

■contentsxiv

Appendix C	 Regular Expressions. . 319

9. Regular Expressions. . 319

9.1 Regular Expression Definitions. . 320

9.2 Regular Expression General Requirements 321

9.3 Basic Regular Expressions . . 322

9.4 Extended Regular Expressions. . 327

9.5 Regular Expression Grammar. . 330

INDEX . . 339

10436fmfinal 14 10/23/08 10:40:28 PM

xv

About the Author

nPeter Seebach is a programmer who writes or, possibly, a writer who programs. He enjoys
writing on topics from C standardization to operating system internals; he programs in C,
Ruby, Lua, and shell by preference and several other languages when absolutely necessary.
He lives in Northfield, Minnesota, and owns cats (who cannot program and do not write).

10436fmfinal 15 10/23/08 10:40:28 PM

10436fmfinal 16 10/23/08 10:40:28 PM

xvii

About the Technical Reviewer

■Gary V. Vaughan, in his own words:

: ${This='sed -n'} #ightly:
$This 1s,^,not\ ,p<<rose
obsfuscated!
With red pen wielded
every page will be a
rose

: A perpetual traveler with no
time `for sight_seeing in earnest. I
do sleep ${when-1} # am
done`; juggling=100 pet=projects...

but somehow,
in_the_end () { I=always return "to mending libtool"; }

(You get extra credit if you can predict what this would do if you ran it.)

10436fmfinal 17 10/23/08 10:40:28 PM

10436fmfinal 18 10/23/08 10:40:29 PM

xix

Acknowledgments

The idea for this book came from Frank Pohlmann, who also edited it and provided a great
deal of guidance in making sense of my disjointed ramblings on the topic. Gary V. Vaughan's
technical advice and broad experience were invaluable throughout. I am particularly indebted
to Sven Mascheck’s excellent pages of information about historical shells, as well as the guide
to shell portability included in the autoconf documentation. Many other developers contrib-
uted tidbits, interesting trivia, or feedback on proposed code; there are too many to list, I'm
afraid. This book (and everything else I do) would not have been possible without support
from my beloved spouse, Jesse.

10436fmfinal 19 10/23/08 10:40:29 PM

10436fmfinal 20 10/23/08 10:40:29 PM

C h a p t e r 1

Introduction to Shell Scripting

The UNIX command-line interface has been criticized for complexity and a steep learning
curve, but no one disputes that it is one of the most flexible and programmable user inter-
faces ever developed. The core of the UNIX command-line interface is the shell, a program
that interprets and executes user commands. The shell can take commands from a keyboard
or stored in files; the syntax and commands are the same either way. A file containing shell
commands is called a shell script. Many systems offer shells that are arguably programmable;
the UNIX shell environment is actually good at it. As a result, thousands upon thousands of
programs have been implemented as shell scripts. This book treats the shell as a serious pro-
gramming language and introduces the practice of portable shell scripting—the development
of scripts that can be expected to run on a variety of host systems or even different shells on
the same system. What systems, you ask? Anything that looks reasonably like UNIX, whether
it’s Solaris, Linux, NetBSD, OS X, or even environments such as Cygwin, which provides
UNIX-like behavior under Windows. Don’t mistake this for an exhaustive list; I don’t have the
space to include one; and furthermore, new systems that are released may well comply with
the same standards.

Not everyone thinks highly of portability as a goal. Linus Torvalds once said, “Portability
is for people who cannot write new programs.” As a great fan of portability, I am inclined to
nearly agree. I prefer, “Portability is for people who are too busy to write new programs.” Users
often imagine that portability is a gigantic nightmare requiring a huge amount of additional
work; however, in the vast majority of cases, writing portable code takes little extra time, and
pays for itself quickly. Portability usually does not mean writing completely different versions
of the same program for every system; rather, it means writing a single version that is correct
everywhere.

About This Book
This book is about programming in the Bourne shell and its derivatives; the Korn shell, the
Bourne-again shell, and the POSIX shell are among the most obvious relatives. This book does
not cover the many other UNIX and UNIX-like shells, such as Plan 9’s rc, or the Berkeley csh.
It does cover a number of common UNIX commands, as well as a few somewhat less common
commands, and briefly looks into some common utilities, such as sed and awk, which have
historically been used heavily in shell scripting. While even further divergent things, such as
AppleScript, the Tcl shell, or even graphical shells like the Mac OS X Finder, are technically
shells, this book ignores them entirely, and hereafter uses the term shell to refer to the UNIX
Bourne shell family.

1

10436ch01final 1 10/23/08 11:37:25 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING8

	 •	 Debian Almquist shell (dash): This is a derivative of the Almquist shell used in Debian
and derived systems, such as Ubuntu. It has been installed as the default shell on
some Debian variants for a while now, exposing a number of scripts that erroneously
depended on bash-only extensions. This shell exists as a small, fast implementation of
the basic portable shell.

	 •	 Korn shell (ksh): Developed by David G. Korn at AT&T, ksh was one of the first Bourne
shell derivatives to add many of the features now adopted elsewhere as standard. There
are multiple versions: historic ksh, the 1988 revision (ksh88), and the 1993 revision
(ksh93). The current versions are available as source from AT&T.

	 •	 Public-domain Korn shell (pdksh): Before the Korn shell became free software, a public
domain clone of it was written. While there are a few noticeable compatibility differ-
ences, for the most part, pdksh and ksh88 are compatible implementations. A number
of systems have used pdksh as a shortcut to getting a reasonably full-featured POSIX
shell. More modern systems often replace pdksh with ksh93.

	 •	 Z shell (zsh): The Z shell is probably by far the most divergent of those listed here from
the historical Bourne shell. However, zsh can be configured to perform as a fairly solid
POSIX shell, and on some systems it may be the only shell available that can be made
to execute POSIX shell code at all. (For more information on encouraging zsh to behave
like a POSIX shell, see Chapter 7.)

Nearly every example in this book (except those used to illustrate differences between
these shells) will run identically on all of these except the pre-POSIX Bourne shell. This
diversity of options is certainly one of the reasons to favor shell-derived languages for
programming.

Why Portable?
Portable code is more useful. If your scripts are portable, they will survive changes in your
platform. This offers two key benefits. First, you can freely switch platforms whenever you
want. Second, you can use a broader range of platforms.

There is no perfect system. Every system you might use has flaws. You will want to change
systems from time to time. You may find that your best choices for different systems are differ-
ent operating systems, running on different hardware. Portability lets you share code between
things. People, and companies, have been known to get trapped on a platform because they
wrote unportable code that makes it too expensive to migrate. In the long run, writing portable
code saves you work.

Furthermore, the cost of portability is often greatly overestimated. People look at the
pages and pages of output of a typical configure script and assume that there are dozens or
hundreds of things they need to check for and write alternative code for. In general, this is
not the case. Writing unportable code for two systems, as well as code to distinguish between
them, is not generally the first strategy to take when pursuing portability. Programs taking that
approach, whether in shell or any other language, in general become quickly unmaintainable.

The best way to write portable code is to understand the language and tools you are work-
ing with. A lot of unportable code results from people who don’t understand a chunk of code,
copying it and modifying it until it seems to work. Don’t do that! It is fine to copy a chunk of
code you do not understand; however, study it and experiment until you understand it before

10436ch01final 8 10/23/08 11:37:27 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING 11

What’s in This Book
The next section offers a very quick overview of the shell, without going into great detail on the
formal syntax or semantics of shell scripting. If you’ve used the shell before, you may be able
to skip it and get into the more detailed material in the following chapters. The next chapter
gives a detailed look at the various ways in which the shell performs pattern-matching. Follow-
ing this are four chapters of detailed discussion of shell features, explaining their specifications
more precisely, and showing how to make effective use of them. After this are chapters on por-
tability of shell language constructs and utilities commonly used in shell programming, and
then on shell script design and interactions with other languages. If you encounter unfamiliar
terminology, look in related sections; I have tried to define terms when I first use them.

Introducing the Shell
This section gives a quick tour of shell usage, starting with basic usage and display conven-
tions, and then moving on to the basics of quoting and variables. There are some generaliza-
tions to which you will later learn exceptions, but it gives a quick basic grounding in what the
shell does. This overview should make it easier to see where each of the following chapters fits
in. Throughout this, you may find yourself asking questions that start out “but what happens
if . . . ?” which are not answered in this chapter. As mentioned in the previous discussion on
portability, go ahead and try them, but be aware that the results may sometimes vary between
shells.

Whether being used interactively or from a script, the shell’s basic operation is the same.
It reads lines of input, which it breaks into words (usually around spaces), performs substitu-
tions and expansions, and finally executes commands. Much of the shell’s power comes from
the fact that the shell has rules for modifying the words it is given to generate commands. This
section gives a brief overview of these rules, and the ways to keep the shell from performing
these modifications inappropriately.

Most of the material in this section is covered in more detail (indeed, with a particular
attention to fiddly little details) later in the book.

Interactive and Noninteractive Usage
In interactive usage, the shell indicates readiness for input by displaying a string called
a prompt Generally, the default prompt is a dollar sign ($). If the shell is expecting a continu-
ation of previous input, the prompt changes to a greater-than sign (>). In interactive usage,
the shell usually shows the output of each command before printing the next prompt. For
instance, the following interactive session shows both of these prompts:

$ echo 'hello
> there'
hello
there

In the preceding example, the shell gives the first prompt ($) and waits for input. The
user enters the text echo 'hello. The apostrophe, or single quote, begins a quoted string; in
a quoted string, the shell does not break words around spaces or new lines, and the string is

10436ch01final 11 10/23/08 11:37:28 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING12

not complete until the other quote is seen (this is explained a bit more in the section “Intro-
ducing Quoting” later in this chapter). The shell cannot execute this command yet because
the string isn’t complete. The shell knows there must be more input; it displays the secondary
prompt (>), and waits for more input. The user enters the text there'. The second apostro-
phe ends the string. Unlike some languages, the shell uses pairs of identical apostrophes for
strings, rather than using left and right quotes. With the string complete, the shell now returns
to looking for the ends of words or commands. It sees a new line (from the user hitting return),
and this ends the command.

The shell runs the command, passing the quoted string to the echo command, which
displays its arguments. Note that the new line within the quoted string becomes part of the
argument to echo, and the result has a new line in the same place. The same continuation
prompt is used when a shell syntax structure (such as if-then) is incomplete.

When the shell is running a command provided to it from a noninteractive source, no
prompts are displayed. To run these examples noninteractively, save them in a file, then run
your shell of choice on the file; for instance, if you have saved an example as hello, you can
invoke it with the command sh hello. Another option is to create an executable shell script.
To do this, add a line to the beginning of the file indicating that it is a shell script:

#!/bin/sh

This line is often called a shebang (short for sharp-bang, the nicknames of the first two
characters on the line.) A file starting with this, and marked as executable, is treated as a script
for the named program. Some users prefer to put a space after the exclamation mark (!), but
it is not needed (the notion that it might be on some systems is a very persistent portability
myth). To mark a script executable, change its mode:

$ chmod +x hello

Once you have done this, you no longer need to specify the shell interpreter, although you
will usually need to specify the path to a program in the current directory to use it:

$./hello

Prompts vary from shell to shell, and many systems change the default shell prompt.
While not all shells support this, some can interpolate things (such as the current directory)
into the shell prompt. Some shells, on hardware that supports it, will even colorize the prompt.

The biggest difference between interactive and script usage is in the interleaving of out-
put and input. When you work interactively, each command’s output is displayed before the
shell offers you a new prompt. When you run a script, commands are run in sequence with-
out pauses. While this book typically uses chunks of shell code without prompts to illustrate
points, the same code entered at a prompt would generally have the same effect, despite the
formatting differences.

Simple Commands
A simple command is just a command (such as echo or ls) and its arguments. In the absence
of special characters (called metacharacters) or words that have special meaning to the shell
(called keywords), a series of words followed by a new line are a simple command. Control flow
constructs (such as if statements, discussed in Chapter 3) are not simple commands.

10436ch01final 12 10/23/08 11:37:28 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING 13

The shell breaks each line of input into sequences of characters called words, usually
around spaces and tabs, although there are other ways to separate words. The process of split-
ting text into words is called word splitting. It does not matter how many spaces (or tabs) you
place between the words. A line beginning with a sharp (#) is a comment and is ignored by the
shell. The first word on a line (which may be the only word) is the command (usually an exter-
nal program) to run; the following words are passed to it as parameters, called arguments. The
echo command displays its arguments, separated by spaces if there’s more than one argument,
and followed by a new line. (This is usually the case; however, the echo command is full of
nonportable special cases discussed in Chapter 8.) Each of the following commands produces
the same output:

$ echo hello, world
hello, world
$ echo hello, world
hello, world
$ echo hello, world
hello, world

As you can see, the shell modifies input text before executing it. In this case, for instance,
the spaces between words are not counted or recorded; rather, the shell just uses them to
detect word boundaries. A quick way to get some insight into how your commands are being
modified is to put the shell into trace mode, by issuing the command set -x. This will cause
the shell to show you each simple command before executing it. To turn this off, issue the
command set +x. Each simple command, as finally executed, is echoed back with a plus sign
(+) in front of it before the shell executes that command. For more information on trace mode,
including the circumstances where it displays something other than the plus sign, see Chapter
6. Be aware that the exact format of the message may vary from one shell to another. Regard-
less, tracing is usually quite helpful in understanding the shell. For instance, the following
transcript shows that the commands executed by the shell have had strings of spaces replaced
by single spaces:

$ set -x
$ echo hello, world
+ echo hello, world
hello, world
$ echo hello, world
+ echo hello, world
hello, world
$ echo hello, world
+ echo hello, world
hello, world
$ set +x
+ set +x

If you are experimenting with the trace feature on the command line, do not forget to
turn it off with a final set +x. However, in the pursuit of brevity, the set +x is omitted in future
examples.

10436ch01final 13 10/23/08 11:37:28 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING14

You can enter several simple commands on a line by separating them with semicolons (;).
Semicolons are a good example of a metacharacter, a character that has special meaning to the
shell even when it is not separated from other text by spaces:

$ echo hello;echo world
hello
world

The semicolon breaks this into two commands. The second command is executed imme-
diately after the first, and the user is not prompted between them.

Introducing Variables
Variables are named storage that can hold values. The shell expands a variable when the vari-
able’s name occurs after a dollar sign ($), replacing the dollar sign and variable name with
the contents of the variable. This is called variable expansion, or substitution, or occasionally
replacement or even interpolation. Of these terms, expansion is used most often in documen-
tation, but substitution is probably the clearest. Variables are assigned using an equals sign (=)
with no spaces around it:

$ name=John
$ echo hello, $name
hello, John

Unlike most other programming languages, the shell uses different syntax when referring
to a variable than when assigning a value to it. Variable names start with a letter or underscore,
followed by zero or more letters, numbers, and underscores. Some shell programmers use all
capitalized names for variables by convention, but in this book, I use all capitalized names
only for environment variables or special predefined shell variables (such as $IFS, which is
explained in Chapter 4). Do not use mixed case; it works, but it is not idiomatic for the shell.

If a variable has not been set, it expands to an empty string; there is no warning (usually)
for trying to use an unset variable, which can make it hard to detect simple typos. Variables in
shell are always strings; the shell does not distinguish between strings, integers, or other data
types. The shell is generally considered a typeless language.

If you want to obtain a value from the user, you can do so using the read command to read
a line of input and store it in a variable, as in the following example:

$ echo Please enter your name. ; read name
Please enter your name.
Dave
$ echo Hello, $name.
Hello, Dave.

If you try to assign a value including spaces to a variable, you will discover that the shell
splits the line into words before trying to assign variables. Thus, this doesn’t work:

$ name=John Smith
sh: Smith: command not found
$ echo hello, $name
hello,

10436ch01final 14 10/23/08 11:37:28 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING 15

A brief explanation of what went wrong follows in the next section; a full explanation of
what went wrong is found in Chapter 3. For now, the key lesson is that the assignment doesn’t
work, and you need a way to prevent the shell from splitting words.

Introducing Quoting
The separation of input into words is generally very useful, but it is occasionally desirable to
prevent it. For instance, if someone created a file named hey you, trying to remove it might
prove frustrating:

$ rm hey you
rm: hey: No such file or directory
rm: you: No such file or directory

To overcome this, you must tell the shell that, rather than being a special character that
separates words, the space is just a literal character with no special meaning. This is called
quoting, and the most common way to do it is by enclosing material in quotes. Quotes can
be single quotes or double quotes; in both cases, the shell does not use distinct left and right
quotes, but uses the same quotes on both sides. [On a slightly related note, text surrounded by
back quotes (`) is not being quoted; that is one of the syntaxes used for embedding the output
of shell commands, much as variables are substituted. Command substitution is explained
in Chapter 5.] Most commonly, you simply enclose a string in single quotes (') to prevent the
shell from modifying it. Here’s a review of the hello world example, using quoting:

$ set -x
$ echo 'hello, world'
+ echo hello, world
hello, world
$ echo 'hello, world'
+ echo hello, world
hello, world
$ echo ' hello, world'
+ echo hello, world
 hello, world

Single quotes prevent the shell from modifying input, including word splitting. The quote
marks themselves are removed. While this is useful for arguments, it is important not to quote
things that you do want the shell to split. For instance, the following script doesn’t do what the
user probably wanted:

$ set -x
$ 'echo hello, world'
+ echo hello, world
sh: echo hello, world: command not found

With all the spaces quoted, the shell has no way of knowing the user meant to invoke the
echo command; instead, it obligingly looks for a command named echo hello, world. Since
there isn’t one, the shell prints an error message.

10436ch01final 15 10/23/08 11:37:29 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING16

nNote  Error messages may vary between shells. Do not worry if you try an example and get an error mes-
sage in a slightly different format. Also, the display of an error message may depend on whether the shell
was executing a script. For a syntax error or other shell error, the shell usually gives the name of the script
and the line number it was executing. This does not mean you should not run examples and try them out for
yourself; it does mean that it is not always a good idea to depend on the exact contents of an error message.

You can now pursue the previous example of trying to assign a full name, including
a space, to a variable:

$ name='John Smith'
$ echo hello, $name
hello, John Smith

 The quotes allow you to assign a value containing spaces to a variable. When the variable
is substituted, the space is included. Try to figure out the next example before you run it:

$ command='echo hello, world'
$ $command

There are two ways you might reasonably expect this to play out. One is that the shell will
respond with hello, world. The other is that it will respond with an error message, such as
sh: echo hello, world: command not found. Since word splitting happens before variable
expansion, you might reasonably expect the error message, but in fact the shell greets you. The
reason for this is that the outputs of variable substitution are usually subject to word splitting
again. (The results are not then subject to variable substitution.) In this case, that’s very useful.
But consider what happens if you are trying to preserve spaces, not just include them:

$ name='Smith, John'
$ echo $name
Smith, John

No problem; you know how to protect spaces, right?

$ name='Smith, John'
$ echo '$name'
$name

You need a way to ask the shell to expand variables but not perform word splitting. Conve-
niently, the shell has multiple quoting mechanisms. If you want some special characters, but
you still want to quote spaces, you can use double quotes. The shell substitutes variables in
double-quoted strings:

$ set -x
$ name='Smith, John'
+ name=Smith, John
$ echo $name
+ echo Smith, John
Smith, John

10436ch01final 16 10/23/08 11:37:29 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING 17

$ echo '$name'
+ echo $name
$name
$ echo "$name"
+ echo Smith, John
hello, Smith, John

The text $name is substituted both when unquoted and when in double quotes; it is not
substituted when in single quotes. When unquoted, the substituted value is subject to field
splitting (much like word splitting, but see the in-depth discussion in Chapter 4); inside double
quotes, it is not. If you have used other scripting languages, you may have seen this distinction
between single and double quotes before; it is very useful to be able to distinguish between
a purely literal string and one in which you want variables to be substituted, and the shell
syntax is familiar to many users. Single quotes are the easiest to understand; a single-quoted
string lasts until the next single quote. No other characters have any special meaning within
single quotes. Of course, this makes it hard to get a literal string including a single quote; to do
that, use double quotes. This allows an expansion on an earlier example:

echo 'What is your name? '
read name
echo "I'm sorry, $name, but I can't let you do that."

What is your name?
Dave
I'm sorry, Dave, but I can't let you do that.

Note the use of double quotes to protect the spaces and other punctuation, including
single quotes. Try to guess what the following code will produce before running it:

echo "What is your name?"
read name
echo I'm sorry, $name, I can't let you do that.

In this version, because the single quotes were not themselves quoted, they defined
a quoted string. This has two effects: The first is to prevent $name from being expanded, and
the second is the removal of the apostrophes, which the shell interprets as single quotes. For
this reason, shell programmers often use double quotes around strings passed to echo even
when no obvious need to is in evidence. It is easy to forget that a harmless apostrophe is actu-
ally a sinister and dire single quote, plotting ambush and mayhem from its lair between “n”
and “t.” Having the quotes there is a good example of defensive programming. The use of
double quotes to get literal single quotes (and single quotes to get literal double quotes) is easy
enough once you are used to it, but it can be a bit surprising at first.

As you have probably noticed, the quote characters themselves are not included in the
strings they quote. Quoted strings are considered to be part of the same word as anything they
are adjacent to. It is a common misconception that the quoted material is itself a “word” to the
shell, and that a pair of adjacent quotes are treated as separate words. This is not so, and this
leads to the way to get single quotes into a string that is single-quoted when you want an apos-
trophe but do not want any expansion:

10436ch01final 17 10/23/08 11:37:29 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING18

$ echo '$name is a variable, now, isn'"'"'t it?'
$name is a variable, now, isn't it?

The two single-quoted strings are adjacent to a double-quoted string containing only an
apostrophe; when the quotes are removed, these become a single shell word. The echo com-
mand receives only one argument. As this example illustrates, there are a great number of
subtleties to the interactions of these features, but this quick tour should prepare you to follow
along with code even if you haven’t used any of these features before.

The printf Command
The printf command was introduced some years back, but many users are unaware of it. It
mostly emulates the behavior of a C function by the same name, used to format output. The
first argument to printf is called a format string, and describes an output format. Certain spe-
cial characters in the format string need to be filled in with data; these data are taken from the
other arguments, in order. This is easier to show than to describe:

$ name="John"
$ printf "Hello, %s!\n" "$NAME"
Hello, John!

CHECKING YOUR ASSUMPTIONS
When I originally drafted this text, I used echo in all of the examples because it was the only portable com-
mand for displaying text. It is problematic in many ways (it gets its own section in Chapter 8), but there’s
nothing else. The wonderful and expressive printf utility is unfortunately not portable. After all, it’s only
found on BSD systems and Linux systems and built-in to bash and ksh93. Actually, it looks like Solaris has
it. In fact, I searched among something around 30 systems, and the only system I could find that anyone had
still running in which printf did not work in /bin/sh was a SunOS box (not Solaris) a friend of mine had
still running, even though it was officially unsupported due to unfixed Y2K bugs.

I did some informal polling. Every experienced shell programmer I talked to “knew” that the shell com-
mand printf was a new feature (or had never even heard of it). No one thought it was portable, but it turns
out to be substantially more portable than many features I have been taking for granted for ten years. While it
is true that it is a new change, it is a change specified by the current UNIX standards, and one that appears to
have become essentially universal. So, even if you are pretty sure you know that something isn’t portable (or
that it is), check your assumptions!

The special sequence %s indicates that a string should be displayed; the next argument
is interpreted as a string and replaces the %s. The character determining what kind of object
to print (such as a string or a number) is called a format character, and the whole character
sequence is called a format specification. Other common formats are % (print a percent sign),
d (print a number), o (print a number in octal), x (print a number in hexadecimal), and
f (print a floating-point value). The other thing printf does is interpret backslashes fol-
lowed by special characters; these combinations are called escape sequences. The most

10436ch01final 18 10/23/08 11:37:29 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING 19

important one to know about is \n, which represents a new line. Unlike echo, printf does not
automatically finish its output with a new line character:

$ echo "Hello!" ; echo "Goodbye!"
Hello!
Goodbye!
$ printf "Hello!" ; printf "Goodbye!"
Hello!Goodbye!$

In fact, even the shell’s prompt can end up on the same line as the output from a printf
command. This can be a bit of a surprise to new users, and even experienced users will get it
wrong occasionally. However, it is also extremely useful in some cases. If you wish to display
a prompt and then request input from the user, being able to omit the new line is quite handy.
(There is no portable way to do this with echo, although there are several nonportable ways
that may work on individual systems.)

The other thing printf is good at is formatting—not just displaying output, but display-
ing it according to particular rules. There are three key concepts in displaying fields. The first
is width, or how many characters to display at a minimum. Width, given as a number between
the % and the format character, is used to format output so it lines up nicely:

$ printf "%3d: lined\n%3d: up\n" 1 100
 1: lined
100: up

The width of 3 causes the printf command to display at least three characters, even if it
does not need that many. But what if there are more? There is also a way to limit the number of
characters printed; this is called precision, and is written as a number following a period, once
again between the % and the format character. Precision limits the total number of characters
printed for strings; for floating-point numbers, it limits the number of characters printed after
the decimal point.

$ printf "%.5s\n%.5s\n" John Samantha
John
Saman

You can specify both width and precision; if you do this, the precision is used to deter-
mine what to print, and the width then influences whether the shell pads the output. Padding
can be controlled a little. The two most common ways to control padding are to specify flags,
which are put before the width. (If there is no width, there is no padding, and there is no point
to specifying flags.) The two common flags are left justification (-), and zero padding (0). Zero
padding applies only to numeric values. Idiomatically, the pattern %02x is used to express byte
values in hexadecimal:

$ printf "%02x\n" 197 198
c5
c6

This example also illustrates another feature: If you provide additional arguments, printf
recycles its format string, starting over at the beginning. Format specifications without argu-
ments are treated as though the argument was a 0 (for numeric formats) or an empty string
(for string formats).

10436ch01final 19 10/23/08 11:37:30 PM

Chapter 1  ■﻿   INTRODUCTION TO SHELL SCRIPTING20

There is only one significant flaw in the printf command, which is that you cannot easily
use it to display arbitrary characters. The C language printf function has a %c format specifier,
which prints a numeric value as a raw character; for instance, on an ASCII-based machine, the
C code printf("%c", 64); prints an at sign (@). In the shell command, %c is equivalent to %.1s;
it prints the first character of its argument, which is treated as a string. So, for instance, printf
'%c\n' 64 prints 6. However, you can print characters using an escape sequence; a backslash
followed by three octal digits is printed as the character in question, so printf '\100\n' prints
@. In later chapters, you’ll see how you could use printf to create a format string containing
arbitrary characters as octal escape sequences.

Some implementations of printf take additional options (starting with hyphens) before
the format string. In portable code, never start a format string with a hyphen. If you want to
display a hyphen, use %s:

$ printf '%sv' -
-v

Be very careful with parameter substitution in printf format strings. The translation
of format specifiers into arguments happens after parameter substitution; if you substitute
a parameter containing % characters into a format string, those % characters may become for-
mat specifiers. If you wish to include the value of a parameter in your displayed output, always
use a suitable format (usually %s) and provide the parameter as a double-quoted argument:

$ password="xfzy%dNo"
$ printf "Your password is $password.\n"
Your password is xfzy0No.
$ printf "Your password is %s.\n" "$password"
Your password is xfzy%dNo.

In general, I recommend using single-quoted strings as printf format strings; this ensures
that the calling shell will not do something unexpected with any backslash escape sequences
you used (behavior of backslashes inside double-quoted strings is not always 100% portable),
and that no parameter substitution occurs; this allows you to be sure you know what your for-
mat string is.

Some implementations of printf have difficulties with particularly long formats; for
example, the Solaris printf aborts when given the format string %05000d. Exercise caution with
large formats.

What’s Next?
This whirlwind introduction covers enough so that, even if you’ve never tried to use the shell
before, you can follow along with the examples used to illustrate various points of shell archi-
tecture and design. The next chapter talks about patterns and regular expressions; if you’re
familiar with those already, you can skip ahead, but you might like the quick refresher. Now,
on to the fiddly little details!

10436ch01final 20 10/23/08 11:37:30 PM

C H A P T E R 2

Patterns and Regular
Expressions

This chapter is a bit of a digression; if you are comfortable with patterns and regular expres-
sions, you can just skip ahead to Chapter 3, where I begin the discussion of shell syntax.
However, if you are unfamiliar with patterns and regular expressions, this material turns out
to be very important for understanding and illustrating the coming examples. Furthermore,
you will have to learn it to be an effective shell programmer, so if you haven’t learned it before,
start early.

Shell programming is heavily dependent on string processing. The term string is used
generically to refer to any sequence of characters; typical examples of strings might be a line
of input or a single argument to a command. Users enter responses to prompts, file names
are generated, and commands produce output. Recurring throughout this is the need to
determine whether a given string conforms to a given pattern; this process is called pattern
matching. The shell has a fair amount of built-in pattern matching functionality (especially if
you are comfortable with relying on POSIX shell features). Pattern matching is not unique to
the shell; other programs, such as find, use the same pattern-matching rules. A special variant
of shell pattern matching, called globbing, is used to expand file name patterns into groups of
matching names. The distinction between globbing and pattern matching is a bit vague; many
people call all patterns globs and use the term file globbing for the special case of matching file
names. The shell manual pages, however, tend to call pathname expansion globbing.

Furthermore, many common UNIX utilities, such as grep or sed, provide features for pat-
tern matching. These programs usually use a more powerful kind of pattern matching, called
regular expressions. Regular expressions, while different from shell patterns, are crucial to
most effective shell scripting. While there is no portable regular expression support built into
the shell itself, shell programs rely heavily on external utilities, many of which use regular
expressions.

Shell Patterns
Shell patterns are used in a number of contexts. The most common usage is in the case state-
ment (see Chapter 3 for more information). Given two shell variables string and pattern, the
following code determines whether text matches pattern:

21

10436ch02final 21 10/23/08 10:13:25 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS22

case $string in
 $pattern) echo "Match" ;;
 *) echo "No match";;
esac

If $string matches $pattern, the shell echoes “Match” and leaves the case statement.
Otherwise, it checks to see whether $string matches *. Since * matches anything in a shell
pattern, the shell prints “No match” when there was not a match against $pattern. (The case
statement only executes one branch, even if more than one pattern matches.)

For exploring pattern matching, you might find it useful to create a shell script based on
this. The following self-contained script performs matching tests of a number of words against
a pattern:

#!/bin/sh
pattern="$1"
shift
echo "Matching against '$pattern':"
for string
do
 case $string in
 $pattern) echo "$string: Match." ;;
 *) echo "$string: No match." ;;
 esac
done

Save this script to a file named pattern, make it executable (chmod a+x pattern), and you
can use it to perform your own tests:

$./pattern '*' 'hello'
Matching against '*':
hello: Match.
$./pattern 'hello*' 'hello' 'hello, there' 'well, hello'
Matching against 'hello*':
hello: Match.
hello, there: Match.
well, hello: No match.

Remember to use single quotes around the arguments. An unquoted word containing
pattern characters such as the asterisk (*) is subject to globbing (sometimes called file name
expansion), where the shell replaces such words with any files with names matching the pat-
tern. This can produce misleading results for tests like this. File name patterns are discussed in
more detail in the next section.

Pattern-Matching Basics
In a pattern, most characters match themselves, and only themselves. The word hello is a per-
fectly valid pattern; it matches the word hello, and nothing else. A pattern that matches only
part of a string is not considered to have matched that string. The word hello does not match
the text hello, world. For a pattern to match a string, two things must be true:

10436ch02final 22 10/23/08 10:13:25 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 23

	 •	 Every character in the pattern must match the string.

	 •	 Every character in the string must match the pattern.

Now, if this were all there were to patterns, a pattern would be another way of describing
string comparison, and the rest of this chapter would consist of filler text like “a . . . consists of
sequences of nonblank characters separated by blanks,” or possibly some wonderful cookie
recipes. Sadly, this is not so. Instead, there are some characters in a pattern that have special
meaning and can match something other than themselves. Characters that have special mean-
ing in a pattern are called wildcards or metacharacters. Some users prefer to restrict the term
wildcard to refer only to the special characters that can match anything. In talking about pat-
terns, I prefer to call them all wildcards to avoid confusion with characters that have special
meaning to the shell. Wildcards make those two simple rules much more complicated; a single
character in a pattern could match a very long string, or a group of characters in the pattern
might match only one character or even none at all. What matters is that there are no mis-
matches and nothing left over of the string after the match.

The most common wildcards are the question mark (?), which matches any character,
and the asterisk (*), which matches anything at all, even an empty string. (If this sounds very
wrong, and you think they modify previous characters, you are thinking of regular expressions.
Regular expressions, discussed in detail in the “Regular Expressions” section of this chapter,
are much more expressive and somewhat more complicated.)

The ? is easy to use in patterns; you use it when you know there will be exactly one char-
acter, but you are not sure exactly what it will be. For instance, if you are not sure what accent
the user will greet you in, you might use the pattern h?llo, in case your user prefers to write
hallo, or hullo. This leaves you with two problems. The first is that users are typically verbose,
and write things like hello, there, or hello little computer, or possibly even hello how do
i send email. If you just want to verify that you are getting something that sounds a bit like
a greeting, you need a way to say “this, or this plus any other stuff on the end.”

That is what * is for. Because * matches anything, the pattern hello* matches anything
starting with hello, or even just hello with nothing after it. However, that pattern doesn’t
match the string well, hello because there is nothing in the pattern that can match charac-
ters before the word hello. A common idiom when you want to match a word if it is present at
all is to use asterisks on both sides of a pattern: *hello* matches a broad range of greetings.

If you want to match something, but you are not sure what it is or how long it will be,
you can combine these. The pattern hello ?* matches hello world but does not match hello
alone. However, this pattern introduces a new problem. The space character is not special in
a pattern, but it is special in the shell. This leads to a bit of a dilemma. If you do not quote the
pattern, the shell splits it into multiple words, and it does not match what you expected. If you
do quote it, the shell ignores the wildcards. There are two solutions available; the first is to
quote spaces, the second is to unquote wildcards. So, you could write hello" "?*, or you could
write "hello "?*.

In the contexts where the shell performs pattern matching (such as case statements),
you do not need to worry about spaces resulting from variable substitution; the shell doesn’t
perform splitting on variable substitutions in those contexts. (A disclaimer is in order: zsh’s
behavior differs here, unless it is running in sh emulation mode. See Chapter 7 for more
information.)

10436ch02final 23 10/23/08 10:13:25 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS24

Character Classes
The h?llo pattern has another flaw, which is that it is too permissive. While your friends who
type with a thick accent will doubtless appreciate your consideration, you might reasonably
draw the line at hzllo, h!llo, or hXllo. The shell provides a mechanism for more restrictive
matches, called a character class. A character class matches any one of a set of characters, but
nothing else; it is like ?, only more restrictive. A character class is surrounded in square brack-
ets ([]), and looks like [characters]. The greeting described previously could be written using
a character class as h[aeu]llo. A character class matches exactly one of the characters in it; it
never matches more than one character.

Character classes may specify ranges of characters. A typical usage would be to match any
digit, with [0-9]. In a range, two characters separated by a hyphen are treated as every char-
acter between them in the character set; mostly, this is used for letters and numbers. Patterns
are case sensitive; if you want to match all standard ASCII letters, use [a-zA-Z]. The behavior
of a range where the second character comes before the first in the character set is not predict-
able; do not do that. Sometimes, rather than knowing what you do want, you know what you
don’t want; you can invert a character class by using an exclamation mark (!) as its first char-
acter. The character class [!0-9] matches any character that is not a digit. When a character
class is inverted, it matches any character not in the range, not just any reasonable or common
character; if you write [!aeiou] hoping to get consonants, you will also match punctuation or
control characters. Wildcards do not have special meaning in a character class; [?*] matches
a question mark or an asterisk, but not anything else.

Character classes are one of the most complicated aspects of shell pattern matching. Left
and right square brackets ([]), hyphens (-), and exclamation marks (!) are all special to them.
A hyphen can easily be included in a class by specifying it as the last character of the class,
with no following character. An exclamation mark can be included by specifying it as any
character but the first. (What if there are no other characters? Then you are specifying only one
character and probably don’t need a character class.) The left bracket is actually easy; include
it anywhere, it won’t matter. The right bracket (]) is special; if you want a right bracket, put it
either at the very beginning of the list or immediately after the ! for a negated class. Otherwise,
the shell might think that the right bracket was intended to close the character class. Even
apart from the intended feature set, be aware that some shells have plain and simple bugs hav-
ing to do with right brackets in character classes; avoid them if you can.

