned above, all the elements of the interface such as pop-up menus and dialogue boxes are a
for reuse. As an example, the programmer may want the gas tank in the simulation to be “resizable”
simulation user. The programmer can create a resize button for the gas tank simply by “pinning dow
meta menu and removing the resize button from the menu, as illustrated in Figure 8. This button can t
embedded into the row of controls along with the other buttons.

Figure 9 illustrates how the programmer can modify the behavior of an individual atom to reveal its en
based upon color. A morph has a slot called “rawColor” that normally contains a “paint” object: in this ex
ple the programmer replaces that object with a method, so that the paint will be computed based upon
level. When the change is accepted, the modified slot immediately takes effect. In Figure 10, the progra
is shown copying the slot into the atom’s parent object, so that it can be widely shared with other atom
all atoms have a rawColor slot that overrides this slot in the parent. The programmer might at this point re
the rawColor slot from the prototypical atom, so that all new atoms will have this energy-based color.

Figure 8. The environment itself is available for reuse. Here the user has created
the menu of operations for the gas tank, which is now a submorph of the surrounding
frame. He has “pinned down” this menu, by pressing the button at the top of the
menu. He can then take the menu apart into constituent buttons: here the is gets the
resize button which is then incorporated into the simulation.

1

2

3



Figure 9. The user has selected one atom on which to experiment. The user
changes the “rawColor” slot from a computed to a stored value by editing direct-
ly in the atom’s outliner.

Figure 10. The user copies the modified rawColor slot as a first step in getting
the computed method of coloring more widely shared. Because slots can be
moved about readily, restructuring changes are relatively light weight, enhancing
the sense of flexibility.



ontrols
ked a

s no
g prin-
. Struc-

orld
t inter-

that we
splay
would
r on

t a time
utliner

the ob-
s, the

l dichot-
at the

trinsic
nswer,
Figure 11 shows the completed application. All the atoms now reveal their energy as they move, and c
for running the simulation appear in a row across the bottom of the object. The programmer has invo
meta-menu item “move to own window” that wraps the application in its own window-system frame.

It is important to note that during this whole process, the simulation could be left running — there wa
fundamental need to enter an “edit” mode, or even stop the atoms from bouncing around. The live editin
ciple makes the system feel responsive, and is reminiscent of the physical world’s concrete presence
tural reification means that the parts of the interface are visible and accessible for direct modification.

3.4 Issues

While the principles of live editing and structural reification help create the sense of working within a w
of tangible malleable objects, we could imagine going further. Here we discuss some of the things tha
fere with full realization of our goals.

Multiple views: The very existence of the outliner as a separate view weakens the sense of directness
are after. After all, when I want to add a slot to one of the simulated atoms, I must work on a different di
object, the atom’s outliner. We have never had the courage or time to go after some of the wild ideas that
enable unification of any morph with its outliner. Ironically, Self’s first interface, Seity, probably did bette
this issue [Cha95], [CUS95].

Self’s programming environment enforces the constraint that there only be one outliner on the screen a
for a given object. If the user asks to see some object when its outliner is already on the screen, the o
will do an animated slide over to the mouse cursor. This constraint encourages identification between
ject and its outliner in the programmer’s mind. But as we mention above, particularly for morph object
identification does not always hold.

Because there is a difference between outliners and the objects they represent, there is a fundamenta
omy in the system that interferes with the direct object experience goal. Is the programmer to believe th
outliner for some list object really is the list? If so, does the list have a graphical appearance as an in
part of itself? Does the list have an intrinsic display location and a color? We have chosen the easy a

Figure 11. The completed application. The user has invoked a color changing
tool that unifies colors across most submorphs, and has invoked the meta menu
item “move to own window.”



. Once
cts on
nd-ins

on. A
see the

sup-
It de-
y itself
ferent

ith ob-
gram-
that

tring
ing like
object

s. Two
s
econd,
ailable
object
ut on
mod-

t: what
ogram a
n is to
tence,
ce the

, seeing
ference

briefly
or
“no.” The object that represents the list to the programmer is not the same as the actual Self list object
we take this easy road, it is fundamentally impossible to always maintain the impression that the obje
the screen actually are the Self objects. Unfortunately, it is often clear that outliners are just display sta
for the real, invisible Self object, buried somewhere in the computer.

