
9HSTFMG*aejbgi+

ISBN 978-952-60-4916-8
ISBN 978-952-60-4917-5 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 171

/2
012

A
ntti K

antee
F

lexible O
perating System

 Internals: T
he D

esign and Im
plem

entation of the A
nykernel and R

um
p K

ernels
A

alto
 U

n
ive

rsity

Department of Computer Science and Engineering

Flexible Operating System
Internals:

The Design and
Implementation of the
Anykernel and Rump
Kernels

Antti Kantee

DOCTORAL
DISSERTATIONS

7

To the memory of my grandfather,

Lauri Kantee

8

9

Preface

Meet the new boss

Same as the old boss

– The Who

The document you are reading is an extension of the production quality implemen-

tation I used to verify the statements that I put forth in this dissertation. The im-

plementation and this document mutually support each other, and cross-referencing

one while studying the other will allow for a more thorough understanding of this

work. As usually happens, many people contributed to both, and I will do my best

below to account for the ones who made major contributions.

In the professor department, my supervisor Heikki Saikkonen has realized that fig-

uring things out properly takes a lot of time, so he did not pressure me for status

updates when there was nothing new worth reporting. When he challanged me on

my writing, his comments were to the point. He also saw the connecting points of

my work and put me in touch with several of my later key contacts.

At the beginning of my journey, I had discussions with Juha Tuominen, the professor

I worked for during my undergraduate years. Our discussions about doctoral work

were on a very high level, but I found myself constantly going back to them, and I

still remember them now, seven years later.

I thank my preliminary examiners, Kirk McKusick and Renzo Davoli, for the extra

effort they made to fully understand my work before giving their verdicts. They not

only read the manuscript, but also familiarized themselves with the implementation

and manual pages.

10

My friend and I daresay mentor Johannes Helander influenced this work probably

more than any other person. The previous statement is somewhat hard to explain,

since we almost never talked specifically about my work. Yet, I am certain that the

views and philosophies of Johannes run deep throughout my work.

Andre Dolenc was the first person to see the potential for using this technology

in a product. He also read some of my earlier texts and tried to guide me to a

“storytelling” style of writing. I think I may finally have understood his advice.

The first person to read a complete draft of the manuscript was Thomas Klausner.

Those who know Thomas or his reputation will no doubt understand why I was glad

when he offered to proofread and comment. I was rewarded with what seemed like

an endless stream of comments, ranging from pointing out typos and grammatical

mistakes to asking for clarifications and to highlighting where my discussion was

flawed.

The vigilance of the NetBSD open source community kept my work honest and of

high quality. I could not cut corners in the changes I made, since that would have

been called out immediately. At the risk of doing injustice to some by forgetting

to name them, I will list a few people from the NetBSD community who helped

me throughout the years. Arnaud Ysmal was the first person to use my work for

implementing a large-scale application suite. Nicolas Joly contributed numerous

patches. I enjoyed the many insightful discussions with Valeriy Ushakov, and I am

especially thankful to him for nudging me into the direction of a simple solution for

namespace protection. Finally, the many people involved in the NetBSD test effort

helped me to evaluate one of the main use cases for this work.

Since a doctoral dissertation should not extensively repeat previously published

material, on the subject of contributions from my family, please refer to the preface

of [Kantee 2004].

11

Then there is my dear Xi, who, simply put, made sure I survived. When I was

hungry, I got food. When I was sleepy, I got coffee, perfectly brewed. Sometimes I

got tea, but that usually happened when I had requested it instead of coffee. My

output at times was monosyllabic at best (“hack”, “bug”, “fix”, ...), but that did not

bother her, perhaps because I occasionally ventured into the extended monosyllabic

spectrum (“debug”, “coffee”, “pasta”, ...). On top of basic caretaking, I received as-

sistance when finalizing the manuscript, since I had somehow managed to put myself

into a situation characterized by a distinct lack of time. For example, she proofread

multiple chapters and checked all the references fixing several of my omissions and

mistakes. The list goes on and on and Xi quite literally goes to 11.

This work was partially funded by the following organizations: Finnish Cultural

Foundation, Research Foundation of the Helsinki University of Technology, Nokia

Foundation, Ulla Tuominen Foundation and the Helsinki University of Technology.

I thank these organizations for funding which allowed me to work full-time pursuing

my vision. Since the time it took for me to realize the work was much longer than

the time limit for receiving doctoral funding, I also see fit to extend my gratitude

to organizations which have hired me over the years and thus indirectly funded this

work. I am lucky to work in field where this is possible and even to some point

synergetic with the research.

Lastly, I thank everyone who has ever submitted a bug report to an open source

project.

Antti Kantee

November 2012

12

13

Contents

Preface 9

Contents 13

List of Abbreviations 19

List of Figures 23

List of Tables 27

1 Introduction 29

1.1 Challenges with the Monolithic Kernel 30

1.2 Researching Solutions . 31

1.3 Thesis . 32

1.4 Contributions . 35

1.5 Dissertation Outline . 35

1.6 Further Material . 36

1.6.1 Source Code . 36

1.6.2 Manual Pages . 38

1.6.3 Tutorial . 38

2 The Anykernel and Rump Kernels 39

2.1 An Ultralightweight Virtual Kernel for Drivers 41

2.1.1 Partial Virtualization and Relegation 42

2.1.2 Base, Orthogonal Factions, Drivers 44

2.1.3 Hosting . 46

2.2 Rump Kernel Clients . 47

2.3 Threads and Schedulers . 53

2.3.1 Kernel threads . 57

2.3.2 A CPU for a Thread . 57

14

2.3.3 Interrupts and Preemption 60

2.3.4 An Example . 61

2.4 Virtual Memory . 62

2.5 Distributed Services with Remote Clients 64

2.6 Summary . 65

3 Implementation 67

3.1 Kernel Partitioning . 67

3.1.1 Extracting and Implementing 70

3.1.2 Providing Components . 72

3.2 Running the Kernel in an Hosted Environment 73

3.2.1 C Symbol Namespaces . 74

3.2.2 Privileged Instructions . 76

3.2.3 The Hypercall Interface . 77

3.3 Rump Kernel Entry and Exit . 81

3.3.1 CPU Scheduling . 84

3.3.2 Interrupts and Soft Interrupts 91

3.4 Virtual Memory Subsystem . 93

3.4.1 Page Remapping . 95

3.4.2 Memory Allocators . 97

3.4.3 Pagedaemon . 99

3.5 Synchronization . 103

3.5.1 Passive Serialization Techniques 105

3.5.2 Spinlocks on a Uniprocessor Rump Kernel 109

3.6 Application Interfaces to the Rump Kernel 112

3.6.1 System Calls . 113

3.6.2 vnode Interface . 118

3.6.3 Interfaces Specific to Rump Kernels 120

3.7 Rump Kernel Root File System . 121

3.7.1 Extra-Terrestrial File System 122

15

3.8 Attaching Components . 124

3.8.1 Kernel Modules . 124

3.8.2 Modules: Loading and Linking 127

3.8.3 Modules: Supporting Standard Binaries 131

3.8.4 Rump Component Init Routines 136

3.9 I/O Backends . 139

3.9.1 Networking . 139

3.9.2 Disk Driver . 145

3.10 Hardware Device Drivers: A Case of USB 149

3.10.1 Structure of USB . 149

3.10.2 Defining Device Relations with Config 150

3.10.3 DMA and USB . 153

3.10.4 USB Hubs . 155

3.11 Microkernel Servers: Case Study with File Servers 158

3.11.1 Mount Utilities and File Servers 159

3.11.2 Requests: The p2k Library 160

3.11.3 Unmounting . 162

3.12 Remote Clients . 162

3.12.1 Client-Kernel Locators . 164

3.12.2 The Client . 164

3.12.3 The Server . 165

3.12.4 Communication Protocol . 167

3.12.5 Of Processes and Inheritance 168

3.12.6 System Call Hijacking . 172

3.12.7 A Tale of Two Syscalls: fork() and execve() 177

3.12.8 Performance . 180

3.13 Summary . 182

4 Evaluation 185

4.1 Feasibility . 185

16

4.1.1 Implementation Effort . 185

4.1.2 Maintenance Effort . 188

4.2 Use of Rump Kernels in Applications 190

4.2.1 fs-utils . 190

4.2.2 makefs . 192

4.3 On Portability . 194

4.3.1 Non-native Hosting . 195

4.3.2 Other Codebases . 200

4.4 Security: A Case Study with File System Drivers 201

4.5 Testing and Developing Kernel Code 202

4.5.1 The Approaches to Kernel Development 203

4.5.2 Test Suites . 206

4.5.3 Testing: Case Studies . 208

4.5.4 Regressions Caught . 215

4.5.5 Development Experiences 217

4.6 Performance . 218

4.6.1 Memory Overhead . 219

4.6.2 Bootstrap Time . 220

4.6.3 System Call Speed . 224

4.6.4 Networking Latency . 226

4.6.5 Backend: Disk File Systems 226

4.6.6 Backend: Networking . 231

4.6.7 Web Servers . 232

4.7 Summary . 234

5 Related Work 237

5.1 Running Kernel Code in Userspace 237

5.2 Microkernel Operating Systems . 238

5.3 Partitioned Operating Systems . 239

5.4 Plan 9 . 240

17

5.5 Namespace Virtualization . 241

5.6 Lib OS . 242

5.7 Inter-OS Kernel Code . 243

5.8 Safe Virtualized Drivers . 246

5.9 Testing and Development . 247

5.10 Single Address Space OS . 247

6 Conclusions 249

6.1 Future Directions and Challenges 252

References 255

Appendix A Manual Pages

Appendix B Tutorial on Distributed Kernel Services

B.1 Important concepts and a warmup exercise

B.1.1 Service location specifiers

B.1.2 Servers

B.1.3 Clients

B.1.4 Client credentials and access control

B.1.5 Your First Server

B.2 Userspace cgd encryption

B.3 Networking

B.3.1 Configuring the TCP/IP stack

B.3.2 Running applications

B.3.3 Transparent TCP/IP stack restarts

B.4 Emulating makefs

B.5 Master class: NFS server

B.5.1 NFS Server

B.5.2 NFS Client

B.5.3 Using it

B.6 Further ideas

18

Appendix C Patches to the 5.99.48 source tree

19

List of Abbreviations

ABI Application Binary Interface: The interface between

two binaries. ABI-compatible binaries can interface

with each other.

ASIC Application-Specific Integrate Circuit

CAS Compare-And-Swap; atomic operation

CPU Central Processing Unit; in this document the term

is context-dependant. It is used to denote both the

physical hardware unit or a virtual concept of a CPU.

DMA Direct Memory Access

DSL Domain Specific Language

DSO Dynamic Shared Object

ELF Executable and Linking Format; the binary format

used by NetBSD and some other modern Unix-style

operating systems.

FFS Berkeley Fast File System; in most contexts, this can

generally be understood to mean the same as UFS

(Unix File System).

FS File System

GPL General Public License; a software license

i386 Intel 32-bit ISA (a.k.a. IA-32)

IPC Inter-Process Communication

20

ISA Instruction Set Architecture

LGPL Lesser GPL; a less restrictive variant of GPL

LRU Least Recently Used

LWP Light Weight Process; the kernel’s idea of a thread.

This acronym is usually written in lowercase (lwp) to

mimic the kernel structure name (struct lwp).

MD Machine Dependent [code]; [code] specific to the plat-

form

MI Machine Independent [code]; [code] usable on all plat-

forms

MMU Memory Management Unit: hardware unit which han-

dles memory access and does virtual-to-physical trans-

lation for memory addresses

NIC Network Interface Controller

OS Operating System

PIC Position Independent Code; code which uses relative

addressing and can be loaded at any location. It is

typically used in shared libraries, where the load ad-

dress of the code can vary from one process to another.

PR Problem Report

RTT Round Trip Time

RUMP Deprecated “backronym” denoting a rump kernel and

its local client application. This backronym should

not appear in any material written since mid-2010.

21

SLIP Serial Line IP: protocol for framing IP datagrams over

a serial line.

TLS Thread-Local Storage; private per-thread data

TLS Transport Layer Security

UML User Mode Linux

USB Universal Serial Bus

VAS Virtual Address Space

VM Virtual Memory; the abbreviation is context depen-

dent and can mean both virtual memory and the ker-

nel’s virtual memory subsystem

VMM Virtual Machine Monitor

22

23

List of Figures

2.1 Rump kernel hierarchy . 45

2.2 BPF access via file system . 48

2.3 BPF access without a file system 49

2.4 Client types illustrated . 51

2.5 Use of curcpu() in the pool allocator 59

2.6 Providing memory mapping support on top of a rump kernel 63

3.1 Performance of position independent code (PIC) 73

3.2 C namespace protection . 75

3.3 Hypercall locking interfaces . 79

3.4 rump kernel entry/exit pseudocode 83

3.5 System call performance using the trivial CPU scheduler 85

3.6 CPU scheduling algorithm in pseudocode 87

3.7 CPU release algorithm in pseudocode 89

3.8 System call performance using the improved CPU scheduler 90

3.9 Performance of page remapping vs. copying 98

3.10 Using CPU cross calls when checking for syscall users 108

3.11 Cost of atomic memory bus locks on a twin core host 111

3.12 Call stub for rump_sys_lseek() 115

3.13 Compile-time optimized sizeof() check 117

3.14 Implementation of RUMP_VOP_READ() 119

3.15 Application interface implementation of lwproc rfork() 120

3.16 Loading kernel modules with dlopen() 129

3.17 Adjusting the system call vector during rump kernel bootstrap . . . 130

3.18 Comparison of pmap_is_modified definitions 133

3.19 Comparison of curlwp definitions 134

3.20 Example: selected contents of component.c for netinet 138

3.21 Networking options for rump kernels 141

24

3.22 Bridging a tap interface to the host’s re0 142

3.23 sockin attachment . 146

3.24 dmesg of USB pass-through rump kernel with mass media attached 151

3.25 USB mass storage configuration . 154

3.26 SCSI device configuration . 154

3.27 Attaching USB Hubs . 156

3.28 USB device probe without host HUBs 156

3.29 USB device probe with host HUBs 157

3.30 File system server . 158

3.31 Use of -o rump in /etc/fstab . 160

3.32 Implementation of p2k_node_read() 161

3.33 Remote client architecture . 163

3.34 Example invocations lines of rump_server 166

3.35 System call hijacking . 173

3.36 Implementation of fork() on the client side 179

3.37 Local vs. Remote system call overhead 181

4.1 Source Lines Of Code in rump kernel and selected drivers 186

4.2 Lines of code for platform support 187

4.3 Duration for various i386 target builds 190

4.4 Simple compatibility type generation 199

4.5 Generated compatibility types . 199

4.6 Mounting a corrupt FAT FS with the kernel driver in a rump kernel 202

4.7 Valgrind reporting a kernel memory leak 205

4.8 Flagging an error in the scsitest driver 210

4.9 Automated stack trace listing . 215

4.10 Memory usage of rump kernels per idle instance 218

4.11 Time required to bootstrap one rump kernel 221

4.12 Script for starting, configuring and testing a network cluster 223

4.13 Time required to start, configure and send an initial packet 224

25

4.14 Time to execute 5M system calls per thread in 2 parallel threads . . 225

4.15 UDP packet RTT . 227

4.16 Performance of FFS with the file system a regular file 230

4.17 Performance of FFS on a HD partition (raw device) 230

4.18 Performance of a journaled FFS with the file system on a regular file 231

4.19 RTT of ping with various virtualization technologies 233

4.20 Speed of 10,000 HTTP GET requests over LAN 233

(with 9 illustrations)

26

27

List of Tables

2.1 Comparison of client types . 50

3.1 Symbol renaming illustrated . 75

3.2 File system I/O performance vs. available memory 101

3.3 Kernel module classification . 125

3.4 Rump component classes . 137

3.5 Requests from the client to the kernel 168

3.6 Requests from the kernel to the client 169

3.7 Step-by-step comparison of host and rump kernel syscalls, part 1/2 170

3.8 Step-by-step comparison of host and rump kernel syscalls, part 2/2 171

4.1 Commit log analysis for sys/rump Aug 2007 - Dec 2008 188

4.2 makefs implementation effort comparison 193

4.3 Minimum memory required to boot the standard installation 218

4.4 Bootstrap times for standard NetBSD installations 221

28

29

1 Introduction

In its classic role, an operating system is a computer program which abstracts the

platform it runs on and provides services to application software. Applications in

turn provide functionality that the user of the computer system is interested in.