If you want to match any left or right bracket, exclamation mark, or hyphen, but no other
characters, here is a way to do it:

[][!-]

The first left bracket begins the definition of the class. The first right bracket does not
close the class because there is nothing in it yet; it is taken as a plain literal right bracket. The
second left bracket and the exclamation mark have no special meaning; neither is in a position
where it would have any. Finally, the hyphen is not between two other characters in the class
because the right square bracket ends the definition of the character class, so the hyphen must
be a plain character.

Many users have the habit of using a caret (^) instead of ! in shell character classes. This is
not portable, but it is a common extension some shells offer because habitual users of regular

10436ch02final 24 10/23/08 10:13:26 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 25

expressions may be more used to it. This can create an occasional surprise if you have never
seen it used, and want to match a caret in a class.

Table 2‑1 explains the behavior of a number of characters that may have special meaning
within a character class, as well as how to include them literally in a class when you want to.

Table 2‑1. Special Characters in Character Classes

Character	 Meaning	 Portability	 How to Include It

]	 End of class	 Universal	 �Put at the beginning of the class (or first after the
negation character)

[Beginning of class	 Universal	 Put it anywhere in the class

^	 Inversion	 Common	 Put after some other character

!	 Inversion	 Universal	 Put after some other character

-	 Range	 Universal	 Put at the beginning or end of the class

Ranges have an additional portability problem that is often overlooked, especially by
English speakers. There is no guarantee that the range [a-z] matches every lowercase letter,
and strictly speaking there is not even a guarantee that it matches only lowercase letters. The
problem is that most people assume the ASCII character set, which defines only unaccented
characters. In ASCII, the uppercase letters are contiguous, and the lowercase letters are also
contiguous (but there are characters between them; [A-z] matches a few punctuation char-
acters). However, there are UNIX-like systems on which either or both of these assumptions
may be wrong. In practice, it is very nearly portable to assume that [a-z] matches 26 lower-
case letters. However, accented variants of lowercase letters do not match this pattern. There
is no generally portable way to match additional characters, or even to find out what they are.
Scripts may be run in different environments with different character sets.

Some shells also support additional character class notations; these were introduced by
POSIX but so far are rare outside of ksh (not pdksh) and bash. The notation is [[:class:]],
where class is a word like digit, alpha, or punct. This matches any character for which the
corresponding C isclass() function would return true. For example, [[:digit:]] is equiva-
lent to [0-9]. These classes may be combined with other characters; [[:digit:][:alpha:]_]
matches any letter or number or an underscore (_). Additional similar rules use [.name.] to
match a special collating symbol. (For instance, some languages might have a special rule for
matching and sorting certain combinations of letters, so a ch might sort differently from a c
followed by an h) and [=name=] to match equivalence classes, such as a lowercase letter and
any accented variant of it.) These rules are particularly useful for internationalized scripts
but not sufficiently widely available to be used in portable scripts yet. To avoid any possible
misunderstandings, avoid using a left bracket followed immediately by a period (.), equals
sign (=), or colon (:) in a character class. Note that this applies only to a left bracket within the
character class, not the initial bracket that opens the class; [.] matches a period. (This is more
significant in regular expressions, where a period would otherwise have special meaning.)

Character classes are, as you can see, substantially more complicated than the rest of the
shell pattern matching rules. Table 2‑2 shows the full set.

10436ch02final 25 10/23/08 10:13:26 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS26

Table 2‑2. Shell Pattern Characters

Pattern	 Meaning

?	 Any character

*	 Any string (even an empty one)

[...]	 One character from a class

Anything else	 Itself

Using Shell Patterns
Shell patterns are quite powerful, but they have a number of limitations. There is no way to
specify repetition of a character class; no shell pattern matches an arbitrary number of digits.
You can’t make part of a pattern optional; the closest you get to optional components is the
asterisk.

Patterns as a whole generally match as much as they can; this is called being greedy. How-
ever, if matching too many things with an asterisk prevents a match, the asterisk gives up the
extra characters and lets other pattern components match them. If you match the pattern b*
to the string banana, the * matches the text anana. However, if you use the pattern b*na, the *
matches only the text ana. The rule is that the * grabs the largest number of characters it can
without preventing a match. Other pattern components, such as character classes, literal
characters, or question marks, get first priority on consuming characters, and the asterisk gets
what’s left.

Some of the limitations of shell patterns can be overcome by creative usage. One way to
store lists of items in the shell is to have multiple items joined with a delimiter; for instance,
you might store the value a,b,c to represent a list of three items. The following example code
illustrates how such a list might be used. (The case statement, used here, executes code when
a pattern matches a given string; it is explained in more detail in Chapter 3.)

list=orange,apple,banana
case $list in
apple) echo "How do you like them apples?";;
esac

How do you like them apples?

This script has a subtle bug, however. It does not check for exact matches. If you try to
check against a slightly different list, the problem becomes obvious:

list=orange,crabapple,banana
case $list in
apple) echo "How do you like them apples?";;
esac

How do you like them apples?

10436ch02final 26 10/23/08 10:13:26 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 27

The problem is that the asterisks can match anything, even the commas used as delimit-
ers. However, if you add the delimiters to the pattern, you can no longer match the ends of the
list:

list=orange,apple,banana
case $list in
,orange,) echo "The only fruit for which there is no Cockney slang.";;
esac

[no output]

To resolve this, wrap the list in an extra set of delimiters when expanding it:

list=orange,apple,banana
case ,$list, in
,orange,) echo "The only fruit for which there is no Cockney slang.";;
esac

The only fruit for which there is no Cockney slang.

The expansion of $list now has a comma appended to each end, ensuring that every
member of the list has a comma on both sides of it.

Sometimes, you may find that shell patterns do not have the flexibility to represent what
you want. When that happens, you may need to go to regular expressions; see the “Regular
Expressions” section at the end of this chapter for more information.

Pathname Expansion
Pathname expansion (the POSIX term), or globbing (what everyone actually calls it), is one
of the shell features most users are likely to be at least partially familiar with. The shell has
a built-in facility for generating or matching file names. When an unquoted word contains
any of the pattern-matching wildcards, it is subject to globbing. In globbing, the shell com-
pares the pattern to files in the file system (using essentially the same pattern matching rules
described previously) and expands the word into any matching file names. If there are no
matches, the shell leaves the pattern alone. Instead of matching a single specified word against
a pattern to produce a single true/false result, globbing matches multiple names and produces
all the matches as results. There is, of course, an exception; the find utility uses globbing pat-
terns to match file names but uses them for true/false matches.

Differences from Shell Patterns
Pathname expansion uses the same basic pattern-matching characters as regular shell pat-
terns, but there are a couple of significant differences. When a pathname refers to a file not
in the current directory, the full name used is called the path of the file. Each of the pieces of
a path, separated by slashes (or possibly by other characters on non-UNIX systems), is called
a component. In globbing, each section of a pattern (as divided by path separators) is matched

10436ch02final 27 10/23/08 10:13:27 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS28

against single components. So, if you wish to match the file bin/unsort, you can specify b*/
unsort, or b*/u*, or bin/*sort, but you cannot just use *unsort. If there are no path separators
in a pattern, it matches against files in the current directory; if you are in the bin directory,
*sort could match unsort. (Note that there is no portable unsort utility, but writing one makes
a great exercise.)

Another way to think about this is that the special characters can never match a path
separator; only a literal path separator can match a path separator in a file path. For example,
bin[/]unsort does not match bin/unsort. The character class can only match path compo-
nents, never a path separator. To search in directories with a pattern, you must explicitly
include any path separators you wish to match.

If a path starts with a path separator, the path is called an absolute path. Otherwise, it is
called a relative path. A relative path name is always interpreted relative to your current direc-
tory. In fact, even a file name with no separators is technically a relative path; it is just a very
short relative path.

The decision to match only within specified directories may seem surprising, but it makes
good sense. Given that a typical UNIX system can easily have hundreds of thousands of files,
it is quite simply impractical to try to match against all of them; the desktop system on which
I ran most of my test scripts has a bit over three and a half million files on it. The requirement
to match directories explicitly is probably a good idea. (The zsh shell, however, offers glob-
bing extensions to let you do crazy things like this if you want. They are not generally portable,
though.)

Pathname expansion, like pattern expansion, is aggressive about trying to find a match.
Many UNIX systems sort some binaries into both /usr/bin and /usr/sbin. Sometimes it is not
obvious which directory a program would be in. While the idiomatic solution is to use which
file to find a copy of a file in your execution path, this doesn’t help if you’ve forgotten the
exact name of the utility. The glob pattern /usr/*bin/*stat matches any file in either /usr/bin
or /usr/sbin with a name ending in stat. When expanding each component, the shell makes
a list of possible matches, then compares all of these to the next component. If one of the com-
ponents never ends up producing any matches, it is discarded completely. There is one subtle
difference, having to do with components, between globbing and pattern matching. In a UNIX
path, // is always equivalent to /; however, a shell pattern like a/*/b does not match a/b. You
cannot match an empty component with a pattern because there is never actually an empty
component.

Wildcards never match a component with a name starting with a period (.). These files,
called dot files, are not matched by patterns and are usually not displayed to the user; they are
often called hidden files. This is not the same way in which some other systems allow a file to
be tagged as being invisible. You can see and manipulate these files in most programs; they
just don’t get displayed in lists by default or matched by globs. This applies to all the compo-
nents in a path, not just file names. Note that a period has no special meaning except as the
first character of a file name, and even then the meaning is purely one of convention. UNIX
file names may have as many (or as few) periods in them as they want. Some programs assign
special meaning to suffixes starting with a period, but most UNIX programs give no special
interpretation to the name of a file. The pattern *.name does not match a file named .name; the
period in the pattern is not at the beginning of the pattern, so it can’t match a period at the
beginning of a file name.

10436ch02final 28 10/23/08 10:13:27 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 29

case sensitivity in pathname expansion

Systems differ in their handling of letters in different cases. On a traditional UNIX system, files named readme
and README can exist in the same directory because the names of files are case-sensitive; that is to say,
capital and lowercase letters are distinct. Other systems have used two other conventions. Some file systems
(most notably, the traditional MS-DOS FAT16 file system) store all names without reference to case. This
policy is often called case-insensitive. On these systems, not only are README and readme the same name,
there is no way to know which of them was used to create a file.

Some systems, most notably the Macintosh and Amiga, introduced a new (well, it was new in the
80s, and UNIX doesn’t change much) policy called case-preserving. On a case-preserving file system, the
exact name used to create a file is preserved in the file system, but matches against file names are typically
case-insensitive. Thus you can see that the file was named ReadMe when it was created, but if you try to
open a file named rEADmE, you get the same file anyway. This behavior is also quite common on the more
modern (well, relatively speaking) FAT32 file system used by Windows 95, and commonly used on flash
drives or external hard drives. However, it is dependent on the “long name support” introduced in that era,
and some devices (such as cameras) may fail spectacularly to recover gracefully if a file’s name uses this
feature.

For the most part, the UNIX shell is totally unaware of this, which can be a major source of surprises
when using a case-preserving file system. The most common case-preserving file systems in use today are
the native ones of Windows and Macintosh machines. Since OS X is a UNIX system these days, and many
users expect shell scripts to run in the various UNIX-like emulation environments available under Windows,
this may impact your scripts some day.

Some shells may offer extra options to provide for pathname expansion that ignores case. With shells
that do not, you have to be aware of the potential issues. Even if the shell handles this well, though, utility
programs may or may not do so reliably. Some programs may scan a directory looking for matching names
before trying to open a file, end up failing to see the file, and possibly later overwriting it. This is unusual, but
not unheard of. Your best allies in this are experienced users, who are typically familiar with the case han-
dling of their system and reasonably careful about it.

A common pitfall for users coming from DOS environments is to think that the pattern
. should match any file. However, this convention relies on the distinction between a file’s
name and the characters after the period, called the extension. UNIX has no such distinction,
and a file whose name does not contain a literal period (.) does not match this pattern. This
pattern also does not match dot files. It is not enough to match the period literally; the period
must be the first character in the relevant path component to match against a dot file.

In some cases, pathname expansion will not detect files that can be accessed explicitly
by name. There are three cases where this may apply. The first is case-sensitivity issues (see
the previous sidebar). The second is that some network disk services provide directories only
when they are explicitly requested; echo * lists only those directories that are in use, not the
ones that could be in use if you asked for them.

Finally, globbing relies on the ability to read directories, while access to files relies only on
the execute permission bit. This is a reasonably arcane distinction, which most people rarely
encounter. Normally, directories give neither or both read and execute permission to any
given user. However, it is possible to grant execute permission alone to a directory. This might

10436ch02final 29 10/23/08 10:13:27 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS30

be useful, for instance, in a public file server, allowing people to access files by name, but not
to obtain a listing of files. Globbing requires the ability to read the directory to obtain the list of
files against which a glob pattern is matched; without that, no file ever matches a glob.

Some shells offer an additional kind of pathname expansion called brace expansion. This
is not portable to standard shells, but this does not mean you can safely ignore it; it means
that, in some cases, file names with patterns like {a,b} will not behave as you expect them
to. Brace expansion is discussed in Chapter 7. It does not affect file names expanded through
pathname expansion, or the results of parameter expansion, so you do not need to worry
about it when interacting with generated file names.

Using Globs
All of the previous discussion is pretty useful, but it can be a bit hard to get a feel for how to use
globs without a few examples. This section introduces a few of the most common shell pattern
idioms and explains how each of them works; it also gives some key advice about using globs
effectively, both interactively and in scripts.

The pattern .??* matches any file beginning with a period and following it with at least
two characters; this is used to match dot files in a given directory. This pattern is constructed
to match files with names beginning with a period (.), but exclude the two special directory
entries . and .. (which match the current and parent directory, respectively). You might think
that, since the initial period has to be matched explicitly, you could use .?*, but the second
period in .. is not special and can be matched by a question mark. This pattern does not catch
files with names like .a or .b, which can be a problem.

To match any file with a name ending in .png or .gif, use a pattern like *.[pg][ni][gf].
In fact, this pattern also matches a number of other possible names, but luckily the number
of clashes is low. (This problem gets worse if you try to match many more file suffixes.) Pat-
terns like this are useful in cases where you can think of two or three likely file name suffixes
that might be in use, but you are not sure all of them will be in use. If you have a directory
containing a number of PNG files (using the common suffix) but no GIF files, and use the pair
of patterns *.png and *.gif, the second pattern matches no files, and is left untouched. By
contrast, the pattern *.[pg][ni][gf] matches all the PNG files and is replaced by their names,
even though there are no GIF files.

A similar technique is often used for case-insensitive file name matching; for instance,
you might use *.[Tt][Xx][Tt] to match files with a .txt suffix. By convention, when using sets
of character classes like this, you should use the same position in each class for a given compo-
nent. Thus [pg][ni][gf] suggests png and gif to the reader; if you wrote [gp][ni][gf], people
would think you were aiming for gng and pif.

Files with really long names often lend themselves to abbreviation using a wildcard
expected to match only one file’s name. This is probably one of the most common sources of
crazy or unplanned behavior in interactive usage; be careful when picking the patterns you
use! It is very easy to get thrown off by an * unexpectedly matching a very long string, or an
empty string, when you were looking at a particular part of a path name. This can be done
across multiple directories, as well; a Mac user might spell /System/Library/LaunchDaemons as
/S*/L*/L*ons. Anchoring the first and last characters of a file name often narrows down the
field very quickly.

Wildcards can also be used to avoid shell metacharacters without quoting; for instance,
a file named a;b can be referred to as a?b, as long as there are no other files matching the pat-
tern. The use of ? as a fill-in for spaces or other special shell characters is idiomatic.

10436ch02final 30 10/23/08 10:13:28 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 31

exercise caution

Be careful with wildcards. Typos can create horrible problems. One of the most common typos I’ve seen (and
made, repeatedly), is to try to remove .o files (created by the C compiler) and end up typing rm *>o. This
removes every file (except dot files) in the current directory and redirects its output (which is usually empty)
into a file named o. This typo may seem unusual, but the * is a shifted key on most US keyboards and so
is >. Just remember: There is no undo button. Whenever you’re about to type an rm command, especially an
rm -f, be sure to check the command line out to make sure you haven’t made any crucial typos. Do not alias
rm to rm -i; this is a horrible habit, which breaks a lot of useful scripted features. Worse, it will make you
careless. A poor-quality safety net is worse than no safety net at all.

Regular Expressions
A comprehensive review of regular expressions is too much to fit into a single chapter. Whole
books have been written on the topic. This section provides a basic grounding in regular
expressions, covering the main features of the most common varieties. Regular expressions
are primarily used by programs other than the shell, although many shells have a built-in ver-
sion of some command (typically expr) that uses them. However, they are not used in portable
shell syntax. (Some shells offer relevant exceptions, discussed in Chapter 7.) The term regular
expression is often abbreviated to either regexp or regex. While regexp is clearer to read, regex
is pronounceable; the plural is regexes (or regexps, which is still unpronounceable). I use the
abbreviation here for brevity.

There are two primary varieties of regexes; basic regexes (often called BREs) and extended
regexes (EREs). Each uses slightly different rules. The basic regex syntax is actually slightly
more powerful than the extended syntax, but it is harder to write clearly and concisely.
Many implementations offer additional features bolted on to either of these, making it hard
to be sure exactly which features are portable. What’s worse, not everyone implements the
official POSIX standard for regexes, so you cannot necessarily rely on the standard. The
default in most tools is to provide basic regexes with at least a few extensions, which may be
documented.

In addition to the traditional forms of regexes, there are other variants. The Perl program-
ming language introduced a number of additional features, which have become popular and
widely used. Many programs other than Perl now provide “Perl-compatible regular expressions,”
thanks to the efforts of the kind people at www.pcre.org. There are other pattern matching lan-
guages available, such as Lua’s patterns, some of which are much simpler than regexes.

In any discussion of regexes, credit must be given to Henry Spencer’s regular expression
library, released long enough ago that free software was a relatively new concept. Before POSIX
even existed, Henry Spencer wrote an essentially compatible clone (not derived from AT&T
source) of the V8 UNIX regexp() family of library functions. While most systems now provide
standard library functions to make regexes available to most programs, this was not the case
back then, and many programs offer regex support in the first place only because the Henry
Spencer regex library made it possible. It offered what were essentially extended regexes (and
still does in a few programs, I’m sure). This code was written in 1986 and is still found in a few
modern systems in compatibility libraries.

10436ch02final 31 10/23/08 10:13:28 PM

http://www.pcre.org

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS32

Basic Regular Expressions
Regexes are most famously used by the grep utility; its name is derived from the ed editor’s
usage g/regular-expression/p, meaning “global search for regular-expression and print.” In
fact, there are often several varieties of the grep utility on a system, and it may support more
than one variety of regex; this can be a portability problem if you depend on one of the exten-
sions. Toward the end of the chapter, Table 2‑8 shows the common variants you are likely to
encounter and where they are likely to be found. As with most tools, check the documentation
and any available standards, don’t just test behavior on a given system. This section begins
with a discussion of basic regexes, then goes on to cover extended regexes. Some newer soft-
ware now uses extended regexes by default, and behavior can vary surprisingly. However,
the most common utilities (grep, expr, sed) default to basic regexes. Because of this, I start
with basic regexes, then go on to a description of the differences between extended and basic
regexes; it mostly boils down to putting a backslash in front of anything cool in a basic regex.
This reverses the usual sense of backslash as suppressing special meanings.

Unlike shell patterns, regexes are considered to have matched if there exists a matching
string anywhere in the string being matched, even if it does not fill the whole line; this is simi-
lar to the behavior of a shell pattern with a * on each end. You can override this by anchoring
the regex, tying it to the beginning of the line with a leading ^ or to the end of the line with
a trailing $. The shell pattern hello is equivalent to the regex ^hello$. In some cases, a regex is
implicitly anchored; for instance, the expr utility’s colon (:) operator matches a regex against
the beginning of a string.

In regexes, the character that matches anything is period (.), not question mark (?). So, if
you want to match multiple greetings, you’d use h.llo as a regex, not h?llo. Character classes
are essentially the same, except that regexes use ^, not !, to negate a character class. (Some
shells support this syntax in character classes as well, as an extension.) Support for the POSIX
[[:class:]] feature (and the related =name= and .name. features) is slightly more common in
regex implementations than it is in shells, but it is still not portable enough to rely on.

You may have noticed that ^ has two different meanings in regexes. The regex [0-9]
matches a digit at the beginning of a string; the regex [^0-9] matches any character but a digit
anywhere in a string. Many seemingly intractable regex problems have turned out to be typos
closely related to this.

Where regexes really begin to differ from shell patterns is in the handling of *. In shell
patterns, the asterisk itself is capable of matching parts of a string. In a regex, it modifies the
previous character. The regex apples* matches either apple or apples (or applesssss, for that
matter). Instead of matching something in addition to the preceding s, the * modifies the s.
The * is called a repetition operator; it repeats something else, rather than matching anything
itself. If you want the behavior of a shell pattern *, it is spelled .* in regexes; that matches any
number of any character. Note that the repetition operator repeats the previous matching
construct; .* can match any number of different characters, not just the same character over
and over.

In fact, the * operator doesn’t really operate on characters. It operates on indivisible
chunks of regex, called atoms. A character is always an atom because there is no way to match
just part of it. Another way to create an atom is to group things manually, using parenthe-
ses. Material between \(and \) is called a subexpression, and is matched as a single unit.
For instance, the expression ba\(na\)* can match ba, bana, banana, or bananana, but it can-
not match banan. The n and a have been grouped into an atom. Character classes and the
period are also atoms. When an atom is repeated, it is possible for it to match a different thing

10436ch02final 32 10/23/08 10:13:28 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 33

each time. The regex [aeiou]* can match any string of vowels; each repetition of the atom is
checked separately.

The same rules that allow a subexpression to join multiple characters into an atom allow
multiple subexpressions to be joined; subexpressions can be nested. Good examples of nested
subexpressions are rare in basic regexes; the best uses for them rely on additional operators
not provided in historic implementations of basic regexes.

The more general repetition operator is \{x,y\}, indicating a repetition of between x and
y copies of the preceding character; if y is omitted leaving only \{x,\}, any number of cop-
ies greater than or equal to x are matched. If the comma is also omitted, exactly x copies are
matched. Thus \{x\} is precisely equivalent to \{x,x\}.

The majority of what you need to know to write basic regexes can be summed up with
a list of atoms and a list of repetition operators, as shown in Tables 2-3 and 2-4.

Table 2‑3. Basic Regular Expression Atoms

Atom	 Description

.	 Match any character

[...]	 Character class

\(...\)	 Subexpression

Anything else	 Individual characters are atoms

So, for instance, in the regex ab*, there are two atoms (a and b), and the repetition opera-
tor * modifies the second atom. In \(ab*\)c, there is a subexpression consisting of two atoms
and a repetition operator, and the whole subexpression is itself an atom. Repetition operators
are not atoms; they operate on atoms. An atom followed by a repetition operator is not an
atom anymore. If you want to make an atom containing a repetition operator, you must wrap
it in parentheses to create a subexpression.

Table 2‑4. Repetition Operators in Basic Regular Expressions

Operator	 Meaning

*	 Zero or more

\{x\}	 Exactly x

\{x,\}	 At least x

\{x,y\}	 Between x and y, inclusive

Backreferences
There is one other thing, which is neither an atom nor a repetition operator. In a basic regex,
a backslash followed by a single digit is a special construct called a backreference. As the name
suggests, a backreference is a reference to something earlier in the regex. When a group is
parenthesized, it becomes a subexpression. The backreference \1 refers to the first subexpres-
sion. Unlike a repetition operator, a backreference refers to the matching string rather than the
matching expression. So .\{2\} matches any two characters, but \(.\)\1 matches only two of
the same character. Backreferences are extremely powerful, and some edge conditions exist.

10436ch02final 33 10/23/08 10:13:29 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS34

Backreferences are counted by open parentheses, not closed parentheses; given the expres-
sion \(\(ab\)*c\)*, \1 refers to the outer subexpression and \2 to the inner subexpression. It
is not at all clear what should happen if you write \(\(b\)*\2\), and use of nested subexpres-
sions and backreferences within subexpressions is probably not safe or portable.

Using backreferences is a bit tricky. Very few regexes really need backreferences; in fact,
they are omitted in extended regexes (though some implementations offer them as an exten-
sion). Even worse, their performance can be incredibly bad; a carefully crafted regex with
many subexpressions and backreferences can take seconds or even minutes to match against
a string, even on ludicrously fast modern hardware.

Extended Regular Expressions
Extended regexes (often called EREs) are much more powerful than basic regexes in some
ways, but weaker in others. They are most prominently associated with the egrep utility. One
of the most obvious differences is the simplification of syntax; parentheses used for grouping,
and braces used for repetition, do not need backslashes in extended regexes. There are several
possible ways to get a literal open brace, but the only portable one is [{]. (More on this in the
“Common Extensions” section.)

Extended regexes offer two additional repetition operators, ? and +. The ? operator is
equivalent to {0,1}, and the + operator is equivalent to {1,}. Both offer greatly improved read-
ability, even though they do not offer new functionality.

One of the most significant enhancements of extended regexes is the alternation opera-
tor (|). This is usually pronounced “or,” not “pipe,” because it is the symbol used for logical or
bitwise or operations in some languages. In an extended regex, a|b matches either a or b. This
operator has a low precedence (lower than the joining of adjacent atoms), so hello|goodbye
matches either hello or goodbye, not hellooodbye or hellgoodbye. Furthermore, it applies to
atoms including subexpressions, which combines with nested subexpressions to make for
a number of interesting patterns. The extended regex ((0[1-9])|(1[12]))? matches any num-
ber from 01 to 12, or an empty string. Patterns like this can be used to check for somewhat
more structured data than can easily be checked for with basic regexes.

Extended regexes do not have backreferences (although many implementations offer
them as an extension). They do have subexpressions, though. See Table 2‑5 for the list of ERE
atoms.

Table 2‑5. Extended Regular Expression Atoms

Atom	 Description

.	 Match any character

[...]	 Character class

(...)	 Subexpression

Anything else	 Individual characters are atoms

The repetition operators are similar, although there are more of them, as shown in
Table 2‑6.

10436ch02final 34 10/23/08 10:13:29 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 35

Table 2‑6. Repetition Operators in Basic Regular Expressions

Operator	 Meaning

*	 Zero or more

?	 Zero or one

+	 One or more

{x}	 Exactly x

{x,}	 At least x

{x,y}	 Between x and y, inclusive

The interaction between the alternation operator and other components can be a bit con-
fusing; even experienced programmers sometimes forget how it works. Table 2‑7 illustrates
how to use it.

Table 2‑7. Alternation and Atoms

Expression	 Meaning

a|b	 a or b

good|bad	 good or bad

c|hat	 c or hat

(c|h)at	 cat or hat

a|b{2}	 a or bb

(a|b)c	 ac or bc

(a)|(b)c	 a or bc

(a|b){2}	 aa, ab, ba, or bb

The case in which I have most often gotten confused with alternation is the difference
between (expr1)|(expr2) and (expr1|expr2). These are, in fact, completely interchangeable,
as long as you are not going to refer back to the subexpression later and as long as you don’t
have any other text in your pattern. If there is other text, though, they are different. Consider
the following example:

(h[eu]llo)|(good(bye| night)) (world|moon)

It is pretty obvious what this is doing; it’s matching any of four statements (“hello” or
“hullo” or “goodbye” or “good night”), followed by either “world” or “moon.” Unfortunately,
while this is obvious, it is also wrong. In fact, it can match either “hello” or “hullo” with noth-
ing following them. The | between the hello and goodbye subexpressions is dividing the whole
expression; the space before (world|moon) is not special in any way in a regex, so it just con-
tinues extending the subpattern on the right side of the |. In terms of Table 2‑7, this is actually
(a)|(b)c, not (a|b)c.

10436ch02final 35 10/23/08 10:13:30 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS36

Common Extensions
A number of extensions to both basic and extended regexes are quite common. Many imple-
mentations of basic regexes allow \? and \+ as synonyms for the extended regex ? and +
repetition operators. Some also allow alternation using \|. Similarly, some implementations
of extended regexes support backreferences. Another very popular extension is the special
pseudo-anchors \< and \>, which match the beginning and end of a word; these may be
found in both basic and extended regex implementations. Some systems spell these instead
as [[:<:]] and [[:>:]]. Historical egrep did not support \{ as a literal open brace, but many
modern implementations do. The POSIX standard specifies that a { not followed by a digit
is also literal, but do not rely on this; even if computers always understood it, programmers
would not.

Most modern systems tend to offer a sort of hybrid mode in which extended regexes sup-
port backreferences, and basic regexes support at least a few of the extended regex operators.
On some systems, a plain ? may work even in an alleged basic regex. Text editors that support
regexes are particularly likely to offer strange hybrid feature sets.

In terms of portability, nearly every system has some programs that support extended
regexes, but many programs provide BREs by default, or exclusively, for compatibility reasons.
Table 2‑8 lists a few of the most common programs that support regexes of one variety or
another.

Table 2‑8. Regular Expression Support

Program	R egex Type	N otes

awk	 Extended	 Also true of awk variants, such as gawk or mawk.

emacs	 Basic	� Also supports ? and + (without backslashes) and \| as a synonym for
ERE |.

expr	 Basic	 Some versions may offer ?.

sed	 Basic	 Very few versions support ?.

grep	 Basic	 See also egrep.

egrep	 Extended	 �Most commonly known variant; also known as grep -E on some sys-
tems.

fgrep	 N/A	 Does not actually use regexes; matches fixed strings only.

vi	 Basic	 nvi has an option to switch to extended REs; vim supports \? and \+.

Replacements
As has been previously pointed out, patterns are usually implicitly anchored to the ends of
a string; to match a pattern anywhere in a string, you must write *pattern*. Regexes, by con-
trast, are not usually anchored. There is a particularly important reason for this; it is often
desirable to be able to replace the matching text with something else. The most common
place this is encountered in scripting is in sed’s s/pattern/replacement/ operator. This finds
any chunk of a string matching pattern and replaces it with replacement. If the pattern were
implicitly anchored and had to start and end with .* to match text in the middle of a string,
replacements would always replace the whole string. This is not usually what you want.

10436ch02final 36 10/23/08 10:13:30 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 37

In general, replacement text allows some reference back to the matched string. In general,
there are two ways to do this; one is by using \N to refer to subexpressions, much like a back-
reference. The other is to use & (or \& in a few programs) to refer to the entire matched string.
The sed substitution operator allows repeated matches, each starting from immediately past
the previous match, with the g suffix; s/./&-/g replaces word with w-o-r-d-.

Elaborate replacement strings using subexpressions are one of the places where the sim-
pler syntax of extended regexes is the most rewarding. It is fairly tedious to type a pattern with
multiple subexpressions. Consider this simple pattern for replacing Random, John Q. with
John Q. Random:

s/\([^]\{1,\}\), \([^]\{1,\}\) \([^]\{1,\}\)/\2 \3 \1/
s/([^]+), ([^]+) ([^]+)/\2 \3 \1/

The extended regex is quite a bit shorter and easier to read. Note that while extended
regexes may not support backreferences, replacements using extended regexes typically sup-
port references to subexpressions.

Using Regular Expressions
Regular expressions are mostly found in external utilities (although some shells may imple-
ment expr as a builtin for performance reasons). Because of this, in cases where you can use
a shell pattern instead of a regex, it may be more efficient to use the shell’s built-in pattern
matching, such as the case statement, instead of using an external utility. When using POSIX
shells, the pattern-matching parameter substitutions (discussed in Chapter 7) make it even
easier to get a lot done without needing regexes.

The expr utility offers a fairly flexible regex feature; expr string : pattern performs
a regex match of string against pattern. In this case, the regex is implicitly anchored to the
beginning of the string, as though it had a leading ^; to bypass this, start your pattern with .*.
The value produced by expr depends on whether pattern has subexpressions. If there is at
least one parenthesized subexpression, expr prints the contents of \1, or an empty string if
there is no match. Otherwise, expr prints the length of the match, or 0 if there is no match:

$ expr foobar : foo
3
$ expr foobar : '\(foo\)'
foo

Unlike grep, expr does not consider a zero-length match to be a success; to grep (and most
editors), the pattern b* matches the word hello because the word hello contains zero or more
repetitions of the letter b. To expr, only a match of at least one character is a real match.

One use of the expr utility is extracting parts of file names. A pair of common utilities,
basename and dirname, allow you to extract part of the name of a file from its path. These utili-
ties are not completely portable, but you can do the same thing with expr:

$ expr /path/to/file : '\(.*\)/[^/]*'
/path/to
$ expr /path/to/file : '.*/\([^/]*\)'
file

10436ch02final 37 10/23/08 10:13:30 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS38

Each of these expressions matches the same string; an arbitrarily long string of any char-
acters whatsoever, followed by a slash and then any string of characters other than slashes.
The difference is in which part of this pattern is marked as a subexpression; in the first pat-
tern, it is the material before the slash, and in the second, it is the material after the slash. One
weakness of expr is that you can only use it to extract the first subexpression of a regex. If you
need to use a subexpression for grouping before the material you want, you will have to do
something more elaborate to extract the desired text. However, in the most common cases,
you can get what you want.

The preceding example assumes there is always a slash in the expression. What if there
isn’t?

$ expr filename : '\(.*\)/[^/]*'

$ expr filename : '.*/\([^/]*\)'

The expression doesn’t match because there’s no slash. So, of course, the thing to do is
make the slash optional:

$ expr filename : '\(.*\)/\{0,1\}[^/]*'
filename
$ expr filename : '.*/\{0,1\}\([^/]*\)'

This doesn’t work either. The second result might surprise you, but with the slash made
optional, the .* on the left end of the expression can match the whole string; there is nothing
to force it to leave any characters for the subexpression on the right to consume. In practice,
you have to use another layer of testing to determine whether there is a slash before trying to
split the string around it. (More advanced pattern-matching tools, such as the pcre library,
could do this in one pass.)

Regexes are one of the most powerful tools of the UNIX system. With experience and
practice, they become second nature; nothing is so maddening as a program where search-
ing does not support regular expressions. The biggest problem users tend to have early on is
confusing regexes with patterns; there seems to be no cure for this but practice and habit. In
general, patterns are used only in the shell and in file name matching; everything else uses
regexes. The equivalences are simple enough, and anything complicated in a regex gener-
ally cannot be done with a shell pattern to begin with. The hard part is getting the habit for
which one to use when.

Something that might help you develop a feel for the differences between patterns and
regexes is to run some tests and experiment. The following script shows how different strings
do, or do not, match against patterns and regexes. (An explanation of how this script works will
have to wait for a couple of chapters.)

#!/bin/sh
pattern="$1"
shift
for string

10436ch02final 38 10/23/08 10:13:31 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 39

do
 if expr "$string" : ".*$pattern" >/dev/null 2>&1; then
 echo "regex: $string matched $pattern."
 else
 echo "regex: $string didn't match $pattern."
 fi
 case $string in
 $pattern) echo "shell: $string matched $pattern.";;
 *) echo "shell: $string didn't match $pattern.";;
 esac
done

To use this script, save it in a file and mark it as executable (chmod +x filename). Run it
with at least two arguments; the first is a pattern you wish to test, and the second and later
arguments are strings you wish to see matched against the pattern. Here’s a sample:

$./patcheck '*' aardvark
regex: aardvark didn't match *.
shell: aardvark matched *.

Be aware that this script does not try to anchor regexes for you, and it even suppresses the
default anchoring on the left provided by expr. If you want to compare only against anchored
regexes, change the expr line to read as follows:

 if expr "$string" : "$pattern$" >/dev/null 2>&1; then

Regexes offer a number of improvements over shell patterns. The repetition operators
allow for much more specific tests for common patterns, such as a string of unknown length
containing only digits; the regex [0-9]* simply can’t be expressed correctly in shell patterns.
You can, however, use the pattern *[!0-9]* to detect any string that does not contain only
digits.

Many utilities default to basic regexes, but optionally accept extended regexes. For the
most part, if you haven’t got a specific reason to think otherwise, any given program prob-
ably uses basic regexes as a default, usually with some extensions. More tips on managing the
diversity of utility behaviors may be found in Chapter 8.

Replacing Patterns with Regular Expressions
Mechanically, it’s quite easy to replace a pattern with a comparable regular expression. What
is not so easy is getting the shell to use regexes in these places. The following discussion
assumes some familiarity with statements and control structures, which are explained in the
following chapters; you can come back to it later if too much of it is unfamiliar.