Text and object: There is a fundamental clash between the use of text and the use of direct manipulati
word inherently denotes something, an object does not necessarily denote anything. That is, when you
word “cow,” an image comes to mind. It is in fact difficult to avoid the image, that is the way words are
posed to work. They stand for things. However, when you manipulate a pencil, what comes to mind?
pends much more on who you are, what the context is, and so on. In other words, a pencil does not b
denote anything. Consequently, textual notation and object manipulation are fundamentally from two dif
worlds. The pencil and the word denoting pencil are different entities.

Text is used quite a bit in Self, and its denotational character weakens the sense of direct encounter w
jects. For example, many tools in the user interface employ a “printString” to denote an object. The pro
mer working with one of these tools might encounter the text “list (3, 7, 9).” The programmer might know
this denotes an object which could be viewed “directly” with an outliner. But why bother? The textual s
often says all he needs to know. The programmer moves on, satisfied perhaps, yet not particularly feel
he has encountered the list itself. The mind set in a denotational world is different than that in a direct
world, and use of text creates a different kind of experience.

Issues of use and mention in direct manipulation interfaces are discussed further in [SUC92].

3.5 Summary

The Self user interface helps the programmer feel that he or she is directly experiencing tangible object
design principles help achieve this feeling. First,structural reification, assures that the graphical relationship
at play in a particular arrangement of submorphs is manifest directly in display objects on the screen. S
live editingmeans that there is no need for a course grained “edit mode;” rather, objects are always av
for immediate and direct editing. The use of textual names for objects, and the distinction between an
and its representation are two problems that weaken the experience of directly working with objects. B
balance, we feel that the Self user interface successfully presents the illusion of being a world of readily
ified, physically present objects.

4 Implementing Self

The implementation of a language is usually approached from a mathematical, or mechanistic viewpoin
is desired is the creation of a program that interprets programs in another language (be the created pr
compiler or interpreter). On the other hand, we have taken the view that the goal of the implementatio
fool the user into believing in the reality of the language. Even though Self objects have no physical exis
and there is no machine capable of executing Self methods, the implementation must strive to convin
user otherwise. That is why, despite all the tricks, the programmer can always debug at the source level
all variables and single stepping, and can always change any method, even inlined ones, with no inter
from the implementation.

4.1 Transparent Efficiency

The implementation techniques for Self have been presented previously so we will only summarize the
here. (See [Hol94], [HU94a], [HCU92], [HCU91], [Cha92], [CU91], [CU90], [CUL89], and [USCH92] f
more details.)



ignment,
elf user
ything
wn re-
cts, the
mental
eeded
eeded

s, Self
thing,

oked,

ounts
s some
es. In

tion, or
rs can
ogram
pro-

uns 2 to
i-
ple-
t make

mer.
s, but
gh to
oes not
imiza-
Self presented large efficiency challenge because its pure semantics implied that every access, ass
arithmetic operation and control structure had to be performed by sending a message. Worse yet, the S
interface’s uncompromising stance on structural reification placed further demands on efficiency: ever
on the screen down to the smallest triangle is implemented by its own separate object, each with its o
draw and active layout behavior. At the same time, in order to produce the experience of concrete obje
system had to be as responsive as an interpreter. Self’s implementors were confronted with a funda
problem: to be responsive, the compiler could not afford to spend time on the elaborate optimizations n
for the language, no matter how effective they might be. Caught between Scylla and Charybdis, Self n
something completely different. Instead of relying on a single compiler for both speed and clevernes
adopted a hybrid system of two compilers: one fast, the other clever. Instead of always optimizing every
type feedback permits the system to adaptively optimize code without introducing long pauses.

Figure 12 shows an overview of the compilation process of the system. The first time that a method is inv

the virtual machine uses dynamic compilation to create an “instrumented” version of the method that c
its invocations and the types of the receivers at each call site. When the invocation counter crosse
threshold, the optimizing compiler is automatically invoked and is guided by the counters at the call sit
this way, Self feeds type information back to the compiler to adaptively optimize code.

Some language implementations force the programmer to choose between interpretation and compila
between different modes of compilation. Placing this burden of choice upon the programmer’s shoulde
only weaken his confidence in the reality of Self, and force him to consider the difference between the pr
as written and what really runs. Although Self employs two compilers and a myriad of optimizations, the
grammer never chooses nor even knows which have been employed on his code.