For the user to be satisfied, the operating system must therefore support both the

platform and application software.

An operating system is understood to consist of the kernel, userspace libraries and

utilities, although the exact division between these parts is not definitive in every

operating system. The kernel, as the name says, contains the most fundamental

routines of the operating system. In addition to low-level platform support and

critical functionality such as thread scheduling and IPC, the kernel offers drivers,

which abstract an underlying entity. Throughout this dissertation we will use the

term driver in an extended sense which encompasses not only hardware device

drivers, but additionally for example file system drivers and the TCP/IP network

driver.

Major contemporary operating systems follow the monolithic kernel model. Of pop-

ular general purpose operating systems, for example Linux, Windows and Mac OS X

are regarded as monolithic kernel operating systems. A monolithic kernel means that

the entire kernel is executed in a single privileged domain, as opposed to being spread

out to multiple independent domains which communicate via message passing. The

single privileged domain in turn means that all code in the kernel has full capabil-

ity to directly control anything running on that particular system. Furthermore,

the monolithic kernel does not inherently impose any technical restrictions for the

structure of the kernel: a routine may call any other routine in the kernel and access

all memory directly. However, like in most disciplines, a well-designed architecture

is desirable. Therefore, even a monolithic kernel tends towards structure.

30

1.1 Challenges with the Monolithic Kernel

Despite its widespread popularity, we identified a number of suboptimal character-

istics in monolithic kernels which we consider as the motivating problems for this

dissertation:

1. Weak security and robustness. Since all kernel code runs in the same

privileged domain, a single mistake can bring the whole system down. The

fragile nature of the monolithic kernel is a long-standing problem to which

all monolithic kernel operating systems are vulnerable.

Bugs are an obvious manifestation of the problem, but there are more subtle

issues to consider. For instance, widely used file system drivers are vulnerable

against untrusted disk images [115]. This vulnerability is acknowledged in the

manual page of the mount command for example on Linux: “It is possible for

a corrupted file system to cause a crash”. The commonplace act of accessing

untrusted removable media such as a USB stick or DVD disk with an in-kernel

file system driver opens the entire system to a security vulnerability.

2. Limited possibilities for code reuse. The code in a monolithic kernel

is viewed to be an all-or-nothing deal due to a belief that everything is in-

tertwined with everything else. This belief implies that features cannot be

cherry-picked and put into use in other contexts and that the kernel drivers

have value only when they are a part of the monolithic kernel. Examples

include file systems [115] and networking [82].

One manifestation of this belief is the reimplementation of kernel drivers for

userspace. These reimplementations include TCP/IP stacks [27, 96] and file

system drivers [2, 89, 105] 1 for the purposes of research, testing, teaching

1 We emphasize that with file systems we do not mean FUSE (Filesystem in Userspace) [106].
FUSE provides a mechanism for attaching a file system driver as a microkernel style server, but
does not provide the driver itself. The driver attached by FUSE may be an existing kernel driver
which was reimplemented in userspace [2, 3].

31

and application-level drivers. The common approaches for reimplementation

are starting from scratch or taking a kernel driver and adjusting the code

until the specific driver can run in userspace.

If cherry-picking unmodified drivers were possible, kernel drivers could be

directly used at application level. Code reuse would not only save the initial

implementation effort, but more importantly it would save from having to

maintain the second implementation.

3. Development and testing is convoluted. This is a corollary of the previ-

ous point: in the general case testing involves booting up the whole operating

system for each iteration. Not only is the bootup slow in itself, but when it is

combined with the fact that an error may bring the entire system down, de-

velopment cycles become long and batch mode regression testing is difficult.

The difficulty of testing affects how much testing and quality assurance the

final software product receives. Users are indirectly impacted: better testing

produces a better system.

Due to the complexity and slowness of in-kernel development, a common

approach is to implement a prototype in userspace before porting the code

to the kernel. For example FFS in BSD [70] and ZFS in Solaris [16] were

implemented this way. This approach may bring additional work when the

code is being moved into the kernel, as the support shim in userspace may

not have fully emulated all kernel interfaces [70].

1.2 Researching Solutions

One option for addressing problems in monolithic kernels is designing a better model

and starting from scratch. Some examples of alternative kernel models include

the microkernel [9, 43, 45, 64] Exokernel [33] and a partitioned kernel [12, 112].

The problem with starting from scratch is getting to the point of having enough

32

support for external protocols to be a viable alternative for evaluation with real

world applications. These external protocols include anything serviced by a driver

and range from a networking stack to a POSIX interface. As the complexity of the

operating environment and external restrictions grow, it is more and more difficult

to start working on an operating system from scratch [92]. For a figure on the

amount of code in a modern OS, we look at two subsystems in the Linux 3.3 kernel

from March 2012. There are 1,001,218 physical lines of code for file system drivers

in the fs subdirectory and 711,150 physical lines of code for networking drivers in

the net subdirectory (the latter figure does not include NIC drivers, which are kept

elsewhere in the source tree). For the sake of discussion, let us assume that a person

who can write 100 lines of bugfree code each day writes all of those drivers. In that

case, it will take over 46 years to produce the drivers in those subdirectories.

Even if there are resources to write a set of drivers from scratch, the drivers have

not been tested in production in the real world when they are first put out. Studies

show that new code contains the most faults [18, 91]. The faults do not exist because

the code would have been poorly tested before release, but rather because it is not

possible to anticipate every real world condition in a laboratory environment. We

argue that real world use is the property that makes an existing driver base valuable,

not just the fact that it exists.

1.3 Thesis

We claim that it is possible to construct a flexible kernel architecture which solves

the challenges listed in Section 1.1, and yet retain the monolithic kernel. Further-

more, it is possible to implement the flexible kernel architecture solely by good pro-

gramming principles and without introducing levels of indirection which hinder the

monolithic kernel’s performance characteristics. We show our claim to be true by an

implementation for a BSD-derived open source monolithic kernel OS, NetBSD [87].

33

We define an anykernel to be an organization of kernel code which allows the kernel’s

unmodified drivers to be run in various configurations such as application libraries

and microkernel style servers, and also as part of a monolithic kernel. This approach

leaves the configuration the driver is used in to be decided at runtime. For example,

if maximal performance is required, the driver can be included in a monolithic kernel,

but where there is reason to suspect stability or security, the driver can still be used

as an isolated, non-privileged server where problems cannot compromised the entire

system.

An anykernel can be instantiated into units which virtualize the bare minimum

support functionality for kernel drivers. We call these virtualized kernel instances

rump kernels since they retain only a part of the original kernel. This minimalistic

approach makes rump kernels fast to bootstrap (˜10ms) and introduces only a small

memory overhead (˜1MB per instance). The implementation we present hosts rump

kernels in unprivileged user processes on a POSIX host. The platform that the rump

kernel is hosted on is called the host platform or host.

At runtime, a rump kernel can assume the role of an application library or that of

a server. Programs requesting services from rump kernels are called rump kernel

clients. Throughout this dissertation we use the shorthand client to denote rump

kernel clients. We define three client types.

1. Local: the rump kernel is used in a library capacity. Like with any library,

using the rump kernel as a library requires that the application is written

to use APIs provided by a rump kernel. The main API for a local client

is a system call API with the same call signatures as on a regular NetBSD

system.

For example, it is possible to use a kernel file system driver as a library in an

application which interprets a file system image.

34

2. Microkernel: the host routes client requests from regular processes to drivers

running in isolated servers. Unmodified application binaries can be used.

For example, it is possible to run a block device driver as a microkernel style

server, with the kernel driver outside the privileged domain.

3. Remote: the client and rump kernel are running in different containers (pro-

cesses) with the client deciding which services to request from the rump kernel

and which to request from the host kernel. For example, the client can use

the TCP/IP networking services provided by a rump kernel. The kernel and

client can exist either on the same host or on different hosts. In this model,

both specifically written applications and unmodified applications can use

services provided by a rump kernel. The API for specifically written appli-

cations is the same as for local clients.

For example, it is possible to use an unmodified Firefox web browser with

the TCP/IP code running in a rump kernel server.

Each configuration contributes to solving our motivating problems:

1. Security and robustness. When necessary, the use of a rump kernel will

allow unmodified kernel drivers to be run as isolated microkernel servers while

preserving the user experience. At other times the same driver code can be

run in the original fashion as part of the monolithic kernel.

2. Code reuse. A rump kernel may be used by an application in the same

fashion as any other userlevel library. A local client can call any routine

inside the rump kernel.

3. Development and testing. The lightweight nature and safety properties

of a rump kernel allow for safe testing of kernel code with iteration times in

the millisecond range. The remote client model enables the creation of tests

using familiar tools.

35

Our implementation supports rump kernels for file systems [55], networking [54] and

device drivers [56]. Both synthetic benchmarks and real world data gathered from

a period between 2007 and 2011 are used for the evaluation. We focus our efforts at

drivers which do not depend on a physical backend being present. Out of hardware

device drivers, support for USB drivers has been implemented and verified. We

expect it is possible to support generic unmodified hardware device drivers in rump

kernels by using previously published methods [62].

1.4 Contributions

The original contributions of this dissertation are as follows:

1. The definition of an anykernel and a rump kernel.

2. Showing that it is possible to implement the above in production quality code

and maintain them in a real world monolithic kernel OS.

3. Analysis indicating that the theory is generic and can be extended to other

operating systems.

1.5 Dissertation Outline

Chapter 2 defines the concept of an anykernel and explains rump kernels. Chapter 3

discusses the implementation and provides microbenchmarks as supporting evidence

for implementation decisions. Chapter 4 evaluates the solution. Chapter 5 looks at

related work. Chapter 6 provides concluding remarks.

36

1.6 Further Material

1.6.1 Source Code

The implementation discussed in this dissertation can be found in source code form

from the NetBSD CVS tree as of March 31st 2011 23:59UTC.

NetBSD is an evolving open source project with hundreds of volunteers and con-

tinuous change. Any statement we make about NetBSD reflects solely the above

timestamp and no other. It is most likely that statements will apply over a wide

period of time, but it is up to the interested reader to verify if they apply to earlier

or later dates.

It is possible to retrieve the source tree with the following command:

cvs -d anoncvs@anoncvs.netbsd.org:/cvsroot co -D’20110331 2359UTC’ src

Whenever we refer to source file, we implicitly assume the src directory to be a

part of the path, i.e. sys/kern/init_main.c means src/sys/kern/init_main.c.

For simplicity, the above command checks out the entire NetBSD operating system

source tree instead of attempting to cherry-pick only the relevant code. The checkout

will require approximately 1.1GB of disk space. Most of the code relevant to this

document resides under sys/rump, but relevant code can be found under other paths

as well, such as tests and lib.

Diffs in Appendix C detail where the above source tree differs from the discussion

in this dissertation.

37

The project was done in small increments in the NetBSD source with almost daily

changes. The commits are available for study from repository provided by the

NetBSD project, e.g. via the web interface at cvsweb.NetBSD.org.

NetBSD Release Model

We use NetBSD release cycle terminology throughout this dissertation. The follow-

ing contains an explanation of the NetBSD release model. It is a synopsis of the

information located at http://www.NetBSD.org/releases/release-map.html.

The main development branch or HEAD of NetBSD is known as NetBSD-current

or, if NetBSD is implied, simply -current. The source code used in this dissertation

is therefore -current from the aforementioned date.

Release branches are created from -current and are known by their major number, for

example NetBSD 5. Release branches get bug fixes and minor features, and releases

are cut from them at suitable dates. Releases always contain one or more minor

numbers, e.g. NetBSD 5.0.1. The first major branch after March 31st is NetBSD 6

and therefore the first release to potentially contain this work is NetBSD 6.0.

A -current snapshot contains a kernel API/ABI version. The version is incremented

only when an interface changes. The kernel version corresponding to March 31st

is 5.99.48. While this version number stands for any -current snapshot between

March 9th and April 11th 2011, whenever 5.99.48 is used in this dissertation, it

stands for -current at 20110331.

38

Code examples

This dissertation includes code examples from the NetBSD source tree. All such

examples are copyright of their respective owners and are not public domain. If

pertinent, please check the full source for further information about the licensing

and copyright of each such example.

1.6.2 Manual Pages

Unix-style manual pages for interfaces described in this dissertation are available

in Appendix A. The manual pages are taken verbatim from the NetBSD 5.99.48

distribution.

1.6.3 Tutorial

Appendix B contains a hands-on tutorial. It walks through various use cases where

drivers are virtualized, such as encrypting a file system image using the kernel crypto

driver and running applications against virtual userspace TCP/IP stacks. The tu-

torial uses standard applications and does not require writing code or compiling

special binaries.

39

2 The Anykernel and Rump Kernels

As a primer for the technical discussion in this document, we consider the elements

that make up a modern Unix-style operating system kernel. The following is not

the only way to make a classification, but it is the most relevant one for our coming

discussion.

The CPU specific code is on the bottom layer of the OS. This code takes care of low

level bootstrap and provides an abstract interface to the hardware. In most, if not

all, modern general purpose operating systems the CPU architecture is abstracted

away from the bulk of the kernel and only the lowest layers have knowledge of it. To

put the previous statement into terms which are used in our later discussions, the

interfaces provided by the CPU specific code are the hypercall interfaces that the

OS runs on. In the NetBSD kernel these functions are usually prefixed with “cpu”.

The virtual memory subsystem manages the virtual address space of the kernel and

processes. Virtual memory management includes defining what happens when a

memory address is accessed. Examples include normal read/write access to the

memory, flagging a segmentation violation, or a file being read from the file system.

The process execution subsystem understands the formats that executable binaries

use and knows how to create a new process when an executable is run.

The scheduling code includes a method and policy to define what code a CPU is

executing. The currently executing thread can be switched either when the scheduler

decides it has run too long, or when the thread itself makes a system call which

requires waiting for a condition to become true before execution can be resumed.

When a thread is switched, the scheduler calls the CPU specific code to save the

machine context of the current thread and load the context of the new thread. In

40

NetBSD, both user processes and the kernel are preemptively scheduled, meaning

the scheduler can decide to unschedule the currently executing thread and schedule

a new one.

Atomic operations enable modifying memory atomically and avoid race conditions in

for example a read-modify-write cycle. For uniprocessor architectures, kernel atomic

operations are a matter of disabling interrupts and preemption for the duration of

the operation. Multiprocessor architectures provide machine instructions for atomic

operations. The operating system’s role with atomic operations is mapping function

interfaces to the way atomic operations are implemented on that particular machine

architecture.

Synchronization routines such as mutexes and condition variables build upon atomic

operations and interface with the scheduler. For example, if locking a mutex is at-

tempted, the condition for it being free is atomically tested and set. If a sleep mutex

was already locked, the currently executing thread interfaces with the scheduling

code to arrange for itself to be put to sleep until the mutex is released.