The two primary uses of shell patterns are file name matching and case statements.
Replacing globs with regexes is not always easy. In the simplest case, you can use ls and grep
together to generate a list. If you want a list of all files whose names have only digits in them
before a particular suffix, such as .txt, you can express this as follows:

$(ls | grep ‘^[0-9]*.txt$’)

10436ch02final 39 10/23/08 10:13:31 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS40

The ls command, when running in a pipeline, lists each file name on a separate line by
default; the grep command then shows only the lines matching the given regex. The $() con-
struct (explained in Chapter 5; not portable to a few older shells) substitutes the output of
this command, split into words. For files not necessarily in the current directory, this can be
harder, and you may need to use the find command.

The case statement is hard to replace idiomatically. My advice is to replace it with a series
of if and elif statements. Because only one branch of a case statement can match, these
statements should be nested:

if expr "$1" : "$2" >/dev/null 2>&1; then
 echo "$2"
elif expr "$1" : "$3" >/dev/null 2>&1; then
 echo "$3"
elif expr "$1" : "$4" >/dev/null 2>&1; then
 echo "$4"
elif expr "$1" : "$5" >/dev/null 2>&1; then
 echo "$5"
else
 echo "no match"
fi

Another option, which may be more expressive in some cases, is to use regexes (and sub-
stitution) to generate a new string that is more amenable to pattern matching. Imagine that
you wished to check for each of four flags, as in the previous example:

matches=""
expr "$1" : "$2" > /dev/null 2>&1 && matches="2$matches"
expr "$1" : "$3" > /dev/null 2>&1 && matches="3$matches"
expr "$1" : "$4" > /dev/null 2>&1 && matches="4$matches"
expr "$1" : "$5" > /dev/null 2>&1 && matches="5$matches"

case $matches in
2) echo "$2";;
3) echo "$3";;
4) echo "$4";;
5) echo "$5";;
*) echo "no match";;
esac

While this structure separates the matching operation into two passes, it preserves the
semantics of the case statement precisely. On the down side, it does require processing all four
tests before evaluating any of them.

Common Pitfalls of Regular Expressions
The two most common problems with regexes are matching too much and matching too little.
In particular, it is extremely easy to be surprised when a .* matches nothing, and you expected
it to match something, or to be surprised when it matches everything.

10436ch02final 40 10/23/08 10:13:31 PM

Chapter 2  ■﻿   PATTERNS AND REGULAR EXPRESSIONS 41

Some time ago, I wrote a script in which I intended to reverse the first two words of a line:

sed -e 's/\([^]*\) \([^]*\)/\2 \1/'

This did exactly what I expected; it selected everything up to the first space, and the next
block of spaces, and reversed them. But then I wanted it to keep doing this to additional pairs,
so I modified it:

sed -e 's/\([^]*\) \([^]*\)/\2 \1/g'

This seemed to work, but then I tried it on another system, and it didn’t seem to work at
all. While a b became b a, a b c d became b ac d. (In fact, there was a trailing space after this,
which I did not initially notice.) In fact, “buggy” system was correct. The first iteration matches
a b. The second matches an empty string of nonspaces, a space, and the letter c, and reverses
them. Because I “knew” that my intent in writing [^]* was to match the largest available
series of non-words, I forgot that the regex takes the first match it can find, matching as much
as it can, not the longest match it can find no matter where it has to start to make that match.
Interestingly, several systems had a bug, which caused them to skip that first character in this
circumstance and “correctly” do what I wanted. (The bug seems to have been an unusual edge
condition.)

Forgetting anchors or including extra anchors are both common mistakes made when
trying to match something specific. Just during the time I’ve been working on this book, I’ve
been bitten several times by the fact that expr anchors regexes implicitly to the beginning of
the string.

When you have an expression that could be seen as matching a string in more than one
way, the general rule is that the leftmost expressions are greedy first. So, if part of a string
could go in either of two subexpressions, it will be in the leftmost one.

The distinctions between basic and extended regexes are another common source of con-
fusion. If you have been using one heavily, and you switch to the other, all sorts of things go
wrong. Subexpressions become literal parentheses, and vice versa; both are confusing. There
is no such thing as a nontrivial regex that can be used both as a basic and an extended regex.
If you have two editors, one that uses each syntax, expect to spend a lot of time puzzling over
warnings about invalid repetition operators and unmatched parentheses, or wondering why
a search didn’t turn something up that is right there in the page.

What’s Next?
The ability to decide which of several pieces of code to execute, or to execute code repeatedly,
is essential to programming. Chapter 3 introduces the basic control structures that make the
shell into a programming language rather than a mere macro language, as well as some of the
tools the shell provides for the creation and manipulation of data files.

10436ch02final 41 10/23/08 10:13:31 PM

10436ch02final 42 10/23/08 10:13:31 PM

C h a p t e r 4

Core Shell Features Explained

This chapter gives a more detailed explanation of the structure of shell programs and the
interactions between some of the basic features introduced in Chapter 1. This chapter also
introduces the basic grammatical structure of shell programs, then explores the interactions
of the quoting, substitution, and globbing mechanisms.

There are a number of exceptions and special cases, which are explained throughout the
chapter, but an overview makes it easier to follow what happens. The first thing the shell does
is split input into words and special punctuation items, called tokens. After this, substitutions
and expansions are performed, replacing variable references with the contents of variables,
shell glob characters with file names, and so on. The order of operations is as follows:

	 1.	 Tokenizing. The shell splits inputs into tokens. Keywords and special shell syntax
characters are identified at this point, before any substitutions or expansions have
occurred.

	 2.	 Parameter and command substitution. Parameter and command substitutions are
performed. Quoting may cause some strings that look like parameter or command sub-
stitutions to be ignored. (Command substitution is explained in Chapter 5.)

	 3.	 The results of substitution are subject to field splitting.

	 4.	 Globbing is performed on any words that have unquoted glob characters.

	 5.	 Commands and control structures are executed.

There are some complications (for instance, some shells might perform tilde expansion
prior to parameter substitution), but this basic order of operations covers what the shell really
does. Most of the time, confusion about what a script will do can be resolved by thinking
through these steps. Why doesn’t this script work?

IF=if
$IF true; then echo hello; fi

It doesn’t work because tokenizing happens before parameter substitution. The shell
identifies $IF as a word, not a keyword. When it is later replaced with text, it is too late for it to
try to become a keyword.

Similarly, the expansion of a glob pattern into file names occurs after parameter expan-
sion. Thus, even if there were a file named $PATH, echo * would not produce the same output
as echo $PATH.

69

10436ch04final 69 10/23/08 11:01:03 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED70

The case statement provides exceptions to rules about what happens after substitution;
there is neither field splitting nor globbing after substitution in the control string or the pat-
terns of a case statement. In fact, in the patterns, quoting suppresses pattern matching rather
than preventing globbing.

Parsing
When reading input, the shell begins by breaking input into a collection of symbols, called
tokens. For instance, in a simple shell command such as echo hello, world!, there are four
tokens. The first three are the command name and its arguments, and the fourth is a new line
(see Table 4-1).

Table 4-1. What the Shell Sees

Token	 Description

echo	 Word

hello,	 Word

world!	 Word

<newline>	 Command separator

The spaces separating the arguments are not tokens; they just separate tokens. The
meanings of tokens, and even which tokens a given string contains, are sometimes affected
by context; something might have special meaning on one line of a shell script and be an
ordinary word on another.

Tokens
There are several different kinds of tokens. The most common are plain words, such as com-
mand names and arguments. Some words that have special meaning to the shell, such as if or
for, may be special tokens called keywords. Finally, special shell punctuation, such as redirec-
tion operators or semicolons used to separate commands, are also tokens.

The special characters are as follows:

| & ; < > () $
` \ " ' <space> <tab> <newline> *
? [# ˜ = %

Not all of these characters are always special; some may be special only in specific con-
texts. (In some traditional shells, ^ is also special and a synonym for |.)

Anything that is quoted, or which results from substitution, is always a plain word even if
it looks like something else. For instance, a new line is normally a token that can end a com-
mand. However, a new line in quotes is no longer a special token. Instead, it is just another
character that is part of a normal shell word. In this example, there are three tokens:

echo "hello,
world"

10436ch04final 70 10/23/08 11:01:03 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 71

The first token is echo. The second is the quoted string hello,<newline>world, with a new
line between the comma and the w. The third is the new line after the quoted string. Because it
is outside a quoted string, that new line is a token. Similarly, any quoted characters at all in a
word ensure that it is treated as a plain word, never as a shell keyword. The text \if is simply a
plain word if, not the beginning of a control structure.

When forming tokens, the shell sometimes discards things; for instance, unquoted
whitespace (such as spaces or tabs) separates tokens, but does not itself become a token. The
process of splitting input into words around space is called word splitting. If the shell encoun-
ters a sharp (#, also called pound, hash, or octothorpe) while looking for tokens, it reads from
that character to the end of the current line and discards the results as a comment. As a matter
of style, many programmers prefer to only start comments at the beginning of a line, but it is
often easier to read a script with short comments after individual lines.

The underlying principle of the shell’s token parsing, common to shell and to many other
languages, is that a token is always the longest possible series of characters. This is often called
the maximal munch rule. While a # may start a comment, it can also be part of a word. Here’s
an example of how this works:

echo a #b
echo c# d

a
c# d

In the first line, the first argument ends at the space. The # is encountered in a place where
it would have to start a new token, so it starts a comment; the #b is discarded. In the second
line, the # occurs as part of a word. Since # can be part of a word, it simply is, and it does not
start a comment is. Thus, if there is ambiguity about whether a character is part of the current
token or starts a new token, it is always part of the current token.

Similarly, these two lines are very different:

ls hello 2>error
ls hello2>error

The first line tries to list the file hello, sending any error messages to the file error. The
second line, however, tries to list the file hello2, sending any output to the file error. The 2
can be part of the word, so it is treated that way. This is a quirk of redirection parsing. You do
not need space before a redirection if it is of standard input or standard output, but if you are
modifying one of the other descriptors, you generally need a space in front of the redirection
so the shell doesn’t interpret the descriptor number as part of the previous word.

The redirection operators highlight this because the whole redirection operator is a
single token. Thus a number followed by a greater-than or less-than sign is a redirection, but
a number separated from a greater-than or less-than sign is not. However, that works only if
the number is itself looking like a token; if it is the last part of the previous word, it can’t start a
new token. This also shows why you cannot use a variable to create a new file descriptor:

logfd=3
exec $logfd>/tmp/log.txt

10436ch04final 71 10/23/08 11:01:03 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED72

As described previously, this ends up trying to execute the command 3. You cannot
expand variables into special tokens, only into plain words.

On the other hand, the target of a redirection can be quoted, can result from substitution
or globbing, or even both.

exec 3>"$logfile"

This does exactly what you would expect: it expands the variable $logfile and redirects
descriptor 3 to it. The redirection (3>) is a token; the thing redirected to is a separate token,
which can be any word.

Words and Keywords
A token such as if or while is called a keyword, and can only be recognized in certain contexts.
Tokens with no special meaning to the shell are called words. A word may have the same spell-
ing as a keyword but is not treated specially by the shell. For instance, in the following script
fragment, if is just a word, not a keyword:

echo if

The results of substitution, globbing, or quoting are always words. As an example, con-
sider the following script fragment:

X="Y=3"
$X

Y=3: not found

While the sequence Y=3 would normally be a variable assignment, it resulted from substi-
tution, so it became a plain word. The right-hand side of an assignment can be any word and
can result from substitution or globbing. However, the variable name and equals sign must be
literals. Likewise, a redirection operator must be a literal, but the name of the file to redirect to
can be any word, including one resulting from substitution or globbing. (You can get around
this; see the “The eval Command” section in Chapter 5.)

Context often determines the meaning of something to the shell. Context determines
whether a new line terminates a command or is simply more whitespace. As with some other
languages, the shell interprets a new line as ending a command when the command line so far
is grammatically valid and otherwise expects additional input. Similarly, the same characters
that would be a variable assignment at the beginning of a line are just another word later in a
line:

echo A=B

A=B

10436ch04final 72 10/23/08 11:01:04 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 73

The shell usually looks for keywords only in particular places, such as the beginning of a
line. Otherwise, words are simply accepted as tokens producing a series of plain words with no
special significance to the shell. In the standard shell, the keywords are as follows:

! { } case do done

elif else esac fi for

if in then until while

Command Lists
In the examples so far, simple commands and pipelines have been used as the controlling
expressions for if and while statements. In fact, the controlling expressions for these have the
same grammar as their bodies and are sequences of commands called lists. A list is a series of
commands or pipelines, usually joined by some combination of semicolons (;), new lines, and
ampersands (&), and terminated by one of these. In nearly every case, you can replace a new
line with a semicolon. The shell does not distinguish between these two forms of the same
command:

if test -f "$file"; then
 echo "$file exists."
fi
if test -f "$file"; then echo "$file exists." ; fi

A series of commands entered on the command line are a list, grammatically. The shell
determines the end of a list to have occurred when a special keyword or token shows up that
ends the list. For instance, the grammar of a simple if-then-fi statement is as follows:

if list
then list
fi

Starting from an if, the shell reads commands until it encounters a then. The set of com-
mands read is a list. The exit status of a list is the exit status of the last pipeline within the list,
just as the exit status of a pipeline is the exit status of the last command within that pipeline.
The exit status of the various flow control statements is usually zero if no code was executed,
or the exit status of the last code executed. The following contrived example illustrates this:

while if true; then false; fi do
 false
done

The if statement used as a conditional for the while loop always executes its body, which
consists of a single false command. The overall exit status of the if statement is the exit status
of the last statement executed, the false command, so the while loop terminates immediately,
and the exit status of the whole chunk of code is zero (indicating success). The false com-
mand inside the while loop is never executed.

10436ch04final 73 10/23/08 11:01:04 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED74

flexible grammar

You may have been surprised to see no semicolon after the fi ending the if statement. The semicolon after
true is needed because the shell has no other way to recognize that then is intended as a keyword rather
than an argument to the true command. Similarly, the semicolon after false is necessary. However, after
the shell has detected the fi token, it knows that it has finished parsing the if statement; it does not need a
special separator or terminator to tell it to start looking for either a keyword or another statement.

While tricks like this can make scripts several characters shorter, you should generally avoid them. Write
for clarity first. In general, expand constructs onto multiple lines. The shell will not be any slower, but future
readers of your code will find it more comprehensible.

Similarly, the if statement’s controlling expression can be any list, not just a single com-
mand. This list can contain a series of commands, including other conditional statements. For
instance, the following example asks the user how picky it should be before asking another
question:

echo "Would you like me to be picky?"
read picky
echo "So, do you have any grapes?"
read answer
if case $picky in
 [Yy]*) test X"$answer" = X"yes";;
) case $answer in [Yy]) true;; *) false;; esac ;;
 esac
then
 echo "You said yes!"
else
 echo "I don't think you said yes."
fi

The condition for the if statement is a pair of nested case statements. If the user’s answer
to the first question begins with either a capital or lowercase Y, the program will accept only
the exact text “yes” as an answer. Otherwise, the program will accept any string starting with
a capital or lowercase Y as being close enough to a “yes.” In each case, the exit status is sim-
ply the status of the last exiting command: either the test command, used to check for the
answer, or the true or false commands used to yield a status from the second case statement.

New lines and semicolons are mostly interchangeable as command separators, with the
exception that the shell will politely ignore a series of blank lines but will object to a series of
semicolons. Each semicolon must follow a command. Regardless, whether you use semicolons

10436ch04final 74 10/23/08 11:01:04 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 75

or new lines, each command is executed sequentially, and each command completes before
the following command starts.

While ampersands are syntactically command separators, their semantics are different.
When a command is followed by an ampersand, the command is run asynchronously; the
shell continues immediately, while the command continues running at the same time. This
is called running the command in the background. While the most common usage of this on
the command line is to run a single command in the background, the ampersand is simply a
generic command separator; you can also write multiple commands on a line, separated by
ampersands. Each command that is followed by an ampersand is run in the background.

Short Circuits
There are two other command separators, which perform logical tests. They are the “and”
operator (&&) and the “or” operator (||). The exit status of a pair of commands joined by && is
true if both commands had a true exit status, and false otherwise. Similarly, the exit status of a
pair of commands joined by || is true if either command had a true exit status, and false other-
wise. As in many programming languages, the shell only executes the second command if the
exit status of the pair has not already been determined; this is called short-circuiting. This can
be used to express the same functions as an if statement, but is shorter; for simple code, it is
often idiomatically better to put the operations together like this. For instance, the following
idiom emits a logging message if the variable verbose has been set to true:

$verbose && echo >&2 "Processing $i..."

When the first command supplied to one of the short-circuit operators is an imperative,
the meaning is reasonably easy to keep in mind. For instance, the following code fragment
might be described as “remove the file or emit an error message”:

rm $file || echo >&2 "Could not remove $file."

When a command line contains only the previously discussed command separators, such
as semicolons, commands are simply treated in order. The logical short-circuit operators,
however, are special; commands joined with these operators are treated more like a single
command. For instance, the following fragment has an exit status of success:

false && false; true

The second false is not executed, but the semicolon separates the whole && operation
from the true command. The way in which commands group more closely around the logical
operators than around the other command separators is often described as the logical opera-
tors having higher precedence. It is, however, possible to force the shell to group the second
two commands together. To do this, you must tell the shell where you want the lists to be
formed.

10436ch04final 75 10/23/08 11:01:04 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED76

Explicit Lists
You can join a series of commands together into a single list, which can then be joined with
other lists using pipes, used as one side of a short-circuit operator, or otherwise treated as a
single unit. There are two ways to do this. The first is to put a list of commands inside braces
({}); such a list is often called a compound statement. In this case, the list of commands must
be terminated by a statement terminator, such as a semicolon or new line; otherwise, there is
no way for the shell to recognize that the terminating brace was not simply a parameter to a
command. In fact, some shells (bash and zsh) recognize the trailing brace without an explicit
terminator. Do not rely on this, but do not rely on being able to use an unquoted } as an argu-
ment part way through a list either.

Grouping makes a group of commands act like a single command. For instance, the previ-
ous example can be converted using braces to separate commands:

false && { false; true; }

This now has an exit status of false; the initial false command generates a false return
code, so the compound command in braces is not executed.

The other way to group commands is to put the series of commands inside parentheses
[()]. Parentheses have an additional effect beyond forcing commands into a single list; they
create a new shell process, called a subshell. Subshells are explained in more detail in Chap-
ter 5. In general, commands within a regular list can affect the environment of the shell, but
commands within a subshell have no effect on the environment of the rest of the shell pro-
gram. On many platforms, subshells are substantially more computationally expensive than
compound statements. Avoid using them when you don’t need to.

Debugging SUBSTITUTION and Quoting

Throughout this chapter, you may find yourself unsure about the interactions of different kinds of quoting
and substitution (or globbing). The following simple script shows you exactly what arguments it ultimately
received:

#!/bin/sh
echo "$# argument(s):"
for arg
do
 echo "'$arg'"
done

Save this script to a file named printargs somewhere in your path, and make sure it is executable
(chmod u+x). The special variable $# holds the number of arguments given to the script. To run the script,
invoke the shell on the test file with whatever additional arguments you want:

10436ch04final 76 10/23/08 11:01:05 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 77

Shell Quoting
Quoting is the process of suppressing the special meaning of a character. Three different kinds
of quoting are provided by the shell. Backslashes, often called escapes, suppress the special
meaning of a single character and work in almost every context. Single quotes are used for
purely literal text, while double quotes allow some of the shell’s substitution behaviors.

Experienced UNIX users looking for a prank often start by creating files in a novice’s home
directory, which are hard to remove. The simplest way, addressed briefly in the introduction,
is to put spaces in the name of a file. Each of the quoting mechanisms can overcome this.

Escaping Characters with a Backslash
The backslash is the most complex quoting mechanism because its behavior is almost, but not
quite, perfectly consistent. Normally, a backslash followed by any other character is treated by
the shell as that other character, deprived of any special meaning; this is called an “escaped”
character. A backslash followed by a space is a space character that does not separate words. A
backslash followed by a double quote is a double quote character that does not begin a quoted
string. A backslash followed by a backslash is just a plain old backslash.

The first major exception is that a backslash at the end of a line does not create an escaped
new line character. Instead, the backslash and the new line are both removed. Of course, it
would be too simple if this were always true. If the backslash is inside a comment, it is com-
pletely ignored, but the new line has its normal effect. This is the backslash equivalent of the
400-year rule for leap years, and it comes up about as often.

printargs foo bar

2 argument(s):
'foo'
'bar'

A bit of explanation may be in order. The initial echo command uses quotes because (and) are spe-
cial characters to the shell. Note the unusual quoting around $arg. That is a double quote, a single quote,
$arg, a single quote, and a double quote. The double quotes ensure that the shell displays the argument
exactly as it was passed in, and the single quotes around it make it easier to see whether the argument
begins or ends with any spaces or tabs. Because the single quotes occur inside double quotes, they have no
special effect; they are just plain characters that are then echoed. If you still have questions, keep reading,
the rest of this chapter explains this in more detail.

The new line before do is there for compatibility with a few old shells that did not handle the shorter
for arg; do syntax for a for loop without an in clause.

10436ch04final 77 10/23/08 11:01:05 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED78

The second is that, inside double quotes, backslashes are not mostly suppressed by the
shell; they escape only dollar signs, new lines, backticks (grave accents), double quotes, and
backslashes. A backslash followed by anything else is just a backslash in this context.

The third exception is that backslashes are in no way special inside single quotes. No mat-
ter how many or how few backslashes you put between single quotes, or what comes after
them, they are just backslashes.

There is one other major source of confusion: Many programs do special things with
backslashes. For instance, consider what happens if you use echo to test the behavior of back-
slashes in a single-quoted string:

$ echo '\\'

You would expect this to produce \\ as output. In most shells, it will. However, if you try
this in zsh, you get only a single \. The problem is that, while the shell has not done anything
special with the backslash, the built-in echo in zsh does, in fact, use backslashes specially. You
can try to outsmart the shell by calling /bin/echo explicitly, but there is an astounding variety
of ways in which the echo command can differ from one system to another. Utility portabil-
ity is discussed in more detail in Chapter 7. In the meantime, be aware that people have been
complaining about the complete nonportability of any but the simplest uses of echo for well
over 20 years.

SLASH AND BACKSLASH

Many users find it difficult to distinguish between forward slashes and backslashes. On a US keyboard, the
forward slash is the one under the question mark; it is the one that is leaning “forward”—that is to say, the
top is farther to the right than the bottom. This confusion is amplified by the tendency of Windows users to
think of backwards slashes as path separators, while UNIX users tend to use forward slashes. (In fact, under
the hood, Windows uses forward slashes, too; the command interpreter translates backslashes into forward
slashes.)

My first thought was to say, “Slash is the one that is used in URLs,” but I have seen hundreds of adver-
tisements, business cards, and other things that use backslashes. The problem seems to be not only that
people are not sure which one they want, but that many people have the words themselves confused, and
thus carefully verify the word “backslash” only to actually mean the thing that everyone else calls a forward
slash.

To save you trouble, here’s the complete list:

	 *	 Forward slash: /

	 *	 Backward slash: \

	 *	 In general, unqualified slash means forward slash.

10436ch04final 78 10/23/08 11:01:06 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 79

Escaping Characters with Single Quotes
Single quotes are very simple. Absolutely everything from a single quote to the next single
quote is literal. New lines, backslashes, dollar signs, it doesn’t matter. Everything is literal.
This means that there is no way to include a single quote inside a single quoted string. You will
occasionally see this idiom:

echo 'Peter'\''s favorite language'

Peter's favorite language

The first single quote starts a string, and the second ends it. This is followed by an
unquoted backslash, which escapes the next character, which is a single quote. This results in
a quoted single quote; because it is quoted, it does not start a new string. The next character
after that is another single quote, starting a new single-quoted string that runs to the end of
the line. Because the character between the two strings was not an unquoted word separator,
the two strings, and the character between them, are joined into a single string.

Escaping Characters with Double Quotes
Double quotes suppress the meaning of many special characters, but parameter substitution
(see the “Understanding Parameter Substitution” section later in this chapter) occurs normally
within them. Double quotes are probably the most commonly used form of quoting, as they
give the useful combination of allowing for parameter substitution while preventing field split-
ting. Knowing this, you now know what one of the lines in the argument printing script does:

echo "'$arg'"

The double quotes eliminate the special meaning of the single quotes, allowing the con-
tents of the variable $arg to be expanded. However, the double quotes perform an additional
function, which is to prevent globbing or field splitting from being performed on the contents
of the variable $arg. Thus if the user passed a string with multiple spaces in as an argument,
the string echoed back by the shell will preserve those spaces.

Quoting Examples
The interactions of the different quoting mechanisms can be fairly confusing at first. In
general, use single quotes for maximal predictability, double quotes for material that needs
parameter substitution, and backslashes to suppress the value of a single special character,
such as $.

10436ch04final 79 10/23/08 11:01:06 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED80

There are many things you may wish to write that cannot be done within a quoted string
of any sort or are excessively awkward in one kind of string but easy in another. In many cases,
the simplest thing to do is to use a double-quoted string and use backslashes to suppress addi-
tional special meanings. However, if you have a string that uses a great number of backslashes
and special characters, you may find single quotes preferable. If you find single quotes useful,
but you want to interpolate a single variable, the following idiom may prove useful:

'some text'"$VAR"'more text'

This concatenates the value of $VAR with the surrounding text, while protecting that text
from all varieties of shell substitution.

Substitution and Expansion
When processing input, the shell replaces parameters with their values. This replacement is
called parameter substitution, parameter expansion, or (rarely) variable interpolation. I use the
term substitution because the term expansion might be taken as suggesting that the resulting
text is always larger. The POSIX spec uses the term expansion. After parameter substitu-
tion, the shell expands certain patterns into file names; this is called pathname expansion, or
globbing. This section reviews the basics of parameter substitution and globbing. Chapter 5
discusses command substitution, which is similar in many ways to parameter substitution.
Some shells offer additional parameter substitution options that are not portable; these are
discussed in Chapter 6.

parameters or variables

What is the difference between a variable and a parameter? The answer depends on which book or manual
you are reading. The POSIX spec uses the term parameter for the general case; variables are parameters
whose names are identifiers (alphanumeric characters and underscores, with the first character being a letter
or an underscore). The special parameters which refer to the arguments of a script program or the shell are
called positional parameters.

Many users are more familiar with the term parameter being used to mean arguments; these are what
the POSIX spec calls the positional parameters. Someone who refers to $* as a variable rather than a param-
eter will probably call $1 a parameter rather than a positional parameter.

Substitution and Field Splitting
Often, when parameters are substituted, the output is described as being subject to word
splitting. In fact, what really happens to them is something different, called field splitting.
The original splitting of input into tokens always uses the same rules; words are split around

10436ch04final 80 10/23/08 11:01:07 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 81

whitespace (spaces, tabs, and new lines). When a substitution is split, however, different rules
may be used.

The shell defines a special variable, $IFS, which defines the field splitting rules. If $IFS is
not set, the shell behaves as though it contained space, tab, and new line characters (in that
order). If $IFS is set to an empty string, fields are not split at all. Finally, if $IFS is set to a string,
then the characters in that string are used to split fields, just as whitespace splits words. The
following example illustrates the difference:

$ IFS=:
$ a="hello:world"
$ echo hello:world
hello:world
$ echo $a
hello world

When expanding $*, the shell joins the positional parameters with the first character of
$IFS; if $IFS is an empty string, the parameters are concatenated.

Setting $IFS allows you to parse more complicated input. You can check the components
of $PATH using $IFS and a for loop:

IFS=:
for dir in $PATH; do
 echo $dir
done

A similar idiom, using the set command to reset the positional parameters (discussed in
detail in Chapter 6), is as follows:

IFS=:
set -- $PATH
for dir
do
 echo $dir
done

As a side note, you cannot put the assignment to $IFS on the same line as the command.
The command is parsed before the assignment takes effect, even though the command is run
after the assignment takes effect.

Although the name $IFS is capitalized, $IFS is not usually exported. The behavior of child
shells to which $IFS has been exported is not portable. Don’t do that.

Understanding Parameter Substitution
Parameter substitution occurs only in double-quoted strings or outside of any quoting
and is introduced by a dollar sign. A dollar sign that has been escaped, or that occurs in a
single-quoted string, has no special meaning. If the first character after the dollar sign is a

10436ch04final 81 10/23/08 11:01:07 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED82

punctuation mark that denotes a built-in shell parameter or a digit, it is taken as the name
of a built-in shell parameter to substitute. There are a number of built-in parameters, and
many shells define additional such parameters. For now, the short list in Table 4-2 of common
parameters will suffice.

Table 4-2. Common Shell Parameters

Parameter	 Description

$0	 Name of current program; usually the name of a script file, or just the shell’s name.

$1	 First parameter of current script or function.

$2	� Second parameter of current script or function. (This pattern continues, but param-
eters 10 and higher require special treatment.)

$*	 All parameters of current script or function, separated by spaces.

$@	� All parameters of current script or function. Outside of quotes, identical to $*. Inside
double quotes, expands to each parameter inside separate double quotes.

$$	 The process ID of the shell.

$#	 The number of positional parameters.

If the first character after the dollar sign is a letter or underscore, the shell takes that
character, plus any following letters, numbers, or underscores, to be the name of a variable
to expand. This creates an interesting problem: What do you do if you want to append some
characters after the substitution of a variable? For instance, the following script might have
been intended to produce “hello, world,” but it actually produces only an empty line:

$ hello="hello, "
$ echo $helloworld

The output is an empty line because the shell is expanding the unset variable helloworld,
not the recently set variable hello followed by the text “world.” There are a number of clever or
sneaky tricks to get around this, but the best solution is to use braces to delimit the variable:

$ echo ${hello}world
hello, world

When the shell sees a curly brace after the dollar sign, it searches for the next matching
brace to determine which parameter to substitute. Braces are also needed to refer to positional
parameters ${10} and higher. The shell replaces $10 with a literal “0” appended to the value of
$1; this is the reverse of the behavior that mandates the use of parentheses when working with
identifiers. Older shells do not recognize ${10}; in these shells, you must use shift to access
positional parameters past $9. (See Chapter 6 for more discussion on positional parameters.)

Sometimes, you may be unsure of whether a variable will have been set or not before a
given piece of code executes. The shell has a variety of features to allow for alternative substi-
tutions in place of variables that are not set (or set to an empty string, also called a null string).
The most commonly used variant is the ${parameter:-word} construct, which is equivalent to
${parameter} if it has a value, or word otherwise. In the case where the construct is substituted

10436ch04final 82 10/23/08 11:01:08 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 83

with word, that is subject to substitution as well. The following fragment greets the user in an
even less-efficient way than usual:

foo=""
bar="world"
echo hello, ${foo-$bar}

hello, world

The substitution rules in Table 4-3 are a common and well-supported subset of those
available in standard shells (and even a number of prestandard shells).

Table 4-3. A Subset of Special Parameter Substitutions

Pattern	 Description

${parameter:-word}	� If parameter is null or unset, substitute word; otherwise, substitute pa-
rameter.

${parameter:=word}	� If parameter is null or unset, assign word to parameter. Then substitute
parameter.

${parameter:+word}	 If parameter is null or unset, substitute null; otherwise, substitute word.

${parameter:?word}	� If parameter is null or unset, print word (or a default message if word is
null) to standard error and exit the shell.

In each of these substitutions, the colon may be omitted; in this case, the shell tests only
for a parameter that is unset, not an empty string (also called a null value). With the colon, an
empty string is treated the same as an unset parameter. Each of these forms is useful under
different circumstances.

The hyphen form of substitution is primarily used to provide a default value, while allow-
ing a user to override it. This is especially likely to be useful with environment variables,
allowing the user to override the default behavior of a script. A typical example from a compi-
lation script would be to provide a default value for the CFLAGS environment variable, which is
used by convention to hold compiler options:

cc ${CFLAGS-"-O2"} -o hello hello.c

If the CFLAGS environment variable is set, it is passed to the compiler. Otherwise, the value
-O2 is passed in as a default. The quotes around the flag are not needed but are allowed; in this
case, I used them because it helps visually distinguish between the hyphen in the shell syntax
and the intended replacement text. Also, it is useful to get in the habit of providing quotes in
cases where they might or might not be necessary because the alternative is usually to omit
them when they were necessary. Program defensively.

Of course, in a longer script, it is quite possible to imagine a lack of interest in typing that
same construct over and over. One improvement is to use the equals sign substitution rule the
first time and thereafter use the variable’s value:

10436ch04final 83 10/23/08 11:01:09 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED84

cc ${CFLAGS="-O2"} -o hello hello.c
cc $CFLAGS -o goodbye goodbye.c

When the shell expands ${CFLAGS="-O2"}, one of two things happens. If the CFLAGS vari-
able was already set, it expands, and its value is unchanged. If the variable was not set, or
was empty, it is replaced by the assigned value (-O2, in this case), and then expanded. Thus,
whether or not the variable was set before the first line was executed, it will definitely be set
after that line is executed.

This is functional but a little clumsy. It creates an unfortunate ordering dependency on
the lines in the script; if you later discover that your new boss lives backward in time and
requires that goodbye.c be compiled before hello.c, you cannot simply reverse the lines
in the script; you have to edit both of them. (While the particular circumstance may seem
unusual, being obliged to reorder operations in a script is quite common.) You have two work-
able options. One is to switch to a more elaborate construct, possibly using test to check the
existing value of the variable before assigning it. You should not simply place the variable sub-
stitution on a line by itself; the substitution would then be executed as a command. However,
you can use it as an argument to a command that does nothing:

: ${CFLAGS:="-O2"}
cc $CFLAGS -o hello hello.c
cc $CFLAGS -o goodbye goodbye.c

This is a very expressive idiom. In this case, true and : are not equivalent; some imple-
mentations of true inexplicably react to some possible combinations of parameters by doing
something:

$ /bin/true --version
true (GNU coreutils) 6.10
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Jim Meyering.

This kind of thing can be fairly disruptive of the output of a script. Stick with : for such
usage.

The plus sign substitution rule has an interesting history. One of its most powerful uses is
nearly entirely obsolete now, and it involves the special shell parameter $@. In some very early
shells, if there were no parameters at all, "$@" substituted a quoted empty string rather than
to nothing. (The more convenient behavior is specified by POSIX and is reasonably close to
universal in modern shells. For details, see the discussion of shell versions in Chapter 7.) One
idiom for working around this is ${1+"$@"}. This expands to "$@" if $1 is set; otherwise, it’s set
to null. In this case, using the colon would undermine the entire point of the exercise; it would
result in an incorrect substitution for the arguments of a script whenever the first argument
was an empty string. It is useful in this and other cases where you wish to avoid substituting
something unless there is something to substitute.

10436ch04final 84 10/23/08 11:01:09 PM

http://gnu.org/licenses/gpl.html

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 85

The +: form is a little harder to find really good uses for, but it has its place, too. As an
example, consider appending a series of words together. You want spaces between words,
but you do not want extra spaces. You can write an elaborate hunk of code to append spaces
suitably, keeping everything quoted, or you can use ${var+:" $var"}. This expands to a space
followed by $var, if var has a nonempty value, or to nothing at all, if var was empty or unset.

The question mark substitution rule is of limited utility. In most cases, you will want to
write your own, more robust, error handling. On the other hand, if you really do not feel there
is any sensible default, you can always use this to force people to pick one:

cc ${CFLAGS?:Cannot compile without compiler flags.} -o hello hello.c

build.sh:1: CFLAGS: :Cannot compile without compiler flags.

The exact format of this error message may vary between shells.
When a parameter substitution occurs outside of double quotes, the results of the substi-

tution are usually subjected to field splitting and globbing, but never to parameter substitution
again; if a variable expands to $FOO, it does not get expanded again. Inside double quotes,
nothing happens after parameter substitution. (Parameter substitution cannot occur within
single quotes, making the question of what would happen if it did moot.) As a rather unusual
special case, the word used as the controller for a case statement is subject to tilde expansion,
and then parameter substitution, but the results of the parameter substitution are not subject
to any further modifications, not even field splitting. The common habit of quoting a single
variable used to control a case statement is unnecessary, although some people prefer it as a
matter of style.