Results on two medium-size cross-language benchmarks (Richards and DeltaBlue) suggest that Self r
3 times faster than ParcPlace Smalltalk-801, 2.6 times faster than Sun CommonLisp 4.0™ using full optim
zation, and only 2.3 times slower than optimized C++ [HU94a]. Of course, these Smalltalk and Lisp im
mentations may not include aggressively-optimized compilers, but the C++ language has semantics tha
many more concessions to efficiency over purity, simplicity, and safety.

Most implementations strive for efficiency and employ optimizations that show through to the program
Tail recursion elimination, for example, optimizes methods that iterate by calling themselves at their end
makes it impossible to show a meaningful stack trace. This destruction of information would show throu
the user, who might need to see the missing stack frames in order to debug her program. So, Self d
optimize tail-recursion. Instead, endless loops are built in as a primitive operation. There are other opt
tions left undone in Self, see [Hol94] for a list.

1 Smalltalk-80TM is a trademark of ParcPlace Systems.

unoptimized
code

source
methods

if executed often

if needed for debugging
[HCU92]

is first invoked

Figure 12. Compilation in the Self system (from [HU94b]).

dynamic compilation [DS84] adaptive optimization [HU94b]

when method optimized
code



ser task
by their
) were
the frag-
pila-
Now,
uses.

of the
uld

ses; on a
achine,

result-
w our
e used

itional
at may

unusual
nding
e, and
ropriate

lltalk
ble to
ort-cir-

s pause
4.2 Responsiveness

Many systems impose long or unpredictable pauses upon their users. But, a pause in the middle of a u
such as the addition of a slot to an object could ruin the experience of a consistent world. Such pauses,
very existence, alert users that some mischief is afoot. If the program (be it Self or any other language
the reality, there would be no pauses upon changing it. Since we believe that such pauses can destroy
ile illusion of reality, we have striven to reduce them in the Self implementation. In fact, pauses for com
tion were a serious problem in early versions of Self, and inspired an effort to speed up the compiler.
any method can be changed in a second or two. Our ultimate goal is the elimination of perceptible pa

In [HU94b], Hölzle and Ungar measured the compilation pauses occurring during a 50-minute session
SELF 3.0 user interface1 [Cha95] [CUS95]. Their analysis grouped individual pauses into clusters that wo
be perceived as pauses by the users. The results indicated that there were few intrusive clustered pau
current-generation workstation, only 13 pauses would exceed 0.4 seconds, and on a next-generation m
none would exceed 0.3 seconds (see Figure 13).

Clustering pauses made an order-of-magnitude difference, and reporting individual pauses would have
ed in a distorted, overly optimistic characterization. The idea of pause clustering is one example of ho
vision of providing a particular kind of experience to the programmer affects the standards that must b
to evaluate the system.

4.3 Malleability
By now, it should be clear to the reader that our philosophy of implementation as deception places add
burdens on the implementation, such as avoiding inconsistent behavior or unexplainable pauses. Wh
come as a surprise, though is that a requirement for malleability arises as a logical consequence of this
philosophy. For example, in both Smalltalk and Self, the if-then-else control structure is realized by se
a message “ifTrue:IfFalse:” to a boolean object (two arguments are included, a block to execute for tru
another for false). Each boolean simply implements this message with a message that executes the app
block; true’s ifTrue:IfFalse: method runs the true block and false’s runs the false block. If Self or Sma
objects are real, if they directly and faithfully execute, if the user is in control, then the user should be a
change these methods and observe the results. But in Smalltalk, extra performance is obtained by sh

1 The Self 4.0 user interface described in section 3 places more demands on the implementation and it
behavior is not as good as these measurements suggest.

Figure 13. Compilation pauses (from [HU94b]).

0 0.5 1 1.5 2
1

10

100

1000

nu
m

be
r 

of
 p

au
se

s
ex

ce
ed

in
g 

gi
ve

n 
le

ng
th

pause length (seconds)

SPARCstation-2

"Current" (3x faster)

"Future" (10x faster)



mmer
urities
viding

free.
es into
the pro-
down

toring
vir-
o such

itten in
ssage
mple-

as the
men-
ata ab-
s. We
enefit
on the

its im-

erits
reason.