Various support interfaces such CPU cross-call, time-related routines, kernel linkers,

etc. provide a basis on which to build drivers.

Resource management includes general purpose memory allocation, a pool and

slab [15] allocator, file descriptors, PID namespace, vmem/extent resource allocators

etc. Notably, in addition to generic resources such as memory, there are more spe-

cific resources to manage. Examples of more specific resources include vnodes [58]

for file systems and mbufs [114] for the TCP/IP stack.

Drivers interact with external objects such as file system images, hardware, the

network, etc. After a fashion, it can be said they accomplish all the useful work an

operating system does. It needs to be remembered, though, that they operate by

41

building on top of the entities mentioned earlier in this section. Drivers are what

we are ultimately interested in utilizing, but to make them available we must deal

with everything they depend on. Being able to reuse drivers means we have to

provide semantically equivalent implementations of the support routines that the

drivers use. The straightforward way is to run the entire kernel, but it not always

the optimal approach, as we will demonstrate throughout this dissertation.

2.1 An Ultralightweight Virtual Kernel for Drivers

Virtualization of the entire operating system can done either by modifying the op-

erating system kernel by means of paravirtualization (e.g. User-Mode Linux [26]

or Xen [11]) or by virtualizing at the hardware layer so than an unmodified oper-

ating system can be run (by using e.g. QEMU [13]). From the perspective of the

host, virtualization provides both multiplicity and isolation of the monolithic kernel,

and can be seen as a possible solution for our security and testing challenges from

Section 1.1. Using a fully virtualized OS as an application library is less straight-

forward, but can be done by bootstrapping a guest instance of an operating system

and communicating with the guest’s kernel through an application running on the

guest. For example, libguestfs [4] uses this approach to access file system images

safely.

Full OS virtualization is a heavyweight operation. For instance, several seconds of

bootstrap delay for a fully virtualized OS [48] is too long if we wish to use virtualized

kernel instances as application libraries — humans perceive delays of over 100ms [78].

While it may be possible to amortize the bootstrap delay over several invocations,

managing cached instances adds complexity to the applications, especially if multiple

different users want to use ones for multiple different purposes. Furthermore, a full

OS consumes more machine resources, such as memory and storage and CPU, than

is necessary for kernel driver virtualization. The increased resource requirement

42

is because a full OS provides the entire application environment, which from our

perspective is overhead.

Virtualization via containers [52] provides better performance than paravirtualiza-

tion [104, 110]. However, containers do not address our motivating problems. With

containers, the host kernel is directly used for the purposes of all guests. In other

words, kernel drivers are run in a single domain within the host. There is no isola-

tion between kernel drivers for different guests and a single error in one of them can

bring all of the guests and the host down. The lack of isolation is due to the use

case that containers are targeted at: they provide a virtual application environment

instead of a virtual kernel environment.

We wish to investigate a lightweight solution to maximize the performance and

simplicity in our use cases. In other words, we believe in an approach which requires

only the essential functionality necessary for solving a problem [59].

2.1.1 Partial Virtualization and Relegation

A key observation in our lightweight approach is that part of the supporting func-

tionality required by drivers is readily provided by the system hosting our virtualized

driver environment. For example, drivers need a memory address space to execute

in; we use the one that the host provides instead of simulating a second one on

top of it. Likewise, we directly use the host’s threading and scheduling facilities in

our virtual kernel instead of having the host schedule a virtual kernel with its own

layer of scheduling. Relegating support functionality to the host avoids adding a

layer of indirection and overhead. It is also the reason why we call our virtualized

kernel instance a rump kernel : it virtualizes only a part of the original. In terms of

taxonomy, we classify a rump kernel as partial paravirtualization.

43

Drivers in a rump kernel remain unmodified over the original ones. A large part

of the support routines remain unmodified as well. Only in places where support

is relegated to the host, do we require specifically written glue code. We use the

term anykernel to describe a kernel code base with the property of being able use

unmodified drivers and the relevant support routines in rump kernels. It should

be noted that unlike for example the term microkernel, the term anykernel does

not convey information about how the drivers are organized at runtime, but rather

that it is possible to organize them in a number of ways. We will examine the

implementation details of an anykernel more closely in Chapter 3 where we turn a

monolithic kernel into an anykernel.

While rump kernels (i.e. guests) use features provided by the host, the difference

to containers is that rump kernels themselves are not a part of the host. Instead,

the host provides the necessary facilities for starting multiple rump kernel instances.

These instances are not only isolated from each other, but also from the host. In

POSIX terms, this means that a rump kernel has the same access rights as any other

process running with the same credentials.

An example of a practical benefit resulting from relegating relates to program exe-

cution. When a fully virtualized operating system executes a program, it searches

for the program from its file system namespace and runs it while the host remains

oblivious to the fact that the guest ran a program. In contrast, the rump kernel

and its clients are run from the host’s file system namespace by the host. Since

process execution is handled by the host, there is no need to configure a root file

system for a rump kernel, and rump kernels can be used as long as the necessary

binaries are present on the host. This also means that there is no extra maintenance

burden resulting from keeping virtual machine images up-to-date. As long the host

is kept up-to-date, the binaries used with rump kernels will not be out of date and

potentially contain dormant security vulnerabilities [38].

44

Another example of a practical benefit that a rump kernel provides is core dump

size. Since a rump kernel has a small memory footprint, the core dumps produced

as the result of a kernel panic are small. Small core dumps significantly reduce

disk use and restart time without having to disable core dumps completely and risk

losing valuable debugging information.

A negative implication of selective virtualization is that not all parts of the kernel

can be tested and isolated using this scheme. However, since a vast majority of

kernel bugs are in drivers [18], our focus is on improving the state-of-the-art for

them.

2.1.2 Base, Orthogonal Factions, Drivers

A monolithic kernel, as the name implies, is one single entity. The runtime footprint

of a monolithic kernel contains support functionality for all subsystems, such as

sockets for networking, vnodes for file systems and device autoconfiguration for

drivers. All of these facilities cost resources, especially memory, even if they are not

used.

We have divided a rump kernel, and therefore the underlying NetBSD kernel code-

base, into three layers which are illustrated in Figure 2.1: the base, factions and

drivers. The base contains basic support such as memory allocation and locking.

The dev, net and vfs factions, which denote devices, networking and [virtual] file sys-

tems, respectively, provide subsystem level support. To minimize runtime resource

consumption, we require that factions are orthogonal. By orthogonal we mean that

the code in one faction must be able to operate irrespective if any other faction is

present in the rump kernel configuration or not. Also, the base may not depend

on any faction, as that would mean the inclusion of a faction in a rump kernel is

mandatory instead of optional.

45

��������	��
	�

�������	

��������

��	�������������

��� ��� ���

������ ������

������ ������

������

����
	�

����

Figure 2.1: Rump kernel hierarchy. The desired drivers dictate the required
components. The factions are orthogonal and depend only on the rump kernel base.
The rump kernel base depends purely on the hypercall layer.

We use the term component to describe a functional unit for a rump kernel. For

example, a file system driver is a component. A rump kernel is constructed by linking

together the desired set of components, either at compile-time or at run-time. A

loose similarity exists between kernel modules and the rump kernel approach: code

is compiled once per target architecture, and a linker is used to determine runtime

features. For a given driver to function properly, the rump kernel must be linked with

the right set of dependencies. For example, the NFS component requires both the

file system and networking factions, but in contrast the tmpfs component requires

only the file system faction.

User interfaces are used by applications to request services from rump kernels. Any

dependencies induced by user interfaces are optional, as we will illustrate next. Con-

sider Unix-style device driver access. Access is most commonly done through file

system nodes in /dev, with the relevant user interfaces being open and read/write

46

(some exceptions to the file system rule exist, such as Bluetooth and Ethernet inter-

faces which are accessed via sockets on NetBSD). To access a /dev file system node

in a rump kernel, file systems must be supported. Despite file system access being

the standard way to access a device, it is possible to architect an application where

the device interfaces are called directly without going through file system code. Do-

ing so means skipping the permission checks offered by file systems, calling private

kernel interfaces and generally having to write more fragile code. Therefore, it is not

recommended as the default approach, but if need be due to resource limitations, it

is a possibility. For example, let us assume we have a rump kernel running a TCP/IP

stack and we wish to use the BSD Packet Filter (BPF) [67]. Access through /dev

is presented in Figure 2.2, while direct BPF access which does not use file system

user interfaces is presented in Figure 2.3. You will notice the first example is similar

to a regular application, while the latter is more complex. We will continue to refer

to these examples in this chapter when we go over other concepts related to rump

kernels.

The faction divisions allow cutting down several hundred kilobytes of memory over-

head and milliseconds in startup time per instance. While the saving per instance is

not dramatic, the overall savings are sizeable in applications such as network test-

ing [44] which require thousands of virtual instances. For example, as we will later

measure in Chapter 4, a virtual TCP/IP stack without file system support is 40%

smaller (400kB) than one which contains file system support.

2.1.3 Hosting

A rump kernel accesses host resources through the rumpuser hypercall interface.

The hypercall layer is currently implemented for POSIX hosts, but there is no rea-

son why it could not be adapted to suit alternative hosting as well, such as mi-

crokernels. We analyze the requirements for the hypercall interface in more detail

47

in Section 3.2.3. Whenever discussing hosting and the hypercall interface we at-

tempt to keep the discussion generic and fall back to POSIX terminology only when

necessary.

The host controls what resources the guest has access to. It is unnecessary to run

rump kernels as root on POSIX systems — security-conscious people will regard it

as unwise as well unless there is a very good reason for it. Accessing resources such

as the host file system will be limited to whatever credentials the rump kernel runs

with on the host. Other resources such as memory consumption may be limited by

the host as well.

2.2 Rump Kernel Clients

We define a rump kernel client to be an application that requests services from a

rump kernel. Examples of rump kernel clients are an application that accesses the

network through a TCP/IP stack provided by a rump kernel, or an application that

reads files via a file system driver running in a rump kernel. Likewise, a test program

that is used to test kernel code by means of running it in a rump kernel is a rump

kernel client.

The relationship between a rump kernel and a rump kernel client is an almost direct

analogy to an application process executing on an operating system and requesting

services from the host kernel. The difference is that a rump kernel client must

explicitly request all services from the rump kernel, while a process receives some

services such as scheduling and memory protection implicitly from the host.

As mentioned in Chapter 1 there are several possible relationship types the client

and rump kernel can have. Each of them have different implications on the client

and kernel. The possibilities are: local, remote and microkernel. The configurations

48

int

main(int argc, char *argv[])

{

struct ifreq ifr;

int fd;

/* bootstrap rump kernel */

rump_init();

/* open bpf device, fd is in implicit process */

if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1)

err(1, "bpf open");

/* create virt0 in the rump kernel the easy way and set bpf to use it */

rump_pub_virtif_create(0);

strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));

if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)

err(1, "set if");

/* rest of the application */

[....]

}

Figure 2.2: BPF access via the file system. This figure demonstrates the
system call style programming interface of a rump kernel.

49

int rumpns_bpfopen(dev_t, int, int, struct lwp *);

int

main(int argc, char *argv[])

{

struct ifreq ifr;

struct lwp *mylwp;

int fd, error;

/* bootstrap rump kernel */

rump_init();

/* create an explicit rump kernel process context */

rump_pub_lwproc_rfork(RUMP_RFCFDG);

mylwp = rump_pub_lwproc_curlwp();

/* schedule rump kernel CPU */

rump_schedule();

/* open bpf device */

error = rumpns_bpfopen(0, FREAD|FWRITE, 0, mylwp);

if (mylwp->l_dupfd < 0) {

rump_unschedule();

errx(1, "open failed");

}

/* need to jump through a hoop due to bpf being a "cloning" device */

error = rumpns_fd_dupopen(mylwp->l_dupfd, &fd, 0, error);

rump_unschedule();

if (error)

errx(1, "dup failed");

/* create virt0 in the rump kernel the easy way and set bpf to use it */

rump_pub_virtif_create(0);

strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));

if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)

err(1, "set if");

/* rest of the application */

[....]

}

Figure 2.3: BPF access without a file system. This figure demonstrates the
ability to directly call arbitrary kernel routines from a user program. For comparison,
it implements the same functionality as Figure 2.2. This ability is most useful for
writing kernel unit tests when the calls to the unit under test cannot be directly
invoked by using the standard system call interfaces.

50

Type Request Policy Access Available Interface

local client full all

remote client limited system call

microkernel host kernel limited depends on service

Table 2.1: Comparison of client types. Local clients get full access to a rump
kernel, but require explicit calls in the program code. Remote clients have stan-
dard system call access with security control and can use unmodified binaries. In
microkernel mode, the rump kernel is run as a microkernel style system server with
requests routed by the host kernel.

are also depicted in Figure 2.4. The implications of each are available in summarized

form in Table 2.1. Next, we will discuss the configurations and explain the table.

• Local clients exist in the same application process as the rump kernel it-

self. They have full access to the rump kernel’s address space, and make

requests via function calls directly into the rump kernel. Typically requests

are done via established interfaces such as the rump kernel syscall interface,

but there is nothing preventing the client from jumping to any routine inside

the rump kernel. The VFS-bypassing example in Figure 2.3 is a local client

which manipulates the kernel directly, while the local client in Figure 2.2 uses

established interfaces.

The benefits of local clients include speed and compactness. Speed is due to

a rump kernel request being essentially a function call. A null rump kernel

system call is twice as fast as a native system call. Compactness results from

the fact that there is only a single program and can make managing the whole

easier. The drawback is that the single program must configure the kernel to a

suitable state before the application can act. Examples of configuration tasks

include adding routing tables (the route utility) and mounting file systems

(the mount utility). Since existing configuration tools are built around the

51

��������	�

�������	�

���
��
��	�

�����

�������	�

���
��
��	�

�����

����	�
��
��	�

�����

��������	�

�������	�

�����

��������
��	�

�����

��������	�

������

������

��������	�

����� �����	
��
��
���

���
��
��	�

Figure 2.4: Client types illustrated. For local clients the client and rump kernel
reside in a single process, while remote and microkernel clients reside in separate
processes and therefore do not have direct memory access into the rump kernel.

concept of executing different configuration steps as multiple invocations of

the tool, adaptation of the configuration code may not always be simple.

On a POSIX system, local clients do not have meaningful semantics for a

host fork() call. This lack of semantics is because the rump kernel state

would be duplicated and could result in for example two kernels accessing

the same file system or having the same IP address.

A typical example of a local client is an application which uses the rump

kernel as a programming library e.g. to access a file system.

• Remote clients use a rump kernel which resides elsewhere, either on the

local host or a remote one. The request routing policy is up to the client.

The policy locus is an implementation decision, not a design decision, and

alternative implementations can be considered [37] if it is important to have

the request routing policy outside of the client.

Since the client and kernel are separated, kernel side access control is fully

enforced — if the client and rump kernel are on the same host, we assume

that the host enforces separation between the respective processes. This

separation means that a remote client will not be able to access resources

52

except where the rump kernel lets it, and neither will it be able to dictate

the thread and process context in which requests are executed. The client

not being able to access arbitrary kernel resources in turn means that real

security models are possible, and that different clients may have varying levels

of privileges.

We have implemented support for remote clients which communicate with

the server using local domain sockets or TCP sockets. Using sockets is not

the only option, and for example the ptrace() facility can also be used to

implement remote clients [26, 37].

Remote clients are not as performant as local clients due to IPC overhead.

However, since multiple remote clients can run against a single rump ker-

nel, they lead to more straightforward use of existing code and even that of

unmodified binaries.