Tilde Expansion
Tilde expansion is a special expansion that replaces certain strings starting with tildes (~) with
the home directories of named users, or the current user if no user is named. An unquoted
tilde at the beginning of a word may be subject to tilde expansion. If a user name is provided
(consisting of everything from the tilde to the first unquoted slash, or simply the whole word),
that user’s home directory replaces the tilde and user name. If no user name is provided, the
tilde is replaced by the current user’s home directory. For instance, ~bob is replaced with the
home directory of the user bob. If there is more text, it is appended to the results of the expan-
sion. For instance, ~/bin refers to the bin subdirectory of $HOME. Tilde expansion does not
check its results against the file system; it expands only based on user account information or
the $HOME environment variable. The behavior if a nonexistent user is named is nonportable,
although many shells simply omit any substitution. Tilde expansion can occur after colons in
a variable assignment. For instance, the shell expands tildes in the following:

PATH=/bin:/usr/bin:~bob/bin:~amy/bin

Standard shells expand both ~bob and ~amy in the preceding example (assuming both
users exist). Tilde expansion is universal among POSIX shells, but some older shells do not
provide it.

10436ch04final 85 10/23/08 11:01:10 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED86

Globbing
The basic globbing rules were described in Chapter 2, along with shell patterns (which they
somewhat resemble). Although multiple matching path names expand into multiple words,
the individual file names are not subject to field splitting.

Globbing never occurs within quotes, because glob characters have no special meaning
within quotes. Glob characters next to quoted text are expanded with the quoted text as part
of the pattern. Quoting is often useful when you wish to match a path that includes a variable
substitution. For instance, the following shell command has a hidden bug:

rm -rf build/$version/*.log

As long as $version is something simple, like 4.2 or 3.1415, this command behaves as
expected. However, imagine your chagrin should you ever attempt this on a version with
spaces in it, such as 1.2 / prerelease. The result would be the following:

rm -rf build/1.2 / prerelease/*.log

This may be one of the few cases where one might, for a brief moment, wish for the csh
feature of responding “No match” when a glob fails. The shell simply performs no globbing,
leaving you with a command that, if you are very smart and were not running as root, probably
eventually tries to remove prerelease/*.log and fails. Worse yet, the -f flag means you do not
even get a warning message. You might try to resolve this by quoting as follows:

rm -rf "build/$version/*.log"

However, glob characters have no effect inside quotes, so rm simply tries to find a file with
the literal name build/1.2 / prerelease/*.log, and it probably fails. The solution is to com-
bine quoted and unquoted text:

rm -rf build/"$version"/*.log

This causes the shell to try to find every file in build/1.2 / prerelease with a name
matching the pattern *.log, and then pass their names as arguments to rm. This still may not
do what you want, as it denotes a directory named “ prerelease” inside a directory named
“1.2 ,” but at least it won’t turn into a 16-hour night with the backups. You did make backups,
right?

10436ch04final 86 10/23/08 11:01:11 PM

Chapter 4  ■﻿   CORE SHELL FEATURES EXPLAINED 87

unusual file names

The greatest weaknesses of the shell are two simple characters: space and new line. The classic UNIX file
system allows all but two characters in file names; one is the slash, used as a directory separator, and the
other is the ASCII NUL byte (with the integer value 0, which is not the same as a literal 0 digit). Unfortunately,
many shell programs and scripts do not cope gracefully with file names containing spaces. Many, many more
can do horrible things given a file name containing a new line.

You can mostly work around the space character with experience and practice. For the new line, there is
often nothing you can do. The utility features needed to let you work reasonably safely with names containing
new lines are not portable enough.

Spaces, while they can be dealt with given sufficient care, are simply too hard to get right for it to be
safe to assume that arbitrary script programs will deal with them gracefully. Do not use spaces in file names.

With the widespread adoption of Mac OS X, many more UNIX developers are becoming familiar with
environments in which spaces in file names are more common. Still, don’t take chances when you don’t
have to.

If a glob pattern is assigned to a variable, nothing special happens; the text of the pattern
is stored in the variable. However, when the variable is substituted, it will generally be subject
to globbing.

What’s Next?
Now that you understand the quoting and substitution rules, you can write a broad variety of
very powerful shell scripts. However, there are a few things that can’t be done without more
powerful tools. The next chapter introduces ways to organize and reuse code, as well as how to
run pieces of code as if they were separate scripts, giving you a lot of additional flexibility.

10436ch04final 87 10/23/08 11:01:11 PM

10436ch04final 88 10/23/08 11:01:11 PM

C h a p t e r 5

Shells Within Shells

This chapter discusses the relationship between the shell and the programs it calls, with a
particular focus on subshells—additional shells run by a shell script in a new process. This
chapter also discusses shell context and the distinction between shell variables and environ-
ment variables.

Understanding Processes
This chapter relies more heavily than previous chapters on a firm understanding of the UNIX
process model. (While Windows does not use this model, UNIX-like shell environments run-
ning on Windows tend to emulate it at least some.) UNIX systems can run multiple programs
at once. In fact, not only can multiple programs be running at once, but multiple instances of
a single program also can be running at once. Each instance of a running program is called a
process and has a unique numeric process identifier, or pid. The pid of the shell is expanded in
the shell parameter $$. While a pid may be reused after a process has exited, a process keeps its
assigned pid for its entire lifetime, and there can never be another process with the same pid
during that lifetime. Each process has its own separate memory space, although in some cases
processes may arrange to share memory. The ps command gives a list of processes currently
running. UNIX does not distinguish as some systems do between “applications” and other
kinds of processes; all programs run the same way. Note that the output of the ps command is
nonportable; you cannot use it safely in a portable shell script, as the formatting of the display
varies from one system to another, as do the options used to specify what to display. There is
no useful portable subset. It is generally easy for humans to read, but not very useful to shell
programmers.

The fundamental tool of UNIX process creation is the fork, in which a single process
becomes two identical processes. In a lower-level language, such as C, this is done by using
the UNIX system call fork(). When a process invokes this fork() successfully, the process is
duplicated, and both processes then return from fork(), differing only in the return status
of the fork() system call. In the original process (called the parent), the fork() system call
returns the pid of the child; in the child, the fork() system call returns 0. Apart from that, each
process has the exact same environment; the same objects are stored at the same addresses in
memory, for instance. However, the child process has a distinct copy of these objects; modi-
fications in the child have no effect on the parent. (The fact that two processes can have the
same memory locations holding different values can be a bit of a surprise; each process has its
own distinct mapping from memory addresses to physical memory.)

89

10436ch05final 89 10/23/08 11:34:55 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS90

There is no UNIX system call to launch a new program as a subprocess. The fork() system
call does not launch a new program, but rather duplicates an already-running one. The exec()
system call (actually a family of related system calls) allows the replacement of the current
process with a named program. Thus to spawn a new process, you first use fork(), then in the
child process use exec() to launch the new command. The C library includes a wrapper func-
tion, system(), to run a command as a subprocess; on UNIX systems, this function works by
passing the provided command to the shell. There is no way to explicitly fork in a shell script;
instead, you run commands, create pipelines, or run subshells. The shell offers common tasks
built in terms of fork() and exec(), rather than giving direct access to the system calls.

In some cases, a process may have multiple simultaneous paths of execution, called
threads. I mention these only to stress that the UNIX shell does not use threading; each pro-
cess started by the shell is a fully separate process. Within a portable shell script, you generally
do not need to even be aware of threading. If you do find yourself using the output of ps,
though, be aware that one of the least portable things is whether or not threads might show up
in the output of ps, possibly giving several lines of output for a single pid. Be cautious.

Threading is newer than the shell and is not all that heavily used in the basic UNIX envi-
ronment. On UNIX systems, the cost of launching a new process is fairly low, so there is little
incentive to avoid spawning new processes. One of the greatest challenges of shell programs
that need to run on Windows systems in emulated UNIX-like environments is that process
creation costs are extremely high on Windows. If you anticipate a need to run your code on
Windows, you may want to pay extra attention to the cost of new processes; avoid anything
that would imply a fork() on UNIX, such as subshells or external commands, whenever you
can.

All of this may seem rather complicated and even irrelevant, but the shell’s behavior is
closely tied to this underlying model. Whenever the shell runs any external command, it does
so by this fork()/exec() pair. The one exception is the use of the exec built-in command to
replace the currently running shell with another program; in this case, the shell uses only the
exec() system call.

Variables and the Environment
So far, the discussion of variables in this book has looked at how they are used within a shell
script. Some variables are available not only to the shell, but also to any child process it starts.
These variables are called environment variables, and the set of environment variables in a
given process is called the environment of that process. Environment variables are available
to any program, not just the current script. Any programming language used on UNIX-like
systems will typically offer some way to access (and possibly modify) environment variables.
Processes have additional state beyond their environment variables, such as the collection of
open file descriptors or current working directory. I refer generally to the set of environment
variables and other per-process state as the context of a process.

The set built-in command, called without arguments, prints all shell variables, whether
or not they are in the environment. The env utility, called without arguments, prints its
environment.

A common convention among shell programmers is to use capital letters exclusively in
the names of environment variables (e.g., $PATH) and use all lowercase names for unexported
shell variables (e.g., $answer). This is an excellent convention, and this book uses it. Many

10436ch05final 90 10/23/08 11:34:55 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 91

developers put all shell variables in all caps. However, because there is no reasonable portable
way to determine whether a variable has been exported, it is generally better to use the former
convention. Shell variable names should use underscores (_) to separate words, not mixed
capitals and lowercase letters. (The shell doesn’t care, but future readers do.)

Manipulating the Environment
There are three primary changes you can make to the environment: You can add variables to
it, remove variables from it, or modify variables in it.

Adding variables to the environment is sometimes called exporting them, probably
because it is done using the export command. The export command adds its named argu-
ments to the environment. As with assignment, you do not use a dollar sign ($) to mark the
names of the variables. For instance, the command export FOO adds the variable FOO to the
environment. A common idiom is to assign a variable, and then immediately export it:

NAME=John
export NAME

Many recent shells allow variable assignments to be used on the export command line,
providing an equivalent, but not fully portable, shorthand:

export NAME=John

If you are comfortable relying on POSIX shell features, you can use this, but it offers little
advantage. There is no portable way to remove a variable from the environment. The unset
command removes a variable from both the environment and the current shell, but is not
universally portable. For purposes of a shell script, it is typically enough to set a variable to an
empty value, then make sure to use the colon (:) variants of the shell’s substitution rules, for
instance, using ${foo:-bar} instead of ${foo-bar}. However, this still leaves an empty string
in the environment. If you really need to remove environment variables, you will need to rely
on POSIX shell features; consider using an execution preamble (see Chapter 7) and the unset
command. An unset variable that is later assigned a value does not become part of the envi-
ronment without being exported again.

Environment variables are modified like any other variables, using the shell’s assignment
operator. You cannot portably check whether a variable has been exported; this is one of the
reasons a naming convention is so useful.

The environment is passed to child processes, but there is no way for children to modify
the environment of the parent process. For instance, the following script does not do what its
author perhaps intended:

$ cat path.sh
#!/bin/sh
PATH=$PATH:/usr/local/bin
$ echo $PATH
/bin:/usr/bin
$./path.sh
$ echo $PATH
/bin:/usr/bin

10436ch05final 91 10/23/08 11:34:56 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS92

The user probably expected the shell assignment in path.sh to alter the PATH variable.
In fact, it did alter the PATH variable in the new shell that ran the script; however, this had no
effect on the shell that invoked the script. Ways to modify the shell’s environment are dis-
cussed in the section, “Modifying the State of the Shell,” later in this chapter.

Issues like this are extremely widespread. Many UNIX systems use startup scripts with
names like /etc/rc or /etc/rc.local. While researching shell features, I stumbled across a fas-
cinating discussion among users trying to get an environment variable set on their system at
boot time so that all users would share it. Their discussion revolved around adding the variable
setting to /etc/rc.local, a file for local system administrator additions to the system’s startup
scripts. Here’s how that system runs its rc.local script, if it exists:

if [-f /etc/rc.local]; then
 sh /etc/rc.local
fi

Since the rc.local script was being run by a separate shell, the variables would not have
propagated anyway. Of course, sometimes you do not want a chunk of code to be able to
modify your environment; I suspect the preceding code was written with the conscious intent
to prevent the local script from making changes to the environment of the parent script, which
could have affected the rest of the boot process.

Temporary Changes
Many UNIX utilities rely on environment variables, so it is common to set variables to influ-
ence their behavior. This can lead to a cluttered environment in which future script code
behaves unexpectedly because of values left in the environment. There are several ways to
resolve this. Some scripts simply set an environment variable, run code depending on that
setting, then unset it. This technique has a couple of flaws. One is that, if the variable had a
previous value, it is lost. Another is that some scripts need to be portable to systems without
unset. What is needed is a way to restore the previous value. There are three options.

The first is to stash the value in a temporary variable. Save the old value, set the new one,
then restore the previous value. As an example, running make with a modified path might be
implemented as follows:

save_PATH="$PATH"
PATH="/usr/local/bin:$PATH"
make
PATH="$save_PATH"

In this example, the make command is run with the /usr/local/bin directory in $PATH, but
the previous value of $PATH is restored afterward. This works, and it may even be useful in the
case where you want to run a number of commands with a temporary variable assignment.
Saving previous values becomes more useful in cases where you need to change a value back
and forth.

A particularly common case of this is using a similar idiom to change the $IFS shell vari-
able. You can iterate through $PATH by setting $IFS to : and using a command like for dir in
$PATH. However, you might want to restore the old value again occasionally during the loop:

10436ch05final 92 10/23/08 11:34:56 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 93

save_IFS=$IFS
IFS=:
for dir in $PATH; do
 IFS=$save_IFS
 # now you can run commands with the normal value of $IFS restored
 echo "$dir"
done
IFS=$save_IFS

The second way to get a temporary change to the environment is to use the external env
command. The env command can modify its environment and then run another program. For
instance, the following script has the same behavior as the previous example:

env PATH="/usr/local/bin:$PATH" make

This has two limitations; the first is that it can run only a single command and the second
is that the command it runs must be an external program, not a shell builtin (see the “Shell
Builtins” section later in the chapter for more information about builtins). One likely pitfall of
this technique is that parameter substitution occurs in the calling shell, which means that it
uses the existing value, not the value passed in:

X=yes
export X
env X=no echo $X

yes

Although the echo command is run with the environment variable $X set to no, the argu-
ment passed to it is the already-substituted value from the parent shell. The command
executed is echo yes, and it does not matter what $X is when this is executed. You can force the
substitution to occur in the called program by using a shell with a quoted string argument:

X=yes
export X
env X=no sh -c 'echo $X'

no

The third technique for temporary variable assignments is to prefix a command with one
or more variable assignments. This special syntax tells the shell to make an exported assign-
ment only for the duration of a single command. A previous example is simplified a little
further this way:

PATH="/usr/local/bin:$PATH" make

This syntax creates a temporary environment variable. The existing value (if any) of the
variable assigned is not changed. If the variable assigned was not an environment variable

10436ch05final 93 10/23/08 11:34:56 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS94

before, it is not exported after the command runs, but only while the command is running. As
with the env technique, this works only for a single shell operation. The command must be a
simple command or pipeline; you cannot use braces or parentheses to group commands used
this way. As with the env technique, the command is substituted, globbed, and subjected to
field splitting before the variable assignments take effect. So, for instance, you cannot use the
following to change $IFS:

IFS=: echo $PATH

This echo command shows you $PATH subject to field splitting using the previous value
of $IFS. The shell first substitutes and splits the arguments, then creates the environment
(assigning the new value to $IFS) and runs the echo command. This technique has a portability
limitation; it is not safe to use this with built-in commands, such as read or cd. In general, it is
probable that a shell will keep any variable assignment made in that context. Modern (POSIX)
shells will restore previous values if the built-in command is eval or set, but older shells may
not. This topic is explored further in the section “The eval Command” later in this chapter.

Exploring Subshells
The term subshell refers to a second instance of the shell program run under the control of
an existing shell. A subshell is simply a shell context created by calling fork(). The subshell
does not need to load the shell’s executable from disk, perform any kind of initialization, or
otherwise do anything at all except execute a command or list of commands; typically, the
commands have already been parsed for it by the calling shell. What this means is that, even
though a subshell is another process, the performance penalty of launching one is much
smaller than people typically expect for a new process (except on Windows, where it is still
quite high). Subshells may be created explicitly or implicitly. When () is used to separate out
a list, this creates a subshell. Commands in a pipeline typically run in subshells.

A subshell is a separate shell context, and like any child process, it cannot modify the state
of the parent shell. Directory changes, variable assignments, and redirections within subshells
do not affect the parent shell. This is often useful, and subshells are used to make temporary
changes to the shell’s environment or state. Note that although command-line variable assign-
ments are temporary and do not affect the shell’s environment permanently, they do not
create an implicit subshell.

Subshells and External Shells
A subshell is not the same as running a new shell to execute a command. You can issue a com-
mand to the shell using the -c command-line option or feed commands to another shell either
through a script file or using a pipe to the shell’s input. There are several major differences
between an external shell and a subshell. A separate shell invocation parses the command (or
commands) provided, performs word splitting, substitution, globbing, and so on. A subshell
starts with material that has already been split into words but still performs substitution,
globbing, and field splitting; it mostly executes the already-parsed material in a new process
context. A separate invocation of the shell inherits environment variables but not unexported
shell variables. By contrast, a subshell has all of the parent shell’s variables accessible to it. As
a special case of this, the subshell keeps the parent shell’s value of the special shell parameter

10436ch05final 94 10/23/08 11:34:56 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 95

$$. Finally, a separately invoked shell may (depending on the shell) run some standard initial-
ization or startup scripts, which may cost substantial time or produce surprising behavior. For
more information on shell startup, see the discussion of shell invocation in Chapter 6.

Command Substitution
Subshells are used in a kind of substitution that I glossed over in the previous section on
substitution: command substitution (also often called command expansion). In command sub-
stitution, the shell replaces a string of text with the output from running that string of text as a
command. The command is run in a subshell, and any substitution or globbing occurs in the
subshell, not in the parent shell.

The output of the subshell is treated the same way as the results of parameter substitu-
tion. For instance, the output is subject to field splitting and globbing (unless it is in a context,
such as the control word for a case statement, where these are not performed), and the sub-
stitution can be put in double quotes to prevent this. Standard error from the command is not
included as part of this output; it goes to the shell’s regular standard error unless explicitly
redirected.

Just as pipes allow you to use the output of a program as input to another program,
command substitution allows you to use the output of a program as arguments to another
program. There are two crucial differences beyond the difference in how these are used. The
first is that argument lists may have limited length, while pipes can consistently handle giga-
bytes of data. The second, closely related, is that commands in a pipeline run simultaneously,
but when you use command substitution, the command being substituted must run com-
pletely before its output can be used.

The shell’s original syntax for command substitution, which is still universally available,
uses backticks (`, also called backquotes) to delimit command substitutions, as in `command`.
The text of command is executed in a subshell (which performs any substitutions or globbing),
and the backticks and their contents are replaced with the output of command. As an example
of usage, you can extract the name of a file using expr and store that name using command
substitution:

filename=`expr "$file" : '.*/\([^/]*\)$')`

In most modern shells, another syntax for command substitution is $(command). Unfortu-
nately, there are a few shells left where this is not portable; most notably, the Solaris and Irix /
bin/sh. For some scripts, you may prefer to use the older form, but you may also prefer to use
a preamble to get your script into a more recent shell (see Chapter 7). In newer shells, the pre-
vious example could be rewritten as:

filename=$(expr "$file" : '.*/\([^/]*\)$')

This sets the variable filename to the file name component of a longer path. The $() syn-
tax may be nested:

all_files=$(find $HOME -name $(expr "$file" : '.*/\([^/]*\)$'))

There is no easy way to nest command substitution using the backtick syntax. The reason
is that backticks do not have distinct left and right forms, so the shell simply treats text up to

10436ch05final 95 10/23/08 11:34:57 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS96

the first backtick it encounters as being a single subshelled command. For instance, imagine
that you were to try to perform the preceding find assignment using backticks:

all_files=`find $HOME -name `expr "$file" : '.*/\([^/]*\)$'``

The shell sees an opening backtick, then reads until it finds another backtick. So the first
command is find $HOME -name . The expr command (and its arguments) show up outside of
backticks, and the two backticks at the end look like substitution of an empty command. So
this is treated by the shell as though you had written the following (using the other syntax):

all_files=$(find $HOME -name)expr "$file" : '.*/\([^/]*\)$'$()

The results of the empty $() construct are simply empty strings, and
$(find $HOME -name) also produces no output. (The error message about a missing argument
to -name goes to standard error). So after substitution of the commands, this becomes the
following:

all_files=expr "$file" : '.*/\([^/]*\)$'

The net result is that the shell sets $all_files to the string expr and tries to execute $file
as a command with the remaining arguments you had meant for expr as its arguments. On
some shells, you can obtain the expected results by escaping the inner backticks:

all_files=`find $HOME -name \`basename $file\``

Now the parent shell sees escaped backticks, which do not end the command it is
constructing, and it passes them into the child shell, which executes the subcommand as
expected. This is hard to read, gets harder to read if you add more nesting, and is not com-
pletely portable. Do not do it. There is a much simpler solution:

file_name=`basename $file`
all_files=`find $HOME -name "$file_name"`

In this case, the output of the first command is used as an argument to the second.
The complete list of files generated is assigned to the all_files variable. The behavior of
backslashes in backticks may not be consistent between shells; avoid it. Backslashes in $()
command substitution seem to be consistently passed unaltered to the subshell.

file_name=`expr "$file" : '.*/\([^/]*\)$'`
for path in `find $HOME -name "$filename"`; do
 echo `expr "$path" : '\(.*\)/\([^/]*\)$'`
done

The command substitution’s results are subject to field splitting, providing a list of files
in $HOME with the specified name. Note that this does not behave well if some of the file names
have spaces in them. If you want to prevent field splitting, you can use backticks (or the $()
syntax) inside double quotes. If you do this, you have to escape any nested quotes.

The choice of which command substitution syntax to use is more complicated than some
shell portability decisions. The $() syntax is substantially better, except for the surprise of
running into a system that doesn’t support it. These issues are discussed more in Chapter 7’s
discussion of shell language portability. If you have other reasons to require a POSIX shell,

10436ch05final 96 10/23/08 11:34:57 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 97

I would recommend the $() syntax, but it is probably not in and of itself enough justification
to make the additional requirement.

In general, the best way to handle nested command substitution is not to use it; use tem-
porary variables to hold intermediate results. Nesting of command substitution is a frequent
source of confusion or bugs in shell scripts. Avoid it. By the way, while the $() syntax is more
robust in the face of nesting, it has its own limitations; some shells behave surprisingly if you
try to use command substitution of shell code that has mismatched parentheses, such as a
case statement. (The workaround of using (pattern) in case statements is also nonportable.)

Implicit and Explicit Subshells
Subshells can be formed implicitly under several circumstances. The most important to know
about for most scripts are pipelines and background tasks (background tasks are discussed
in Chapter 6). In a pipeline, every command may be run in a subshell. There is no explicit ()
to indicate where the subshells go, but there will typically be one per command or possibly
one for each command but the first or last. In a portable script, you must not assume that
any command in a pipeline runs in the parent shell. A common idiom to allow you to use the
output of a pipeline is to use a while loop as the last command in the pipeline; you can then
access the output of the pipeline within the loop, but be aware that changes to shell variables
may not affect the parent shell. (Worse yet, they may affect the parent shell, so you should not
casually assume you can overwrite variables the parent shell is using.)

Here’s a script I wrote once with the intent that it would list the contents of all subdirecto-
ries of the current directory:

#!/bin/sh
ls | while read file
do
 cd "$file"
 ls
done

This script has a surprisingly high density of bugs for such a tiny program. In fact, the
only time it will work is when it is in a completely empty directory. If $file is not a directory,
the cd command prints an error message, and the script runs ls in the current directory; this
is probably not what I want. If $file is a directory, the shell changes to that directory and
lists its contents as expected. So what’s the bug in that case? The shell never changes back to
the parent directory, so the next cd command will probably not work as expected. Finally, it
is possible (and even common) that the ls command is subject to aliases that could cause
it to behave differently or to environment variables that set default options causing it to, for
instance, emit output in color. You can avoid the aliases by specifying the path to ls. The envi-
ronment variables are harder to address; for more information on the portability problems
such features can create, and how to avoid them, see the discussion of utility portability in
Chapter 8.

There are a number of ways to address these issues. The first thing to do is distinguish
between directories and files. In the case where $file is a directory, I want to change to it, run
ls, and change back out.

10436ch05final 97 10/23/08 11:34:57 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS98

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 cd "$file"
 ls
 cd ..
 fi
done

Now this will work in the most common cases. However, there is a new problem. If one
of the directories in question has permissions such that cd "$file" fails (or if the script writer
made the extremely common mistake of not quoting $file and one of the directories has
spaces in its name), the cd .. moves the script back up into the shell’s parent directory, leav-
ing the script once again behaving unexpectedly. You can resolve this at least in part by using
&&:

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 cd "$file" &&
 ls &&
 cd ..
 fi
done

This now works in most cases. The only case where it will fail is where you can change
your working directory to a given directory, but ls fails in it, and this is pretty uncommon.
However, there’s a much simpler way; you can use an explicit subshell:

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 (cd "$file" && ls)
 fi
done

Because the cd command is now in a subshell, the parent shell doesn’t have to do any-
thing; it just keeps on executing in the directory it came from, rather than trying to figure out
how to get back to the right directory. Note that, unlike the {} command group, a subshell
does not need a trailing semicolon. This is because the) character is a metacharacter, which
the shell recognizes unless it has been quoted, while } is merely a very terse keyword.

Explicit subshells are often used simply to group commands; this may be inefficient on
any system, but it is especially inefficient if you need to worry about portability to Windows. If
all you need is to group a few commands together, use {}.

10436ch05final 98 10/23/08 11:34:58 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 99

Modifying the State of the Shell
Sometimes, it is desirable to change the environment of the current shell. Subshells are used
to prevent changes to the child shell’s context, especially the environment or current direc-
tory, from affecting the parent shell. However, sometimes you want precisely the opposite
effect; you want to force something to have an effect on the parent shell. Many shell builtins
exist to change the shell’s state. You could not implement cd as an external program in UNIX
because it would only change its own directory. The shell offers three other ways to run
chunks of shell code within the current shell’s environment: shell functions, the eval com-
mand, and the dot (.) command.

Shell Builtins
There are two major reasons for some commands to be built into the shell. The first is simple
performance; for instance, many modern shells implement test as a built-in command so
conditional operations do not require a process to be spawned. When a program is a builtin
for this reason, it mostly matches the behavior of an existing program that is found in the file
system. For instance, the built-in test program can generally accept any standard arguments
that /bin/test would work with. While the external utility programs and the shell builtins may
both provide extensions, the standardized part of their behavior is usually the same. On the
other hand, the nonstandard behaviors may vary widely. There is more discussion of utility
(and built-in command) portability in Chapter 8. In general, whether something is a builtin or
not, you should be careful about relying on extensions.

The second reason for a command to be a builtin is that it has to modify the shell’s
context. For instance, the cd command is a builtin because a program that changed its own
working directory would be useless to the shell calling it. Commands that modify or view shell
variables have to be builtins. The env command is not a builtin because it does not view unex-
ported shell variables, and because it never changes the caller’s environment. By contrast, the
set command is a builtin. The set command can display unexported shell variables or control
shell options; both of these functions require it to run as part of the shell process.

Shell Functions
Shell functions offer an interesting compromise between running within the shell’s environ-
ment and creating a new environment. A shell function is a block of code that is assigned a
name and can thereafter be used just like a builtin command. This section introduces the
common and portable subset of what you can do with shell functions; there is a great deal of
variance between shells. (Some rare shells lack functions entirely; use a preamble to get to a
real shell on those systems.) Shell functions are defined with the following syntax:

name () block

By convention, block is nearly always a {}-delimited list. However, you can use a
()-delimited list, in which case the function’s body runs in a subshell. The block should be
one of these two lists; other options are not portable. For instance, you cannot use a plain
pipeline or list as a function body using this syntax. Some shells offer other syntax for defining

10436ch05final 99 10/23/08 11:34:58 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS100

functions or even accept a plain pipeline as a function body. In many cases, shells that accept
multiple ways to declare functions provide different semantics for different types of functions.
The previous structure, whether with {} or () for the body, is the only portable option.

Functions operate a little like separate scripts. For instance, during the execution of a
function, the positional parameters refer to the function’s arguments, not the calling script’s
positional parameters. ($0 may or may not be changed; do not rely on either behavior.) How-
ever, calling exit within a function exits the whole script. If you wish to return early from a
function, the special return built-in command exits the current function with a specified
return code; in portable scripts, this still has to be a small integer value, the same as any other
exit status. Once the function completes, the positional parameters are restored. The function
runs in the shell’s environment, so code within the function can modify the shell’s state; for
instance, it can change the working directory or modify variables in the calling shell.

The name of a function may clash with the name of a variable; because of this, it may be
beneficial to use a consistent prefix, such as func_, on function names. Some shells distinguish
between function names and variable names, but older shells may not.

If you want to return a more complicated value or a string, you can store the result in a
shell variable or design your function to be used with command substitution. For a shell vari-
able, I recommend the name $function_result, as in the following example:

func_display_dpi () {
 func_display_dpi_result=$(xdpyinfo | awk '/resolution:/ { print $2; exit }')
}

The typical result of this function (a string like 75x75) would not be a possible return value
in some shells, but it can be stored in a variable. Of course, it could also be simplified if the
function just displays its output, and you use command substitution when calling it:

func_display_dpi () {
 xdpyinfo | awk '/resolution:/ { print $2; exit }'
}

I tend to favor the command substitution path when defining functions with useful
outputs. It is more terse and usually more idiomatic; on the other hand, each call to such
a function has to be run in a subshell, which can impose performance costs. The uniquely
named variable offers better performance in most cases. (Not in the preceding example,
though, where there’s a subshell anyway.)

In shells other than zsh, redirections at the end of a function’s definition are performed
every time the function is called, but only for the duration of the function. For instance, the
following script logs multiple lines to the /tmp/log file:

func_log () {
 echo $*
} >> /tmp/log
func_log hello
func_log goodbye
cat /tmp/log

hello
goodbye

10436ch05final 100 10/23/08 11:34:58 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS 101

Each invocation of the func_log function results in output to /tmp/log; note that >> must
be used, or each invocation of the function would truncate the file. Because the redirection
affects the entire function body, individual statements within it do not need separate redirec-
tion. However, the shell’s standard output is not redirected, so the cat at the end displays the
log file normally. This offers an interesting compromise between individual redirections and
using exec to redirect the whole shell. This technique may be better avoided if you may need
to target a system where zsh is otherwise the best POSIX-like shell available; it is also quirky
enough that it may be better avoided if other people need to read your code—which they do.

While every modern shell provides some way to provide local variables within shell
functions, there are differences between the shells, and no one method for doing this is por-
table. This is actually more frustrating than it would be if there were simply no way to do it
at all in some shells. You can sometimes obtain results similar to local variables by using a
couple of tricks.

One solution is to run a chunk of code that needs local variables in a subshell. Getting data
out of such a function is hard; if you need results from it, you must use command substitution
to obtain them. If your function uses a subshell, and then you always call it in another subshell
for command substitution, Windows users will hate you.

Another option is to use shell variables with names that are unlikely to clash. For instance,
you could extend the function_result idiom to other values you need during the execution of
a function.

 If you really need local variables, though, you can use a subshell for them. You can sim-
ply declare the function using a subshell as the function body; the subshell code can create
or modify variables freely without worrying about affecting the parent shell environment. For
instance, this script uses a subshell to avoid stomping on the parent shell’s variable value:

func_add () (
 value=0
 for i
 do
 value=$(expr $value + $i)
 done
 echo $value
)
value="Save me!"
func_add 3 4 5
echo "Value: $value"

12
Value: Save me!

The func_add function stomps on the variable value, but only in its subshell. The code
outside the subshell does not stomp on any variables, so it can be called safely. If you need to
modify the parent shell’s environment, you can use braces for the function body, then use a
subshell within the function’s body. You can use command substitution to get information out
of the subshell, as in this nearly equivalent example:

10436ch05final 101 10/23/08 11:34:58 PM

Chapter 5  ■﻿   SHELLS WITHIN SHELLS104

Even the outer quotes are actually unneeded. There is only one argument, and it contains
no spaces or special characters that require additional protection:

eval a_${count}=\$value

The following fragment stores a collection of file names in a series of named variables,
which can later be used somewhat like an array:

count=0
for file in *; do
 eval a_${count}=\$file
 count=`expr $count + 1`
done

On the first iteration, the shell assigns the name of the first file to a_0. This can only be
done using eval. If you used a second shell, it would not affect variables in the parent shell,
and if you didn’t use eval, the shell would fail because there is no command named a_0=file.
On the second iteration (assuming there are multiple files), $count is 1, so the second file is
assigned to the variable a_1. This allows you to store the results of a glob separately and access
them individually later. This gives you a safe way to treat a list of results as an array.

Most shell programs use a simpler idiom, simply accumulating values within a single
variable:

for file in *; do
 a="$a $file"
done

While this is common and idiomatic, it is not quite as reliable. There is no way after this
has run to distinguish between a file name containing spaces and two separate file names.
You could use a different idiom, using other characters (such as colons) as separators, but any
character can exist in a path name. In the special case where you are looking only at file names
guaranteed not to have directory components in them, you could use path separators safely.

The eval command is also needed to extract these variables. The shell cannot handle
nested substitutions like ${a_${count}}. Some languages, like Perl, can. For the shell, you must
use eval. You can use the same kind of expression used to create dynamically named variables
to access them later:

eval value=\$a_${count}

The shell generates the string value=$a_0, then evaluates it. The contents of $a_0 are sub-
stituted and stored in $value. Again, the right-hand side of the assignment is not subject to
field splitting, so there is no need for quotes.

The following function provides a moderately complete implementation of arrays using a
shell function interface:

func_array () {
 func_array_a=$1
 func_array_i=$2
 case $# in

10436ch05final 104 10/23/08 11:34:59 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 119

interprets -x as an option. It then uses ./script as a script file (setting $0 to ./script, and
reading commands from that file instead of standard input) and passes hello as $1. This
behavior is precisely the same as you would get by explicitly invoking the shell on the file.

#! notation and $PATH
An obvious problem with shebang notation is that the path to a program may not always be consistent or
predictable. While this has no immediate effect on most shell scripts, it can crop up in some cases (such as
where you are writing a script for a particular shell), so a brief discussion is in order.

If you want a script to run on two systems and both provide ksh, but one provides it in /bin and the
other in /usr/local/bin, it is quite easy to end up with the script failing on one system or another just
because the shebang line is wrong. One surprising solution is to use the env command; when it runs its
nonassignment arguments as a command, it searches the $PATH environment variable for the command. If
you know that you want to run ksh, and you are confident that it is in the user’s path, a script starting with
#!/usr/bin/env ksh executes ksh correctly. The env utility can be used to run another program, even if
no variable assignments have been provided.

There are a couple of limitations to this trick. One is the existence of a few systems where env is in
/bin, not in /usr/bin. Furthermore, most systems do not allow you to specify multiple program arguments
on the shebang line; if you change the line to #!/usr/bin/env ksh -x, the env utility may try to find a
program named ksh -x to run, rather than trying to run the ksh program with the -x argument. Execution
preambles (see Chapter 7) may allow you to avoid some of these issues.

The POSIX spec recommends the use of the getconf utility to obtain the default system search path
(getconf PATH) and iterate through it looking for the standard shell. Another option is to use the command
utility; command -v sh should give you a path to the shell, for instance.

Shell Options
Options passed to the shell control various implementation choices or settings, some of which
are visible within a script as flags. Some command-line options set flags that can be changed
later using the set command. You can see the current status of shell flags in the special shell
parameter $-, which represents them as a string:

$ echo $-
ilms

This means that the shell has the -i, -l, -m, and -s flags set. These options may not apply
to all shells, and not all shell options are portable. If you want to check for a given option,
check to see whether its letter is present. For instance, a script can determine whether or not it
is in trace mode:

case $- in
x) ;;
*) echo "+ $cmd" >&2;;
esac

10436ch06final 119 10/23/08 10:57:18 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION120

This rather quirky bit of code displays $cmd on standard error if the trace flag is not set.
The trace flag displays simple commands before executing them, but it does not display shell
control constructs, such as case statements; if it is set, no simple commands are executed, so
none of this code is displayed.

The most common flag to check for is the -i flag, which is set in an interactive shell ses-
sion (discussed in more detail in the section “Shell Startup and Interactive Sessions”).

Additional settings may be available using the special -o option; for instance, in ksh or
bash, set -o vi enables vi-style command-line editing. These settings are generally not por-
table between shells. Furthermore, some shells may abort if asked to set an unknown option.
Be aware of this, but avoid it in scripts.