takes

elf out

s, the
not

opti-
to opti-
ically,
elf’s

iment

d him
cuiting this method in the implementation [GR83] and though he may change the method, the progra
cannot alter its behavior. This failure of malleability cannot help but raise disturbing questions and insec
for the programmer. That is why Self does not short-circuit this or other such methods, even though pro
such malleability without an efficiency loss extracts its cost from the implementation.1

4.4 Encouraging Factoring and Extensible Control
Our non-traditional approach has led to techniques that provide a very traditional benefit: factoring is
Suppose two methods in the same object contain several lines in common. By moving the common lin
a new method and sharing the method in both callers, the programmer can centralize them and make
gram easier to change. Most implementations of object-oriented programming languages would slow
the program with an additional procedure call, providing a strong disincentive to the programmer for fac
small operations. In C++, for example the programmer must either ask explicitly for inlining (and give up
tual semantics) or pay the price of a many-statement overhead. Since Self relies on automatic inlining, n
price is paid. Consequently Self programmers feel much freer to factor programs, and the system is wr
an unusually well-factored style. For example, a do-while loop is implemented with many levels of me
passing before bottoming out in primitives. We believe that the performance characteristics of Self’s i
mentation techniques encourage programmers to write programs that are easier to maintain.

In addition to free factoring, the Self implementation makes user-defined control structures as efficient
built-in ones. Unlike for Smalltalk, there is no disincentive for the programmer to use a block; the imple
tation in most cases can inline it away. Since we believe that control abstraction is necessary for real d
straction, making control abstraction free can help encourage programmers to write better program
strongly believe that in all languages with user-extensible control, such as Smalltalk and Beta, much b
could be realized from adopting implementation techniques that put the user-defined control structures
same footing as the system-defined ones.

4.5 Open Issues

Although the current Self system is in daily use by a number of people, several concerns remain about
plementation.

Overcustomization.The Self compiler creates another copy of a method for each kind of object that inh
it. Sometimes, the method is so trivial that the copies waste code space and compiler time for no good

Memory Footprint. Because enough information is preserved to maintain source-level semantics, Self
more space than other systems. Self 4.0 barely fits in a SPARCstation2 with 32 Mb of real memory. Although
we believe that programming time is more precious than memory cost, this resource requirement puts S
of reach of many current users.

Real-Time Operation.Although much progress has been made in the elimination of perceptible pause
system still feels like it “warms up” when running the Self 4.0 environment. Hard real-time operation is
possible with today’s system.

User Control. Within the Self group, a debate rages over how much control a user should have over the
mization process. On one hand, users want to be able to tell the system how much, where, and when
mize. On the other hand, the effort to add this ability might be better spent doing a better job automat
and giving users this control could distract them from their own tasks and destroy the fragile illusion of S
reality. So far, we have kept the control over optimization entirely within the virtual machine, as an exper
in the philosophy of implementation as deception.

1 In fact, at first the second author thought the cost would be too great. But Craig Chambers’ compiler convince
otherwise.

2 SPARCstationTM is a trademark of SPARC International, licensed exclusively to Sun Microsystems Inc.



rarely
ce over

erating
rld of
ngible

rectly-
reflect
ling ob-
ceived

ded to
ed for
nd opti-

nion,
te these

design-
en cir-
cy are
pect that

bjects

al object

al ob-
equent-
some
ed to
e defi-

for a
he du-

out in
create

tation.
tion. It
ethod,
4.6 Summary
Confidence, comfort, satisfaction—what do these desires imply for implementation techniques? They
show up as topics in compiler papers, yet we believe that these goals have exerted a profound influen
Self’s implementors.

5 Conclusions

The Self language semantics, implementation, and user interface have been guided by the goal of gen
a particular kind of experience for the user of the system. Programmers directly work in a uniform wo
malleable objects in a very immediate and direct fashion. Self moves towards giving objects a kind of ta
reality.

The language helps give rise to this experience by its use of prototypes, which provide a copy-and-di
modify mechanism for changes. Self’s treatment of slots with its symmetry for assignment and access
the deep connection between perception and manipulation at the sensory-motor level, while also enab
jects to reimplement state as behavior and reflecting an intuition about how objects are behaviorally per
in the real world.

Self’s design departs significantly from other object-oriented languages by separating information nee
run the program from information about the programmer’s intentions. It distinguishes abstract types, us
the programmers understanding and reasoning about correctness, from concrete types, used to run a
mize the program. The former is left to the environment, the latter is left to the implementation. In our opi
this approach avoids a number of undesirable consequences that often follow from attempts to integra
two forms of information.