Remote clients, unlike local clients, have meaningful semantics for fork()

since both the host kernel context and rump kernel contexts can be correctly

preserved: the host fork() duplicates only the client and not the rump

kernel.

• Microkernel clients requests are routed by the host kernel to a separate

server which handles the requests using a driver in a rump kernel. While

microkernel clients can be seen to be remote clients, the key difference to

remote clients is that the request routing policy is in the host kernel instead

of in the client. Furthermore, the interface used to access the rump kernel is

below the system call layer. We implemented microkernel callbacks for file

systems (puffs [53]) and character/block device drivers (pud [84]). They use

the NetBSD kernel VFS/vnode and cdev/bdev interfaces to access the rump

kernel, respectively.

It needs to be noted that rump kernels accepting multiple different types of clients

are possible. For example, remote clients can be used to configure a rump kernel,

53

while the application logic still remains in the local client. The ability to use multiple

types of clients on a single rump kernel makes it possible to reuse existing tools for

the configuration job and still reap the speed benefit of a local client.

Rump kernels used by remote or microkernel clients always include a local client as

part of the process the rump kernel is hosted in. This local client is responsible for

forwarding incoming requests to the rump kernel, and sending the results back after

the request has been processed.

2.3 Threads and Schedulers

Next, we will discuss the theory and concepts related to processes, threads, CPUs,

scheduling and interrupts in a rump kernel. An example scenario is presented after

the theory in Section 2.3.4. This subject is revisited in Section 3.3 where we discuss

it from a more concrete perspective along with the implementation.

As stated earlier, a rump kernel uses the host’s process, thread and scheduling

facilities. To understand why we still need to discuss this topic, let us first consider

what a thread represents to an operating system. First, a thread represents machine

execution context, such as the program counter, other registers and the virtual

memory address space. We call this machine context the hard context. It determines

how machine instructions will be executed when a thread is running on a CPU and

what their effects will be. The hard context is determined by the platform that

the thread runs on. Second, a thread represents all auxiliary data required by the

operating system. We call this auxiliary data the soft context. It comprises for

example of information determining which process a thread belongs to, and e.g.

therefore what credentials and file descriptors it has. The soft context is determined

by the operating system.

54

To further illustrate, we go over a simplified version of what happens in NetBSD

when an application process creates a thread:

1. The application calls pthread_create() and passes in the necessary param-

eters, including the address of the new thread’s start routine.

2. The pthread library does the necessary initialization, including stack alloca-

tion. It creates a hard context by calling _lwp_makecontext() and passing

the start routine’s address as an argument. The pthread library then invokes

the _lwp_create() system call.

3. The host kernel creates the kernel soft context for the new thread and the

thread is put into the run queue.

4. The newly created thread will be scheduled and begin execution at some

point in the future.

A rump kernel uses host threads for the hard context. Local client threads which

call a rump kernel are created as described above. Since host thread creation does

not involve the rump kernel, a host thread does not get an associated rump kernel

thread soft context upon creation.

Nonetheless, a unique rump kernel soft context must exist for each thread executing

within the rump kernel because the code we wish to run relies on it. For example,

code dealing with file descriptors accesses the relevant data structure by dereferenc-

ing curlwp->l_fd 2. The soft context determines the value of curlwp.

2 curlwp is not variable in the C language sense. It is a platform-specific macro which produces a
pointer to the currently executing thread’s kernel soft context. Furthermore, since file descriptors
are a process concept instead of a thread concept, it would be more logical to access them via
curlwp->l_proc->p_fd. The pointer is cached directly in the thread structure to avoid extra
indirection.

55

We must solve the lack of a rump kernel soft context resulting from the use of host

threads. Whenever a host thread makes a function call into the rump kernel, an en-

try point wrapper must be called. Conversely, when the rump kernel routine returns

to the client, an exit point wrapper is called. These calls are done automatically

for official interfaces, and must be done manually in other cases — compare Fig-

ure 2.2 and Figure 2.3 and see that the latter includes calls to rump_schedule()

and rump_unschedule(). The wrappers check the host’s thread local storage (TLS)

to see if there is a rump kernel soft context associated with the host thread. The

soft context may either be set or not set. We discuss both cases in the following

paragraphs.

1. implicit threads: the soft context is not set in TLS. A soft context will be

created dynamically and is called an implicit thread. Conversely, the implicit

thread will be released at the exit point. Implicit threads are always attached

to the same rump kernel process context, so callers performing multiple calls,

e.g. opening a file and reading from the resulting file descriptor, will see

expected results. The rump kernel thread context will be different as the

previous one no longer exists when the next call is made. A different context

does not matter, as the kernel thread context is not exposed to userspace

through any portable interfaces — that would not make sense for systems

which implement a threading model where userspace threads are multiplexed

on top of kernel provided threads [10].

2. bound threads: the soft context is set in TLS. The rump kernel soft context

in the host thread’s TLS can be set, changed and disbanded using interfaces

further described in the manual page rump lwproc.3 at A–23. We call a

thread with the rump kernel soft context set a bound thread. All calls to the

rump kernel made from a host thread with a bound thread will be executed

with the same rump kernel soft context.

56

The soft context is always set by a local client. Microkernel and remote clients are

not able to directly influence their rump kernel thread and process context. Their

rump kernel context is set by the local client which receives the request and makes

the local call into the rump kernel.

Discussion

There are alternative approaches to implicit threads. It would be possible to require

all local host threads to register with the rump kernel before making calls. The

registration would create essentially a bound thread. There are two reasons why

this approach was not chosen. First, it increases the inconvenience factor for casual

users, as they now need a separate call per host thread. Second, some mechanism

like implicit threads must be implemented anyway: allocating a rump kernel thread

context requires a rump kernel context for example to be able to allocate memory

for the data structures. Our implicit thread implementation doubles as a bootstrap

context.

Implicit contexts are created dynamically because because any preconfigured reason-

able amount of contexts risks application deadlock. For example, n implicit threads

can be waiting inside the rump kernel for an event which is supposed to be deliv-

ered by the n + 1’th implicit thread, but only n implicit threads were precreated.

Creating an amount which will never be reached (e.g. 10,000) may avoid deadlock,

but is wasteful. Additionally, we assume all users aiming for high performance will

use bound threads.

57

2.3.1 Kernel threads

Up until now, we have discussed the rump kernel context of threads which are created

by the client, typically by calling pthread_create(). In addition, kernel threads

exist. The creation of a kernel thread is initiated by the kernel and the entry point

lies within the kernel. Therefore, a kernel thread always executes within the kernel

except when it makes a hypercall. Kernel threads are associated with process 0

(struct proc0). An example of a kernel thread is the workqueue worker thread,

which the workqueue kernel subsystem uses to schedule and execute asynchronous

work units.

On a regular system, both an application process thread and a kernel thread have

their hard context created by the kernel. As we mentioned before, a rump kernel

cannot create a hard context. Therefore, whenever kernel thread creation is re-

quested, the rump kernel creates the soft context and uses a hypercall to request

the hard context from the host. The entry point given to the hypercall is a bouncer

routine inside the rump kernel. The bouncer first associates the kernel thread’s soft

context with the newly created host thread and then proceeds to call the thread’s

actual entry point.

2.3.2 A CPU for a Thread

First, let us use broad terms to describe how scheduling works in regular virtualized

setup. The hypervisor has an idle CPU it wants to schedule work onto and it

schedules a guest system. While the guest system is running, the guest system

decides which guest threads to run and when to run them using the guest system’s

scheduler. This means that there are two layers of schedulers involved in scheduling

a guest thread.

58

We also point out that a guest CPU can be a purely virtual entity, e.g. the guest may

support multiplexing a number of virtual CPUs on top of one host CPU. Similarly,

the rump kernel may be configured to provide any number of CPUs that the guest

OS supports regardless of the number of CPUs present on the host. The default

for a rump kernel is to provide the same number of virtual CPUs as the number

of physical CPUs on the host. Then, a rump kernel can fully utilize all the host’s

CPUs, but will not waste resources on virtual CPUs where the host cannot schedule

threads for them in parallel.

As a second primer for the coming discussion, we will review CPU-local algorithms.

CPU-local algorithms are used avoid slow cross-CPU locking and hardware cache

invalidation. Consider a pool-style resource allocator (e.g. memory): accessing a

global pool is avoided as far as possible because of the aforementioned reasons of

locking and cache. Instead, a CPU-local allocation cache for the pools is kept. Since

the local cache is tied to the CPU, and since there can be only one thread executing

on one CPU at a time, there is no need for locking other than disabling thread

preemption in the kernel while the local cache is being accessed. Figure 2.5 gives an

illustrative example.

The host thread doubles as the guest thread in a rump kernel and the host sched-

ules guest threads. The guest CPU is left out of the relationship. The one-to-one

relationship between the guest CPU and the guest thread must exist because CPU-

local algorithms rely on that invariant. If we remove the restriction of each rump

kernel CPU running at most one thread at a time, code written against CPU-local

algorithms will cause data structure corruption and fail. Therefore, it is necessary

to uphold the invariant that a CPU has at most one thread executing on it at a

time.

Since selection of the guest thread is handled by the host, we select the guest CPU

instead. The rump kernel virtual CPU is assigned for the thread that was selected

59

void *

pool_cache_get_paddr(pool_cache_t pc)

{

pool_cache_cpu_t *cc;

cc = pc->pc_cpus[curcpu()->ci_index];

pcg = cc->cc_current;

if (__predict_true(pcg->pcg_avail > 0)) {

/* fastpath */

object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;

return object;

} else {

return pool_cache_get_slow();

}

}

Figure 2.5: Use of curcpu() in the pool allocator simplified as pseudocode
from sys/kern/subr_pool.c. An array of CPU-local caches is indexed by the
current CPU’s number to obtain a pointer to the CPU-local data structure. Lockless
allocation from this cache is attempted before reaching into the global pool.

by the host, or more precisely that thread’s rump kernel soft context. Simplified,

scheduling in a rump kernel can be considered picking a CPU data structure off of a

freelist when a thread enters the rump kernel and returning the CPU to the freelist

once a thread exits the rump kernel. A performant implementation is more delicate

due to multiprocessor efficiency concerns. One is discussed in more detail along with

the rest of the implementation in Section 3.3.1.

Scheduling a CPU and releasing it are handled at the rump kernel entrypoint and

exitpoint, respectively. The BPF example with VFS (Figure 2.2) relies on rump ker-

nel interfaces handling scheduling automatically for the clients. The BPF example

which calls kernel interfaces directly (Figure 2.3) schedules a CPU before it calls a

routine inside the rump kernel.

60

2.3.3 Interrupts and Preemption

An interrupt is an asynchronously occurring event which preempts the current

thread and proceeds to execute a compact handler for the event before return-

ing control back to the original thread. The interrupt mechanism allows the OS to

quickly acknowledge especially hardware events and schedule the required actions

for a suitable time (which may be immediately). Taking an interrupt is tied to the

concept of being able to temporarily replace the currently executing thread with the

interrupt handler. Kernel thread preemption is a related concept in that code cur-

rently executing in the kernel can be removed from the CPU and a higher priority

thread selected instead.

The rump kernel uses a cooperative scheduling model where the currently executing

thread runs to completion. There is no virtual CPU preemption, neither by inter-

rupts nor by the scheduler. A thread holds on to the rump kernel virtual CPU until

it either makes a blocking hypercall or returns from the request handler. A host

thread executing inside the rump kernel may be preempted by the host. Preemption

will leave the virtual CPU busy until the host reschedules the preempted thread and

the thread runs to completion in the rump kernel.

What would be delivered by a preempting interrupt in the monolithic kernel is

always delivered via a schedulable thread in a rump kernel. In the event that later

use cases present a strong desire for fast interrupt delivery and preemption, the

author’s suggestion is to create dedicated virtual rump CPUs for interrupts and

real-time threads and map them to high-priority host threads. Doing so avoids

interaction with the host threads via signal handlers (or similar mechanisms on

other non-POSIX host architectures). It is also in compliance with the paradigm

that the host handles all scheduling in a rump kernel.

61

2.3.4 An Example

We present an example to clarify the content of this subsection. Let us assume two

host threads, A and B, which both act as local clients. The host schedules thread

A first. It makes a call into the rump kernel requesting a bound thread. First, the

soft context for an implicit thread is created and a CPU is scheduled. The implicit

thread soft context is used to create the soft context of the bound thread. The

bound thread soft context is assigned to thread A and the call returns after free’ing

the implicit thread and releasing the CPU. Now, thread A calls the rump kernel

to access a driver. Since it has a bound thread context, only CPU scheduling is

done. Thread A is running in the rump kernel and it locks mutex M. Now, the host

scheduler decides to schedule thread B on the host CPU instead. There are two

possible scenarios:

1. The rump kernel is a uniprocessor kernel and thread B will be blocked. This

is because thread A is still scheduled onto the only rump kernel CPU. Since

there is no preemption for the rump kernel context, B will be blocked until

A runs and releases the rump kernel CPU. Notably, it makes no difference if

thread B is an interrupt thread or not — the CPU will not be available until

thread A releases it.

2. The rump kernel is a multiprocessor kernel and there is a chance that other

rump kernel CPUs may be available for thread B to be scheduled on. In this

case B can run.

We assume that B can run immediately. Thread B uses implicit threads, and there-

fore upon entering the rump kernel an implicit thread soft context gets created and

assigned to thread B, along with a rump kernel CPU.

62

After having received a rump kernel CPU and thread context, thread B wants to

lock mutex M. M is held, and thread B will have to block and await M’s release.

Thread B will release the rump kernel CPU and sleep until A unlocks the mutex.

After the mutex is unlocked, the host marks thread B as runnable and after B wakes

up, it will attempt to schedule a rump kernel CPU and after that attempt to lock

mutex M and continue execution. When B is done with the rump kernel call, it will

return back to the application. Before doing so, the CPU will be released and the

implicit thread context will be free’d.

Note that for thread A and thread B to run in parallel, both the host and the rump

kernel must have multiprocessor capability. If the host is uniprocessor but the rump

kernel is configured with multiple virtual CPUs, the threads can execute inside the

rump kernel concurrently. In case the rump kernel is configured with only one CPU,

the threads will execute within the rump kernel sequentially irrespective of if the

host has one or more CPUs available for the rump kernel.

2.4 Virtual Memory

Virtual memory address space management in a rump kernel is relegated to the host

because support in a rump kernel would not add value in terms of the intended use

cases. The only case where full virtual memory support would be helpful would

be for testing the virtual memory subsystem. Emulating page faults and memory

protection in a usermode OS exhibits over tenfold performance penalty and can be

significant in other, though not all, hypervisors [11]. Therefore, supporting a corner

use case was not seen worth the performance penalty in other use cases.

The implication of a rump kernel not implementing full memory protection is that

it does not support accessing resources via page faults. There is no support in a

rump kernel for memory mapping a file to a client. Supporting page faults inside a

63

����
����

�	

��

�

�
�
�

�
�
�

����

�

����

����

���
�������

�����������

��
��
����
����

Figure 2.6: Providing memory mapping support on top of a rump ker-
nel. The file is mapped into the client’s address space by the host kernel. When
non-resident pages in the mapped range are accessed by the client, a page fault is
generated and the rump kernel is invoked via the host kernel’s file system code to
supply the desired data.

rump kernel would not work for remote clients anyway, since the page faults need

to be trapped on the client machine.

However, it is possible to provide memory mapping on top of rump kernels. In fact,

when running file systems as microkernel servers, the puffs [53] userspace file system

framework and the host kernel provide memory mapping for the microkernel client.