Using Positional Parameters
Any additional words after the last shell option are arguments to the shell. If no commands are
provided using the -c option, the shell treats its first argument as the name of a script to run,
and following arguments as arguments to that script. Otherwise, all arguments are passed on
to the script.

The arguments passed to the shell are stored in special shell parameters named $1, $2, and
so on. These are called the positional parameters. The name of the shell itself is stored in $0 for
an interactive session, but when the shell is running a script, $0 holds the name of the script.
Although the shell in the previous example actually received four arguments (the first being
the path of the shell executable), it sets $0 to ./script and $1 to hello. The name of the shell,
and the command-line options to the shell, are consumed by the shell and not exposed to the
script program. The number of positional parameters is stored in the special parameter $#. For
historical reasons, the shell’s parser treats $10 as the value of $1 with the string 0 appended to
it. To use parameters past $9, use ${N} in a modern shell. Older shells, including the SVR4 shell,
will not accept larger values under any circumstances; in these, you must extract earlier values
and use shift to move other parameters into the first nine slots.

Although some shells offer extensions providing for array variables, the positional param-
eters are the only array conveniently available to a portable shell script. Because of this, they
are used for much more than just argument processing. One common idiom is to extract all
options and arguments from the positional parameters at startup to free them up for later use
in argument parsing. (Trickery such as using many similarly named variables to substitute for
arrays, while portable, is awkward and not always efficient.)

The set Command
Unlike variables, the positional parameters cannot be directly set using variable assignment;
1=2 is just an unknown command to the shell, not an assignment into $1. The set command
can be used to set the positional parameters.

The set command takes a special option (--) to indicate that you are setting something
other than shell options; any following arguments are assigned to the positional parameters,
with the first argument going into $1. The general syntax for this usage is set -- values.
Although set is a special shell builtin, the arguments are processed normally; parameter and
command substitution, globbing, and field splitting all apply.

10436ch06final 120 10/23/08 10:57:18 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 121

what is dummy and why is it being set?
A common idiom in older scripts is to use the word dummy instead of -- when setting the positional param-
eters. Very old shells did not recognize -- as the end of shell options and the beginning of the parameter list.
As a result, you had to put something that was definitely not a shell option in front of the parameters. In a
shell that didn’t know about the -- convention, set -- makes the shell set $1 to the string --.

An idiomatic resolution is to use the word dummy, which does not start with a hyphen, then immediately
shift it off the parameter list:

set dummy $array ; shift

This is moderately idiomatic (some people prefer shorter names like X, but I find dummy to be particu-
larly self-documenting). However, it may not be necessary anymore; the shells I have access to, including
the traditional SVR4 shell, all work using the modern syntax. (It was probably added in the System III shell in
1981.)

There is one other reason to use this. The SVR4 shell can set positional parameters with set -- args,
but plain set -- does not clear them. To clear the positional parameters, use shift $#.

In some scripts, this is used as a simple way to get access to the results of variable expan-
sion and word splitting applied to one or more variables, or to add values to the positional
parameters before executing something. For instance, if you want to insert a value in front of
the existing arguments, you can use $@ and the set command:

set -- new "$@"

Another common idiom is to use $IFS and the set command to split a value around some-
thing other than whitespace. For instance, a classic UNIX password file entry uses colons as
separators. You can read it in the shell using the following idiom:

save_ifs=$IFS
IFS=:
set -- $passwd
IFS=$save_ifs

The set command is not particularly complicated in and of itself, but using it effectively
can be complicated. Setting all of the arguments at once can be awkward when you want to
build or modify argument lists. You can also append additional arguments:

set -- "$@" "$new"

This appends $new to the argument list at the end.

Removing Positional Parameters
It is sometimes desirable to remove parameters from the shell’s parameter list. This is done
using the shift command, which removes positional parameters. You can use shift with or
without an argument. With an argument (shift N), it removes the first N positional parame-
ters, renumbering the later parameters to the front of the list. Without an argument, it removes

10436ch06final 121 10/23/08 10:57:19 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION122

the first parameter. The standard for loop that iterates through the positional parameters is
nearly equivalent to the following while loop:

while test $# -gt 0; do
 echo "$1"
 shift
done

The equivalent for loop is as follows:

for i
do
 echo $i
done

In fact, there is a significant difference between these loops. After the for loop completes,
the positional parameters are unchanged, but after the while loop completes, there are no
positional parameters remaining. This can be useful. A common idiom for parsing command-
line options is to consume options, leaving arguments for further processing:

opt_a=false
opt_b=false
opt_c=""
while test $# -gt 0; do
 case $1 in
 -a) opt_a=true ;;
 -b) opt_b=true ;;
 -c) opt_c="$2"; shift ;;
 --) break ;;
 esac
 shift
done
for arg
do
 # process non-option argument $arg
done

The first loop consumes any arguments that look like known options. The special option
-- indicates the end of options, allowing the user to specify an argument that happens to start
with a hyphen. This provides robustness in the face of programs whose arguments might oth-
erwise look like arguments. This is one of the ways to deal with problems, such as needing to
remove a file named -rf.

Manipulating Parameters for Fun and Profit
Individually, the tools the shell provides for argument manipulation may seem a little weak.
There is no way to assign a single parameter or to insert a parameter later in the list. There
are a number of shell idioms for argument list manipulation, but many of them are unreli-
able when confronted with arguments containing spaces. Consider the following simple loop,
intended to extract options and separate them out from file arguments:

10436ch06final 122 10/23/08 10:57:19 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 123

files=""
opts=""
for arg
do
 case $arg in
 -*) opts="$opts $arg";;
 *) files="$files $arg";;
 esac
done
set -- $opts -- $files

This works pretty well, as long as none of the files, or options, contain spaces. (If you want
this functionality, without those bugs, you should probably use getopt or getopts, discussed
in the section “Handling Options and Arguments”; I picked the example because it is tricky
to get it right and interesting to think about.) There are several ways to attempt to resolve this
difficulty.

If you can think of a character that you are confident cannot occur in any of your options,
this is actually easy to do. Unfortunately, techniques like this are pretty limited; they rely on
coincidence in many cases. For instance, very few file names contain colons; so you might use
colons to separate a list of files, but then a file with a colon in its name can wreck your whole
day. Here is an example of how you could use a colon to separate words:

files=""
opts=""
for arg
do
 case $arg in
 -*) opts=${opts+$opts:}$arg ;;
 *) files=${files+$files:}$arg ;;
 esac
done
save_IFS=$IFS
IFS=:
set -- $opts -- $files
IFS=$save_IFS

There are three major changes here. The first is the use of a different character (in this
case, a colon) to separate words within the $opts and $files variables. The second is the use
of a corresponding value of $IFS to split the variables again. The third, closely related to the
second, is a more complicated inner assignment. Without this, the shell generates a spurious
empty argument at the beginning of each list. For example, if the arguments were foo bar,
$files would end up set to :foo:bar. Note the subtle difference between this behavior and
what happens when $IFS is unset (or has its default value); normally, a variable with a leading
space does not expand into an extra field.

You can use other values for $IFS. Some scripts use control characters for this, precisely
because they are very unusual in file names. However, there may be quirks; for instance, at
least one version of bash can’t handle $IFS being set to control-A.

You can also use simulated arrays using eval (as explained in Chapter 5) to store argu-
ments without worrying about separators:

10436ch06final 123 10/23/08 10:57:19 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION124

filec=0
optc=0
for arg
do
 case $arg in
 -*) eval opt_$optc=\$arg
 optc=`expr $optc + 1`
 ;;
 *) eval file_$filec=\$arg
 filec=`expr $filec + 1`
 ;;
 esac
done
shift $#
while test $filec -gt 0; do
 filec=`expr $filec - 1`
 eval 'set -- "$file_'$filec'" "$@"'
done
set -- "--" "$@"
while test $optc -gt 0; do
 optc=`expr $optc - 1`
 eval 'set -- "$opt_'$optc'" "$@"'
done

The array code here is similar to what was done in Chapter 5. The script extracts the argu-
ments, then clears the argument list and repopulates it using while loops.

Each while loop goes through pushing arguments to the front of the list. Single quotes are
used to reduce escape characters. For the first file argument, the eval command string ends up
as follows:

set -- "$file_0" "$@"

No matter what values the variables contain, this works—they are substituted in as plain
words, not keywords or shell syntax. The "$@" expansion preserves the existing arguments as
separate arguments, regardless of their contents. In fact, the same basic techniques allow you
to do arbitrarily complicated things, such as replacing a specific parameter while leaving the
rest alone.

The most obvious limitation is that it does not work if you try to bundle it into a shell func-
tion. As shell functions have their own local set of positional parameters, modifications to the
positional parameters within a function have no effect on the calling script.

Handling Options and Arguments
Although it is certainly possible to manually process arguments, as in the previous example,
the task is common enough to have been solved repeatedly. Unfortunately, the solutions are
not entirely portable. The first is the getopt command, which parses a command line and pro-
duces a new command line conveniently ordered. The syntax is getopt string parameters,
and the output of the command is the parameters reordered, with options separated out and

10436ch06final 124 10/23/08 10:57:20 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 125

identified, according to the list of options in string. (In fact, the previous loop does most of
the work of implementing getopt.) The options string lists the letters of accepted options;
options that take an argument are followed by a colon.

Because the getopt command is not a shell builtin, and does everything by producing out-
put, you can experiment with it at the command line to see how it works:

$ getopt a hello, world
 -- hello, world
$ getopt a -a hello, world
 -a -- hello, world
$ getopt a -b hello, world
getopt: illegal option -- b
 -- hello, world
$ getopt ab -ab hello, world
 -a -b -- hello, world
$ getopt ab: -ab hello, world
 -a -b hello, -- world
$ getopt ab: -ba hello, world
 -b a -- hello, world

The output of the getopt utility is options -- non-options. As each parameter begin-
ning with a hyphen is evaluated, it is converted into a series of options. If an option that takes
an argument is encountered, its argument is either the rest of the word (if there is any left)
or the next word, whatever that may be. Options in clusters are separated out; -ab becomes
-a -b. As with many utilities, getopt treats -- as ending options and beginning the nonoption
parameters. The output of the getopt utility is intended to be used to replace the positional
parameters; the canonical usage is combined with the set command:

set -- `getopt options "$@"`

This usage is portable on recent systems. You can then iterate over the positional param-
eters, extracting options, without having to worry about exactly what characters are part of
which options. Doing this by hand is exceedingly difficult in shell and not really worth the
trouble. However, the getopt utility does have one crucial limitation—it cannot gracefully
handle parameters containing whitespace.

Modern shells generally provide a getopts built-in command, which is able to set shell
variables, and thus provide more reliable handling of parameters. As the phrase “modern
shells” suggests, this is not completely portable yet. Surprisingly, the shell in older versions of
Cygwin was compiled so that it included the code for getopts, but it did not actually recognize
the command. This has been fixed in modern releases.

The getopts command is used more like the read command, returning true or false
depending on whether or not there is a next option, and returning one option at a time. The
syntax of the command is getopts string variable parameters; if parameters are omitted,
getopts uses the positional parameters. Each time getopts is invoked, it looks for another
option and stores the option character in $variable. If there are no more options, getopts
returns false. If there is an error, getopts returns true and sets $variable to ?. A typical usage
of getopts looks like this:

10436ch06final 125 10/23/08 10:57:20 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION126

while getopts ab: o; do
 case $o in
 a) echo "received flag a";;
 b) echo "received option b: $OPTARG";;
 esac
done
shift `expr $OPTIND - 1`

The special shell variable $OPTARG holds the argument provided for an option that requires
an argument. The special shell variable $OPTIND holds the number of the first nonoption posi-
tional parameter. For example, if there are no options, $OPTIND has the value 1 after getopts
has run (and returned false). Because the positional parameters number from one, executing
shift $OPTIND would remove the first nonoption parameter from the list. Like getopt, getopts
recognizes -- as the end of options and uses the remainder of a word as an argument if an
option expects an argument.

Because getopts can handle arbitrary arguments reliably, I prefer it. While traditional
shells did not provide the getopts builtin, modern shells, including the SVR4 shell, do.

Older Shells: Now What?
While nearly all modern shells support getopts (and you could write it as a function fairly
portably), it may occasionally become necessary to work with a very old shell that lacks this
feature. The following boilerplate code handles a broad variety of arguments fairly well. (Many
of the names are placeholders used to illustrate how to handle common tasks in shell code.)

opt_boolean=false
opt_accumulator=0
opt_argument=''
opt_list='' this is unset so that ${opt_list+item} will work

sed scripts:
my_sed_single_opt='1s/^\(..\).*$/\1/;q'
my_sed_single_rest='1s/^..\(.*\)$/\1/;q'
my_sed_long_opt='1s/^\(--[^=]*\)=.*/\1/;q'
my_sed_long_arg='1s/^--[^=]*=//'

while test $# -gt 0; do
 opt=$1
 shift
 case $opt in
 # standard usage patterns:
 -a|--accumulator) opt_accumulator=`expr 1 + $opt_accumulator` ;;
 -A|--argument) opt_argument=$1
 shift
 ;;
 -b|--boolean) opt_boolean=:
 ;;

10436ch06final 126 10/23/08 10:57:20 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 127

 --composite) set dummy --boolean --list element ${1+"$@"}
 shift
 ;;
 --list) opt_list=${opt_list+$opt_list:}$1
 shift
 ;;

 # Add your own long and short option branches here, and then
 # change the branch match expressions below to match the
 # appropriate options for splitting and reparsing...

 # Separate optargs to long options:
 --argument=*|--list=*)
 arg=`echo "$opt" | $SED "$my_sed_long_arg"`
 opt=`echo "$opt" | $SED "$my_sed_long_opt"`
 set dummy "$opt" "$arg" ${1+"$@"}
 shift
 ;;

 # Separate optargs to short options:
 -a*|-p*|-q*|-r*)
 arg=`echo "$opt" |$SED "$my_sed_single_rest"`
 opt=`echo "$opt" |$SED "$my_sed_single_opt"`
 set dummy "$opt" "$arg" ${1+"$@"}
 shift
 ;;

 # Separate non-argument short options:
 -b*|-x*|-y*|-z*)
 rest=`echo "$opt" |$SED "$my_sed_single_rest"`
 opt=`echo "$opt" |$SED "$my_sed_single_opt"`
 set dummy "$opt" "-$rest" ${1+"$@"}
 shift
 ;;

 -\?|-h) func_usage ;;
 --help) func_help ;;
 --version) func_version ;;
 --) break ;;
 -*) func_fatal_help "unrecognized option \`$opt'" ;;
 *) set dummy "$opt" ${1+"$@"}; shift; break ;;
 esac
done

While this may seem like a lot of work to avoid getopts, it is worth noting that this sup-
ports a number of helpful idioms, such as long argument names. The functions used for the
last few options are left as an exercise for the reader; their behavior should be obvious from

10436ch06final 127 10/23/08 10:57:20 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION128

the context. Of particular interest is the code used to separate out multiple options given as
a single argument. If you call this code with -bx as an option, the first pass through the loop
replaces this with -b -x. You would have to define the -b) case for this to be processed cor-
rectly, though. As long as the -b case occurs before the -b* case, the first one matches and the
shell processes the argument appropriately.

For extra credit, modify the preceding example to detect and warn the user if no argument
is provided for an option requiring one.

Shell Startup and Interactive Sessions
There are several different kinds of shell sessions. If the shell is expecting to read commands
and respond with prompts, that is called an interactive session. When the shell reads com-
mands from a file, it generally is not an interactive session. A shell taking input from a pipe is
also not an interactive session; the distinction is whether the input device is considered to be a
tty (a terminal device; the name is short for “teletype”). Some shell sessions are further consid-
ered to be login sessions; a login session is normally interactive.

During startup, the shell may read (and execute) one or more startup scripts. The exact
rules for this are, sadly, nonportable between shells. If your home directory contains a file
named .profile, an interactive login shell will probably execute it during startup. Unfor-
tunately, this is merely probable, not certain; as an example, bash looks for files named
.bash_profile or .bash_login first, and it does not execute .profile if it finds one of the others.
The intended benefit, of course, is that you can have a startup specific to bash that need not be
portable to other shell variants. However, if you have a standard .profile you bring from one
machine to another, it can be surprising trying to debug why it isn’t being used.

Shells other than login shells may also run startup scripts. This is even less predictable and
may be subject to strange rules. For example, many POSIX shells will execute the file named
by the environment variable $ENV at startup. Pre-POSIX shells do not, and bash executes $ENV
only if it is being run in its POSIX mode or was invoked under the name sh; otherwise, it uses
$BASH_ENV instead. Contrary to its behavior with .profile, bash does not execute $ENV just
because $BASH_ENV is not set. In short, you can not rely on startup behavior in a portable script.
What’s worse is that you cannot rely on such files being run at startup; but also you cannot rely
on them not being run at startup.

This brings us to one of the few genuinely intractable problems of portable shell scripting:
A hostile user can misconfigure the shell so that it will not work by creating a startup file which
prevents successful execution of your script, most commonly by creating aliases for common
commands (the alias command is described in Chapter 7). You can override this somewhat
by specifying full paths or quoted names for most commands, but it is very difficult to get
right.

There is not very much you can do about the possibility that someone, somewhere, will
end up feeding your script to a shell that is configured to alias various common commands
on startup. However, you can avoid doing this to your own scripts. In any file that affects shell
startup, be sure to execute aliases and similar code only when you are not in an interactive
shell. The safest idiom to use for this is as follows:

10436ch06final 128 10/23/08 10:57:21 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 129

case $- in
i) alias yes=no
 echo "Do you want me to hit you?"
 ;;
*) ;;
esac

This causes the shell to execute its initialization commands only when the shell is not
interactive. I have seen a different idiom for this:

case $- in
i) ;;
*) return 0;;
esac

This is not safe. While there are shells in which the return command (used, in some
shells, to exit from a function) can also end the execution of a file being executed by the shell
using ., there are shells in which a return command outside of a shell function exits the
entire shell. As it is not unheard of for a startup script to end up getting picked up by a differ-
ent shell, this can cause a perfectly ordinary shell script to unexpectedly terminate without
any diagnosis of errors.

When looking at startup scripts, there are three common cases. A login shell typically
needs to perform additional setup to populate the environment; on many systems, this would
also be the place to configure things like terminal types or start an ssh-agent process. After
this has been done, other shells can simply inherit this environment. Among non-login shells,
there is still a noticeable difference between interactive and noninteractive sessions. If you are
working with a shell that can execute a startup script in a noninteractive session, be sure your
startup scripts don’t do anything time-consuming or interactive in a noninteractive session.

Execution
It is possible to program fairly effectively in shell without needing to know the exact details of
how certain things are done. The shell reads and executes code. However, there is some possi-
bility for confusion. When does the shell parse? What order do various substitutions occur in?
Where is this error message coming from?

This section gives a more detailed view of the runtime behavior of the shell and introduces
some of the debugging tools that may come up when the shell behaves unexpectedly.

More on Jobs and Tasks
Job control features, allowing a shell to control or manipulate multiple tasks, are mostly used
on the command line, but there are cases in which you can take advantage of the shell’s abil-
ity to manipulate multiple tasks to simplify some shell script design tasks. Some shells offer
extensions (such as ksh’s co-process feature) that make additional use of background tasks.
For portable scripting, the primary thing you can do with background tasks is continue doing
some other work while a long task processes. For instance, you could have a script that plays a
game with the user while waiting for an archive to unpack—although most users would prob-
ably rather you didn’t.

10436ch06final 129 10/23/08 10:57:21 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION130

Signals and Interprocess Communication
It is often necessary to communicate between processes. UNIX provides several mechanisms
for interprocess communication (IPC), of which three are available to the shell. Two of them
have already been introduced: exit status and pipes. The exit status of a process is only sort of
an IPC mechanism, but it allows for a child process to communicate to its parent whether or
not it has succeeded. Pipes are an exceedingly flexible IPC mechanism, but the shell pipe syn-
tax only allows one-way communication between a pair of programs.

The other IPC mechanism available to the shell is signaling. Signals are unusual in that the
recipient of a signal may not have any opportunity to interact with it. Signals can simply ter-
minate the receiving process. However, most signals may be intercepted by a program, which
can define a piece of code to execute when it receives the signal. This piece of code is called a
signal handler. The shell allows the user to define handlers for several of the common signals.

Signals are referred to by their names or by their numbers; there is a consistent mapping
of names to numbers for the most common signals. The signals most likely to be used in shell
programming are outlined in Table 6-1.

Table 6-1. Signals by Number

Number	N ame	 Trap	D escription	D efault Behavior

0	 EXIT	 Yes	 Shell is exiting.

1	 HUP	 Yes	 Session ended.

2	 INT	 Yes	 Interrupt.

9	 KILL	 No	 Kill.

13	 PIPE	 Yes	 I/O error on pipe.

14	 ALRM	 No	 Timer expired.

15	 TERM	 Yes	 Default termination signal.

17	 STOP	 No	 Process stopped.

18	 TSTP	 No	 Process stop request from terminal.

19	 CONT	 No	 Continue stopped process.

21	 TTIN	 No	 Stopped waiting for input.

22	 TTOU	 No	 Stopped waiting for output.

30	 USR1	 No	 User-defined signal #1.

31	 USR2	 No	 User-defined signal #2.

The default effect of a signal varies. For HUP, INT, TERM, ALRM, and KILL, the default
behavior is for the process to terminate. If a process is killed by a signal, its exit status is gener-
ally reported as 128 plus the signal number. For instance, a program interrupted by an INT
signal has an exit status of 130. The USR1 and USR2 signals are usually ignored. They exist
to allow programs to define specific behaviors in response to those signals without changing
handling of any of the standard signals that normally have an effect.

The STOP and TSTP signals, as well as TTIN and TTOU, cause a process to cease execu-
tion but not to exit; execution resumes on a CONT signal.

10436ch06final 130 10/23/08 10:57:21 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 131

Some signals are generated automatically by the UNIX kernel. Any signal can also be
generated artificially. You can send any signal to any program (running with the same user
ID) using the kill command. The default signal (sent if no signal is specified) is TERM. Other
signals can be specified using their name or number with a leading hyphen. For example, kill
-9 pid sends a KILL signal to the process with process ID pid, as does kill -KILL pid. Num-
bers are more portable.

Signals can be caught by a shell program using the trap built-in command, although
only some signals may be trapped portably. This command specifies an action to be taken in
response to a signal. The syntax for the command is trap action signals. If action is omitted
or an empty string, the shell ignores the given signal or signals. If action is a hyphen (-), the
shell resets the signal to its default behavior. Otherwise, action is executed as though passed as
an argument to eval when the signal is received; this replaces the usual behavior for the signal.
Multiple signals may be specified in a single trap command, and signals may be specified by
number (portably) or name (on modern systems). However, only one action may be specified;
if you want to run multiple commands, you must quote them (and separate them with semi
colons or new lines) or use a shell function.

Do not assume that $? is passed into a trap handler correctly; some shells do not do this.
In general, avoid starting a trap handler with a shell function call.

When a signal is generated by the kernel, it may be sent to the shell and its child processes
rather than only to the shell. For instance, if you hit Ctrl-C while running a script, the shell pro-
cess and its associated children all receive the INT signal. The trap command only affects the
signal received by the shell itself; child processes can still receive, and be affected by, signals.

The shell defines a special signal, signal number 0 (named EXIT), that is handled when the
shell exits. For instance, the following shell script greets the user:

NAME=world
trap "echo Hello, $NAME!" 0

Hello, world!

The action specified in the trap command executes automatically at the end of the script.
The handler for signal 0 is frequently used for cleanup of temporary files created during the
execution of a script. Note, though, that the exit handler is not invoked if the shell is termi-
nated by another signal. The special value 0 (but not the symbolic name EXIT) may be used as
a signal for the kill command, too. In this case, kill sends no signal but yields a return code
indicating whether or not the process exists. A successful return indicates that the process
exists, and a failed return indicates that it does not. No signal is delivered by kill -0, so a han-
dler for signal 0 does not execute except when the script exits.

Run with no arguments, trap prints a list of the current signal handlers, quoted such that
evaluating this output restores the signal handlers:

$ trap 'echo "you cannot defeat me so easily!"' TERM
$ trap
trap -- 'echo "you cannot defeat me so easily!"' TERM

10436ch06final 131 10/23/08 10:57:22 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION132

It is not portable to attempt to save only a single signal’s output from this list by scanning
the list for a particular value, as the existing handler might be more than one line of code. In
this case, the shell command to recreate it would also be more than one line of code, and a
simple check of matching lines would fail. However, if you have full control over a script, you
can resolve this by ensuring that all signal handlers are a single line of code, allowing you to
save individual values. The obvious solution is to pipe the output of trap into a while loop; this
does not work because signal handlers are reset to their defaults within a subshell. To store
trap values, store the output in a file, then read the file:

trap 'echo "you cannot defeat me so easily!"' TERM
trap 'echo "whoops, driving under a bridge."' HUP
trap > /tmp/trap.$$
while read sig
do
 set -- $sig
 eval "signum=\${$#}"
 eval "sig_$signum=\$sig"
done < /tmp/trap.$$
rm -f /tmp/trap.$$
set | grep ^sig_

sig_HUP='trap -- '\''echo "whoops, driving under a bridge."'\'' HUP'
sig_TERM='trap -- '\''echo "you cannot defeat me so easily!"'\'' TERM'

The output of this script may vary between shells. In bash, the signals are spelled out as
SIGHUP and SIGTERM, while ksh93 uses an extension to simplify the quoting of the strings.
This means you cannot reliably expect one shell to correctly read or execute the output of a
trap command run in another shell. However, all the shells are internally consistent; the out-
put of the trap command in a given shell can be evaluated by that shell. Once you have saved
the current signals, you can modify them or restore them individually. After running the pre-
ceding script, you could temporarily remove the HUP handler, then restore it:

trap - HUP
echo "Doing something long and boring. Will accept SIGHUP."
sleep 5
eval $sig_HUP

There are a few conventions about the use of signals. Interactive utilities generally abort
upon receiving a HUP signal. Long-running daemons, though, often use the HUP signal as a
cue to refresh their configuration, possibly rereading configuration files. Some use USR1 or
USR2 for related tasks, such as refreshing or reopening log files.

Understanding Background Tasks
Background tasks and subshells have unique pids. When a task is launched in the background,
the parent shell gets the child’s pid in the special shell parameter $!. However, if the job is run-
ning in a subshell, it does not know its own pid; it gets the parent’s pid in the $$ parameter. By
contrast, a job run with sh -c gets its own pid in the $$ parameter.

10436ch06final 132 10/23/08 10:57:22 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 133

Shell background tasks may be distinguished by their pids. Background tasks (along with
interactive control of multiple jobs, called job control) are primarily used interactively. How-
ever, it is possible to make some use of background tasks in shells.

Background jobs are always run in subshells, so they do not affect the parent shell’s con-
text. A background job cannot change the calling shell’s directory, set variables, or otherwise
modify the caller except by sending signals. If you wrote a loop to read values from a file and
ran it in the background, it would not set variables in the calling shell. Similarly, you cannot
change a directory in the background:

cd /tmp &

This creates a subshell that changes its working directory to /tmp, then exits. The parent
shell is unaffected.

So what do background jobs do? Background jobs are often used when you want to run
a longer command while you continue working; for instance, at the command line, it is quite
common to run a long compile process or file operation in the background. In a script, you
might still want to run a long task in the background. To do so, you need to be able to deter-
mine whether the task is still running, wait for it to complete, or even abort it if you change
your mind. All of this can be done.

Shell scripts that wish to use background tasks can keep track of them using their pids.
Immediately after launching a background task, you can obtain its pid from the $! shell
parameter. This can be used to send signals to the background task (using the kill command)
or to wait for it later. If you have a large file-manipulation task to run, which may take several
minutes and requires no user interaction, it might make sense to start it in the background,
perform other tasks, then wait for it after those tasks are finished.

The wait command waits for background tasks to complete. Without arguments, it waits
for all background tasks to complete and returns a successful exit status. If you specify the pid
of a specific background task, it waits for that task to complete and returns the return code
of that task. If the task has already completed, or the pid in question is not the pid of a child
process of this shell, the wait command returns immediately indicating failure. The following
trivial script begins an operation, then waits for it to complete:

tar cf archive.tar files &
child=$!
echo "Waiting for archive..."
wait $child

While waiting for a child is easy, and killing it is also easy, it is a little harder to check
whether it is still running. The command kill -0 pid might work; if it succeeds, you know
that there is a process numbered pid and that you have permission to send signals to that pro-
cess. However, you do not know for sure that it is the child process you started; that process
could have ended, and the pid then recycled.

Making Effective Use of wait
The wait command exits immediately if you ask it to wait for a process that is not a child of the
current shell. However, if the process is still a child, the wait command waits for it. There is no
portable way to check reliably whether a given process is a child of the current shell. The wait

10436ch06final 133 10/23/08 10:57:22 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION134

command runs in the calling shell, so to interrupt it, you must send a signal to the parent shell.
If the signal would normally interrupt the shell, the signal will terminate the shell unless the
signal is trapped.

If you send a signal to the shell while it’s waiting, and the signal is trapped, the resulting
behavior is unportable. Possible outcomes include the wait command aborting immediately
or continuing until the child dies. Typically, the trap executes after the wait completes, but in
zsh the trap executes immediately and the wait command continues anyway. This varies not
only between shell families but between systems; the ash in use on NetBSD and FreeBSD sys-
tems differs from dash on Linux.

So, once the wait is started, you can’t reliably interrupt it without killing your shell. You
can’t run wait on a background task in a subshell because the subshell is not the parent of the
background task.

In practice, you can usually get away with checking the pid with kill -0 and expect that
this will give you a good guess as to whether the child process is still running. This is not per-
fectly reliable, but is usually pretty good.

If you only need to monitor a single background task, you can solve the problem by hav-
ing the background task notify the parent shell when it is done, rather than the other way
around. To do this, you can have the child process send the parent shell a USR1 signal, which
you have cleverly trapped. The following script prints “Nope, still waiting. . .” three times, but
it could perform any activities you wanted while waiting; the point of the example is that you
can tell when the subshell has exited:

done=false
trap 'done=true' USR1
(sleep 3; kill -USR1 $$) &
while if $done; then false; else true; fi; do
 echo "Nope, still waiting..."
 sleep 1
done

The subshell keeps the parent shell’s pid as $$, so the kill command sends a USR1 signal
to the parent shell after the previous command completes. It is a bit harder to use this with
more than one background task; you cannot tell which process sent you a particular signal.

A similar technique can be used to once again invert the sense of the problem. Imagine
that you have a task you wish to run, but you do not want to run it forever because it might
hang. If it has not completed within a given amount of time, you want to kill it. The following
rather ugly one-liner does fairly well at this:

sh -c 'sh -c "sleep '$delay'; kill $$" >/dev/null 2>&1 & exec sh -c "'"$*"'"'

This shell fragment runs the provided arguments ($*) in a child shell, but it terminates
that shell after $delay seconds if the child shell has not already exited. The exit status is the exit
status of the child shell, which reflects the abnormal exit if the kill command fires. This exam-
ple shows off a variety of expansion rules, subshells, and quoting behaviors. The first thing to
note is that, at the top level, this command invokes a shell (using sh -c) that actually executes
a command in which some variables have been expanded. Assuming that $delay contains

10436ch06final 134 10/23/08 10:57:23 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 135

the number 5, and the positional parameters contain the string command, the child shell then
executes this:

sh -c "sleep 5; kill $$" >/dev/null 2>&1 & exec sh -c "command"

The command line is assembled from a single-quoted string (up through sleep and the
space after it), the expansion of $delay, another single-quoted string (up to the last sh -c and
the following double quote), a double-quoted expansion of $*, and finally a single-quoted
double quote. This brings us to the question of what this elaborate list actually does.

The child shell executes two commands. The first is another child shell, which I’ll call the
grandchild for clarity, running the command sleep 5; kill $$. Because $$ occurs in double
quotes, it is expanded by the child shell, not by the grandchild shell; this matters because the
grandchild shell is not a subshell and does not inherit the child shell’s $$.

The grandchild shell’s output and error streams are directed to /dev/null. So, after 5
seconds, the grandchild shell attempts to kill the child shell. Meanwhile, because the shell
command that started the grandchild ends with the & separator, the child shell goes on to
execute the next command in its list. This command is another shell, which runs the external
command. The command is passed to a new shell to allow it to be parsed, to contain arbitrary
keywords, and so on. However, to ensure that this process can be stopped, the script must
know the process ID it will run under. Conveniently, the exec command runs the new com-
mand in place of the caller; thus the new shell is run using the same process ID—the one that
was passed to the grandchild shell to be killed in $delay seconds.

This has a couple of weaknesses. The first is that, if the grandchild process (containing the
command you are actually interested in) exits quickly, the kill command fires anyway. This
could result in a new process getting sent the signal, if the pid is reused. This is uncommon,
but not impossible. Also, it is often better to send more than one signal (first a polite reminder,
then an actual KILL signal) so commands that need a second or so for shutdown can do it
cleanly. This actually increases the window for possible problems, but it improves the reli-
ability of execution in the common case where the child process has important cleanup work
to do before exiting. The following code is based on an elegant solution suggested by Alan Bar-
rett, used by his kind permission:

func_timeout() (
 timeout=$1
 shift
 "$@" &
 childpid=$!
 (
 trap 'kill -TERM $sleeppid 2>/dev/null ; exit 0' TERM
 sleep "$timeout" &
 sleeppid=$!
 wait $sleeppid 2>/dev/null
 kill -TERM $childpid 2>/dev/null
 sleep 2
 kill -KILL $childpid 2>/dev/null
) &
 alarmpid=$!

10436ch06final 135 10/23/08 10:57:23 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION136

 wait $childpid 2>/dev/null
 status=$?
 kill -TERM $alarmpid 2>/dev/null

 return $status
)

This is a rather elaborate shell function and deserves some careful explanation. The first
four lines are straightforward:

 timeout=$1
 shift
 "$@" &
 childpid=$!

The first two lines extract the timeout value (passed as the first argument to the function)
from the positional parameters of the function, then remove it from the positional param-
eters. The function then executes the remaining arguments as a command. Note that they are
executed as a single command, with no shell syntax (such as semicolons); if you wanted to
support additional shell syntax, you would have to pass them to a new shell, probably using
sh -c. The shell then obtains the pid of the background task, storing it in the shell variable
$childpid.

 (
 trap 'kill -TERM $sleeppid 2>/dev/null ; exit 0' TERM
 sleep "$timeout" &
 sleeppid=$!
 wait $sleeppid 2>/dev/null
 kill -TERM $childpid 2>/dev/null
 sleep 2
 kill -KILL $childpid 2>/dev/null
) &
 alarmpid=$!

This is where the magic happens. This runs a second background task in a subshell. The
task starts by trapping the TERM signal. The handler kills $sleeppid, then exits. The handler
is specified in single quotes, so $sleeppid isn’t expanded yet, which is good, because it hasn’t
been set yet either. (If this subshell gets killed before it gets any farther, the handler executes
the command kill -TERM, with no arguments; an error message is emitted to /dev/null and
nothing happens.)

The subshell now launches a background sleep task, stores its pid in $sleeppid, and waits
for the sleep to complete. If the sleep command completes normally, the subshell then tries to
kill the original child, first with a TERM signal, then with a KILL signal. This whole subshell is
run in the background, and its pid is stored in the variable $alarmpid.

 wait $childpid 2>/dev/null
 status=$?
 kill -TERM $alarmpid 2>/dev/null

 return $status

10436ch06final 136 10/23/08 10:57:23 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 137

Now the parent shell waits for the child process. If the child process has not completed when
the background subshell finishes sleeping, the background subshell kills it. Either way, when the
child process terminates, the parent shell extracts its status, and then tries to kill the alarm pro-
cess. There are two ways this can play out. The first is that the child process might not die from the
TERM signal, in which case, the alarm process tries to kill it with a KILL signal and then exits. In this
case, the parent shell’s attempt to end the alarm process could theoretically hit another process,
although the window is very narrow. The second (more likely) possibility is that the child process
dies from the TERM signal, so the parent shell kills the alarm process, which then tries to kill its
sleep process (which has just exited) and then exits. In any event, the function returns the status of
the child process; if it was terminated by a signal, the status usually reflects this. (Some shells may
strip the high bit, which indicates that a process was terminated by a signal.)

The variables set locally in the function, such as $childpid, do not show up in the calling
shell because the whole function is run in a subshell. Of course, the nested subshells and back-
ground tasks impose a noticeable performance cost, especially on a Windows system, but on
the other hand, this kind of code is likely only to be run with tasks that can run for some time.
Even if spawning subshells takes a noticeable fraction of a second, a 10- or 20-second runtime
will dwarf that cost completely.