Finally, in designing Self, we have learned one lesson by making mistakes: examples can persuade the
er to include additional features which later turn out to produce incomprehensible behavior in unforese
cumstances. This might be called “the language designer’s trap.” Minimalism, simplicity and consisten
better guides. They benefit every programmer, not just the ones who need advanced features. We sus
many of today’s object-oriented languages could profit by dropping features.

The Self user interface and programming environment provides a direct object experience for creating o
and assembling applications by adhering to two principals:Structure reificationmakes the graphical contain-
ment structure and layout rules themselves appear as graphical objects and assures that any graphic
can be manipulated, displayed, connected to other objects, or customized.Live editingensures that any object
may be changed at any time without halting activities. A simple gesture takes the user from any graphic
ject to its programming-language-level counterpart, just as real-world objects can be taken apart. Cons
ly, programmers need not pore through long object libraries to find out where to start, but can simply find
graphical widget in the environment, like a button in a menu, that is similar to what they want, and proce
dissect, inspect, modify and reassemble it. At no time must they retreat from a concrete object to som
nition of an abstraction.

Two problems in the user interface interfere with achieving our goal. The existence of multiple views
graphical object and its Self-level outliner dilutes the experience and these views should be merged. T
ality between text and object goes deeper and does not readily present a solution.

The consistency and purity of the Self language together with the ubiquitous use of objects and live lay
the interface place enormous demands on the Self implementation, but more interestingly, the desire to
a particular kind of programming experience imposes its own unique requirements on the implemen
Thus, the implementation foregoes optimizations that cannot be hidden such as tail-recursion elimina
also supports full source-level debugging, single stepping, and allows the programmer to change any m



ld alert
paus-
n that

some
and

lowing
price.

create
 of
only
Self

of work
ystems
anks to

h
3.

d
w

ing
n
PLAN

-

er-
even basic ones such as addition and if-then-else, at any time. Since a long pause for compilation wou
the programmer to the existence of a lower level of reality, the implementation works hard to avoid such
es. We view the implementation not as an interpreter of programs, but rather as a creator of the illusio
the Self objects are real.

Along the way Self’s implementation techniques of adaptive recompilation and type-feedback achieve
traditionally-important but rarely achieved goals as well: the elimination of run-time penalty for factoring
for user-defined control structures. A programmer may chop up a method as finely as desired without s
it down, and may introduce new abstractions that combine control and data without paying a run-time
These characteristics encourage the create of programmers that are smaller and more malleable.

When all is said and done though, this paper can only suggest, tease, or maybe hint at what it is like to
with Self. In order to most fully appreciate the experience of interacting with a lively, responsive world
objects, effortlessly diving in to change them and create more, freely mixing data and programs, and 
getting coffee when you are tired instead of when you change your program, you will have to obtain the
4.0 public release and try it out for yourself. May your journey be fruitful.

6 Acknowledgments

The past and present members of the Self group, highly talented individuals each, have made this body
possible. The authors consider themselves fortunate to have known and worked with them. Sun Micros
Laboratories has hosted the project for the past four years, for which we are deeply grateful. Special th
Mario Wolczko and Ole Lehrmann Madsen for comments on the draft.

7 References

[APS93] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach.Type Inference of Self: analysis of Objects wit
Dynamic and Multiple Inheritance, in Proc. ECOOP ‘93, pp. 247-267. Kaiserslautem, Germany, July 199

[Blas94] G. Blaschek.Object-Oriented Programming with Prototypes, Springer-Verlag, New York, Berlin 1994.

[BD81] A. Borning and R. Duisberg,Constraint-Based Tools for Building User Interfaces,ACM Transactions on
Graphics 5(4) pp. 345-374 (October 1981).

[CUL89] Craig Chambers, David Ungar, and Elgin Lee.An Efficient Implementation of Self, a Dynamically-Type
Object-Oriented Language Based on Prototypes. In OOPSLA ’89 Conference Proceedings, pp. 49-70, Ne
Orleans, LA, 1989. Published as SIGPLAN Notices 24(10), October, 1989.

[CU90] Craig Chambers and David Ungar.Iterative Type Analysis and Extended Message Splitting: Optimiz
Dynamically-Typed Object-Oriented Programs.In Proceedings of the SIGPLAN ’90 Conference o
Programming Language Design and Implementation, White Plains, NY, June, 1990. Published as SIG
Notices 25(6), June, 1990.