The page fault is resolved in the host kernel, and the I/O request for paging in the

necessary data sent to the rump kernel. After the rump kernel has satisfied the

request and responded via puffs, the host kernel unblocks the process that caused

the page fault (Figure 2.6). If a desirable use case is found, distributed shared

memory [80] can be investigated for memory mapping support in remote clients.

Another implication of the lack of memory protection is that a local client can freely

access the memory in a rump kernel. Consider the BPF example which accesses the

kernel directly (Figure 2.3). Not only does the local client call kernel routines, it

also examines the contents of a kernel data structure.

64

2.5 Distributed Services with Remote Clients

As mentioned in our client taxonomy in Section 2.2, remote clients use services from

a rump kernel hosted either on the same host in another process or on a remote host.

We describe the general concept here and provide implementation details later in

Section 3.12.

It is known to be possible to build a Unix system call emulation library on top of

a distributed system [81]. We go further: while we provide the Unix interface to

applications, we also use existing Unix kernel code at the server side.

Running a client and the rump kernel on separate hosts is possible because on a

fundamental level Unix already works like a distributed system: the kernel and

user processes live in different address spaces and information is explicitly moved

across this boundary by the kernel. Copying data across the boundary simplifies the

kernel, since data handled by the kernel can always be assumed to be resident and

non-changing. Explicit copy requests in the kernel code make it possible to support

remote clients by implementing only a request transport layer. System calls become

RPC requests from the client to the kernel and routines which copy data between

arbitrary address spaces become RPC requests from the kernel to the client.

When a remote client connects to a rump kernel, it gets assigned a rump kernel

process context with appropriate credentials. After the handshake is complete, the

remote client can issue service requests via the standard system call interface. First,

the client calls a local stub routine, which marshalls the request. The stub then

sends the request to the server and blocks the caller. After the rump kernel server

has processed the request and responded, the response is decoded and the client

is unblocked. When the connection between a rump kernel and a remote client is

severed, the rump kernel treats the client process as terminated.

65

The straightforward use of existing data structures has its limitations: the system

the client is hosted on must share the same ABI with the system hosting the rump

kernel. Extending support for systems which are not ABI-compatible is beyond the

scope of our work. However, working remote client support shows that it is possible

to build distributed systems out of a Unix codebase without the need for a new

design and codebase such as Plan 9 [93].

2.6 Summary

A rump kernel is a partial virtualization of an operating system kernel with the vir-

tualization target being the drivers. To be as lightweight as possible, a rump kernel

relies on two features: relegating support functionality to the host where possible

and an anykernel codebase where different units of the kernel (e.g. networking and

file systems) are disjoint enough to be usable in configurations where all parties are

not present.

Rump kernels support three types of clients: local, microkernel and remote. Each

client type has its unique properties and varies for example in access rights to a

rump kernel, the mechanism for making requests, and performance characteristics.

Remote clients are able to access a rump kernel over the Internet.

For drivers to function, a rump kernel must possess runtime context information.

This information consists of the process/thread context and a unique rump kernel

CPU that each thread is associated with. A rump kernel does not assume virtual

memory, and does not provide support for page faults or memory protection. Virtual

memory protection and page faults, where necessary, are always left to be performed

by the host of the rump kernel client.

66

67

3 Implementation

The previous chapter discussed the concept of an anykernel and rump kernels. This

chapter describes the code level modifications that were necessary for a production

quality implementation on NetBSD. The terminology used in this chapter is mainly

that of NetBSD, but the concepts are believed to apply to other similar operating

systems.

3.1 Kernel Partitioning

As mentioned in Section 2.1, to maximize the lightweight nature of rump kernels,

the kernel code was several logical layers: a base, three factions (dev, net and vfs)

and drivers. The factions are orthogonal, meaning they do not depend on each

other. Furthermore, the base does not depend on any other part of the kernel.

The modifications we made to reach this goal of independence are described in this

section.

As background, it is necessary to recall how the NetBSD kernel is linked. In C

linkage, symbols which are unresolved at compile-time must be satisfied at exe-

cutable link-time. For example, if a routine in file1.c wants to call myfunc() and

myfunc() is not present in any of the object files or libraries being linked into an

executable, the linker flags an error. A monolithic kernel works in a similar fashion:

all symbols must be resolved when the kernel is linked. For example, if an object

file with an unresolved symbol to the kernel’s pathname lookup routine namei()

is included, then either the symbol namei must be provided by another object file

being linked, or the calling source module must be adjusted to avoid the call. Both

approaches are useful for us and the choice depends on the context.

68

We identified three obstacles for having a partitioned kernel:

1. Compile-time definitions (#ifdef) indicating which features are present

in the kernel. Compile-time definitions are fine within a component, but

do not work between components if linkage dependencies are created (for

example a cross-component call which is conditionally included in the com-

pilation).

2. Direct references between components where we do not allow them. An

example is a reference from the base to a faction.

3. Multiclass source modules contain code which logically belongs in several

components. For example, if the same file contains routines related to both

file systems and networking, it belongs in this problem category.

Since our goal is to change the original monolithic kernel and its characteristics

as little as possible, we wanted to avoid heavy approaches in addressing the above

problems. These approaches include but are not limited to converting interfaces to

be called only via pointer indirection. Instead, we observed that indirect interfaces

were already used on most boundaries (e.g. struct fileops, struct protosw,

etc.) and we could concentrate on the exceptions. Code was divided into function-

ality groups using source modules as boundaries.

The three techniques we used to address problems are as follows:

1. code moving. This solved cases where a source module belonged to several

classes. Part of the code was moved to another module. This technique had

to be used sparingly since it is very intrusive toward other developers who

have outstanding changes in their local trees. However, we preferred moving

69

over splitting a file into several portions using #ifdef, as the final result is

clearer to anyone looking at the source tree.

In some cases code, moving had positive effects beyond rump kernels. One

such example was splitting up sys/kern/init_sysctl.c, which had evolved

to include sysctl handlers for many different pieces of functionality. For exam-

ple, it contained the routines necessary to retrieve a process listing. Moving

the process listing routines to the source file dealing with process manage-

ment (sys/kern/kern_proc.c) not only solved problems with references to

factions, but also grouped related code and made it easier to locate.

2. function pointers. Converting direct references to calls via function point-

ers removes link-time restrictions. A function pointer gets a default value at

compile time. Usually this value is a stub indicating the requested feature is

not present. At runtime the pointer may be adjusted to point to an actual

implementation of the feature if it is present.

3. weak symbols. A weak symbol is one which is used in case no other def-

inition is available. If a non-weak symbol is linked in the same set, it is

used and the weak symbol is silently ignored by the linker. Essentially, weak

symbols can be used to provide a default stub implementation. However, as

opposed to function pointers, weak symbols are a linker concept instead of a

program concept. It is not possible to deduce behavior by looking at the code

at the callsite. Unlike a function pointer, using a weak symbol also prevents

a program from reverting from a non-weak definition back to a weak defini-

tion. Therefore, the weak symbol technique cannot be used anywhere where

code can be unloaded at runtime. We used stub implementations defined

by weak symbols very sparingly because of the above reasons and preferred

other approaches.

Finally, to illustrate the problems and techniques, we discuss the modifications to

the file sys/kern/kern_module.c. The source module in question provides support

70

for loadable kernel modules (discussed further in Section 3.8.1). Originally, the file

contained routines both for loading kernel modules from the file system and for

keeping track of them. Having both in one module was a valid possibility before the

anykernel faction model. In the anykernel model, loading modules from a file system

is VFS functionality, while keeping track of the modules is base functionality.

To make the code comply with the anykernel model, we used the code moving

technique to move all code related to file system access to its own source file in

kern_module_vfs.c. Since loading from a file system must still be initiated by the

kernel module management routines, we introduced a function pointer interface. By

default, it is initialized to a stub:

int (*module_load_vfs_vec)(const char *, int, bool, module_t *,

prop_dictionary_t *) = (void *)eopnotsupp;

If VFS is present, the routine module_load_vfs_init() is called during VFS sub-

system init after the vfs_mountroot() routine has successfully completed to set

the value of the function pointer to module_load_vfs(). In addition to avoiding a

direct reference from the base to a faction in rump kernels, this pointer has another

benefit: during bootstrap it protects the kernel from accidentally trying to load

kernel modules from the file system before a file system has been mounted 3.

3.1.1 Extracting and Implementing

We have two methods for providing functionality in the rump kernel: we can extract

it out of the kernel sources, meaning we use the source file as such, or we can

implement it, meaning that we do an implementation suitable for use in a rump

3sys/kern/vfs_subr.c rev 1.401

71

kernel. We work on a source file granularity level, which means that either all of an

existing source file is extracted, or the necessary routines from it (which may be all

of them) are implemented. Implemented source files are placed under /sys/rump,

while extracted ones are picked up by Makefiles from other subdirectories under

/sys.

The goal is to extract as much as possible for the features we desire. Broadly

speaking, there are three cases where extraction is not possible.

1. code that does not exist in the regular kernel: this means drivers

specific to rump kernels. Examples include anything using rump hypercalls,

such as the virtual block device driver.

2. code dealing with concepts not supported in rump kernels. An

example is the virtual memory fault handler: when it is necessary to call a

routine which in a regular kernel is invoked from the fault hander, it must be

done from implemented code.

It should be noted, though, that not all VM code should automatically be

disqualified from extraction. For instance, VM readahead code is an algo-

rithm which does not have anything per se to do with VM, and we have

extracted it.

3. bypassed layers such as scheduling. They need completely different han-

dling.

In some cases a source module contained code which was desirable to be extracted,

but it was not possible to use the whole source module because others parts were

not suitable for extraction. Here we applied the code moving technique. As an

example, we once again look at the code dealing with processes (kern_proc.c).

The source module contained mostly process data structure management routines,

72

e.g. the routine for mapping a process ID number (pid_t) to the structure describing

it (struct proc *). We were interested in being able to extract this code. However,

the same file also contained the definition of the lwp0 variable. Since that definition

included references to the scheduler (“concept not supported in a rump kernel”), we

could not extract the file as such. However, after moving the definition of lwp0 to

kern_lwp.c, where it arguably belongs, kern_proc.c could be extracted.

3.1.2 Providing Components

On a POSIX system, the natural way to provide components to be linked together

is with libraries. Rump kernel components are compiled as part of the regular

system build and installed as libraries into /usr/lib. The kernel base library is

called librump and the hypervisor library is called librumpuser. The factions

are installed with the names librumpdev, librumpnet and librumpvfs for dev,

net and vfs, respectively. The driver components are named with the pattern

librump<faction>_driver, e.g. librumpfs_nfs (NFS client driver). The faction

part of the name is an indication of what type of driver is in question, but it does

not convey definitive information on what the driver’s dependencies are. For ex-

ample, consider the NFS client: while it is a file system driver, it also depends on

networking.

By default, NetBSD installs two production variants of each library: a static library

and a shared library. The system default is to produce dynamically linked executa-

bles which use shared libraries, and this approach is also used when linking rump

kernels. In custom built rump kernels the choice is up to the user. Shared libraries

allow the host to load the components into physical memory only once irrespective

of how many rump kernel instances are started, but shared libraries have worse per-

formance due to indirection [39]. Figure 3.1 illustrates the speed penalty inherent

to the position independent code in shared libraries by measuring the time it takes

73

none hv base base+hv

ru
n

ti
m

e
 (

s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.1: Performance of position independent code (PIC). A regular
kernel is compiled as non-PIC code. This compilation mode is effectively the same
as “none” in the graph. If the hypervisor and rump kernel base use PIC code, the
execution time increases as is expected. In other words, rump kernels allow to make
a decision on the tradeoff between execution speed and memory use.

to create and disband 300k threads in a rump kernel. As can be deduced from

the combinations, shared and static libraries can be mixed in a single rump kernel

instance so as to further optimize the behavior with the memory/CPU tradeoff.

3.2 Running the Kernel in an Hosted Environment

Software always runs on top of an entity which provides the interfaces necessary for

the software to run. A typical operating system kernel runs on top of hardware and

uses the hardware’s “interfaces” to fulfill its needs. When running on top a hardware

emulator the emulator provides the same hardware interfaces. In a paravirtualized

setup the hypervisor provides the necessary interfaces. In a usermode OS setup, the

application environment of the hosting OS makes up the hypervisor. In this section

we discuss hosting a rump kernel in a process on a POSIX host.

74

3.2.1 C Symbol Namespaces

In the regular case, the kernel and process C namespaces are disjoint. Both the

kernel and application can contain the same symbol name, for example printf,

without a collision occurring. When we run the kernel in a process container, we

must take care to preserve this property. Calls to printf made by the client still

need to go to libc, while calls to printf made by the kernel need to be handled by

the in-kernel implementation.

Single address space operating systems provide a solution [23], but require a dif-

ferent calling convention. On the other hand, C preprocessor macros were used by

OSKit [34] to rename conflicting symbols and allow multiple different namespaces

to be linked together. UML [26] uses a variant of the same technique and renames

colliding symbols using a set of preprocessor macros in the kernel build Makefile,

e.g. -Dsigprocmask=kernel_sigprocmask. This manual renaming approach is in-

adequate for a rump kernel; unlike a usermode OS kernel which is an executable

application, a rump kernel is a library which is compiled, shipped, and may be linked

with any other libraries afterwards. This set of libraries is not available at compile

time and therefore we cannot know which symbols will cause conflicts at link time.

Therefore, the only option is to assume that any symbol may cause a conflict.

We address the issue by protecting all symbols within the rump kernel. The objcopy

utility’s rename functionality is used ensure that all symbols within the rump kernel

have a prefix starting with “rump” or “RUMP”. Symbol names which do not begin

with “rump”or “RUMP”are renamed to contain the prefix “rumpns ”. After renam-

ing, the kernel printf symbol will be seen as rumpns_printf by the linker. Prefixes

are illustrated in Figure 3.2: callers outside of a rump kernel must include the prefix

explicitly, while the prefix for routines inside a rump kernel is implicit since it is au-

tomatically added by objcopy. Table 3.1 illustrates further by providing examples

of the outcome of renaming.

75

explicit

namespace: rump

rump_sys() rump_func()

implicit

application_func()

namespace: std

Figure 3.2: C namespace protection. When referencing a rump kernel symbol
from outside of the rump kernel, the prefix must be explicitly included in the code.
All references from inside the rump kernel implicitly contain the prefix due to bulk
symbol renaming. Corollary: it is not possible to access a symbol outside the rump
kernel namespace from inside the rump kernel.

rump kernel object original symbol name symbol after renaming

yes rump_sys_call rump_sys_call

yes printf rumpns_printf

no rump_sys_call rump_sys_call

no printf printf

Table 3.1: Symbol renaming illustrated. Objects belonging to a rump kernel
have their exported symbols and symbol dereferences renamed, if necessary, so that
they are inside the rump kernel namespace. Objects which do not belong to a rump
kernel are not affected.

However, renaming all symbols also creates a problem. Not all symbols in a ker-

nel object file come from kernel source code. Some symbols are a property of the

toolchain. An example is _GLOBAL_OFFSET_TABLE_, which is used by position in-

dependent code to store the offsets. Renaming toolchain-generated symbols causes

failures, since the toolchain expects to find symbols where it left them.