Techniques like this can be very useful while trying to perform automated testing, but a
caveat is in order: There is no safe estimate available for what $timeout should be. If you are
using something like this to catch failures, be sure you have thought about the performance
characteristics of the command you want to time out waiting for. For instance, retrieving a
web page typically takes only a couple of seconds, so you might set a time limit of 10 seconds.
However, if a DNS entry has gotten lost or misconfigured and a web server is trying to look up
names, it is quite possible for a connection to a host to take over 30 seconds simply to start up.
Aborting too early can give misleading results.

Understanding Runtime Behavior
Previous sections of this book have introduced a number of things the shell does to its input.
Input is broken into tokens, parameters and commands are substituted, and globs are
replaced. Nearly every time a shell script has really mystified me, it turned out that I had for-
gotten the order of operations or the special circumstances under which an operation did not
occur. The first thing to know is the basic order of operations, as shown in Table 6-2.

Table 6-2. Shell Operations in Order

Order	O peration	N otes

1st	 Tokenizing	� Creates tokens. This is the only phase that can create keywords or
special shell punctuation. Words are split on whitespace.

2nd	 Brace expansion	 Only in some shells; see Chapter 7.

3rd	 Tilde expansion	 Replaces tilde constructs with home directories. Not universal.

4th	 Substitution	� Variable and command substitution (also arithmetic substitution
in some shells; see Chapter 7).

5th	 Field splitting	 Results of substitution split on $IFS.

6th	 Globbing	� Glob patterns expanded into file names, possibly producing mul-
tiple words.

Continued

10436ch06final 137 10/23/08 10:57:23 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION138

Table 6-2. Continued

Order	O peration	N otes

7th	 Redirection	� Redirection operators processed, and removed from command
line.

8th	 Execution	 Results executed.

Of course, nothing in shell is this simple. There are two contexts in which field splitting
and globbing are not performed. These are the control expression of a case statement and
the right-hand side of variable assignment. Quoting also changes many behaviors. In single
quotes, no expansion, substituting, splitting, or globbing occurs. In double quotes, tilde
expansion, field splitting, and globbing are suppressed; only substitution is performed.

In the case where the command executed is eval, the arguments are subject to all of these
steps again and subject to the same rules (including quoting, if there are any quotes in the
arguments to eval).

These steps are taken one command at a time. The shell does not parse a whole script
before beginning execution; it parses individual lines. At the end of each line, if the shell
needs more tokens to complete parsing a command structure or command, it reads another
line. When the shell reaches the end of a line (or the end of the whole script file) and has one
or more valid commands, it executes any valid commands it has found. The following script
always executes the initial echo command, even though the line after it is a syntax error:

echo hello
case x do

hello
script: 2: Syntax error: expecting "in"

However, if the commands are joined by a semicolon, the shell tries to finish parsing the
first line before running the command:

echo hello; case x do

script: 1: Syntax error: expecting "in"

Even if the command is long and complicated, such as a case statement containing nested
if statements, the whole command must be parsed before anything is executed.

Behavior with subshells is more complicated. Some shells perform complete parsing (but
no substitution) of code that will be executed in a subshell. Others may let the subshell do
some of the parsing. Consider the following script fragment:

10436ch06final 138 10/23/08 10:57:24 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 139

if false; then
 (if then)
else
 echo hello
fi

Should this script work? We can tell by inspection that the subshell command (which
is invalid) is never run. However, every shell I have tried rejects it for a syntax error. A more
subtle variant may escape detection:

if false; then
 (if then fi)
else
 echo hello
fi

This version passes muster with ash and zsh, but it is rejected by ksh93, pdksh, and bash.
Replacing the subshell with command substitution makes it easier to get shells to accept such
code, but even then ash rejects it if the fi is omitted.

In practice, the best strategy is the simplest—ensure that code passed to subshells is syn-
tactically valid.

Command Substitution, Subshells, and Parameter Substitution
When commands are executed in subshells, they are not subject to any kind of expansion,
substitution, field splitting, or globbing in the parent shell. This is true whether you are dealing
with an explicit subshell or the implicit subshell used by command substitution.

This behavior is closely tied to the fact that nothing can ever expand to a keyword. The
parent shell can always determine which tokens belong in a command to be passed to a
subshell without performing any kind of substitution; it simply passes those tokens to the sub-
shell, which performs any needed substitutions.

This is generally true even for implicit subshells used in a pipeline, although it is not true
of zsh in some cases:

true | true ${foo=bar} | true

In zsh, if $foo was initially unset, it is set to bar. In other shells, it remains unset.
The previous example may seem a bit contrived. There are very few reasonable cases in

which it matters at all whether it is the parent shell or a subshell performing substitutions; out-
side of the = form of variable assignment and special variables like $BASH_SUBSHELL, it simply
never matters. However, understanding it can make it easier to see how the shell works.

Quoted and Unquoted Strings
It is easy to understand the behavior of both quoted and unquoted strings when each token is
one or the other. The shell’s behavior when quoted and unquoted strings are not separated by
space is a bit more intricate, but you have to use it sometimes; very few interesting scripts can
be written without combining quoted and unquoted text.

10436ch06final 139 10/23/08 10:57:24 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION140

For the most part, quoting is predictable. Each quoted block is interpreted according to
its own quoting rules, and the results are concatenated into a single string. Substitution occurs
only within unquoted or double-quoted text, and field splitting occurs only outside of quotes.

The interaction of globbing and quoting, however, can be confusing. If you have quoted
and unquoted glob characters in a single string, the quoted ones remain literal and the
unquoted ones are available for pattern matching. Thus the pattern '*'* matches file names
starting with an asterisk.

The interaction of tilde expansion with quoting is not portable; some shells will expand
~'user' the same way as ~user and others the same way as '~user'. Since tilde expansion itself
is not completely portable, this has little effect on portable scripts.

Quoting in Parameter Substitution
A number of parameter substitution forms contain embedded strings. The quoting rules for
these are not entirely portable. In general, omit quotes in these strings and rely on quoting
around the substitution. If you need to escape a dollar sign or similar character in a literal, use
a backslash. If you want to prevent globbing, quote the whole substitution, not just the right-
hand side.

The examples in Table 6-3 assume two variables, $a and $e; $e is unset and $a holds an
asterisk.

Table 6-3. Trying to Predict Shell Expansion

Expression	O utput

${e}	 Empty string

${a}	 Expansion of glob *

${e:-$a}	 Expansion of glob pattern *, except in zsh where it is literal

"${e:-$a}"	 *, except in ash, which expands the glob

"${e:-*}"	 * expression

"${e:-"*"}"	 *, except in ksh93, which expands the glob

"${e:-"$a"}"	 *, except in ksh93, which expands the glob

"${e:-\$a}"	 $a

${e:-'$a'}	 $a

"${e:-'$a'}"	 '*', except in pdksh, which gives $a

'${e:-'$a'}'	 ${e:-*} as a glob pattern, except in zsh, where it is literal

To make a long story short, it is hard to predict the behavior of nested quotes in variable
substitution. Avoid this as much as you can. However, be aware that you may need quotes to
use assignment substitution. The following code does not work in some older shells:

$: ${a=b c}
bad substitution

10436ch06final 140 10/23/08 10:57:24 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 141

To work around this, you can quote either the right-hand side of the assignment or the
whole operator. Quoting the word only is more idiomatic:

$: ${a="b c"}

In the preceding example, if $a has a value, that value is expanded outside of quotes, but if
it did not have a value, the assigned value is in quotes:

$ sh echoargs ${a="b c"}
b c
$ sh echoargs ${a="b c"}
b
c

Trying to predict this behavior is essentially futile; there are simply too many specialized
bugs or special cases. In general, the interactions between assignment substitution and other
quoting rules make it best to use this substitution form only as an argument to : commands,
not in cases where you have any expectations about the substituted value.

The POSIX expansion forms using pattern matching (discussed in Chapter 7) treat the
pattern as unquoted by default, so you must quote pattern characters in them. As you can see,
this behavior may be hard to predict consistently. Backslashes are usually safe for escaping
single characters.

A Few Brainteasers
While all of the shell’s rules are individually comprehensible, it is easy to think so hard about
one of the shell’s quoting or substitution behaviors that you forget about another one. This
section gives a handful of code fragments that have surprised me or other people I know,
resulting in confusion about why a given shell fragment didn’t work or even confusion about
why it did.

$ echo $IFS

I am a little ashamed to admit that I’ve used this several times to try to debug problems
with the shell’s behavior. It seems perfectly sensible, and if you think $IFS is unset or contains
only whitespace, it even does what you expect. The problem is that unquoted parameter sub-
stitution is subject to field splitting. This means that any characters in the value of $IFS that
are found in the value of $IFS are taken as field separators. If a word expands to nothing but
field separators, there is no word there; all this does is pass no arguments to echo, producing a
blank line. You wouldn’t think it surprising that the characters in $IFS are in $IFS, but the habit
of using echo $var to display a value is pretty well set in many shell programmers.

$ a=*
$ echo $a

This fragment clearly shows that the shell performs globbing on variable assignment; after
all, $a was set to a list of file names, right? In fact, it is quite the opposite; $a was set to *, but
since the substitution isn’t quoted, the results are globbed.

The next example shows a case that seems surprising if you don’t know that field splitting
does not occur in an assignment operation. Most shell users are familiar with the problem of
trying to assign multiple words to a variable:

10436ch06final 141 10/23/08 10:57:25 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION142

$ a=one two
sh: two: command not found
$ echo $a

$ a="one two"
$ b=$a

The second assignment does not need quotes; there is no field splitting in the assign-
ment. However, you will see quotes used there quite often, mostly by people who have been
burned by trying to assign a list of words to a variable without quotes. This is the big difference
between word splitting (tokenizing) and field splitting. An assignment must be a single word,
so if it is to contain spaces, they have to be quoted. However, once the assignment is identi-
fied, the right-hand side is substituted without any field splitting or globbing.

case $var in
"*")
 echo "*";;
" ")
 echo "* *";;
*)
 echo "anything else";;
esac

The case statement has two interesting special cases, if you’ll pardon the term. The con-
trol expression is not subject to field splitting or globbing. The pattern expressions are stranger
still. Shell pattern characters in the patterns are obviously treated as pattern expressions
(rather than globs) when unquoted. To get literals, you must quote them. However, other shell
characters may need to be quoted; the quotes in *" "*) are needed, or the script becomes a
syntax error. This is understandable if you think of the abstract form of the syntax:

case expression in
word) commands ;;
esac

All you have to do is remember that each test expression has to be a single shell word at
tokenizing time; it is not subject to field splitting or to globbing.

Debugging Tools
This section is, of course, not very important. Your scripts will work on the first try because you
are paying very careful attention to all the wonderful advice on how to write good code. Per-
haps you even have flow charts. However, on the off chance that you might sometimes find a
script’s behavior a little surprising, a discussion of debugging tools is called for.

The shell’s trace mode (-x) is fairly close to a debugging tool, but it is, unfortunately, fairly
limited. All it can show you is actual simple commands as they are executed; control structures
are not shown. The verbose flag (-v) shows the shell’s input as it is read, but this doesn’t show
you the flow of control.

10436ch06final 142 10/23/08 10:57:25 PM

Chapter 6  ■﻿   INVOCATION AND EXECUTION 143

It is sometimes useful to display commands before executing them, but the usual mech
anisms work only for simple commands or pipelines. If you have a variable containing a
command, you can display it easily enough with echo "$command". However, you cannot nec-
essarily execute it and get the results you expect. If you simply use the variable as a command
line, any shell syntax characters or keywords will be ignored; if you pass it to eval, however, a
whole new pass of shell substitutions and quoting takes effect, possibly changing the effect of
the command. Each of these conditions may prevent you from using this technique generi-
cally, but in the majority of cases, it can be used.

To debug shell scripts, you must use a variety of tools, depending on the problem you are
having. You can generally start with trace mode to see at least where in the script things are
acting up. Once you have isolated the approximate location, inspection is often enough to
reveal the bug. When it isn’t, you will need to use additional code to figure out what the shell
is doing. For instance, if you have a case statement, trace mode will not show you what branch
it takes, but seeing the code executed may tell you what you need to know. If not, start by dis-
playing the value you used to control the case statement right before executing it.

Sometimes, especially with a larger script, reproducing a problem can take a long time
per run. You can copy chunks of code out of your script to see what is happening; for example,
if you have a misbehaving case statement, first modify the script to display the control value,
then copy the case statement into a temporary file and change the contents of the branches to
display which branch is taken. The temporary file can be run as a miniature script.

When you are debugging a script, be aware of enhancements or local features a given shell
provides. While you should stick to portable code for the final version, sometimes an extension
can be extremely useful for debugging. For instance, bash offers special traps like DEBUG, which
lets you run a trap before every shell command. This can be very useful for tracking a shell
variable that is getting changed unexpectedly. The DEBUG trap is also available in ksh, but not in
pdksh; in ksh93, it also sets the parameter ${.sh.command} to the command that is about to be
executed.

In general, debugging in the shell is not all that different from debugging in any program-
ming language, although the tools available are generally more primitive. For a really difficult
bug, you may wish to look into the bashdb debugger, which works only with bash but offers a
variety of useful debugging tools for interactive debugging of scripts. A similar debugger exists
for ksh and was introduced (with source code) in Learning the Korn Shell (2nd Edition) by Bill
Rosenblatt and Arnold Robbins (O’Reilly, 2002).

Focus on developing a way to reproduce the bug reliably, isolating it by removing irrel-
evant components, and you should be able to track the bug down.

What’s Next?
Chapter 7 explores the portability of shell language constructs and introduces a few common
extensions that you may find useful in more recent shells. It also discusses ways to identify
which shell a script is running in, and possibly find a better shell if the shell you've been given
isn't good enough for you.

10436ch06final 143 10/23/08 10:57:25 PM

10436ch06final 144 10/23/08 10:57:26 PM

C H A P T E R 7

Shell Language Portability

So far, this book has mostly discussed the portable subset of shell languages, with an occa-
sional warning that a useful technique may not always be portable. This chapter discusses
shell portability in much greater detail, starting with more discussion on what portability is
and how bugs and features differ. The next sections discuss some of the most common addi-
tional features and extensions, with brief notes on where you might find them. This includes
substitution rules, redirections, and even additional syntax structures found in some shells.
There is also a discussion of which features may be omitted for a stripped-down shell.

Following the discussion of extensions is a list of common shell variants, including ways
to identify them and ways to invoke them to get behavior closer to the POSIX standard. Fol-
lowing this is a discussion of ways in which a script can configure itself for more complete
shell functionality, whether by defining additional features as shell functions or by searching
for a more powerful shell to execute itself with.

More on Portability
A portable program is one that runs correctly on any standard system. But what about non-
standard systems? What about buggy systems?

There is no perfect answer. When writing portable code, give some thought to what you
are likely to run into. The autoconf maintainers recommend avoiding any features introduced
more recently than V7 UNIX (1977). Most modern systems have a shell at least a little newer,
although some famously continue to ship with a “traditional” Bourne shell. This advice may
sound very drastic, but it is almost certainly the right choice for autoconf scripts because the
entire purpose of autoconf is to be able to figure out what is wrong on your system and work
around it. In that case, having a script fail on an old system would be exceptionally frustrating.
If you are writing the installer for a set of 3D video drivers for X11, by contrast, you can prob-
ably make few more assumptions about your target platform.

Err on the side of caution. The assumption that Linux systems would always use bash as
the primary shell probably seemed reasonable once, but Debian and Ubuntu desktop systems
have switched to dash. Furthermore, many Linux programs have been run in emulation on
BSD systems, where their installers get run using the BSD /bin/sh, usually an ash derivative.

Think about your use cases. A script that is going to be run by end users probably needs to
simply work out of the box on their systems. A script that is used by developers and is expected
to be installed and ported to a new system can be a little more flexible; it’s enough that it is
easy to make it run. For something that is used internally, it may be fine to need a few minutes
to migrate a script to a new box. Even then, attention to portability makes your life easier; a
few minutes is a lot easier to manage than a few days.

145

10436ch07final 145 10/23/08 10:35:30 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY146

In theory, you are usually best off avoiding extensions. However, extensions may not
always avoid you; you may have to port existing code that relies on them, or you may find that
an extension changes the behavior of a program that was written without it. Likewise, while it
would be nice to simply avoid prestandard or broken shells, sometimes you have no choice.

Standardization
Standardization offers a useful way to think about the shell portability question, as it does
for most other portability questions. If you are not quite sure what to do, targeting the POSIX
shell is a good first step. This gives you a good baseline that nearly any system can meet with
only a little work. This may not be enough for some programs; for instance, it is not enough
for autoconf and may be a poor choice for something like an installer. Dependencies beyond
the POSIX spec are almost always a poor choice. While ksh, bash, and pdksh are quite common,
they are not universal. If you are finding that the additional features in these shells are par-
ticularly crucial to a script, it may be a warning sign that you have gotten into an area where
another programming language may be a better choice. While the shell can certainly be used
as a general-purpose scripting language, it is probably not as good of a general-purpose script-
ing language as Perl, Python, or Ruby. One of the shell’s core strengths is its universality; if you
start relying on specific features of bash version 3 or ksh93, you have lost that universality.

Most systems provide at least one shell that is reasonably close to a POSIX shell, but it
is not always /bin/sh. In some cases, the best POSIX-compliant shell on a system may be an
optional component, so some users won’t install it. Depending on your target audience, it may
be perfectly adequate to declare such a shell to be a system requirement, and tell people where
to get it for their particular target system.

Standardization of a programming language describes two sets of requirements. One is
implementation requirements—a shell must meet these requirements to be considered com-
pliant with the standard. The other is requirements of programs in the language—a program
must meet these requirements in order to run reliably on implementations. It is often helpful
to view a standard as a contract; a vendor claiming POSIX compliance for a shell is promising
to run your code correctly if you write your code correctly, allowing you to refer to the stan-
dard to determine whether something is a bug or not.

The POSIX standard distinguishes between behavior required for conformance, behavior
permitted in a conforming shell, and optional extensions. Support for $() command sub-
stitution is required; a shell that lacks this is not conformant. When running commands in
a pipeline, a shell may run any or all of them in subshells; the standard allows for one of the
commands to be run in the parent shell (as the Korn shell does) but does not require it. A pro-
gram that relies on a particular decision about which commands are run in subshells is not
portable among POSIX shells, but any answer a shell gives to that question is compliant with
the POSIX standard.

POSIX explicitly blesses some extensions, warning that they may exist and have special
behavior; for instance, POSIX reserves the [[token as having possible special meaning to the
shell, even though it does not specify anything at all about the syntax or semantics of such a
token. This allows ksh and bash to be considered compliant (at least on this issue) even though
they provide an extra feature (see the section “Built-In Tests” later in this chapter).

Brace expansion (also described in this chapter in the section “Portability Issues: Wel-
come to the Club”) actually violates the POSIX standard; it causes at least some well-formed

10436ch07final 146 10/23/08 10:35:31 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 147

shell programs to behave contrary to the standard, but the standard doesn’t make any allow-
ances for this. Many extensions are arguably standard violations, and shells that provide them
may allow you to disable them. However, in portable code, you have to be aware of these
extensions and avoid tripping on them.

Bugs
Previously, I’ve mostly ignored the topic of bugs. Bugs are not the same thing as lack of a
standard feature; they are special cases where a particular feature misbehaves. Bugs are usu-
ally more narrowly defined. A shell that lacks $() command substitution simply lacks it all the
time; any test program will confirm its absence. A bug often manifests only under particular
circumstances, making it much harder to figure out what went wrong. For instance, one early
shell (long since patched) omitted the last trailing slash of any command-line argument con-
taining two trailing slashes. The shell doesn’t lack the ability to pass slashes in arguments, or
even pairs of slashes, and it doesn’t truncate characters otherwise; it’s just a special case. Find-
ing this out and identifying the problem could be a real pain.

Unfortunately for shell programmers, obscure bugs are plentiful. The worst are mostly in
systems that have mostly left commercial use, but there are plenty left floating around. The
good news is that you will rarely encounter them, but there are plenty of special cases. Most
bugs are specific to a particular version of a shell; a bug might exist in zsh 4.x, but not in zsh
3.x. While features are usually added but not removed in newer shells, bugs can come and go.
The documentation for autoconf has a particularly large list of shell bugs, including a few you
can probably safely ignore:

www.gnu.org/software/autoconf/manual/html_node/Portable-Shell.html

Portability Issues: Welcome to the Club
These portability issues are not unique to shell programming; C programmers have been living
with a similar problem for a very long time. The ANSI/ISO C89 standard, released in 1989 (and
again in 1990, which is a long story), offered substantial improvements to the language; and
code written in “C89” offers substantial improvements for developers, compared with code
written for previous language versions. However, many vendors continued to ship compil-
ers that did not implement this language at all for a long time. The net result is a complicated
tangle of portability rules, habits people have developed, urban legends, and more. A huge
number of the tests generally performed by configure scripts have been essentially guaranteed
to produce particular answers on many modern systems; indeed, most of the systems where
they wouldn’t work as expected never got Y2K upgrades.

When the ANSI/ISO C99 standard came out, I decided that I had probably had about
enough of worrying about portability to pre-ANSI compilers. While it is true that they still
exist, and some vendors still ship them, there is not much point in trying to deal with them;
instead, if I even find myself on such a system, I’ll get gcc and move on. This is practical for C
code because I already know I’m going to have to compile it on a new target system. It is not as
practical for shell code because it imposes an additional step of shell development that might
not otherwise apply.

10436ch07final 147 10/23/08 10:35:31 PM

http://www.gnu.org/software/autoconf/manual/html_node/Portable-Shell.html

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY148

Common Extensions and Omissions
This section introduces features common enough that you should be aware of them, even if
you don’t plan to use them. They matter anyway because they may change the behavior of
programs that were otherwise valid. Furthermore, you may find them useful enough to justify
imposing some requirements on shells your code will run on. Some, like the additional POSIX
parameter expansion features, are found in nearly all modern shells. Others are found only in
a few shells, such as ksh, zsh, or bash.

Other Kinds of Expansion and Substitution
The parameter substitution and globbing rules shown so far are a minimal subset widely avail-
able even on fairly old shells. However, there are a number of additional options you might
run into. This section introduces brace expansion, additional forms of parameter substitution
common to POSIX shells, arithmetic substitution, and some additional globbing features.

Brace Expansion
Brace expansion is a variety of expansion introduced by csh, and later adopted by ksh, bash,
and zsh. While brace expansion is primarily used with file names, it is not a form of file glob-
bing. In brace expansion, lists of alternatives in braces are expanded into multiple words. The
brace expression {a,b} expands into two words, a and b. When a brace expression occurs in
part of a word, the whole word is duplicated for each of the resulting words: a{b,c} expands to
ab ac.

At first look, brace expansion looks a lot like a form of globbing, but there are several sig-
nificant differences between brace expansion and globbing. The first is that brace expansion
generates all specified names, whether or not any of them exist as files:

$ ls a{b,c}
ls: cannot access ab: No such file or directory
ls: cannot access ac: No such file or directory

Pathname globbing produces names sorted in order; by contrast, brace expansion always
generates names in the order they were given:

$ echo X{h,e,l,l,o}
Xh Xe Xl Xl Xo

Brace expansions can be nested, as well. Nesting works from the inside out; inner groups
are expanded to create more words, then those words are used for the next level of expansion.
The following two examples are equivalent:

$ echo a{b{c,d},e{f,g}}
abc abd aef aeg
$ echo a{bc,bd,ef,eg}
abc abd aef aeg

Brace expansion occurs after parameter substitution, but before globbing. In zsh, if brace
expansion results in glob patterns, the shell displays an error message instead of executing a
command if any of the glob patterns do not match any files.

10436ch07final 148 10/23/08 10:35:32 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 149

Brace expansion does not occur within double quotes. In shells that provide brace expan-
sion, it occurs prior to other forms of expansion; thus you will not see brace expansion on the
results of parameter substitution or globbing. Brace expansion only occurs if you explicitly
include braces in your code, making it easy to avoid being affected by it unintentionally.

Brace expansion is available in ksh93, pdksh, bash, and zsh. In pdksh, bash, and zsh, brace
expansion can be disabled. In zsh and pdksh, brace expansion is disabled by default in POSIX
mode. In bash, it must be disabled separately by set +B. In practice, it is very rare for brace
expansion to break a script that otherwise works, but it is possible. Brace expansion is often
used to generate a list of file names, leading many users to assume that it is part of globbing.
However, brace expansion can be used for many other purposes in a script. While this feature
is not portable enough to rely on, it is powerful and expressive, and it is good to be aware of it.

Brace expansion in csh

In csh, brace expansion is sort of part of file name globbing. If there are no regular pattern characters in any
of the words generated by brace expansion, it behaves the same as it does in the other shells. However, if
there are pattern characters in any of those words, and any of those words match any files through regular
globbing, then only the glob results are generated; the globs that didn't match anything are discarded. If there
are pattern characters, but they don't match anything, they are generated normally.

This behavior leads to a lot of surprises when habitual csh users try to use brace expansion in ksh or
bash.

Additional Parameter Expansion Features
A number of additional parameter expansion forms are provided by POSIX shells (see
Table 7-1). These are additional variants similar in syntax to the ${param:-word} forms dis-
cussed in Chapter 4.

Table 7-1. A Few More Parameter Expansions

Pattern	 Description

${#parameter }	 Length of parameter. (0 if null or unset.)

${parameter#pattern}	� Substitute parameter, removing the shortest match of pattern from the
beginning.

${parameter##pattern}	� Substitute parameter, removing the longest match of pattern from the
beginning.

${parameter%pattern}	� Substitute parameter, removing the shortest match of pattern from the
end.

${parameter%%pattern}	� Substitute parameter, removing the longest match of pattern from the
end.

The ${#parameter} construct expands to the length of $parameter. It is sometimes used
in expressions like test ${#parameter} -gt 0, which is another way of spelling test -n
"${parameter}". The advantage of ${#parameter} is that it can be used without nearly as much
worry about quoting; it expands into a plain integer value (sometimes zero), which never
requires quoting.

10436ch07final 149 10/23/08 10:35:32 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY150

The four pattern-based substitution rules all use a half-anchored pattern. Normally, a
shell pattern must match all of the text it is being compared with; it is anchored at both ends
of the text. In these rules, however, the pattern can match part of the text. The shell substi-
tutes, not the matching text, but whatever text did not match. These are easiest to illustrate
by example:

$ file=/home/seebs/shell/example.txt
$ echo "${file%/*}"
/home/seebs/shell
$ echo "${file%%/*}"

$ echo "${file#*/}"
home/seebs/shell/example.txt
$ echo "${file##*/}"
example.txt

The shortest-match forms are an exception to the general rule that pattern matching
always matches the longest string it can. Instead, they look for the shortest possible sub-
string that matches the given pattern. So, in the first example, the shortest substring (at the
end of the whole file name) matching the pattern /* is /example.txt. The shell can’t match
any shorter pattern because that is the first slash (counting from the end); it doesn’t match
a longer pattern because it doesn’t have to.

The longest match forms behave more like normal pattern matching but are only
anchored on one side. Because the string starts with a /, followed by other characters, the
whole string is matched by /* when looking for the longest match.

The rules that match at the beginning behave much the same way. The shortest match of
*/ just removes the leading /; remember that a * matches anything at all, including an empty
string (this is why ${file#*} just substitutes $file). The longest match is the full path, leaving
the file name.

The reason these rules remove the match, rather than leaving it, is that shell patterns are
sometimes a little weak on complicated expressions. It is often useful to be able to obtain the
name of a file with a file name suffix removed, but it is very hard to write a shell pattern to
express “everything but a file name suffix.” For instance, in a build script, you might have a list
of source files and want to identify the corresponding object files. You can replace the suffix
easily:

$ file=hello.c
$ echo "${file%.c}".o
hello.o

As with other parameter substitution rules, the word on the right-hand side is itself sub-
ject to parameter substitution. If you want to know what a pattern matched, you can use two
of these rules to find out:

$ file=/home/seebs/shell/example.txt
$ echo "${file%/*}"
/home/seebs/shell
$ echo "${file#${file%/*}}"
/example.txt

10436ch07final 150 10/23/08 10:35:33 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 151

In this example, the pattern used is the substitution of ${file%/*}, or /home/seebs/shell.
Removing this from the beginning of $file shows /example.txt, which is the exact pattern
matched by the /* in the first substitution. This does not always work if the inner substitution
yields pattern characters:

$ file=[0-9]/hello
$ echo "${file%/*}"
[0-9]
$ echo "${file#${file%/*}}"
[0-9]/hello

The shell interprets [0-9] as a pattern, not as a literal string, when substituting it on the
right-hand side. However, you can prevent this using quoting:

$ file=[0-9]/hello
$ echo "${file%/*}"
[0-9]
$ echo "${file#"${file%/*}"}"
/hello

This latter behavior is documented in the POSIX standard, and pdksh, ksh93, and bash all
do it; however, at least some ash derivatives ignore the quotes (for more information on quot-
ing inside parameter substitution, see the detailed discussion in Chapter 6).

If you want the effect of this sort of substitution in a pre-POSIX shell, you can usually
duplicate it using sed or expr. Remember that these utilities use regular expressions, not shell
patterns. To strip the directory name off a file, you would use the regular expression .*/, not
just */:

file=`expr "$file" : '.*/\(.*\)$'`

This feature is a significant performance advantage in general, although less so in shells
that implement expr as a builtin. (If you are wondering why you shouldn’t just use basename
and dirname, the answer is that they are not as universally available as expr; see the discussion
of utility portability in Chapter 8.)

Arithmetic Substitution
The POSIX spec provides for arithmetic substitution, using $((expression)). The shell evalu-
ates expression and substitutes its result. This is substantially similar to $(expr expression),
but there are three key differences. The first is that the syntax is different; arithmetic sub-
stitution does not need special shell syntax characters in expression quoted, but expr does.
Furthermore, expr requires each operator to be a separate argument; arithmetic substitution
can parse expressions where operators have not been separated out by spaces. The following
examples are equivalent:

$ echo $(expr \(3 + 1 \) * 5)
20
$ echo $(((3+1)*5))
20

10436ch07final 151 10/23/08 10:35:33 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY152

The parentheses and asterisk need to be quoted for expr but do not in an arithmetic
substitution; similarly, arithmetic substitution doesn’t need spaces around the operators. If
(3+1)*5 were passed to expr as an argument, it would be interpreted as a string, and no arith-
metic would be performed.

The second major difference is that the available operators vary widely. The length and :
(regular expression match) operators of expr (see Chapter 2 for a discussion of regular expres-
sions and expr; the length operator just yields the length of its argument) are not available;
instead, all operations work on numeric values. However, arithmetic substitution provides
many additional operators, such as bitwise operators. In expr, & and | are logical operators
(similar to the && and || operators in the shell). In arithmetic substitution, they are bitwise
operators:

$ echo $((1 | 2))
3
$ echo $(expr 1 \| 2)
1

In expr, the first operand of | is evaluated, and if it is neither zero nor an empty string,
its value is the result of the expression; otherwise, the second operand is evaluated and is
the result. So, 1 | 2 evaluates 1, finds out that it is not zero or an empty string, and results in
that value. In arithmetic substitution, 1 | 2 is the bitwise union of the two numbers, so the
result is 3.

Finally, the third difference is that the arithmetic substitution itself can (in most shells)
assign values to shell variables. While idiomatically it is often clearer to write x=$((x+1)), you
can also write $((x=x+1)). This feature is not available in some implementations of ash. Note
that the final result is still substituted, so $((x=1)) expands to 1; if it is on a line by itself, the
shell tries to find a program named 1 to run.

Arithmetic expressions have a number of shorthands. A variable name is implicitly
expanded when encountered without a leading $. Thus $((x)) is the same as $(($x)). Shell
arithmetic may be limited to a signed 32-bit value. However, many shells provide additional
functionality; some shells support floating point operations in arithmetic substitution, or pro-
vide C-style increment (++) and decrement (--) operators.

In portable scripts (assuming you’re willing to rely on arithmetic substitution at all), you
can count on basic C-style integer math, including bitwise operations. Don’t rely on assign-
ment to variables, the increment or decrement operators, or floating-point math.

Even if you don’t plan to use arithmetic substitution, you have to be aware of it if you are
using $()-style command substitution and subshells. In shells that support arithmetic sub-
stitution, $((and)) are tokens. To be on the safe side (and to avoid possible bugs), separate
parentheses when nesting them. This comes back to the maximal munch rule described in
Chapter 4; when $((is a token, then $((foo)|bar) is a syntax error because there is no corre-
sponding)) token.

Globbing Extensions
The ksh, zsh, and bash shells offer additional globbing options. These are not particularly
portable to other shells. There are two major sets to consider. One is the pattern grouping
operators, introduced originally in ksh. These are available in ksh and pdksh; they are available

10436ch07final 152 10/23/08 10:35:34 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 153

in bash if the extglob shell option has been set and in zsh if the KSH_GLOB option has been set.
These operators all work on grouped sets of patterns, called pattern lists. A pattern list consists
of one or more patterns; if there are multiple patterns, they are separated by pipes (|) as they
would be in a case statement. A special character followed by a pattern list in parentheses
becomes a special glob operator. There are five such operators, as shown in Table 7-2.

Table 7-2. Extra KSH GLOB Operators

Pattern	 Description

@(pattern-list)	 Exactly one of the patterns in pattern-list.

?(pattern-list)	 Zero or one of the patterns in pattern-list.

*(pattern-list)	 Zero or more of the patterns in pattern-list.

+(pattern-list)	 One or more of the patterns in pattern-list.

!(pattern-list)	 None of the patterns in pattern-list.

There are a number of additional variants possible in ksh93, but this subset is available in
bash, pdksh, and zsh as well.

The @, ?, *, and + variants are reasonably intuitive if you have worked with regular expres-
sions. The @ pattern operator functions a bit like a character class, only matching larger
patterns. The pattern *.@(tar.gz|tar.bz2|tgz|tbz2) matches any file name ending in one of
the four suggested suffixes, which are common names for compressed tar archives. Note that
while the @ operator itself matches only one of the provided patterns, this pattern quite happily
matches x.tgz.tbz2.tar.gz; the @ operator matches the trailing suffix, the period matches the
period before that suffix, and the whole rest of the pattern matches the initial *. The @ operator
is similar to a regular expression using \{1,1\}; it is used only to introduce the pattern list. The
?, *, and + operators perform the same function as their equivalents in an extended regular
expression (although they come before the pattern list, rather than following it).

The ! operator can be a lot more confusing to use. The pattern *!(foo)* can still match
a file name containing the word foo because the foo can match one of the asterisks. In fact,
even the pattern !(foo) can match a file name containing the word foo, as long as the file
name contains something else as well. To match any file name without the word foo in it, use
!(*foo*). Getting used to the way in which the generally greedy behavior of pattern expres-
sions mingles with a negation operator can take time. Similarly, the expression !(foo)?(bar)
can match a file named foobar; the initial !(foo) matches the string foobar, and the ?(bar)
matches zero repetitions of the pattern bar.

Another globbing feature is recursive expansion, available primarily in zsh. The Z
shell recognizes a special pattern rule of (word/)# as matching zero or more subdirectories
matching word. As a particular shorthand, **/ is equivalent to (*/)# and can match both
anything in the current directory and anything in any subdirectory of the current directory
(or their subdirectories; it’s recursive). With the -G option, ksh93 also recognizes **/, and
also recognizes ** as a shorthand for every file or directory in the current directory or its
subdirectories. This feature is moderately dangerous; it can easily do surprising or unwanted
things, and it is not especially portable. If you want to find files in subdirectories, look into
the find command.

10436ch07final 153 10/23/08 10:35:35 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY154

Alias Substitution
Aliases allow a command name to be replaced with some other command name or code.
Unlike other kinds of substitution, aliases can result in shell control structures. (However, it is
not remotely portable to try to alias shell reserved words.) An alias typically takes the following
form:

alias text=replacement

In general, aliases should be valid command names. Aliases are never substituted when
quoted. This can offer a workaround for concerns about aliases interfering with the behavior
of a script, as the name "ls" (including the quotes) is not subject to alias substitution. How-
ever, it is subject to confusing anyone trying to read your code.

The behavior of aliases varies noticeably between shells, and not all shells provide this
feature. I do not recommend relying on this except in cases where you are quite sure what
shell will execute a given piece of code. Some shells allow arbitrarily complicated alias expres-
sions, whereas others can alias only simple command names.