[CU91] Craig Chambers and David Ungar.Making Pure Object-Oriented Languages Practical.In OOPSLA ’91
Conference Proceedings, pp. 1-15, Phoenix, AZ, October, 1991.

[CUCH91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle,Parents are Shared Parts of Objects: Inher
itance and Encapsulation in Self. Journal of Lisp and Symbolic Computation,4(3), Kluwer Academic
Publishers, June, 1991.

[Cha92] Craig Chambers.The Design and Implementation of the Self Compiler, an Optimizing Compiler for
Object-Oriented Programming Languages.Ph.D. Thesis, Computer Science Department, Stanford Univ
sity, April, 1992.

[CUS95] Bay-Wei Chang, David Ungar, and Randall B. Smith,Getting Close to Objects,in Burnett, M., Goldberg, A.,
and Lewis, T., editors,Visual Object-Oriented Programming, Concepts and Environments,pp. 185-198,
Manning Publications, Greenwich, CT, 1995.



, Salt

tive

s
nd,

2-43,

tation,

ith
ished

ada,

s,

on

lism

e

t
e

de

92

skyla,

y EC2,
[Cha95] Bay-Wei Chang, Seity:Object-Focused Interaction in the Self User Interface,Ph.D. dissertation, in prep-
aration, Stanford University, 1995.

[DS84] L. Peter Deutsch and Allan M. Schiffman.Efficient Implementation of theSmalltalk-80System.In Proceed-
ings of the 11th Annual ACM Symposium on the Principles of Programming Languages, pp. 297-302
Lake City, UT, 1984.

[DMC92] C. Dony, J. Malenfant, and P. Cointe,Prototype-Based Languages: From a New Taxonomy to Construc
Proposals and their Validation, in Proc. OOPSLA '92, pp. 201-217.

[GR83] Adele Goldberg and David Robson,Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, MA, 1983.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar.Optimizing Dynamically-Typed Object-Oriented Program
using Polymorphic Inline Caches.In ECOOP’ 91 Conference Proceedings, pp. 21-38, Geneva, Switzerla
July, 1991.

[HCU92] Urs Hölzle, Craig Chambers, and David Ungar.Debugging Optimized Code with Dynamic Deoptimization,in
Proc. ACM SIGPLAN ‘92 Conferences on Programming Language Design and Implementation, pp. 3
San Francisco, CA (June 1992).

[Hol94] Urs Hölzle.Adaptive Optimization for Self: Reconciling High Performance with Exploratory Program-
ming. Ph.D. Thesis, Stanford University, Computer Science Department, 1994.

[HU94a] Urs Hölzle and David Ungar.Optimizing Dynamically-Dispatched Calls with Run-Time Type Feedback.In
Proceedings of the SIGPLAN 94 Conference on Programming Language Design and Implemen
Orlando, FL, June, 1994.

[HU94b] Urs Hölzle and David Ungar.A Third Generation Self Implementation: Reconciling Responsiveness w
Performance.In OOPSLA’94 Conference Proceedings, pp. 229-243, Portland, OR, October, 1994. Publ
as SIGPLAN Notices 29(10), October, 1994.

[MMM90] Ole Lehrmann Madsen, Boris Magnusson, and Birger Møller-Pedersen,Strong Typing of Object-Oriented
Languages Revisited.In ECOOP/OOPSLA’90 Conference Proceedings, pp. 140-149, Ottawa, Can
October, 1990.

[MMN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, Kristen Nygaard,Object-Oriented Programming in the
Beta Programming Language, Addison-Wesley Publishing Co., Wokingham, England, 1993.

[Mul95] Phillipe Mulet,Réflexion & Langages á Prototypes,Ph.D. Thesis in preparation, Ecole des Mines de Nante
France, 1995.

[MS95] John Maloney, and Randall B. Smith,Directness and Liveness in the Morphic User Interface Constructi
Environment. In preparation.

[Smi87] Randall B. Smith.Experiences with the Alternate Reality Kit, an Example of the Tension Between Litera
and Magic, in Proc. CHI + GI Conference, pp 61-67, Toronto, (April 1987).

[SUC92] Randall B. Smith, David Ungar, and Bay-Wei Chang.The Use Mention Perspective on Programming for th
Interface,In Brad A. Myers,Languages for Developing User Interfaces,Jones and Bartlett, Boston, MA,
1992. pp 79-89.