We observed that almost all of the GNU toolchain’s symbols are in the double-

underscore namespace “ ”, whereas the NetBSD kernel exported under 10 sym-

bols in that namespace. The decision was to rename existing kernel symbols in

76

the double underscore namespace to a single underscore namespace and exclude

the double underscore namespace from the rename. There were two exceptions

to the double underscore rule which had to be excluded from the rename as well:

_GLOBAL_OFFSET_TABLE_ and architecture specific ones. We handle the architec-

ture specific ones with a quirk table. There is one quirk each for PA-RISC, MIPS,

and PowerPC64. For example, the MIPS toolchain generates the symbol _gp_disp,

which needs to be excluded from the renaming. Experience of over 2.5 years shows

that once support for an architecture is added, no maintenance is required.

We conclude mass renaming symbols is a practical and feasible solution for the

symbol collision problem which, unlike manual renaming, does not require knowledge

of the set of symbols that the application namespace exports.

3.2.2 Privileged Instructions

Kernel code dealing with for example the MMU may execute CPU instructions

which are available only in privileged mode. Executing privileged instructions while

in non-privileged mode should cause a trap and the host OS or VMM to take control.

Typically, this trap will result in process termination.

Virtualization and CPU emulation technologies solve the problem by not executing

privileged instructions on the host CPU. For example, Xen [11] uses hypercalls,

User Mode Linux [26] does not use privileged instructions in the usermode machine

dependent code, and QEMU [13] handles such instructions in the machine emulator.

In practice kernel drivers do not use privileged instructions because they are found

only in the architecture specific parts of the kernel. Therefore, we can solve the

problem by defining that it does not exist in our model — if there are any it is a

failure in modifying the OS to support rump kernels.

77

3.2.3 The Hypercall Interface

The hypercall library implements the hypercall interface for the particular host. On

a POSIX host, the library is called librumpuser and the source code can be found

from lib/librumpuser. For historical reasons, the interface itself is also called

rumpuser, although for example rumphyper would be a more descriptive name.

As an example of a hypercall implementation we consider allocating“physical”mem-

ory from the host. This hypercall is implemented by the hypercall library with a

call to posix_memalign()4. Conversely, the hypercall for releasing memory back

to the system is implemented with a call to free().

Theoretically, a rump kernel can accomplish this by calling the host directly. How-

ever, there are a number of reasons a separate hypercall interface is better.

1. The user namespace is not available in the kernel. To for example make

the posix_memalign() call, the rump kernel has to define the prototype for

the function itself. If the prototype matches what libc expects, the call is

correctly resolved at link time. The downside is that duplicated information

can always go out-of-date. Furthermore, calling out of the kernel is not

directly possible due to the symbol renaming we presented in Section 3.2.1.

2. A separate interface helps when hosting a rump kernel on a platform which

is not native to the rump kernel version. For example, while all POSIX

platforms provide stat(const char *path, struct stat *sb), there is

no standard for the binary representation of struct stat. Therefore, a

reference to the structure cannot be passed over the interface as binary data,

4 posix_memalign() is essentially malloc(), but it takes an alignment parameter in addition
to the size parameter. Kernel code assumes that allocating a page of memory will return it from
a page-aligned offset, and using posix_memalign() instead of malloc() allows to guarantee that
memory allocated by the hypercall will be page-aligned.

78

since the representation might not be the same in the kernel and the hypercall

library. Even different versions of NetBSD have different representations, for

example due to increasing time_t from 32bit to 64bit. Therefore, to have

a well-defined interface when running on a non-native host, the hypercall

interface should only use data types which are the same regardless of ABI. For

example, the C99 constant width type uint64_t is preferred over time_t.

Since the hypercall executes in the same process as the rump kernel, byte

order is not an issue, and the native one can be used.

3. A separate interface helps future investigation of running rump kernels on

non-POSIX platforms, such as microkernels. This investigation, however,

will require adjustments to the hypercall interface. While the need for ad-

justments is foreseeable, the exact forms of the adjustments are not, and that

is the reason they are not already in place.

The header file sys/rump/include/rump/rumpuser.h defines the hypercall inter-

faces. All hypercalls by convention begin with the string “rumpuser”. This prevents

hypercall interface references in the rump kernel from falling under the jurisdiction

of symbol renaming.

We divide the hypercall interfaces into mandatory and optional ones. The routines

that must be implemented by the rumpuser library are:

• memory management: allocate aligned memory, free

• thread management: create and join threads, TLS access

• synchronization routines: mutex, read/write lock, condition variable.

This class is illustrated in Figure 3.3.

• exit: terminate the host container. In a POSIX environment depending on

the parameters termination is done by calling either abort() or exit().

79

void rumpuser_mutex_init(struct rumpuser_mtx **);

void rumpuser_mutex_init_kmutex(struct rumpuser_mtx **);

void rumpuser_mutex_enter(struct rumpuser_mtx *);

int rumpuser_mutex_tryenter(struct rumpuser_mtx *);

void rumpuser_mutex_exit(struct rumpuser_mtx *);

void rumpuser_mutex_destroy(struct rumpuser_mtx *);

struct lwp *rumpuser_mutex_owner(struct rumpuser_mtx *);

void rumpuser_rw_init(struct rumpuser_rw **);

void rumpuser_rw_enter(struct rumpuser_rw *, int);

int rumpuser_rw_tryenter(struct rumpuser_rw *, int);

void rumpuser_rw_exit(struct rumpuser_rw *);

void rumpuser_rw_destroy(struct rumpuser_rw *);

int rumpuser_rw_held(struct rumpuser_rw *);

int rumpuser_rw_rdheld(struct rumpuser_rw *);

int rumpuser_rw_wrheld(struct rumpuser_rw *);

void rumpuser_cv_init(struct rumpuser_cv **);

void rumpuser_cv_destroy(struct rumpuser_cv *);

void rumpuser_cv_wait(struct rumpuser_cv *, struct rumpuser_mtx *);

int rumpuser_cv_timedwait(struct rumpuser_cv *, struct rumpuser_mtx *,

int64_t, int64_t);

void rumpuser_cv_signal(struct rumpuser_cv *);

void rumpuser_cv_broadcast(struct rumpuser_cv *);

int rumpuser_cv_has_waiters(struct rumpuser_cv *);

Figure 3.3: Hypercall locking interfaces. These interfaces use opaque lock data
types to map NetBSD kernel locking operations to hypervisor operations.

Strictly speaking, the necessity of thread support and locking depends on the drivers

being executed. We offer the following anecdote and discussion. At one point when

working on rump kernel support, support for gdb in NetBSD was broken so that

threaded programs could not be single-stepped (the problem has since been fixed).

As a way to work around the problem, the variable RUMP_THREADS was created. If it

is set to 0, the rump kernel silently ignores kernel thread creation requests. Despite

the lack of threads, for example file system drivers still function, because they do

not directly depend on worker threads. The ability to run without threads allowed

attaching the broken debugger to rump kernels and single-stepping them.

80

The following rumpuser interfaces called from a rump kernel can provide added

functionality. Their implementation is optional.

• host file access and I/O: open, read/write. Host I/O is necessary if any

host resources are to be accessed via files. Examples include accessing a file

containing a file system image or accessing a host device via /dev.

• I/O multiplexing: strictly speaking, multiplexing operations such as poll()

can be handled with threads and synchronous I/O operations. However, it

is often more convenient to multiplex, and additionally it has been useful in

working around at least one host system bug5.

• scatter-gather I/O: can be used for optimizing the virtual network interface

to transmit data directly from mbufs [114].

• symbol management and external linking: this is akin to the task of a

bootloader/firmware in a regular system, and is required only if dynamically

extending the rump kernel is desired (see Section 3.8.1).

• host networking stack access: this is necessary for the sockin protocol

module (Section 3.9.1).

• errno handling: If system calls are to be made, the hypervisor must be able

to set a host thread-specific errno so that the client can read it. Note: errno

handling is unnecessary if the clients do not use the rump system call API.

• putchar: output character onto console. Being able to print console output

is helpful for debugging purposes.

• printf : a printf-like call. see discussion below.

5 rev 1.11 of sys/rump/net/lib/libvirtif/if_virt.c.

81

The Benefit of a printf-like Hypercall

The rumpuser_dprintf() call has the same calling convention as the NetBSD ker-

nel printf() routine. It is used to write debug output onto the console, or elsewhere

if the implementation so chooses. While the kernel printf() routine can be used

to produce debug output via rumpuser_putchar(), the kernel printf routine in-

kernel locks to synchronize with other in-kernel consumers of the same interface.

These locking operations may cause the rump kernel virtual CPU context to be

relinquished, which in turn may cause inaccuracies in debug prints especially when

hunting racy bugs. Since the hypercall runs outside of the kernel, and will not un-

schedule the current rump kernel virtual CPU, we found that debugging information

produced by it is much more accurate. Additionally, a hypercall can be executed

without a rump kernel context. This property was invaluable when working on the

low levels of the rump kernel itself, such as thread management and CPU scheduling.

3.3 Rump Kernel Entry and Exit

As we discussed in Chapter 2, a client must possess an execution context before it

can successfully operate in a rump kernel. These resources consist of a rump kernel

process/thread context and a virtual CPU context. The act of ensuring that these

resources have been created and selected is presented as pseudocode in Figure 3.4

and available as real code in sys/rump/librump/rumpkern/scheduler.c. We will

discuss obtaining the thread context first.

Recall from Section 2.3 that there are two types of thread contexts: an implicit one

which is dynamically created when a rump kernel is entered and a bound one which

the client thread has statically set. We assume that all clients which are critical

about their performance use bound threads.

82

The entry point rump_schedule()6 starts by checking if the host thread has a

bound rump kernel thread context. This check maps to consulting the host’s thread

local storage with a hypercall. If a value is set, it is used and the entrypoint can

move to scheduling a CPU.

In case an implicit thread is required, it is necessary to create one. We use the

system thread lwp0 as the bootstrap context for creating the implicit thread. Since

there is only one instance of this resource, it may be used only by a single consumer

at a time, and must be locked before use. After a lock on lwp0 has been obtained,

a CPU is scheduled for it. Next, the implicit thread is created and it is given the

same CPU we obtained for lwp0. Finally, lwp0 is unlocked and servicing the rump

kernel request can begin.

The exit point is the converse: in case we were using a bound thread, just releasing

the CPU is enough. In case an implicit thread was used it must be released. Again,

we need a thread context to do the work and again we use lwp0. A critical detail is

noting the resource acquiry order: the CPU must be unscheduled before lwp0 can be

locked. Next, a CPU must be scheduled for lwp0 via the normal path. Attempting

to obtain lwp0 while holding on to the CPU may lead to a deadlock.

Instead of allocating and free’ing an implicit context at every entry and exit point,

respectively, a possibility is to cache them. Since we assume that all performance-

conscious clients use bound threads, caching would add unwarranted complexity to

the code.

6 rump_schedule() / rump_unschedule() are slight misnomers and for example rump_enter()
/ rump_exit() would be more descriptive. The interfaces are exposed to clients, so changing the
names is not worth the effort anymore.

83

void

rump_schedule()

{

struct lwp *lwp;

if (__predict_true(lwp = get_curlwp()) != NULL) {

rump_schedule_cpu(lwp);

} else {

lwp0busy();

/* allocate & use implicit thread. uses lwp0’s cpu */

rump_schedule_cpu(&lwp0);

lwp = rump_lwproc_allocateimplicit();

set_curlwp(lwp);

lwp0rele();

}

}

void

rump_unschedule()

{

struct lwp *lwp = get_curlwp();

rump_unschedule_cpu(lwp);

if (__predict_false(is_implicit(lwp))) {

lwp0busy();

rump_schedule_cpu(&lwp0);

rump_lwproc_releaseimplicit(lwp);

lwp0rele();

set_curlwp(NULL);

}

}

Figure 3.4: rump kernel entry/exit pseudocode. The entrypoint and exitpoint
are rump_schedule() and rump_unschedule(), respectively. The assignment of a
CPU and implicit thread context are handled here.

84

3.3.1 CPU Scheduling

Recall from Section 2.3.2 that the purpose of the rump kernel CPU scheduler is to

map the currently executing thread to a unique rump CPU context. In addition to

doing this mapping at the entry and exit points as described above, it must also

be done around potentially blocking hypercalls as well. One reason for releasing

the CPU around hypercalls is because the wakeup condition for the hypercall may

depend on another thread being able to run. Holding on to the CPU could lead to

zero available CPUs for performing a wakeup, and the system would deadlock.

The straightforward solution is to maintain a list of free virtual CPUs: allocation is

done by taking an entry off the list and releasing is done by putting it back on the

list. A list works well for uniprocessor hosts. However, on a multiprocessor system

with multiple threads, a global list causes cache contention and lock contention. The

effects of cache contention can be seen from Figure 3.5 which compares the wall time

for executing 5 million getpid() calls per thread per CPU. This run was done 10

times, and the standard deviation is included in the graph (if it is not visible, it is

practically nonexistent). The multiprocessor run took approximately three times as

long as the uniprocessor one — doubling the number of CPUs made the normalized

workload slower. To optimize the multiprocessor case, we developed an improved

CPU scheduling algorithm.

Improved algorithm

The purpose of a rump CPU scheduling algorithm is twofold: first, it ensures that at

most one thread is using the CPU at any point in time. Second, it ensures that cache

coherency is upheld. We dissect the latter point further. On a physical system, when

thread A relinquishes a CPU and thread B is scheduled onto the same CPU, both

threads will run on the same physical CPU, and therefore all data they see in the

85

1CPU 2CPU

s
e

c
o

n
d

s

0

2

4

6

8

10

native rump

Figure 3.5: System call performance using the trivial CPU scheduler.
While a system call into the rump kernel is faster in a single-threaded process, it is
both jittery and slow for a multithreaded process. This deficiency is something we
address with the advanced rump kernel CPU scheduler presented later.

CPU-local cache will trivially be coherent. In a rump kernel, when host thread A

relinquishes the rump kernel virtual CPU, host thread B may acquire the same rump

kernel virtual CPU on a different physical CPU. Unless the physical CPU caches

are properly updated, thread B may see incorrect data. The simple way to handle

cache coherency is to do a full cache update at every scheduling point. However,

a full update is wasteful in the case where a host thread is continuously scheduled

onto the same rump kernel virtual CPU.

The improved algorithm for CPU scheduling is presented as pseudocode in Fig-

ure 3.6. It is available as code in sys/rump/librump/rumpkern/scheduler.c.

The scheduler is optimized for the case where the number of active worker threads

is smaller than the number of configured virtual CPUs. This assumption is reason-

able for rump kernels, since the amount of virtual CPUs can be configured based on

each individual application scenario.

86

The fastpath is taken in cases where the same thread schedules the rump kernel

consecutively without any other thread running on the virtual CPU in between.

The fastpath not only applies to the entry point, but also to relinquishing and

rescheduling a CPU during a blocking hypercall. The implementation uses atomic

operations to minimize the need for memory barriers which are required by full

locks.

Next, we offer a verbose explanation of the scheduling algorithm.

1. Use atomic compare-and-swap (CAS) to check if we were the previous thread

to be associated with the CPU. If that is the case, we have locked the CPU

and the scheduling fastpath was successful.

2. The slow path does a full mutex lock to synchronize against another thread

releasing the CPU. In addition to enabling a race-free sleeping wait, using a

lock makes sure the cache of the physical CPU the thread is running on is

up-to-date.

3. Mark the CPU as wanted with an atomic swap. We examine the return value

and if we notice the CPU was no longer busy at that point, try to mark it

busy with atomic CAS. If the CAS succeeds, we have successfully scheduled

the CPU. We proceed to release the lock we took in step 2. If the CAS did

not succeed, check if we want to migrate the lwp to another CPU.

4. In case the target CPU was busy and we did not choose to migrate to another

CPU, wait for the CPU to be released. After we have woken up, loop and

recheck if the CPU is available now. We must do a full check to prevent races

against a third thread which also wanted to use the CPU.