The real problem with aliases in scripts, however, is not the portability problem; it is the
maintainability problem. Just as C code that relies heavily on preprocessor behavior can be
extremely difficult to understand or debug, shell code that uses aliases often becomes unmain-
tainable quickly. The primary use of aliases in historical code has been developing shorthands
or abbreviations for common tasks. Use shell functions instead.

Syntax Extensions
A few shells offer additional syntactic features that do not fit well in other categories. This sec-
tion reviews three of particular and common interest: additional forms of redirection, support
for arrays, and the [[expr]] syntax for built-in test functionality, similar to the test program.

Redirections
There are a handful of additional redirection syntax features available in some shells. Both ksh
and bash offer a rich selection of additional redirections. There are a few features unique to
ksh93 and others found also in pdksh.

The >|file redirection operator opens and truncates file. This is the normal behavior
for > redirection. However, in ksh and bash, the shell option noclobber prevents redirecting to
existing files; this redirection overrides that option.

The bash-only <<<word operator operates a little like a here document, but instead of send-
ing following lines of the shell script to a command as standard input, it expands word and uses
that as the command’s standard input. So, cat <<<$foo is similar to echo $foo. This is useful
for commands that need only a small amount of input directed to them.

Another bash extension is the >&N- redirection operator (and the corresponding <&N-).
These operators move one file descriptor to another, closing the original. The shell command
exec 3>&2- is equivalent to running first exec 3>&2, then exec 2>&-.

Both bash and ksh support the <> operator, which opens a file for both reading and writ-
ing. If no descriptor number is provided, <> opens a file as standard input.

10436ch07final 154 10/23/08 10:35:35 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 155

The final three operators are found only in ksh. The first is the coprocess operator (|&),
which opens a special process in the background. This is only sort of a redirection; it is in some
ways more like a command separator, and it occupies the same basic function as a pipe. When
a program is run with |& as a redirection, the program is run in the background, with input
and output attached to a special file descriptor maintained by the shell. You can write data to
the coprocess by running commands >&p and read by running commands <&p. The coprocess
continues until it exits, but you can close its input stream (which will typically cause most filter
programs to exit) by redirecting its input stream to another file descriptor, and then closing it,
as in the following code:

exec 3>&p
exec 3>&-

The first line duplicates the coprocess’s input to file descriptor 3, and the second closes it.
(Remember that the shell’s output to the coprocess is the coprocess’s input.)

The coprocess feature is moderately difficult to duplicate in any other shell; it may not be
practical to rework a program that depends on it, so avoid depending on this feature in por-
table scripts.

Finally, ksh93 provides two additional redirection forms that are available only on sys-
tems that provide the /dev/fd directory containing special files that represent the standard
file descriptors (so /dev/fd/2 is standard error). On these systems, you can specify input to, or
output from, a command as though it were a file argument using the syntax <(list) to refer
to the output of list, and >(list) to refer to its input. The shell runs the command in the
background, with its output connected to a particular file descriptor; then the shell provides
the name of that file descriptor’s special file as an argument to a command. This is only useful
with programs that expect their arguments to be file names:

$ echo <(ls)
/dev/fd/4

All of these redirection options are a bit specialized, and I do not recommend relying on
any of them in portable scripts. Still, forewarned is forearmed. I have often wished that the
coprocess feature had made it into the POSIX shell; it is one of the most persuasive arguments
for writing a script that requires ksh.

Arrays
One of the most significant weaknesses of the shell as a general programming language is the
lack of arrays. Arrays are available in ksh, zsh, and bash. All shells that support arrays support
integer array subscripts. Additionally, zsh and ksh93 support associative arrays, which use text
keys rather than integer values. Array subscripts (for regular arrays) are treated as arithmetic
expressions, according to the rules described previously for arithmetic substitution. The num-
ber of elements in an array may be limited; pdksh restricts array subscripts to the range 0–1023.

In general, arrays are created either using the set command or by direct assignment. The
expression x=(a b c) creates x as an array variable holding three values: ${x[0]} is a, ${x[1]}
is b, and ${x[2]} is c. (In zsh, the indexes start at 1 unless the KSH_ARRAYS option has been set.)

10436ch07final 155 10/23/08 10:35:36 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY156

In ksh93 and zsh, associative arrays are declared using the typeset -A command:

typeset -A foo
foo[a]=hello,
foo[b]=world
echo ${foo[a]} ${foo[b]}

hello, world

The associative array feature is probably familiar to programmers who have worked in just
about any modern language; it first became commonly known to UNIX users through the awk
utility.

Arrays are not portable to most shells. In practice, portable shell scripts must use the
positional parameters as an array or engage in elaborate constructions using eval to create
variable names dynamically (see the examples in Chapter 5). If you only need one array, it is
fairly practical to use the positional parameters as that array (although, if you need more than
nine items, you will have to get clever in traditional shells). If you need more than one, you
can store long strings using delimiter characters (typically colons or spaces), then use the set
command to extract them into an array. If your delimiter character is spaces, this is easy; the
following code extracts the members of an array into the positional parameters:

set -- $array

Similarly, you can store the positional parameters into a variable using $*:

array=$*

If you need to use a different delimiter, you have to set (and restore) $IFS:

save_IFS=$IFS
IFS=:
set -- $array
IFS=$save_IFS

When substituted, $* delimits the positional parameters with the first character of $IFS,
providing symmetry. Remember that there is no field splitting in assignment; you do not need
to quote $* to assign from it.

Another array-handling option is to switch to m4sh, which gives you some limited “com-
pile-time” array functionality; you can use m4 arrays to develop scripts that act somewhat as
though the shell had arrays. Finally, depending on the data you need to work with, you may be
able to use a temporary file and a tool like awk or sed to extract and modify values. This is pretty
high overhead, though; I prefer to just use eval.

Built-In Tests
The ksh, bash, and zsh shells support a more flexible conditional test expression using double
brackets. This is somewhat different syntactically from the [synonym for the test command,
much as arithmetic substitution differs from expr. The syntax is [[expression]], and the rules

10436ch07final 156 10/23/08 10:35:36 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 157

for evaluating expression are somewhat simpler than the rules for the test utility. As with
arithmetic substitution, expression is not subject to some of the normal shell features, such as
field splitting. The exact set of tests supported varies somewhat from one shell to another, but
in general this form handles most of the same expressions as the test program. As an addi-
tional feature, the shell recognizes && and || operators in these expressions (although some
shells do not recognize -a and -o in these expressions).

Of particular note is that all three shells recognize file names of the form /dev/fd/N as
referring to file descriptor N while processing these expressions. Thus even if the special
/dev/fd files do not exist on a particular system, [[-t /dev/fd/0]] succeeds if standard
input is considered to be a terminal device.

Unlike the regular test program (whether it is implemented as a builtin or not), the
[[expression]] form does not recognize operators that were quoted, and operators are never
optional. This eliminates the two common problems that require special treatment of values
in conditional expressions; there is never any ambiguity over what is, or is not, an operator, so
tricks like prefixing values with X are unneeded.

The [[expression]] syntax is not described by POSIX, although POSIX does reserve the [[
and]] tokens as potentially having special meaning to the shell.

The select Loop
One of the really interesting features introduced in ksh is the select loop, which allows the
user to pick an item from a list in an unambiguous manner:

echo "Where would you like to go for your vacation?"
select answer in Oz Detroit
do
 echo $answer
 break
done

The output of this script in ksh looks like this:

$ ksh vacation
Where would you like to go for your vacation?
1) Oz
2) Detroit
#? 1
Oz
$

This can be used to select items from lists. As with a for loop, parameter substitution or
command substitution on the list is subject to field splitting, so you can build a list and then let
the user pick a word from it. This feature is available in ksh, bash, and zsh; it is not present in
ash, however, and is not in the POSIX standard.

The select control structure loops until the loop is explicitly terminated. Because select
is implemented as a control structure, a script using it is always a syntax error in another shell.
However, you can come surprisingly close; a detailed discussion of this is included at the end
of this chapter in the section “Emulating Features.”

10436ch07final 157 10/23/08 10:35:37 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY158

Common Omissions
It is not always obvious what ought to count as a standard feature that has been omitted
and what ought to count as an extension that has not been provided. The pattern-matching
parameter substitution forms previously listed are defined by POSIX but are a little more eso-
teric than more basic features, such as the use of ! to negate the exit status of a command.

Stripped-down shells usually start by omitting interactive features (such as command his-
tory, expansion of parameters in prompts, and so on). Some shells omitted shell functions in
the distant past, but no one’s seen a shell without shell functions in years.

Another common way to strip a shell down is to omit built-in commands. As long as the
commands also exist as separate programs, this may hurt performance slightly but has no
other impact. However, some shells omit builtins that cannot be run as external commands,
such as getopts. (In fact, every modern POSIX-like system seems to have this, with the obvious
caveat that the default shell on Solaris is still pre-POSIX.)

In general, the biggest impact of a stripped-down system will be in utility programs, rather
than in the core shell language itself. For instance, many embedded systems lack sed, awk, or
the printf utility. Utility portability issues are discussed at greater length in Chapter 8.

Common Shells and Their Features
This section introduces some of the most common shells you are likely to encounter, giving
a brief overview for each of where it fits in the shell family tree, what sorts of features it has
or lacks, and how to invoke it for maximal POSIX compliance if you need that. These shells
are introduced in alphabetical order by name; for example, dash is under the section “Debian
Almquist Shell.” Shells specific to a given system are prefixed with the system’s name, as in the
“Solaris /usr/xpg4/bin/sh” section.

You can sometimes guess which shell you are in by checking the value of $SHELL, but this
is useless in determining which shell has been used as /bin/sh.

Almquist Shell
The Almquist shell (ash)) was developed by Kenneth Almquist as a compatible replacement
for the Bourne shell shipped with SVR4 UNIX, plus POSIX features. Modern variants are
POSIX-compliant by default. You can also find ash on many other systems; a variant of it is
included in busybox, and it is also used in Cygwin and Minix. This is also the ancestor of the
Debian ash (called dash), described in the “Debian Almquist Shell” section later in this chapter.
The big strength of ash is that it is small, reasonably efficient, and fast. Some versions of ash are
a little light on features like command-line editing, variable expansion in prompts, and other
interactive features, but it is fine for scripting.

How to Identify
There is no simple way to figure out that you are running under ash. There is no standard pre-
defined magic variable provided by the shell. Because ash is often used as /bin/sh, you can’t
check the shell’s name, either. Luckily, there are relatively few version-specific quirks. The
closest way I have found to identify ash is to check for everything else. If a shell is not a variety
of ksh, bash, or zsh and does not seem to be a pre-POSIX shell, it may very well be ash.

10436ch07final 158 10/23/08 10:35:37 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 159

Version Information
There is no formal numbering of ash versions. The initial release was in 1989, and since then
ash has been in continuous development on the various BSD systems. Particular versions have
been extracted from NetBSD (most often) and imported into Linux or other systems, but there
are not usually version strings to identify them.

Major Compatibility Notes
There are two major bugs in early versions of ash that could affect portability, both involving
command substitution. Probably the most significant is that in older versions of ash, com-
mand substitution of a single built-in command does not spawn a subshell, so the built-in
command can modify the parent shell’s environment. The other is that command substitution
inside variable expansion did not work in one of the early versions migrated to Linux systems;
${FOO=`echo hello`} did not work as expected.

Getting POSIX Behavior
Conveniently simple, ash is by design a fairly closely matched POSIX shell. Very early versions
were missing a few features, but the versions being distributed today are unlikely to hold many
surprises.

Bourne-Again Shell
The GNU Bourne-again shell is probably one of the largest and most feature-filled variants.
It has been in development since 1987. Unlike most of the other shells described as Bourne
shell derivatives, bash incorporates a couple of features from csh. There are a lot of similarities
between the extensions in bash and the extensions in ksh.

How to Identify
Check the environment variable $BASH_VERSION. This variable is set even when the shell is run-
ning in POSIX mode and contains the version number of the current shell.

Version Information
Early versions of bash (1.x) had a number of surprising behaviors that are mostly gone now.
The 2.x and later versions use a new syntax for the output of set; older versions of bash, and
other shells, may not be able to read this output. Finally, the 3.x versions introduced the sup-
port needed for the bash debugger; this is not available for older versions.

Major Compatibility Notes
Early versions of bash provided !-style history expansion, as used in csh. This only affects
interactive use but is a major surprise in that it is one of the only cases where something inside
single quotes can be expanded. In modern versions, this feature must be explicitly enabled.
Also, bash introduces source as a synonym for the . command. In most cases, the compat-
ibility problem is not that bash cannot run scripts written for other shells, but that other shells

10436ch07final 159 10/23/08 10:35:37 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY160

cannot run scripts written for bash. The bash shell provides a broad variety of builtins, often
with extensions and added features, and the same caveats apply to these. The general caveats
of modern POSIX-like shells, such as arithmetic substitution, apply to bash as well.

Getting POSIX Behavior
To force POSIX behavior, invoke bash with the --posix option or run set -o posix in the
shell. The environment variable $POSIXLY_CORRECT also forces this behavior when set;
setting it during the operation of a script takes effect immediately. Finally, if the bash pro-
gram has the name sh, it goes into POSIX mode once it has read its startup files. You must
also separately disable brace expansion (set +B) if you want better conformance; the fea-
ture is left on because it is very rare for a script that does not intend to use it to get affected
accidentally.

Debian Almquist Shell
The Debian branch of the Almquist shell is an import of ash to use as a standard system shell.
It was adopted because it is smaller and faster than bash and also with an eye to reducing the
tendency for Linux scripts to be unportable to other UNIX-like systems. It was ported to Linux
in 1997 by Herbert Xu and renamed to dash in 2002. It first showed up as /bin/sh on desktop
Ubuntu around version 6.10, and is expected to be /bin/sh in Debian Lenny (frozen, but not
shipped, as of this writing).

How to Identify
As with other ash variants, there is no obvious way to tell that you are running in dash. For
instance, on a modern desktop Ubuntu system, /bin/sh is a symlink to /etc/alternatives/sh,
which is a symlink to the selected shell, usually /bin/dash by default.

Version Information
On a desktop system, the package management system will usually have a version number
available:

$ dpkg -l | grep dash
ii dash 0.5.4-8ubuntu1 POSIX-compliant shell

The exact way to extract this information varies from one system to another. However,
the version number here does not necessarily correlate to a particular version of the ash shell.
In general, a system providing dash provides a version modern enough to ignore the historical
early quirks and lets you just write for the POSIX shell spec.

Major Compatibility Notes
There are no major surprises with dash, but be aware that many scripts on Linux systems may
behave surprisingly in a non-bash shell. As a result, you may find that a system administrator
has changed the default shell back to bash, so you have to watch out for bash extensions even if
you think the shell should be dash.

10436ch07final 160 10/23/08 10:35:38 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 161

Getting POSIX Behavior
As with ash, POSIX behavior is the default.

Korn Shell
The Korn shell was developed at Bell Labs by David Korn. It has been in use internally in vari-
ous forms since 1982. An early version from 1986 has been distributed some, but widespread
external use started with the 1988 releases. A variant of ksh was around in SVR4, and many
System V–derived commercial UNIX systems have provided it. The current versions are avail-
able under an open source license, but earlier versions were not.

How to Identify
There is no simple way to identify whether you are in ksh, let alone what version. In ksh93,
the special shell parameter ${.sh.version} contains the shell’s version string; in ksh93t
(June 2008) and later, this can also be accessed as $KSH_VERSION. Some systems provide a
utility called what for identifying the versions of commands:

$ what $(which ksh93)
/usr/pkg/bin/ksh93
 [. . .]
 $Id: Version M 1993-12-28 q $

At a prompt, if you set the shell for its emacs-style command-line editing mode (set -o
emacs), typing Ctrl-V displays the version information.

If you are willing to do some extra work, you can detect ksh by testing for the select con-
trol structure and then excluding other shells that offer simpler tests. The following script
determines whether a shell has the select primitive and runs the last command of a pipeline
in the parent shell:

eval "echo 1 | select no_select in false; do break; done" > /dev/null 2>&1
if $no_select; then
 echo "no select"
else
 echo "select"
fi

This script incorrectly indicates that there is no select control structure in pdksh or
bash (because they run the select in a subshell). However, you can check for them using
$KSH_VERSION and $BASH_VERSION, respectively. This script detects the select structure in zsh,
ksh88, and ksh93; if this test determines that select is available, you can check $ZSH_VERSION
to determine whether or not you are in zsh, and if you are not, you must be in some variety
of ksh.

You cannot simply check ${.sh.version} because the invalid (for any other shell) param-
eter name causes a script to abort. Even eval is not enough to protect you from this in some
shells, but a subshell can come to the rescue:

10436ch07final 161 10/23/08 10:35:38 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY162

if (test -n "${.sh.version}") 2>/dev/null ; then
 echo "ksh93"
else
 echo "not ksh93"
fi

You have to use a subshell here; ksh88, ash, and traditional sh all abort when trying to
expand that variable.

Version Information
There are three major revisions of ksh: ksh86, ksh88, and ksh93. You are unlikely to encoun-
ter ksh86 in the wild. The ksh88 version is still used in some commercial UNIX systems as
an implementation of the POSIX shell. There are a number of new features in ksh93, such as
associative arrays and floating-point arithmetic, as well as a variable namespace feature using
parameter names containing periods. Brace expansion is found in ksh93, but not in ksh88.

Major Compatibility Notes
The only compatibility problems you are likely to encounter with ksh are with scripts that hap-
pen to match some of the ksh syntax extensions. Brace and tilde expansion are both performed
by ksh93; ksh88 performs tilde expansion, but not brace expansion.

Unlike most other shells (including pdksh), ksh runs the last command of a pipeline that
runs in the parent shell; in ksh, echo hello | read greeting sets $greeting in the shell. This
rarely breaks programs that were not expecting it, but it can be a source of portability prob-
lems if you rely on it.

Getting POSIX Behavior
There is no switch to make ksh behave more like a POSIX shell than it usually does. How-
ever, its features are mostly extensions, and all of the modern POSIX features are available by
default. A POSIX script will, with rare exceptions, execute without difficulty in ksh.

Public Domain Korn Shell
The public domain Korn shell is a clone of ksh. It was written because ksh was not open source,
and many systems lacked a POSIX shell. Since then, ksh has become open source, POSIX shells
have become much more common, and bash has become much better for scripting. However,
pdksh is still found on a number of systems. There are a few features in pdksh not found in
ksh88 or ksh93, and pdksh has acquired some of the new ksh93 features.

How to Identify
The special shell parameter $KSH_VERSION contains the version information of the shell.
Most versions of ksh do not, but ksh93t (June 2008) adds $KSH_VERSION as a synonym for
${.sh.version}.

10436ch07final 162 10/23/08 10:35:38 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 163

Version Information
Every installation of pdksh I’ve seen over the last fifteen years has been version 5.2.14. The
mainline ksh shell became more widely available, and pdksh hasn’t been substantially
upgraded since 2001. While it has some quirks, pdksh is stable.

Major Compatibility Notes
Unlike ksh, pdksh runs the last command of a pipeline in a subshell. There are other subtle
differences between ksh and pdksh, described in the pdksh documentation, but most scripts
written for ksh88 will run in pdksh.

Getting POSIX Behavior
Like bash, pdksh supports a POSIX mode in which it deviates from ksh behavior in favor of the
POSIX specification; this can be controlled through set -o posix or the $POSIXLY_CORRECT
environment variable.

Solaris /usr/xpg4/bin/sh
The /usr/xpg4/bin/sh program, when it has been installed, is a ksh88 shell modified a little to
be a bit more like a POSIX shell. The name comes from the X/Open Portability Guide, Issue 4
(X/Open Company, 1992), which is one of the precursors to modern UNIX standards.

How to Identify
As with other ksh88 shells, there is no way to identify this shell from within a script (but see the
previous “Korn Shell” section for some workarounds).

Version Information
This is a late, fairly well bug-fixed ksh88. It does not come in multiple versions.

Major Compatibility Notes
The only compatibility problems you are likely to encounter with this ksh variant are with
scripts that happen to match some of the ksh syntax extensions. Being based on ksh88, this
shell does not have brace expansion. Unlike most other shells (including pdksh), ksh runs the
last command of a pipeline that runs in the parent shell; in ksh, echo hello | read greeting
sets $greeting in the shell. This rarely breaks programs that were not expecting it, but it can be
a source of portability problems if you rely on it.

Getting POSIX Behavior
This shell is already configured to offer POSIX shell functionality. It has no configuration
choices to change this.

10436ch07final 163 10/23/08 10:35:39 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY164

SVR2 Bourne Shell
The SVR2 Bourne shell, or derivatives of it, are the oldest shells I know of that are still in use
today. Specifically, the Tru64 UNIX shell is an SVR2 derivative. (The documentation claims it is
an SVR3.2 shell, but it has characteristic behaviors of older shells.)

How to Identify
The SVR2 Bourne shell is the only shell I am aware of in which the historical behavior survives
of expanding "$@" to an empty quoted string when there are no parameters. It also lacks the
getopts builtin. The following code identifies a shell with the old "$@" behavior:

(set dummy; shift; set dummy "$@"; shift; echo $#)

In an SVR3 or later shell, this should consistently print 0; in the SVR2 shell, it prints 1.

Version Information
There were a couple of variants of this, but most are now gone. The 8th Edition UNIX shell was
a derivative, but it added modern "$@".

Major Compatibility Notes
In theory, the SVR2 Bourne shell wipes out the positional parameters when calling a shell
function. However, the only known living version of this shell includes the SVR3 fix for this
bug, and the positional parameters are restored after calling a shell function. This is the only
shell lacking getopts or modern "$@" semantics.

This shell lacks the ! modifier to invert the status of a command, and it recognizes ^ as
a synonym for | as a command separator. See also “Major Compatibility Notes” under the
“SVR4 Bourne Shell” section; this shell has all of the quirks of the later shell.

Getting POSIX Behavior
You can’t, but you can look for another shell on the system. A Korn shell is available on most
variants. If you need to target this system, you may want to use an execution preamble to
switch to that.

SVR4 Bourne Shell
The SVR4 Bourne shell program is extraordinarily stable, offering essentially a stable feature
set since 1988, with occasional bug fixes or small updates in some systems. It is not a POSIX
shell. For most modern users, this is the only non-POSIX shell you will find in regular use. This
is the shell used by Solaris and Irix systems as /bin/sh.

10436ch07final 164 10/23/08 10:35:39 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 165

How to Identify
While the SVR4 shell has no direct identifying cues as to its version, you can detect that you are
probably running in it by running eval "! false" and checking $?. Most other shells will con-
sider this to succeed, yielding 0; the SVR4 shell reports failure because there is no command
named !.

Version Information
The SVR4 shell has only minor bug fixes and enhancements between the original SVR4
releases and the current version. The shell’s version is determined by the system version; use
uname to find that.

Major Compatibility Notes
This shell is included in Solaris and Irix, even today, and that is the reason to worry about the
portability of POSIX-specified features. While there are other systems with pre-POSIX shells
installed, these are by far the most common. Many systems seem to have migrated to the
POSIX shell sometime in the last ten years or so, but these vendors have stayed with the old
one for compatibility with older scripts, some of which might have their semantics changed by
an update.

The SVR4 shell lacks the ! modifier used to reverse the return status of a command. It can-
not access positional variables past $9; ${10} is an invalid construct in it. It supports backtick
command substitution, but not $() command substitution. In the SVR4 shell, ^ is equivalent
to a pipe on the command line; it must be quoted to be used in normal words or arguments to
other commands.

The SVR4 shell provides getopts, unset, and modern "$@" behavior. (In fact, these were all
introduced in SVR3 or so.)

A particular surprise is that, while set -- args sets the positional parameters, set -- does
not clear them.

Getting POSIX Behavior
You can’t; if you need POSIX behavior, you have to use another shell. Luckily, Solaris ships
with several shells. Some of them are optional, but zsh appears to be installed by default on
every remotely recent system and can be used as a POSIX shell. See the following section,
“Execution Preambles,” for information about getting into a more modern shell.

Traditional Shell
The V7 shell (the shell of 7th Edition UNIX) is generally regarded as the starting point of the
modern Bourne shell. It can be identified as much by what it lacks as by what it provides. In
practice, every shell has since evolved, but it is worth considering this shell simply for contrast.
Table 7-3 gives a brief overview of major features that were not found in the V7 shell and when
they were added.

10436ch07final 165 10/23/08 10:35:39 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY166

Table 7-3. Shell Features and Their Arrival

Feature	 First Available	N otes

Functions	 SVR2	� Shell functions did not support local positional pa-
rameters at first.

unset	 SVR2	 Not always found on small or specialized shells.

Function arguments	 SVR3	� Positional parameters can be used safely after a func-
tion call.

getopts	 SVR3	 Replaces the getopt utility.

8-bit support	 SVR3	 Previous shells used 8th bit for quoting information.

Symbolic signal names	 SVR4	 Previous shells allowed only numeric signal numbers.

Z Shell
The Z shell is an interesting offshoot or variant; it has been around for a long time, but by
default is noticeably incompatible with the Bourne shell derivatives. However, it is also
extremely configurable. Just as bash can emulate a POSIX shell, zsh can do a pretty good job
of emulating ksh88 or a POSIX shell. This is important for portable code because zsh may be
the closest thing to a POSIX shell available on some systems. The Z shell has been in devel-
opment since 1990.

How to Identify
The special shell parameter $ZSH_VERSION indicates the version of zsh being run.

Version Information
You will rarely see versions prior to the 3.x version series in the wild. 4.x is more common now,
and 4.2 is considered stable as of this writing.

Major Compatibility Notes
The most surprising change for users is that variable expansions are not subject to field split-
ting in zsh. The Z shell documentation describes this as a bug in other shells. (They are not
alone in this view; Plan 9’s rc shell went the same way.) You can override this behavior by set-
ting the shell compatibility option or explicitly with setopt shwordsplit. There is an important
exception: "$@" works as expected.

However, when emulating plain sh, zsh performs too much word splitting on the common
idiom ${1+"$@"}. You can work around this using zsh’s fairly powerful aliasing feature:

alias -g '${1+"$@"}'='"$@"'

It may be simpler to use "$@" without qualification; it works even on nearly all traditional
shells still in use today.

10436ch07final 166 10/23/08 10:35:40 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 167

Getting POSIX Behavior
In modern zsh, you can issue the command emulate sh or emulate ksh to set the shell into an
emulation mode, primarily useful for running scripts. If zsh is invoked with the name sh or ksh,
it automatically uses the corresponding emulation mode. (There is also a csh emulation mode,
but it is of no use for POSIX shell scripting.)

Execution Preambles
Portable shell scripts face the common problem that sometimes a crucial feature is not avail-
able in a given shell. In some cases, the feature is important enough to justify going to some
lengths to obtain a more standard shell environment. Sometimes, the goal is just to have pre-
dictable behavior. The configure scripts generated by autoconf use a great deal of startup code
to ensure predictable behavior across a broad range of platforms. The following sample illus-
trates code to do this for a few shells:

Be Bourne compatible
if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then
 emulate sh
 NULLCMD=:
 # Zsh 3.x and 4.x performs word splitting on ${1+"$@"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '${1+"$@"}'='"$@"'
elif test -n "${BASH_VERSION+set}" && (set -o posix) >/dev/null 2>&1; then
 set -o posix
fi
DUALCASE=1; export DUALCASE # for MKS sh

This preamble causes three common shells (zsh, bash, and the MKS Toolkit sh used on
some Windows systems) to behave more like a standard POSIX shell than they otherwise
might.

There are three primary things you can do with an execution preamble. The first is simply
to set shell options or variables that you use later in a script to simplify your code. The sec-
ond is to feed the script into a shell that has a particular feature you need. Finally, the third
option is to actually modify the script before executing it (whether through the same shell or
a different one). This section discusses the general principles of developing and using execu-
tion preambles. For more information, look into the m4sh utility, which is used to build more
portable shell scripts. As an m4sh script, the preceding sample preamble code (and a great deal
more) would be written as follows:

AS_SHELL_SANITIZE
$as_unset CDPATH

This provides a fairly predictable and standardized environment, with a number of utility
features and functions defined in a fairly portable way. While m4sh scripts are somewhat differ-
ent from conventional shell scripts, they are extremely good at running in a variety of outright
hostile environments. If you need bulletproofing, this may be the way to go.

10436ch07final 167 10/23/08 10:35:40 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY168

Setting Options and Variables
In many cases, merely tweaking a couple of shell options will get you behavior that is standard
enough to be useful. The “Common Shells and Their Features” section covers some of these.
Another technique is to use variables to hold command option flags, command names, or
other values that vary from one system to another. If a command is available only on some
machines, and possibly optional on others, you can use a variable to hold the command’s
name. A historic example of this is the use of a RANLIB variable in makefiles. On some systems,
the ranlib utility had to be run on archives; on other systems, it was not only unnecessary but
unavailable. The solution is to store the name of the utility to run after creating an archive in a
variable. You can do this in shell scripts, too:

save_IFS=$IFS
IFS=:
ranlib=:
for dir in $PATH; do
 if test -x "$dir"/ranlib; then
 ranlib="$dir"/ranlib
 break
 fi
done
IFS=$save_IFS
$ranlib archive

If there is a ranlib utility in the user’s path, it is identified by the loop and stored in the
$ranlib variable. The quotes around $dir are there because someone’s path could contain
directories containing spaces. If there is no ranlib utility available, the script continues any-
way, running the : command (which ignores its arguments). Using variables to hold command
names can simplify a lot of shell development.

This technique only works for commands, not for shell syntax. Some shells provide bet-
ter semantics for shell functions when they are declared as function name() { . . . } rather
than just as name() { . . . }. However, you cannot set a variable to expand to function and
use it in this context because function is a keyword to those shells, and the result of substitu-
tion is not a keyword.

You can also use similar techniques to hold particular command-line arguments or other
values that affect the behavior of a program. Imagine that you want to display a line of text
without a trailing new line; there is no consistently portable way to do this, unfortunately (the
flaws with echo are discussed in more detail in Chapter 8, which discusses utility portability).
However, there are two very common ways to deal with this problem, and a script can test
whether either of them is available:

case `echo -n "\c"` in
-n*c) func_echo_n() { echo "$@"; } ;;
*c) func_echo_n() { echo -n "$@"; } ;;
*) func_echo_n() { echo "$@\c"; } ;;

10436ch07final 168 10/23/08 10:35:40 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 169

esac
func_echo_n Testing...
echo "Ok."

Testing...Ok.

This script defines a function called func_echo_n that will echo without a trailing new line
if either of the common mechanisms works. (If neither does, the script just displays its output
with a new line.) System V systems often supported a \c suffix to do this, while BSD systems
tended to recognize the -n flag. If neither works, the output of the trial command begins with
-n and ends with a c. If the output ends with a c but did not begin with -n, then the -n flag is
accepted and presumably works. If the output does not end with a c, then the \c worked. This
does not guarantee success, but it does prevent printing extraneous output; in the worst case,
there will be new lines but no stray -n or \c strings floating around. (Outside of embedded sys-
tems, though, you should probably just use printf.)

Picking a Better Shell
Sometimes access to a particular feature is sufficiently crucial to make it necessary to run a
script in a shell that provides it. Some of the POSIX features are extremely useful in shell pro-
gramming, and it is quite possible to be surprised when you find yourself compelled to add
support for a target you were sure was never going to come up.

One workaround is to find a shell providing the needed features and ensure that your
script is always run in that shell. For a script full of bash-isms, the following preamble ensures
execution in bash or warns the user as to what has gone wrong:

if test -z "$BASH_VERSION"; then
 save_IFS=$IFS
 IFS=:
 for dir in /bin /usr/bin /usr/local/bin /usr/pkg/bin /sw/bin $PATH; do
 bash="$dir/bash"
 if test -x "$bash" && test -n `"$bash" -c 'echo $BASH_VERSION'`
 2>/dev/null; then
 IFS=$save_IFS
 exec "$bash" "$0" "$@"
 fi
 done
 echo >&2 "Help! I must be executed in bash."
 exit 1
fi
echo $BASH_VERSION

This preamble searches $PATH for a bash shell, and it exits if it cannot find one. A few
points are of interest. One is the use of a common set of likely directories to search before
$PATH, in case the user has an ill-considered search path. The test running bash to ensure it

10436ch07final 169 10/23/08 10:35:41 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY170

is something that produces output when asked to expand $BASH_VERSION is in single quotes
because, if it used double quotes, it would require an unusually large number of backslashes.
The expansion has to be done in the target shell, so the command to pass to it should be
"echo \$BASH_VERSION". However, this quoted string occurs inside backticks, and the shell’s
initial scan of the command substitution also consumes backslashes (which it doesn’t inside
single quotes). So, to pass \$ to the bash called by the subshell, you would have to write \\\$:

if test -x "$bash" && test -n `"$bash" -c "echo \\\$BASH_VERSION"` 2>/dev/null; then

This is a great example of a case where selecting the right quoting mechanism makes your
life easier.

It is possible to base this kind of testing on a feature test, as well. For instance, if you are
fairly confident that the only target system you have with a pre-POSIX shell is Solaris, the fol-
lowing preamble gets you a fairly good POSIX shell:

if eval "! false" > /dev/null; then
 true
else
 exec /usr/bin/zsh "$0" "$@"
fi
if test -n "$ZSH_VERSION"; then
 emulate sh
 NULLCMD=:
fi

If the shell executing this does not know about the ! command prefix, the eval operation
fails, and the else branch is taken, executing the script with zsh (which supports that syntax).

The second test causes zsh to run in its standard shell mode, which is usually a good
choice for a script (and has no effect in other shells). There is a lot more you can do for an
execution preamble, but a simple preamble like this may be enough to get your script running
quickly on the targets you need it on. The combination of switching to a different shell, and
then configuring that shell to behave the way you want it to, is quite powerful. If you are think-
ing about more than one possible system, of course, the preamble gets longer. You would want
to search for multiple shells, not just zsh, and search a reasonable path. Because every step of
this is a new opportunity to make mistakes, you should probably not write an execution pre-
amble much longer than the previous example; if you need more, this is where tools like m4sh
become really useful. As with most tools, using an existing tool is generally better than writing
your own. In particular, since much of the benefit of shell programming is ease of develop-
ment, if you start getting bogged down in details someone else has already slogged through,
you are probably not getting a good return on your time.

Self-Modifying Code
If the feature you need is simple enough, it may be possible to emulate it in the current shell.
The standard configure scripts generated by autoconf use this technique to emulate the spe-
cial shell variable $LINENO in shells that don’t provide it. Doing this correctly is fairly hard,
and doing it portably requires a great deal of attention to additional special cases; if you write
a sed script, and one of the systems you need to run on has a buggy sed, you haven’t gained
anything.

10436ch07final 170 10/23/08 10:35:41 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 171

Don’t be too hasty to use this; it has very limited applicability for most cases, and in
general, you are better off with a generic execution preamble. Still, it is an option worth con-
sidering. The following fragment of the configure script shows how $LINENO can be replaced.
(This is a small fraction of the code involved, dealing only with the actual substitution.)

 sed '=' <$as_myself |
 sed '
 N
 s,$,-,
 : loop
 s,^\(['$as_cr_digits']*\)\(.*\)[$]LINENO\([^'$as_cr_alnum'_]\),\1\2\1\3,
 t loop
 s,-$,,
 s,^['$as_cr_digits']*\n,,
 ' >$as_me.lineno &&
 chmod +x $as_me.lineno ||
 { echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell
" >&2
 { (exit 1); exit 1; }; }
 . ./$as_me.lineno
 exit

This script, like much of autoconf, shows attention to a number of portability details com-
monly overlooked. The first line runs the script (the file name is stored in $as_myself) through
sed, using the = command to print the line number before each line. (The default behavior of
sed is to print every line after executing all commands, so the lines are printed after their line
numbers.) The next sed script (explained in detail in Chapter 11) replaces each instance of
$LINENO with the current line number; the output of this is stored in $as_me.lineno.