[SLS94] R. B. Smith, M. Lentczner, W. Smith, A. Taivalsaari, and D. Ungar,Prototype-Based Languages: Objec
Lessons from Class-Free Programming (Panel),in Proc. OOPSLA '94, pp. 102-112 (October 1994). Also se
the panel summary of the same title, in Addendum to the Proceedings of OOPSLA ‘94, pp. 48-53.

[SMU95] Randall B. Smith, John Maloney, and David Ungar,The Self-4.0 User Interface: Manifesting the System-wi
Vision of Concreteness, Uniformity, and Flexibility. To appear in Proc. OOPSLA ‘95.

[Tai92] Antero Taivalsaari,Kevo - a prototype-based object-oriented language based on concatenation and
module operations.University of Victoria Technical Report DCS-197-1R, Victoria, B.C., Canada, June 19

[Tai93] Antero Taivalsaari,A critical view of inheritance and reusability in object-oriented programming. Ph.D.
dissertation, Jyvaskyla Studies in Computer Science, Economics and Statistics 23, University of Jyva
Finland, December 1993, 276 pages (ISBN 951-34-0161-8).

[Tai93a] Antero Taivalsaari,Concatenation-based object-oriented programming in Kevo.Actes de la 2eme Conference
sur la Representations Par Objets RPO'93 (La Grande Motte, France, June 17-18, 1993), Published b
France, June 1993, pp.117-130



tober,
4(3),
[US87] David Ungar and Randall B. Smith,Self: The Power of Simplicity,Proceedings of the 1987 ACM Conference
on Object Oriented Programming Systems, Languages, and Applications (OOPSLA), Orlando, FL, Oc
1987, pp. 227–242. A revised version appeared in the Journal of Lisp and Symbolic Computation,
Kluwer Academic Publishers, June, 1991.

[USCH92] David Ungar, Randall B. Smith, Craig Chambers, and Urs Hölzle.Object, Message, and Performance: How
They Coexist in Self.Computer, 25(10), pp. 53-64. (October 1992).

[Wol95] Mario Wolczko,Implementing a Class-based Language using Prototypes, In preparation.


	Programming as an Experience: The Inspiration for Self
	Randall B. Smith and David Ungar
	Sun Microsystems Laboratories 2550 Casey, Ave. MS MTV29-116 Mountain View, CA 94043, USA
	randall.smith@sun.com david.ungar@sun.com
	1 Introduction
	1.1 Motivation

	2 Language Semantics
	Figure 1. A Self point has x and y slots, with x: and y: slots containing the assignment primitiv...
	2.1 Discussion
	Type Declarations
	Minimalism
	Figure 2. As more features are embedded in the language, the programmer gets to do more things im...

	Prototypes and Classes
	Figure 3. This figure suggests how Self objects might be composed to form Smalltalk-like class st...



	3 The User Interface and Programming Environment
	3.1 Structural reification
	3.2 Live Editing
	3.3 Example of Direct Application Construction
	Figure 4. In a Self window, the user pops up the meta menu on the ideal gas simulation (a). Selec...
	Figure 5. Composite graphical effects are achieved by embedding: any kind of morph can be embedde...
	Figure 6. The middle mouse button pop up menu on the “stop” slot (a) enables the user to create a...
	Figure 7. The user wishes to remove the label from the surface of a button. In this series of ope...
	Figure 8. The environment itself is available for reuse. Here the user has created the menu of op...
	Figure 9. The user has selected one atom on which to experiment. The user changes the “rawColor” ...
	Figure 10. The user copies the modified rawColor slot as a first step in getting the computed met...
	Figure 11. The completed application. The user has invoked a color changing tool that unifies col...

	3.4 Issues
	Multiple views:
	Text and object:

	3.5 Summary

	4 Implementing Self
	4.1 Transparent Efficiency
	Figure 12. Compilation in the Self system (from [HU94b]).

	4.2 Responsiveness
	Figure 13. Compilation pauses (from [HU94b]).

	4.3 Malleability
	4.4 Encouraging Factoring and Extensible Control
	4.5 Open Issues
	Overcustomization
	Memory Footprint
	Real-Time Operation
	User Control

	4.6 Summary

	5 Conclusions
	6 Acknowledgments
	7 References