87

void

schedule_cpu()

{

struct lwp *lwp = curlwp;

/* 1: fastpath */

cpu = lwp->prevcpu;

if (atomic_cas(cpu->prevlwp, lwp, CPU_BUSY) == lwp)

return;

/* 2: slowpath */

mutex_enter(cpu->mutex);

for (;;) {

/* 3: signal we want the CPU */

old = atomic_swap(cpu->prevlwp, CPU_WANTED);

if (old != CPU_BUSY && old != CPU_WANTED) {

membar();

if (atomic_cas(cpu->prevlwp, CPU_WANTED, CPU_BUSY) == CPU_WANTED) {

break;

}

}

newcpu = migrate(lwp, cpu);

if (newcpu != cpu) {

continue;

}

/* 4: wait for CPU */

cpu->wanted++;

cv_wait(cpu->cv, cpu->mutex);

cpu->wanted--;

}

mutex_exit(cpu->mutex);

return;

}

Figure 3.6: CPU scheduling algorithm in pseudocode. See the text for a
detailed description.

88

Releasing a CPU requires the following steps. The pseudocode is presented in Fig-

ure 3.7. The fastpath is taken if no other thread wanted to take the CPU while the

current thread was using it.

1. Issue a memory barrier: even if the CPU is currently not wanted, we must

perform this step.

In more detail, the problematic case is as follows. Immediately after we

release the rump CPU, the same rump CPU may be acquired by another

hardware thread running on another physical CPU. Although the scheduling

operation must go through the slowpath, unless we issue the memory barrier

before releasing the CPU, the releasing CPU may have cached data which

has not reached global visibility.

2. Release the CPU with an atomic swap. The return value of the swap is

used to determine if any other thread is waiting for the CPU. If there are no

waiters for the CPU, the fastpath is complete.

3. If there are waiters, take the CPU lock and perform a wakeup. The lock

necessary to avoid race conditions with the slow path of schedule_cpu().

89

void

unschedule_cpu()

{

struct lwp *lwp = curlwp;

/* 1: membar */

membar();

/* 2: release cpu */

old = atomic_swap(cpu->prevlwp, lwp);

if (old == CPU_BUSY) {

return;

}

/* 3: wake up waiters */

mutex_enter(cpu->mutex);

if (cpu->wanted)

cv_broadcast(cpu->cv);

mutex_exit(cpu->mutex);

return;

}

Figure 3.7: CPU release algorithm in pseudocode. See the text for a detailed
description.

90

1CPU 2CPU

s
e

c
o

n
d

s

0

2

4

6

8

10

native rump old rump new

Figure 3.8: System call performance using the improved CPU scheduler.
The advanced rump kernel CPU scheduler is lockless and cache conscious. With it,
simultaneous system calls from multiple threads are over twice as fast as against the
host kernel and over four times as fast as with the old scheduler.

Performance

The impact of the improved CPU scheduling algorithm is shown in Figure 3.8. The

new algorithm performs four times as good as the freelist algorithm in the dual CPU

multithreaded case. It also performs twice as fast as a host kernel system call. Also,

there is scalability: the dual CPU case is within 1% of the performance of the single

CPU case — native performance is 20% weaker with two CPUs. Finally, the jitter

we set out to eliminate has been eliminated.

CPU-bound lwps

A CPU-bound lwp will execute only on a specific CPU. This functionality is required

for example for delivering a clock interrupt on every virtual CPU. Any lwp which

91

is bound to a certain rump kernel virtual CPU simply has migration disabled. This

way, the scheduler will always try to acquire the same CPU for the thread.

Scheduler Priorities

The assumption is that a rump kernel is configured with a number of virtual CPUs

which is equal or greater to the number of frequently executing threads. Despite

this configuration, a rump kernel may run into a situation where there will be

competition for virtual CPUs. There are two ways to approach the issue of deciding

in which order threads should be given a rump CPU context: build priority support

into the rump CPU scheduler or rely on host thread priorities.

To examine the merits of having priority support in the rump CPU scheduler, we

consider the following scenario. Thread A has higher priority than thread B in the

rump kernel. Both are waiting for the same rump kernel virtual CPU. Even if the

rump CPU scheduler denies thread B entry because the higher priority thread A

is waiting for access, there is no guarantee that the host schedules thread A before

thread B could theoretically run to completion in the rump kernel. By this logic,

it is better to let host priorities dictate, and hand out rump kernel CPUs on a

first-come-first-serve basis. Therefore, we do not support thread priorities in the

rump CPU scheduler. It is the client’s task to call pthread_setschedparam() or

equivalent if it wants to set a thread’s priority.

3.3.2 Interrupts and Soft Interrupts

As mentioned in Section 2.3.3, a rump kernel CPU cannot be preempted. The mech-

anism of how an interrupt gets delivered requires preemption, so we must examine

that we meet the requirements of both hardware interrupts and soft interrupts.

92

Hardware interrupt handlers are typically structured to only do a minimal amount

of work for acknowledging the hardware. They then schedule the bulk work to be

done in a soft interrupt (softint) handler at a time when the OS deems suitable.

As mentioned in Section 2.3.3, we implement hardware interrupts as host threads

which schedule a rump kernel CPU like other consumers, run the handler, and release

the CPU. The only difference to a regular system is that interrupts are scheduled

instead of preempting the CPU.

Softints in NetBSD are almost like regular threads. However, they have a number

of special properties to keep scheduling and running them cheap:

1. Softints are run by level (e.g. networking and clock). Only one softint per

level per CPU may be running, i.e. softints will run to finish before the next

one may be started. Multiple outstanding softints will be queued until the

currently running one has finished.

2. Softints may block briefly to acquire a short-term lock, but should not sleep.

This property is a corollary from the previous property.

3. Softint handlers must run on the same CPU they were scheduled on. This

property relaxes cross-CPU cache effects and locking requirements.

4. A softint may run only after the hardware interrupt has completed execu-

tion. That is to say, the softint handler may not run immediately after it is

scheduled, only when the hardware interrupt handler that scheduled it has

completed execution.

Although in a rump kernel even “hardware” interrupts are essentially software in-

terrupts due to them being scheduled, a fair amount of code in NetBSD assumes

that softints are supported. For example, the callout framework [19] schedules soft

93

interrupts from hardware clock interrupts to run periodic tasks (used e.g. by TCP

timers).

The users of the kernel softint facility expect them to operate exactly according

to the principles we listed. Initially, for simplicity, softints were implemented as

regular threads. The use of regular threads resulted in a number of problems. For

example, when the Ethernet code schedules a soft interrupt to do IP level processing

for a received frame, code first schedules the softint and only later adds the frame

to the processing queue. When softints were implemented as regular threads, the

host could run the softint thread before the Ethernet interrupt handler had put the

frame on the processing queue. If the softint ran before the packet was queued, the

packet would not be delivered until the next incoming packet was handled.

Soft interrupts are implemented in sys/rump/librump/rumpkern/intr.c accord-

ing to the principles we listed earlier. The standard NetBSD implementation was

not usable in a rump kernel since that implementation is based on direct interaction

with the NetBSD scheduler.

3.4 Virtual Memory Subsystem

The main purpose of the NetBSD virtual memory subsystem is to manage memory

address spaces and the mappings to the backing content [20]. While the memory

address spaces of a rump kernel and its clients are managed by their respective hosts,

the virtual memory subsystem is conceptually exposed throughout the kernel. For

example, file systems are tightly built around being able to use virtual memory

subsystem data structures to cache file data. To illustrate, the standard way the

kernel reads data from a file system is to memory map the file, access the mapped

range, and possibly fault in missing data [101].

94

Due to the design choice that a rump kernel does not use (nor require) a hardware

MMU, the virtual memory subsystem implementation is different from the regular

NetBSD VM. As already explained in Section 2.4, the most fundamental difference

is that there is no concept of page protection or a page fault inside the rump kernel.

The details of the rump kernel VM implementation along with their implications

are described in the following subsections. The VM is implemented in the source

module sys/rump/librump/rumpkern/vm.c. Additionally, routines used purely by

the file system faction are in sys/rump/librump/rumpvfs/vm_vfs.c.

Pages

When running on hardware, the pages described by the struct vmpage data struc-

ture correspond with hardware pages7. Since the rump kernel does not interface

with memory management hardware, the size of the memory page is merely a pro-

grammatical construct: the kernel hands out physical memory in multiples of the

page size. In a rump kernel this memory is allocated from the host and since there

is no memory protection or faults, the page size can in practice be any power of

two within a sensible size range. However, so far there has been no reason to use

anything different than the page size for the machine architecture the rump kernel

is running on.

The VM tracks status of when a page was last used. It does this tracking either

by asking the MMU on CPU architectures where that is supported, e.g. i386, or

by using memory protection and updating the information during page faults on

architectures where it is not, e.g. alpha. This information is used by the page

daemon during memory shortages to decide which pages are best suited to be paged

7 This correspondence is not a strict rule. For example the NetBSD VAX port uses clusters of
512 byte contiguous hardware pages to create logical 4kB pages to minimize management overhead.

95

to secondary storage so that memory can be reclaimed for other purposes. Instead of

requiring a MMU to keep track of page usage, we observe that since memory pages

allocated from a rump kernel cannot be mapped into a client’s address space, the

pages are used only in kernel code. Every time kernel code wants to access a page,

it does a lookup for it using uvm_pagelookup(), uses it, and releases the reference.

Therefore, we hook usage information tracking to the lookup routine: whenever a

lookup is done, the page is deemed as accessed.

3.4.1 Page Remapping

A regular NetBSD kernel has the ability to interact with the MMU and map physical

pages to virtual addresses 8. Since a rump kernel allocates only anonymous memory

from the host, it cannot ask the host to remap any of its allocations at least on a

POSIX system — there is no interface for mapping anonymous memory in multiple

places. Usermode operating systems typically use a memory mapped file to represent

the physical memory of the virtual kernel [26, 31]. The file acts as a handle and

can be mapped to the location(s) desired by the usermode kernel using the mmap()

system call. The DragonFly usermode vkernel uses special host system calls to make

the host kernel execute low level mappings [31].

Using a file-backed solution is in conflict with the lightweight fundamentals of rump

kernels. First, the file must be created at a path specified either by a configuration

option or by a system guess. Furthermore, it disrupts the dynamic memory principle

we have laid out. While it is relatively simple to extend the file to create more

memory on demand, it is difficult to truncate the file in case the memory is no longer

needed because free pages will not automatically reside in a contiguous range at

the end of the file. Finally, the approach requires virtual memory mapping support

from the host and limits the environments a rump kernel can be theoretically hosted

8 NetBSD itself does not run on hardware without a MMU.

96

in. Therefore, we should critically examine if memory mapping capability is really

needed in a rump kernel.

In practice, the kernel does not map physical pages in driver code. However, there

is one exception we are interested in: the file system independent vnode pager. We

will explain the situation in detail. The pages associated with a vnode object are

cached in memory at arbitrary memory locations [101]. Consider a file which is the

size of three memory pages. The content for file offset 0x0000-0x0FFF might be

in page X, 0x1000-0x1FFF in page X-1 and 0x2000-0x2FFF in page X+1. In other

words, reading and writing a file is a scatter-gather operation. When the standard

vnode pager (sys/miscfs/genfs/genfs_io.c) writes contents from memory to

backing storage, it first maps all the pages belonging to the appropriate offsets in a

continuous memory address by calling uvm_pagermapin(). This routine in turn uses

the pmap interface to request the MMU to map the physical pages to the specified

virtual memory range in the kernel’s address space. After this step, the vnode pager

performs I/O on this pager window. When I/O is complete, the pager window is

unmapped. Reading works essentially the same way: pages are allocated, mapped

into a contiguous window, I/O is performed, and the pager window is unmapped.

To support the standard NetBSD vnode pager with its remapping feature, there are

three options for dealing with uvm_pagermapin():

1. Create the window by allocating a new block of contiguous anonymous mem-

ory and use memory copy to move the contents. This approach works because

pages are unavailable to other consumers during I/O; otherwise e.g. write()

at an inopportune time might cause a cache flush to write half old half new

contents and cause a semantic break.

2. Modify the vnode pager to issue multiple I/O requests in case the backing

pages for a vnode object are not at consecutive addresses.

97

3. Accept that memory remapping support is necessary in a rump kernel and

handle the vnode pager using mmap() and munmap().

When comparing the first and the second option, the principle used is that memory

I/O is several orders of magnitude faster than device I/O. Therefore, anything which

affects device I/O should be avoided, especially if it might cause extra I/O operations

and thus option 1 is preferable over option 2.

To evaluate the first option against third option, we simulated pager conditions

and measured the amount of time it takes to construct a contiguous 64kB memory

window out of non-contiguous 4kB pages and to write the window out to a file

backed by a memory file system. The result for 1000 loops as a function of non-

contiguous pages is presented in Figure 3.9. We conclude that not only is copying

the technologically preferred option since it avoids the need for memory mapping

support on the host, it is also several times faster than mmap()/munmap() pairs.

It should be noted that a fourth option is to implement a separate vnode pager which

does not rely on mapping pages. This option was our initial approach. While the ef-

fort produced a superficially working result, we could not get all corner cases to func-

tion exactly the same as with the regular kernel — for example, the VOP_GETPAGES()

interface implemented by the vnode pager takes 8 different parameters and 14 dif-

ferent flags. The lesson learnt from this attempt with the vnode pager reflects our

premise for the entire work: it is easy to write superficially working code, but getting

all corner cases right for complicated drivers is extremely difficult.

3.4.2 Memory Allocators

Although memory allocators are not strictly speaking part of the virtual memory

subsystem, they are related to memory so we describe them here.

98

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 2 4 6 8 10 12 14 16

P
ag

er
 w

in
do

w
 c

re
at

e+
ac

ce
ss

 ti
m

e
(s

)

Disjoint regions

mmap + munmap

alloc + copy + free

Figure 3.9: Performance of page remapping vs. copying. Allocating a
pager window from anonymous memory and copying file pages to it for the purpose
of pageout by the vnode pager is faster than remapping memory backed by a file.
Additionally, the cost of copying is practically independent of the amount of non-
contiguous pages. With remapping, each disjoint region requires a separate call to
mmap().

The lowest level memory allocator in NetBSD is the UVM kernel memory allocator

(uvm_km). It is used to allocate memory on a pagelevel granularity. The standard im-

plementation in sys/uvm/uvm_km.c allocates a virtual memory address range and,

if requested, allocates physical memory for the range and maps it in. Since mapping

is incompatible with a rump kernel, we did a straightforward implementation which

allocates a page or contiguous page range with a hypercall.

The kmem, pool and pool cache allocators are general purpose allocators meant to

be used by drivers. Fundamentally, they operate by requesting pages from uvm_km

and handing memory out in requested size chunks. The flow of memory between

UVM and the allocators is dynamic, meaning if an allocator runs out of memory, it

will request more from UVM, and if there is a global memory shortage, the system

will attempt to reclaim cached memory from the allocators. We have extracted the

99

implementations for these allocators from the standard NetBSD kernel and provide

them as part of the rump kernel base.

An exception is the 4.3BSD/4.4BSD malloc() [73]; we stress that in this section

malloc refers to the in-kernel implementation of the allocator. In contrast to the

dynamic nature of the abovementioned allocators, the malloc implementation uses

a single contiguous memory range for all allocations (kmem_map). The size of this

range is calculated from total system memory and the range is allocated at system

bootstrap time. In a rump kernel this behavior is not desirable, since it sets static

limits for the system. Due to this reason we did not extract malloc and instead

reimplemented the interface by relegating requests to the hypercall layer. Since

malloc is being retired in NetBSD in favor of the newer style allocators, we did not

see it necessary to spend effort on being able to extract the implementation instead

of using the hypervisor’s memory allocator directly. Notably, the situation with

malloc may need to be revisited if rump kernels are to be ported to a host which

does not provide a general purpose memory allocator in itself and malloc is not fully

retired by then.