This script fragment highlights something that can be visually confusing in long blocks of
quoted code for another language (in this case, sed). In this line, it looks at first as though vari-
able names are being quoted for some reason:

 s,^\(['$as_cr_digits']*\)\(.*\)[$]LINENO\([^'$as_cr_alnum'_]\),\1\2\1\3,

In fact, the variable names are outside the quotes, and everything else is in them. The
single quote immediately preceding $as_cr_digits is the end of a quoted string starting on the
second line (the line containing only sed '). The variables $as_cr_digits and $as_cr_alnum
hold strings of standard ASCII digits and letters. This preserves behavior even on systems with
unusual character sets or with defective character range handling. These variables in question
are known to contain no spaces, so they don’t cause the argument to sed to get broken into
multiple words. If this were ambiguous, they might have been placed in double quotes:

 s,^\(['"$as_cr_digits"']*\)\(.*\)[$]LINENO\([^'"$as_cr_alnum"'_]\),\1\2\1\3,

Another interesting choice is illustrated here; the . command is used to read and execute
the created script. If the original script had used exec, the shell would have executed the cre-
ated script, using its name for $0, and error messages would be from configure.lineno rather
than configure. Furthermore, the positional parameters would need to be passed in again;
this way, the script environment is preserved. A bare exit command exits with the return code

10436ch07final 171 10/23/08 10:35:41 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY172

of the previous command, and the return code of the . command is the return code of the
executed code (assuming it was successful in finding and reading that code at all).

Emulating Features
In many cases, it is impossible to replace a shell feature. However, in a few cases, it may be
possible to come surprisingly close. The following shell function can be used to replace select
in most cases, replacing the select keyword with while func_select:

func_select () {
 func_select_args=0
 case $1 in
 [!_a-zA-Z]* | *[!_a-zA-Z0-9]*)
 echo >&2 "func_select: '$1' is not a valid variable name."
 return 1
 ;;
 esac
 func_select_var=$1
 shift
 case $1 in
 in) shift;;
 *) echo >&2 "func_select: usage: func_select var in ..."; return 1;;
 esac
 case $# in
 0) echo >&2 "func_select: usage: func_select var in ..."; return 1;;
 esac
 for func_select_arg
 do
 func_select_args=`expr $func_select_args + 1`
 eval func_select_a_$func_select_args=\$func_select_arg
 done
 REPLY=""
 while :
 do
 if test -z "$REPLY"; then
 func_select_i=1
 while test $func_select_i -le $func_select_args
 do
 eval echo "\"\$func_select_i) \$func_select_a_$func_select_i\""
 func_select_i=`expr $func_select_i + 1`
 done
 fi
 echo >&2 "${PS3:-#? }"

10436ch07final 172 10/23/08 10:35:42 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY 173

 if read REPLY; then
 if test -n "${REPLY}"; then
 case $REPLY in
 0* | *[!0-9]*)
 eval $func_select_var=
 ;;
 *)
 if test "$REPLY" -ge 1 && test "$REPLY" -le $func_select_args; then
 eval $func_select_var=\$func_select_a_$REPLY
 else
 eval $func_select_var=
 fi
 ;;
 esac
 return 0
 fi
 else
 eval $func_select_var=
 return 1
 fi
 done
}

Of course, if you’ve been following along, this function hardly requires comment. This is
a large enough block of code, however, that it may be worth a bit of exploration. While none of
the features used here are new, the combinations merit some discussion.

The first section of the function simply sets up variables. All variables are prefixed with
func_select_, except for $REPLY (which is part of the normal behavior this function is sup-
posed to emulate). The function validates its arguments minimally, insisting that the result
variable have a valid identifier name and that at least one additional argument was provided.
After this validation, the function builds an emulated array (see the in-depth discussion in
Chapter 5) storing each of the choices in a numbered variable.

The main loop begins by setting $REPLY to an empty string. On each pass of the loop, if
$REPLY is empty, the list is printed; this ensures that the list is printed the first time through.
After that, the script prints a prompt and attempts to read a new value. If it fails, the output
variable is emptied and the function returns. If a value is read, the function always returns; the
only way to repeat the loop is if $REPLY is empty.

The test for a valid $REPLY value accepts only strings of digits, starting with a non-zero
digit; this is accomplished by rejecting any pattern containing nondigits or starting with a zero.
It would also be possible to strip leading zeroes. (In fact, one of the bugs of this implementa-
tion is that it does not strip leading and trailing spaces, which the real select does.) If a valid
digit string is found, and it is between 1 and $func_select_args inclusive, the output variable is
given the corresponding stored value.

Even this function has a few design choices reflecting a desire for portability. If you could
safely assume you did not need to run in pre-POSIX shells, the $func_select_a_N variables
would not be needed; you could use the positional parameters. When targeting a specific sys-
tem, there might well be a better way to print the prompt; for instance, the printf command
might be usable. (This example didn’t use it because it was developed for use on an embedded

10436ch07final 173 10/23/08 10:35:42 PM

Chapter 7  ■﻿   SHELL LANGUAGE PORTABIL ITY174

system.) So one weakness of this is that the prompt is echoed with a trailing new line, which
changes the output of the program slightly.

For purposes of getting a script that uses select running quickly on a shell other than
ksh or bash, however, this is probably good enough. It works on shells as old as the traditional
Bourne shell used in Solaris, and it also runs in modern shells. Be wary of that last part; it is
important to check a portability feature like this against new shells, not just the older shells
that originally needed it.

In fact, this emulation can be even closer in some shells; in ash, for instance, following the
function declaration with an alias can give you essentially complete compatibility:

alias select='while func_select'

While this may look like a significant improvement, I do not recommend it. Aliasing
behavior is a bit quirky and fairly unportable. Although aliases are now standard in POSIX
shells, they are not universally available, and they are a rich source of unexpected errors. They
are a wonderful interactive feature, but you should avoid them in scripting even when using a
shell that supports them.

What’s Next?
Chapter 8 takes a look at the major portability issues you are likely to encounter with common
utility programs. While these programs are technically not part of the shell, they are essential
to most shell programs. Chapter 8 also gives you information about what the common ver-
sions are, how to find good versions of a utility on a system, and what common features are
not as portable as you might think.

10436ch07final 174 10/23/08 10:35:42 PM

Chapter 8  ■﻿   UT IL ITY PORTABIL ITY200

unix2dos
See dos2unix.

unzip
See zip.

xargs
The -0 option, which uses ASCII NUL characters instead of new lines to separate file argu-
ments, is not totally portable. Unfortunately, its absence creates a serious problem that is at
the very least a bug magnet and can create serious security holes. If you cannot ensure that
your script will generally be run on systems that provide this option, avoid xargs with file lists
that contain files you did not create. Note that this is no worse than the behavior you get pass-
ing a list into a while read var loop. It is a potential security hole if you aren’t alert to it, but
it may be livable. If you can be sure of systems where find and xargs support NUL character
separators, use those options.

zip
This is an archive utility, usually paired with unzip. It is not universally available, although it’s
quite common on desktop systems.

What to Do When Something Is Unavailable
Sooner or later, you will find yourself in the uncomfortable circumstance of having guessed
wrong on utility portability. The field is too large to keep track of; there are too many utilities
to learn, and there are too many systems with local variants and surprises.

But all is not lost. You can generally work around the absence of a utility one way or
another, and this section goes into some of the techniques used to handle these circum-
stances. There are several possible solutions to the problem of a missing utility. You can
develop your own clone of it, if it is small, and include it with your script (or even imple-
ment it as a shell function in your script). You may be able to get the utility added to your
target system, if you have any influence over it. In some cases, you can patch other utilities
together to obtain the results you need. Sometimes, you can settle for something nearly
good enough. If a system simply does not have symbolic links, you may be able to make do
with hard links, or with copies.

One other resolution is on the table: Sometimes, you may find that the best you can do is
insist on a more complete or modern system. This is a rare choice and should never be your
first response to a problem, but keep it in mind.

Roll Your Own
Sometimes the best way to be sure you can rely on a utility or feature being available is to
develop your own. Many common utility programs can be implemented (sometimes more
tediously, or more slowly) in terms of other existing utility programs. There are a few ways to
approach this. You can write separate utility programs, whether as shell scripts or in another

10436ch08final 200 10/23/08 10:31:22 PM

Chapter 8  ■﻿   UT IL ITY PORTABIL ITY 201

language. However, this leaves you with an additional problem at installation time, which is
ensuring that your helper programs also get installed. Many simpler utilities can be imple-
mented as shell functions, which allows you to embed them in a program. You can even use
your own script as multiple different programs by defining special command-line options to
tell your script to do something special; for instance, the standard autoconf configure script
behaves very differently when run with the --fallback-echo argument.

This technique is of limited and specialized applicability, but as long as the programs you
need are simple enough to duplicate, it can work. It is also sometimes your only option.

Add a Missing Utility
You can require the user to install additional software or install it yourself. This presumes
an environment with some control of the target system; for instance, a script to be run on
machines on a corporate network may be able to simply impose a requirement that particu-
lar packages must be installed for the script to work. If you are shipping a product and want
to rely on particular utilities, you can document them as requirements; this does not work
as well because users never read documentation, but it is better than not documenting the
requirement.

The weakness of this strategy is that there are times when it is simply impossible for the
user to comply. While most scripts do not need to run on embedded systems today, there
is a rapidly increasing pool of small portable devices that contain some variety of UNIX and
a somewhat stripped-down environment.

Use Something Else
If it turns out that a utility you thought was universal isn’t, use something else. The UNIX shell
environment is a fairly full-featured programming language, and you can do just about any-
thing in it with enough time and attention. Often, the problem is not that there is no portable
solution, but that the portable solution requires you to make effective use of a utility you’ve
never even heard of. This is a great time to go browsing around documentation, trying to think
of other key words to search for, and so on.

Demand a Real System
This is sort of the antithesis of portable code, but it may apply. In the case where other
requirements, such as performance or development time, are simply too crucial, and a par-
ticular system is causing you grief, you may want to see whether that system can be removed
from the project definition. As is often the case, 10% of the time does 90% of the work. If you
can establish that your code is fine except on systems with a particular flaw, but working
around it is going to be difficult and time-consuming, this may be the course to pursue.

Do not do this merely because a system lacks an extension it would be neat to have.
Reserve this for cases where the offending system is clearly wrong. Obviously, this never
applies when a particular target system is central to the problem specification. If you are trying
to write a script that will be used exclusively on an embedded system, you have to work with
what that system provides. On the other hand, if you have a script aimed at full-featured desk-
top systems, it may be impractical to expect you to make it run also on an embedded system
with only a stripped-down busybox.

10436ch08final 201 10/23/08 10:31:22 PM

Chapter 8  ■﻿   UT IL ITY PORTABIL ITY202

In some cases, after further discussion, this can become the friendlier case of adding
a missing utility (see the previous section). If the problem is just that a particular program is
absent or buggy, a replacement can perhaps be found and stated as an explicit requirement.

A Few Examples
The first example I ever saw of a common problem along these lines was a little script called
install.sh, which was common in free software packages. Because Berkeley and other sys-
tems had, in their typical fashion, all disagreed on how to write a program to copy a file to
a given location with particular ownership and permissions, many programmers took to writ-
ing a portable script that performed the expected functions. The full functionality of the script
can be quite complicated; some versions check to ensure they are not copying a file onto itself,
strip binaries of debugging symbols, and otherwise do things that are commonly needed or
useful when installing a file, but that are tedious to get right. Variants of this script are still
found in many systems (as are dozens of totally unrelated files named install.sh).

The portability problems of echo have been solved (or at least worked around) in several
different ways, illustrating some of the previously described strategies. Many scripts test for
common behaviors and define two variables (nearly always named $C and $N, or $ECHO_C and
$ECHO_N), which allow commands like echo $N No newline:$C. This is moderately idiomatic,
and most shell programmers will recognize it. The following variant of an example from
Chapter 7 illustrates this:

case `echo -n "\c"` in
-n*c) ECHO_N='' ECHO_C='' ;;
*c) ECHO_N='-n' ECHO_C='' ;;
*) ECHO_N='' ECHO_C='\c' ;;
esac
echo $ECHO_N Testing...$ECHO_C
echo "Ok."

Testing...Ok.

The AC_PROG_LIBTOOL macro in configure.in scripts (implemented by the libtool.m4
macro file distributed with libtool) provides a particularly complete workaround for a much
more insidious problem: working around echo implementations that interpret backslashes.
This code is about 250 lines of fairly complicated shell scripting. It is too much to reproduce
here, but this is a fairly typical sample:

if test "X$echo" = Xecho; then
 # We didn't find a better echo, so look for alternatives.
 if test "X`(print -r '\t') 2>/dev/null`" = 'X\t' &&
 echo_testing_string=`(print -r "$echo_test_string") 2>/dev/null` &&
 test "X$echo_testing_string" = "X$echo_test_string"; then
 # This shell has a builtin print -r that does the trick.
 echo='print -r'

10436ch08final 202 10/23/08 10:31:22 PM

Chapter 8  ■﻿   UT IL ITY PORTABIL ITY 203

 elif (test -f /bin/ksh || test -f /bin/ksh$ac_exeext) &&
 test "X$CONFIG_SHELL" != X/bin/ksh; then
[...]

One of the cases used is to define a special argument, --fallback-echo, which causes the
script to try to display its own arguments. The implementation is excellent:

if test "X$1" = X--fallback-echo; then
 # used as fallback echo
 shift
 cat <<EOF
$*
EOF
 exit 0
fi

This does not handle the case where you want to produce output without a new line, but
it does eliminate the common problem of shells stripping backslashes.

Some users do something like any of the options previously discussed, but they cre-
ate a shell function to wrap the desired behavior; this has been the solution I’ve generally
encouraged (as in the original version of the $ECHO_N example, which was in Chapter 7). Some
programmers simply rely on the printf command or on shell builtins like ksh’s print. Any of
these can provide consistent behavior, and some allow reliable production of unterminated
lines. And, finally, a last option exists: Avoid starting the arguments to echo with a hyphen,
avoid backslashes, and just accept the lack of a portable way to produce output with no new
line at the end. This limits your output options, but it is completely portable.

A couple of counterexamples are also worth considering. A number of application install-
ers for Linux systems have been pretty awful. The most obvious and recurring theme is the
assumption that sh is always bash. A number of install scripts I have tried to use have choked
badly because I usually have $BLOCKSIZE set to 1m in my environment; this resulted in naive
install scripts declaring that a disk with 5GB free (5000 one-megabyte blocks) is not large
enough to support an installation that requires 10MB because they interpreted 5000 blocks
of reported free space as 2.5MB (5000 half-kilobyte blocks). Another common failure mode is
assumptions about the stat utility, which I’ve seen several times in different installers.

What’s Next?
This is just about it for the fiddly little details. What comes next is a bit of a higher-level per-
spective of portability. Chapter 9 talks about how to design scripts so that they will be easier
to write portably and how to identify a good candidate for development as a shell script in the
first place. Portability is important for reusability and value out of code, but there are other
things you should consider as well. A portable script that is only useful once does you little
good; next up is the question of how to make a script you will want to reuse on other systems.

10436ch08final 203 10/23/08 10:31:23 PM

10436ch08final 204 10/23/08 10:31:23 PM

C H A P T E R 1 0

Shell Script Design

Many portability problems are made more approachable through good design. Good design
makes it easier to isolate dependencies and reduces the chance that a portability issue with
a tangentially related feature will prevent a script from performing its primary function. This
chapter introduces some of the general principles of shell script design. There are other books
that go into much more detail on shell script design and on program design in general. I focus
primarily on issues applicable to shell scripts and, in particular, to portable shell scripts.

This chapter is full of guidelines, some of which are not always rules. The important thing
is not to follow every guideline exactly in all cases; your goal should be to understand the pur-
pose of each guideline, as well as understand when to follow it and when not to. As with many
things, you have to know the rules before you can understand when to break them.

Because UNIX has largely accreted and evolved through the work of hundreds of people
at many different companies over a period of decades, there is not total consistency. The mere
fact that an existing utility does something a given way does not mean you should consider
it a good example. For instance, no one should ever emulate the command-line argument
parsing of dd; its param=value options are arcane, error-prone, and hard to remember. If
dd if=/dev/zero of=image bs=1m count=16 had been spelled dd -i /dev/zero -o image -b
1m -n 16, more people would be able to use it successfully without keeping the man page
open. Of course, a more modern dd might support --blocksize 1m --count 16, which is pretty
close, but then your code is no longer as portable as it used to be. (It’s also reasonable to
observe that redirection is probably better than the if=/of= arguments.)

This chapter uses an example of a hypothetical utility design—a small program called
pids, developed to provide a scriptable alternative to the ps command.

Do One Thing Well
Why does portable tar not compress its archives? Why is there no built-in sort functionality in
vi? In general, a program that does exactly one thing is much simpler to use than a program
that does many things, and it can be mixed with programs that do other things. The UNIX
convention that archive utilities do not worry about compression, and compression utilities
do not worry about file hierarchies, has resulted in typically better performance of both tasks.
Rob Pike's presentation “UNIX Style, or cat -v Considered Harmful” (USENIX Summer Con-
ference Proceedings, 1983) made this case rather more sternly, but quite well. (See also the
companion paper to the presentation, “Program Design in the UNIX Environment,” co-written
with Brian W. Kernighan: http://harmful.cat-v.org/cat-v/unix_prog_design.pdf.)

219

10436ch10final 219 10/23/08 10:42:43 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN220

This is not to say no program should ever have a bit of additional functionality. The ls
command does sort its output. This is not just for convenience, though; it is because some
of the sorting options sort the output according to information that ls does not display. For
instance, ls -t sorts files by modification time, but it does not display the modification time.
It makes sense for ls to pay attention to file modification times because they are part of the
information it extracts when doing long listings. Even when ls displays modification times,
the display format is not something that sort could easily use as a sorting key, while the time-
stamps ls obtains from the file system are integer values that can be sorted easily and quickly.

There are a number of utilities that allow you to kill processes by name; no two are the
same. These are, I think, a bad design. The correct design, which I have adopted for pids,
would be a program that lets you list processes by name, which can be combined easily with
the existing kill utility.

Separate Functionality
One of the great strengths of the shell is its use as glue code. Often, a script that has become
difficult to maintain or port would be better implemented as multiple programs, with a single
top-level script combining the function of other programs. Just as a script using grep is much
clearer to read than a script that implements it inline using while loops, it is often clearer to
separate out some functionality and make it into a separate script. Describe your program
carefully and see whether it would make sense to describe it in terms of other scripts; if so, you
may be better off writing them separately. In some cases, shell functions can give you some
of the same organizational benefit. Often, though, the greatest benefits come from complete
separation.

When you separate a script into components, you make it easier to maintain the script.
Each component is simpler and better focused. A problem with one does not necessarily affect
the others. In general, this pays off substantially. Furthermore, the components are likely to
get reused in other scripts, and additional development on them will pay greater dividends.
The sort utility is much more powerful than the built-in sorting features many non-UNIX
tools have acquired because it is used everywhere. When every application developer has to
write a completely redundant sorting implementation, every application gets whatever mini-
mal sorting functionality is good enough to get it out the door. Shared functionality tends to be
a lot better. So if there’s a task you need to perform for your script, think about ways in which
you could use it again in other programs; if you can think of two cases where you’d use it, it is
probably worth separating out.

Often, an application can be implemented very nicely as a wrapper around a simple fil-
ter that performs some interesting task; write the filter, and you can experiment with ways to
make its functionality available. A spelling checker could be nothing more than a simple pro-
gram that identifies likely misspelled words, leaving it up to other programs to decide how to
use this functionality.

The pids utility does nothing but obtain and display the pids of processes.

Isolate Dependencies
Sometimes, there is no way to prevent a script from depending on something you simply can-
not do portably. However, if nearly every system provides a way to do it, and the problem is

10436ch10final 220 10/23/08 10:42:44 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN 221

only that these ways are different, writing a generic utility to solve that specific problem makes
it easy to write an otherwise portable script relying on that utility. In some cases, this could
be implemented as a simple shell function in your main script, but if it is useful enough on its
own, it may be worth creating the separate program as well.

For instance, you could possibly write a program that reliably extracts the current pid of
a process by name, even though no one call to ps can portably give you that information. This
is what gave me the idea for the pids utility; while it is very hard to solve the complete problem
generally, it is easy to solve the important part on any given system. With this utility in place,
adding functionality on a new system should take only a few minutes.

Be Cooperative
There is a corollary to the guidance to do one thing well—make it easy for other programs
to use your script to do that one thing. Whatever your script does, try to write it so it will be
easy for other scripts to use as a component. Thinking about how other scripts might use
yours may give you key insights into what you ought to do. Try to stick with standard and
well-understood formats; data that can be represented as lines of text generally should be
because many UNIX utilities work very well on lines of text. If you need to work with binary
data, be flexible about file names. If it makes sense to run your script on multiple files at
a time, allow it; don’t require repeated invocations. Be sure to give a meaningful exit status.

Be sure that incorrect or invalid command invocations yield an informative usage mes-
sage. This will help someone actually make use of your script, rather than abandoning it in
disgust because it doesn’t seem to do anything.

If your script produces output that another program could possibly take as input, make
sure that error messages are not set to standard output. Error messages being mistaken for real
program output can be a problem for other programs.

The -n (“not really”) option, known as --dry-run in some GNU software, displays output
describing what a program would do rather than doing it. For any program that could ever
damage or alter data, especially one whose behavior is not absolutely consistent and trivial,
this option is a very good idea. (It is understandable that rm lacks it because its behavior is so
simple. For more complicated programs, such as make, it is extremely useful to be able to ask
the following question: “So, hypothetically, if I ran this program with these options, just how
far up which creek would I end up, and where would the paddle be?”

The pids utility should produce simple output describing a mapping of process IDs to
process names. My initial plan is to have the default be to print both the pid and the process
name, in case it is called with multiple process names, and have an option to print only pids.
Output is one entry per line to make it easier for other programs to further filter or manipulate
output. Exit status is success if at least one matching program was found and failure otherwise.

Filters, File Manipulation, and Program Manipulation
In general, most scripts can be described as falling into one of these three categories. There are
powerful UNIX conventions for how programs in each category should be designed; adhering
to these conventions will make your script more useful to other users. Each of these types of
programs has unique traits that influence how it should be designed; this section introduces
some of the key design goals of each type.

10436ch10final 221 10/23/08 10:42:44 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN222

Designing a Filter
In nearly every case, a filter should work like cat; it should take an arbitrary selection of files
as inputs, or simply pass through standard input if no files are provided. Most filters treat
a selection of files as though they had been concatenated as a single input file, except when
diagnosing errors. (Whenever possible, a program should identify the specific input file and
line on which an error occurred.)

Some filters offer options for operating in place. This is often a wonderful feature, but it
should never be an implicit default. Users are expecting your program to produce its results on
standard output; overwriting files without an explicit request is almost always wrong. A com-
mon idiom is to recognize a -i option for in-place operations; some programs, such as sed or
perl, extend this to allow specification of a suffix to append to the original version of the file.
If you are offering only one of these choices, though, always write output to standard output
rather than operating in place. It is a trivial matter to wrap a standard filter on files in place;
it is somewhat harder to wrap an in-place program and create a usable filter. (See the sidebar
“Destructive and Reversible” for more thoughts on this.)

filters in place

Of course, the correct solution is not filter < file > file. The file is truncated before the filter is even
started, and the filter then reads an empty file, processes no data, and writes its output back into the file.
There are two common idioms for this; first, you could run the filter into a new temporary file, then rename it
over the original:

filter < file > file.new
mv file.new file

The alternative is to first rename the file, then run the filter directed into the original file. For instance,
you might use this instead:

mv file file.orig
filter < file.orig > file
rm file.orig

If you do this, do not delete the original file unless the filter succeeded; even then, provide an option to
leave the original file around as a backup.

Given a program that operates in place, you can do the same thing backward to create a filter:

cp file file.new
in_place file.new
cat file.new
rm file.new

In both cases, the usual caveats about temporary files and security apply.

10436ch10final 222 10/23/08 10:42:45 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN 223

In most cases, there is no reason for a filter to perform any sorting on its inputs or out-
puts. Emulate uniq, which simply specifies that input must be sorted. A filter is, by definition,
designed to work well in a pipeline; don’t feel bad about a usage pattern where people might
need to merge your script with others.

The exit status of a filter should normally be success if it did anything and failure other-
wise. For instance, grep succeeds when it matches at least one line and fails when it matches
no lines. In some cases, it may make more sense to report failure if any operation fails; for
instance, ls reports failure if any operation failed, even if it listed some files.

You might not think pids is a filter, but data sources are a special case of a filter; they just
prefer to go on the left end of a pipeline. You could even modify pids to take a list of names on
standard input, although I did not implement this.

Designing a File Manipulator
Commands that manipulate files but don’t take file names on the command line are annoying.
Taking command names on standard input can be a great feature for programs to offer, but it
should never be the only choice. If you use new line separators, there is no way to submit some
file names; if you use NUL characters, many programs cannot interact with you. Support it as
an option, but take command-line arguments, too.

Recursion is generally a good option but only sometimes a good default. Archive utili-
ties and the like may want to recurse into directories by default. Others should not. Do not
overthink your selection of files; unless the kinds of operations you describe are unique and
specific to your application, you are better off providing an interface making it easy for users
to feed your script arguments using find. If you want to provide a recursion option, use -r or
-R; if you want an option to prevent recursion, you might use -d (by analogy with ls) or a long
option with a name like --no-recurse.

If your utility performs tests on files, look closely at the behavior of grep -l; it has gener-
ally stood the test of time. The default behavior of showing only file contents when processing
a single file (or standard input), but showing file names and contents when processing mul-
tiple files, is usually correct. The -l option (list only file names) is well known and fairly useful.
Keep in mind the opportunity for optimization that this affords; once you find a successful
match, you can show the file name and skip on to the next file. You don’t have to finish reading
a large file to find more matches.

A file manipulator should report failure if any manipulation fails. If operations on each file
are logically distinct, try on every file even if some have failed. If operations on a given file are
logically sequential, though, stop after the first one that fails.

Designing a Program Manipulator
Program manipulation is a general description of the astounding variety of scripts most com-
monly written by system administrators; these are scripts that automate common tasks. Every
such script should support a -v option to display information about what it is doing. You will
kick yourself if your script doesn’t provide more verbose output; your script will misbehave,
and you will have to add this feature before you can even start debugging it. I often go a step
further and support a -x option, which does nothing more elaborate than set -x. The output
isn’t pretty or user-friendly, but it tells you what happened.

10436ch10final 223 10/23/08 10:42:45 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN224

Study other similar programs and try to keep a similar interface. The apachectl utility
offers an excellent example of how to make a single, reasonably well-contained utility that
handles a variety of closely related tasks. When possible, try to think through a whole process
and build a script that automates it. Include lots of error checking in automated tasks; one
of the key weaknesses such scripts often start with is not knowing when something has gone
wrong, which a user would have noticed right away when performing the task interactively.

Programs that manipulate other programs or perform complicated operations often use
an idiom of taking general options followed by a subcommand, which can then take additional
options or arguments. Examples include the git and cvs commands, which take a number
of verbs describing the intended operation—for instance, git pull or git push. Additional
options specified after the verb may differ from one verb to another. Options specified before
the verb have general meanings; in some cases (at least with cvs), the same option is valid both
before and after a given verb, but with very different meanings. This is annoying; don’t do it.

A verb-based interface like this is mostly useful when all of the verbs are closely related;
for instance, they all work with the same source code system. Some programs go the other
way, installing a large number of programs with simple names; for example, the nmh mail
client installed 39 separate programs on one of my machines. The disadvantage of separate
commands like this is the greatly increased risk of clashes, amplified by the risk that the
names chosen will be likely and usable ones, which other people are more likely to want to
use as well. It is easy to imagine other developers wanting to use names like scan, mark, or
refile. Given a choice, I would say I prefer the single command with many verbs. In fact,
this can be implemented as a wrapper script, which uses a private directory full of specific
commands; the goal is just to keep $PATH clean.

The exit status of a program manipulator should simply indicate whether or not it suc-
ceeded. If you try to start another program, and fail, report the failure and indicate it in your
exit status.

Command-Line Options and Arguments
The choice of how to invoke a script is a significant factor in whether it will ever be any use
to you. In general, try to avoid relying on environment variables to control behavior; favor
command-line options to set flags. Try to make sure that the most common behavior is the
default to keep command lines short. If you find that you always want to specify an option,
make it the default and provide the opposite choice. A script designed for interactive use might
originally be designed to operate quietly, with a -v flag to cause more verbose output; if users
consistently specify this flag, make it the default and provide a -q flag to suppress the output
instead.

Be aware of the convention of combining command-line options; -ab should be synony-
mous with -a -b. GNU sed accepts the option -i to operate in place (though this option is
not portable). The argument -i.bak instructs sed to keep the original file, with .bak appended
to its name. Having forgotten about that special case, I once shortened sed -i -e expr to

10436ch10final 224 10/23/08 10:42:45 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN 225

sed -ie expr. This did not do what I meant; it saved the original file under the name filee.
(The default with no -e arguments is to treat the first argument as an expression, so the output
was otherwise correct.)

There are two key distinctions here. The first is between options that always take an
argument and options that optionally take an argument. The latter are more confusing. If an
option always takes an argument, it is usually reasonable to treat the rest of the word as being
an argument to that option. Asking friends who write shell scripts, I have come to the conclu-
sion that many script programmers do not consistently agree on what they expect to happen
when options that take arguments are combined into words. From a user interface standpoint,
the best thing may be to try to avoid the question. For instance, were I to design a -i option
for sed, I would probably have a separate option for the suffix. This way, the boolean option
has predictable and simple syntax, and the non-boolean option also has unambiguous syntax.
The boilerplate option-processing code presented in Chapter 6 implements semantics that are
unlikely to surprise most experienced users.

All programs should recognize -- as indicating the end of options. Programs which accept
file names should generally treat - as a synonym for standard input.

It may seem that the proliferation of options contradicts the advice to do one thing
well. It does not. Doing something well often implies doing it under a variety of different
circumstances and in a number of different ways. Allowing users to sort on arbitrary keys,
numerically, reversing some keys but not others, offers a great deal of flexibility but does not
change the fundamental purpose of the sort program. The e‑mail reader option in GNU hello
is an intentionally awful example of completely unrelated functionality. The many UNIX pro-
grams that display or set a particular value (such as hostname or date) are questionable designs.
It is, however, almost certainly a design flaw that date does not use an option to indicate the
semantic shift from setting to displaying the date.

Try to avoid relying on long options. While they are easy to remember, they are bulky and
annoying to type. Common options should always have a single-character spelling, and it is
fine, even preferable, to have no long options at all.

When specifying sizes, be flexible about input. At the very least, you should recognize
KB/MB as size units. Defaults should use 1024-byte blocks as “KB,” even though they are
strictly considered KiB (see the sidebar “What’s a Mebibyte?”); the same goes for MB, GB,
and even TB.

10436ch10final 225 10/23/08 10:42:46 PM

Chapter 10  ■﻿   SHELL SCRIPT DESIGN226

What’s a MEBIBYTE?

For years, users have been posting on forums, writing to customer support departments, and otherwise com-
plaining that their hard drives are not as large as advertised. The reason is that computers like to do things
in powers of two (32, 64, 128, and so on), and 1024 is a much more natural number for a computer to work
with than 1000. As a result, a “kilobyte” of data is nearly always understood to mean 1,024 bytes of data.
Similarly, a megabyte is usually 1,048,576 bytes. However, a long time ago, drive manufacturers realized that
they could gain about 5% capacity instantly by using the standard metric prefixes, calling each 1,000,000
bytes a “megabyte.” (With gigabytes, the ratio is a bit over 7%.) Of course, this usage makes some sense; it
is quirky at best to have a prefix that always, consistently, across any unit of measure, means “one million”
except, when referring to data, it means “1.048576 million.”

The solution, of course, is to introduce new terms; kibibyte, mebibyte, and so on (“bi” being short for
“binary”). One KiB (kibibyte) is exactly 1,024 bytes. With this usage in place, it is more reasonable to use the
standard K prefix to mean 1,000 exactly.

Unfortunately, this just means that it is now even less clear to users what KB and MB mean. To add
to the confusion, many users (as well as many developers and many product packaging designers) are not
aware that B and b are different; B is bytes (in context, this means 8 bits), while b is bits. So 8Mb of data are
1MB of data, unless one of them was using the metric prefixes. . . .

If you are interpreting user-specified sizes, such as block sizes, default to bytes, ignore bits, and sup-
port both the K and Ki prefixes. If you support only the K prefix, use it for 1024; this is what users will mean,
for now. When reporting output, use the Ki and Mi prefixes so users get used to them and learn about them,
reducing future confusion.

Designing Options
The most common options should be easy-to-remember lowercase letters. There are a num-
ber of conventions in UNIX command-line arguments (see Table 10‑1). In general, the most
common arguments should just be plain arguments, not command-line options. For instance,
the file arguments to most commands are just specified as any file names after the last option;
by contrast, a script file to run from is usually specified with a particular option (often -f).

If you have several closely related options, it may make more sense to implement them
as a single option that takes an argument to distinguish between cases. However, most of the
time an option with an argument is a string or file name.

The Table 10‑1 introduces a few common options that users are likely to guess at or
remember easily. The list is not exhaustive. Some letters have multiple traditional uses, which
are listed separately. The GNU coding standards have a similar list of long option names that
have been used in GNU utilities.

10436ch10final 226 10/23/08 10:42:46 PM

Special Characters
(sharps), 2, 259–261, 269–270, 280–285, 305
#! script header, 118, 255–256, 315
$ (dollar signs), 14, 81, 91, 265, 308, 322,

327–328, 330, 332–335
$() syntax, 40, 95–96, 146–147, 152, 165
$? shell parameter, 45
$- shell parameter, 119
$! shell parameter, 132
$# shell parameter, 76, 82
$$ shell parameter, 82, 89, 95, 132, 208, 240
$* shell parameter, 80, 82
$@ shell parameter, 82, 84, 121
% characters, 18, 20
%c format specifier, 20
& (ampersands), 61, 73, 135, 152, 256,

279–280, 288–292
&& operator, 47, 75, 279–281, 288
* (asterisks), 22–23, 32–35, 153, 295, 306, 322,

328, 332
(*/)# operator, 153
**/ operator, 153
@ (at signs), 20
[] (square brackets), 24, 295, 320, 322–325,

328
^ (carets), 24, 294, 322–323, 325–328, 330–

332, 334–337
{ } (braces), 30, 148–149, 328
| (pipes), 2, 51, 57, 152, 279, 328–329
|| operator, 47, 279–281, 288
} character, 266
~ (tilde) expansion, 85, 265
+ (plus signs), 13, 35, 36, 153, 298
+(pattern-list) pattern, 153
\< anchor, 36
<&p operator, 155
<< operator, 272
<<< operator, 154
= (equals signs), 25, 306
\> anchor, 36
0 ^ $ c command, 310
-0 option, 200, 227
$0 parameter, 82
[!0-9] class, 24
[!0-9] pattern, 39
[0-9]* pattern, 39
\1 backreference, 33

-1 option, 227
$1 parameter, 80–82
${10} parameter, 82
' (apostrophes), 11
` (back quotes), 15
\ (backslashes), 77–78, 256–257, 294, 306, 322,

327–328, 332
: (colons), 2, 25, 44
" (double quotes), 17, 18, 77, 79, 257–258, 261
! (exclamation marks), 12, 24, 45, 164–165,

294
/ (forward slashes), 78, 150
- (hyphens), 24, 325, 331
. (periods), 25, 28, 32, 108–109, 111, 323, 328,

332
? (question marks), 23, 32, 35–36, 153, 276,

295
; (semicolons), 14, 73, 281
' (single quotes), 11, 17, 79, 257
$2 parameter, 82

Numerics
8-bit support, 166

A
{a,b} expression, 148
a < b operator, 46
a <= b operator, 46
a != b operator, 46
a = b operator, 46
a > b operator, 46
a >= b operator, 46
A command, 309
a command, 309
a operator, 47
-A option, 227
-a option, 227–228, 233–234
$a variable, 140–142
a_0 variable, 103
a_1 variable, 103–104
a|b expression, 35
(a|b){2} expression, 35
a|b{2} expression, 35
(a)|(b)c expression, 35
(a|b)c expression, 35
${a} expression, 140
\ (\ (ab\) *c\)*, \1 expression, 34
ab command, 224

Index

339

10436idxfinal 339 10/23/08 10:46:42 PM

nINDEX352

X
\{x, \} operator, 33
{x,} operator, 35
\{x,x\} operator, 33
\{x,y\} operator, 33
{x,y} operator, 35
x argument, 18, 119
-x option, 223–228
-X option, 228
$X variable, 93
\{x\} operator, 33
{x} operator, 35
xargs utility, 200
X/Open Portability Guides, 178

Y
Y command, 312
-y option, 227

Z
Z shell, 8, 166–167
zero padding, 19
zip utility, 200
zsh command, 28, 100, 134, 139–140,

147–149, 152–153, 155–158, 161,
165–167, 170

$ZSH_VERSION shell parameter, 166

10436idxfinal 352 10/23/08 10:46:46 PM