3.4.3 Pagedaemon

The NetBSD kernel uses idle memory for caching data. As long as free memory is

available, it will be used for caching. The pagedaemon serves the purpose of pushing

out unnecessary data to recycle pages when memory is scarce. A mechanism is

required to keep long-running rump kernels from consuming all memory available

from the host for caching. The choices are to either eliminate caching and free

memory immediately after it has been used, or to create a pagedaemon which can

operate despite memory access information not being available with the help of a

MMU. Since eliminating caching is undesirable for performance reasons, we chose

the latter option.

100

A rump kernel can be configured with either a specified amount of memory or an

unlimited amount of memory. In the former case the rump kernel will disallow

runtime memory allocations going over the limit. When 90% of the allocation limit

has been reached, the pagedaemon will be invoked to push out memory content

which has not been used recently. If no limit is specified, a rump kernel can grow

up to potentially consuming all memory and swap space on the host. The latter is

the default, since in our experience it suits all but a few use cases. For example,

in virtually all unit test use cases the memory limit has no consequence, since a

short-lived rump kernel will not have a chance to grow large enough for it to matter.

Furthermore, a POSIX per-process memory size limit (rlimit) will usually be hit

before one process can have a serious impact on the host. Hitting this limit causes

the memory allocation hypercall to fail. If the memory allocation hypercall fails,

the rump kernel treats the situation the same as reaching the soft-configured limit

and invokes the pagedaemon, which will hopefully flush out the cache and allow the

current allocation to succeed.

To free memory, the pagedaemon must locate memory resources which are not in

use and release them. There are fundamentally two types of memory: pageable and

wired.

• Pageable memory means that a memory page can be paged out. Paging

is done using the pager construct that the NetBSD VM (UVM) inherited

from the Mach VM [99] via the 4.4BSD VM. A pager has the capability to

move the contents of the page in and out of secondary storage. NetBSD

currently supports three classes of pagers: anonymous, vnode and device.

Device pagers map device memory, so they can be left out of a discussion

concerning RAM. We extract the standard UVM anonymous memory object

implementation (sys/uvm/uvm_aobj.c) mainly because the tmpfs file sys-

tem requires anonymous memory objects. However, we compile uvm_aobj.c

without defining VMSWAP, i.e. the code for support moving memory to and

101

rump kernel memory limit relative performance

0.5MB 50%

1MB 90%

3MB 100%

unlimited (host container limit) 100%

Table 3.2: File system I/O performance vs. available memory. If memory
is extremely tight, the performance of the I/O system suffers. A few megabytes of
rump kernel memory was enough to allow file I/O processing at full media speed.

from secondary is not included. Our view is that paging anonymous memory

should be handled by the host. What is left is the vnode pager, i.e. moving

file contents between the memory cache and the file system.

• Wired memory is non-pageable, i.e. it is always present and mapped. Still,

it is critical to note that the host can page memory which is wired in the rump

kernel barring precautions such as a mlock() hypercall. Most wired memory

in NetBSD is in one form or another allocated from a pool as was described

in Section 3.4.2. During memory shortage, the pagedaemon requests the

allocators to return unused pages back to the system.

The pagedaemon is implemented in the uvm_pageout() routine in the source file

sys/rump/librump/rumpkern/vm.c. As mentioned earlier, it is invoked whenever

90% of the memory limit has been allocated from the host, or when a memory

allocation hypercall fails. The pagedaemon releases memory in stages, from the

ones most likely to bring benefit to the least likely. The use case the pagedaemon

was developed against was the ability to run file systems with a rump kernel with

limited memory. Measurements showing how memory capacity affects file system

performance are presented in Table 3.2.

102

Since all pages managed by the VM are dynamically allocated and free’d, shrinking

the virtual kernel or allowing it to allocate more memory is trivial. It is done

by adjusting the limit. Making the limit larger causes the pagedaemon to cease

activity until future allocations cause the new limit to be reached. Making the limit

smaller causes the pagedaemon to clear out cached memory until the smaller limit

is satisfied. In contrast to the ballooning technique [109], a rump kernel will fully

release pages and associated metadata when memory is returned to the host.

Multiprocessor Considerations for the Pagedaemon

A rump kernel is more susceptible than a regular kernel to a single object using

a majority of the available memory, if not all. This phenomenon exists because

in a rump kernel it is a common scenario to use only one VM object at a time,

e.g. a single file is being written/read via a rump kernel. In a regular kernel there

minimally are at least a small number of active files due to various daemons and

system processes running.

Having all memory consumed by a single object leads to the following scenario on

a multiprocessor rump kernel:

1. A consumer running on CPU1 allocates memory and reaches the pagedaemon

wakeup limit.

2. The pagedaemon starts running on CPU2 and tries to free pages.

3. The consumer on CPU1 consumes all available memory for a single VM object

and must go to sleep to wait for more memory. It is still scheduled on CPU1

and has not yet relinquished the memory object lock it is holding.

4. The pagedaemon tries to lock the object that is consuming all memory. How-

ever, since the consumer is still holding the lock, the pagedaemon is unable to

103

acquire it. Since there are no other places to free memory from, the pagedae-

mon can only go to a timed sleep and hope that memory and/or unlocked

resources are available when it wakes up.

This scenario killed performance, since all activity stalled at regular intervals while

the pagedaemon went to sleep to await the consumer going to sleep. Notably, in a

virtual uniprocessor setup the above mentioned scenario did not occur, since after

waking up the pagedaemon the consumer would run until it got to sleep. When the

pagedaemon got scheduled on the CPU and started running, the object lock had

already been released and the pagedaemon could proceed to free pages. To remedy

the problem in virtual multiprocessor setups, we implemented a check to see if the

object lock holder is running on another virtual CPU. If the pagedaemon was unable

to free memory, but it detects an object lock holder running on another CPU, the

pagedaemon thread sleeps only for one nanosecond. This short sleep usually gives

the consumer a chance to release the object lock so that the pagedaemon can proceed

to free memory without a full sleep like it would otherwise do in a deadlock situation.

3.5 Synchronization

The NetBSD kernel synchronization primitives are modeled after the ones from

Solaris [66]. Examples include mutexes, read/write locks and condition variables.

Regardless of the type, all of them have the same basic idea: a condition is checked

for and if it is not met, the calling thread is put to sleep. Later, when another

thread has satisfied the condition, the sleeping thread is woken up.

The case we are interested in is when the thread checking the condition blocks. In

a regular kernel when the condition is not met, the calling thread is put on the

scheduler’s sleep queue and another thread is scheduled. Since a rump kernel is

104

not in control of thread scheduling, it cannot schedule another thread if one blocks.

When a rump kernel deems a thread to be unrunnable, it has two options: 1) spin

until the host decides to schedule another rump kernel thread 2) notify the host that

the current thread is unrunnable until otherwise announced.

The latter option is desirable since it saves resources. However, no such stan-

dard interface exists on a standard POSIX host. The closest option is to sus-

pend for an arbitrary period (yield, sleep, etc.). Instead, we observe that the

NetBSD kernel and pthread synchronization primitives are much alike. We define

a set of hypercall interfaces which provide the mutex, read/write lock and condi-

tion variable primitives. Where the interfaces do not map 1:1, such as with the

ltsleep() and msleep() interfaces, we use the hypercall interfaces to emulate

them (sys/rump/librump/rumpkern/ltsleep.c).

As usual, for a blocking hypercall we need to unschedule and reschedule the rump

virtual CPU. For condition variables making the decision to unschedule is straight-

forward, since we know the wait routine is going to block, and we can always release

the CPU before the hypervisor calls libpthread. For mutexes and read/write locks

we do not know a priori if we are going to block. However, we can make a logical

guess: code should be architectured to minimize lock contention, and therefore not

blocking should be a more common operation than blocking. We first call the try

variant of the lock operation. It does a non-blocking attempt and returns true or

false depending on if the lock was taken or not. In case the lock was taken, we can

return directly. If not, we unschedule the rump kernel CPU and call the blocking

variant. When the blocking variant returns, perhaps immediately in a multiproces-

sor rump kernel, we reschedule a rump kernel CPU and return from the hypercall.

105

3.5.1 Passive Serialization Techniques

Passive serialization [42] is essentially a variation of a reader-writer lock where the

read side of the lock is cheap and the write side of the lock is expensive, i.e. the

lock is optimized for readers. It is called passive serialization because readers do

not take an atomic platform level lock. The lack of a read-side lock is made up

for by deferred garbage collection, where an old copy is released only after it has

reached a quiescent state, i.e. there are no readers accessing the old copy. In an

operating system kernel the quiescent state is usually established by making the old

copy unreachable and waiting until all CPUs in the system have run code.

An example of passive serialization used for example in the Linux kernel is the read-

copy update (RCU) facility [68]. However, the algorithm is patented and can be

freely implemented only in GPL or LGPL licensed code. Both licenses are seen as

too restrictive for the NetBSD kernel and are not allowed by the project. Therefore,

RCU itself cannot be implemented in NetBSD. Another example of passive serial-

ization is the rmlock (read-mostly lock) facility offered by FreeBSD. It is essentially

a reader/writer locking facility with a lockless fastpath for readers. The write locks

are expensive and require cross calling other CPUs and running code on them.

Despite the lack of a locking primitive which is implemented using passive synchro-

nization, passive synchronization is still used in the NetBSD kernel. One example

which was present in NetBSD 5.99.48 is the dynamic loading and unloading of sys-

tem calls in sys/kern/kern_syscall.c. These operations require atomic locking

so as to make sure no system call is loaded more than once, and also to make

sure a system call is not unloaded while it is still in use. Having to take a regular

lock every time a system call is executed would be wasteful, given that unloading

of system calls during runtime takes place relatively seldom, if ever. Instead, the

implementation uses a passive synchronization algorithm where a lock is used only

for operations which are not performance-critical. We describe the elements of the

106

synchronization part of the algorithm, and then explain how it works in a rump

kernel.

Four cases must be handled:

1. execution of a system call which is loaded and functional (fast path)

2. loading a system call

3. attempting to execute an absent system call

4. unloading a system call

1: Regular Execution

Executing a system call is considered a read side lock. The essential steps are:

1. Set currently executing system call in curlwp->l_sysent. This step is exe-

cuted lockless and without memory barriers.

2. Execute system call.

3. Clear curlwp->l_sysent.

2: Loading a System Call

Modifying the syscall vector is serialized using a lock. Since modification happens

seldom compared to syscall execution, this is not a performance issue.

1. Take the kernel configuration lock.

107

2. Check that the system call handler was not loading before we got the lock.

If it was, another thread raced us into loading the call and we abort.

3. Patch the new value to the system call vector.

4. Release the configuration lock.

3: Absent System Call

NetBSD supports autoloading absent system calls. This means that when a process

makes a system call that is not supported, loading a handler may be automatically

attempted. If loading a handler is successful, the system call may be able to complete

without returning an error to the caller. System calls which may be loaded at

runtime are set to the following stub in the syscall vector:

1. Take the kernel configuration lock. Locking is not a performance problem,

since any unloaded system calls will not be frequently used by applications,

and therefore will not affect system performance.

2. Check that the system call handler was not loading before we got the lock. If

it was, another thread raced us into loading the call and we restart handling.

Otherwise, we attempt to load the system call and patch the syscall vector.

3. Release the configuration lock.

4. If the system call handler was loaded (by us or another thread), restart system

call handling. Otherwise, return ENOSYS and, due to Unix semantics, post

SIGSYS.

108

/*

* Run a cross call to cycle through all CPUs. This does two

* things: lock activity provides a barrier and makes our update

* of sy_call visible to all CPUs, and upon return we can be sure

* that we see pertinent values of l_sysent posted by remote CPUs.

*/

where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);

xc_wait(where);

Figure 3.10: Using CPU cross calls when checking for syscall users.

4: Unloading a System Call

Finally, we discuss the most interesting case for passive serialization: the unloading

of a system call. It showcases the technique that is used to avoid read-side locking.

1. Take the configuration lock.

2. Replace the system call with the stub in the system call vector. Once this

operation reaches the visibility of other CPUs, the handler can no longer be

called. Autoloading is prevented because we hold the configuration lock.

3. Call a cross-CPU broadcast routine to make sure all CPUs see the update

(Figure 3.10, especially the comment) and wait for the crosscall to run on

all CPUs. This crosscall is the key to the algorithm. There is no difference

in execution between a rump kernel with virtual CPUs and a regular kernel

with physical CPUs.

4. Check if there are any users of the system call by looping over all thread soft

contexts and checking l_sysent. If we see no instances of the system call we

want to unload, we can now be sure there are no users. Notably, if we do see

a non-zero amount of users, they may or may not still be inside the system

call at the time of examination.

109

5. In case we saw threads inside the system call, prepare to return EBUSY: unroll

step 2 by reinstating the handler in the system call vector. Otherwise, unload

the system call.

6. Release the configuration lock and return success or an error code.

Discussion

The above example for system calls is not the only example of passive serialization in

a rump kernel. It is also used for example to reap threads executing in a rump kernel

when a remote client calls exec (sys/rump/librump/rumpkern/rump.c). Neverthe-

less, we wanted to describe a usage which existed independently of rump kernels.

In conclusion, passive synchronization techniques work in a rump kernel. There

is no reason we would not expect them to work. For example, RCU works in

a userspace environment [25] (a more easily obtained description is available in

“Paper 3” here [24]). In fact, the best performing userspace implementation is one

which requires threads to inform the RCU manager when they enter a quiescent

state where they will not use any RCU-related resources. Since a rump kernel

has a CPU model, this quiescent state is the time after a thread has run on all

CPUs. In the syscall example this was accomplished by running the CPU crosscall

(Figure 3.10). Therefore, no modification is required as opposed to what is required

for pure userspace applications to support the quiescence based RCU userspace

approach [25].

3.5.2 Spinlocks on a Uniprocessor Rump Kernel

In a non-preemptive uniprocessor kernel there is no need to take memory bus level

atomic locks since nonexistent CPUs cannot race into a lock. The only thing the

110

kernel needs to do is make sure interrupts or preemption do not occur in critical sec-

tions. Recall, there is no thread preemption in a rump kernel. While other physical

CPUs may exist on the host, the rump kernel scheduler will let only one thread ac-

cess the rump kernel at a time. Hence, for example the mutex lock fastpath becomes

a simple variable assignment without involving the memory bus. As we mentioned

already earlier, locking a non-taken lock is the code path we want to optimize, as

the assumption is that lock contention should be low in properly structured code.

Only in the case the mutex is locked must a hypercall be made to arrange for a sleep

while waiting for the lock to be released.

We implemented alternative uniprocessor optimized locking for rump kernels in the

file sys/rump/librump/rumpkern/locks_up.c 9. This implementation can be used

only in rump kernels with a single virtual CPU. As explained above, this implemen-

tation does not call the host pthread routines unless it needs to arrange for a thread

to sleep while waiting for a lock to be released.

To see how effective uniprocessor-only locking is, we measured the performance of a

program which creates 200,000 files on the NetBSD tmpfs memory file system. The

results are presented in Figure 3.11. Next, we analyze the results.

9 “up” stands for uniprocessor.

111

MT_1 MT_2 MT_4 UT_1

d
u

ra
ti
o

n
 (

s
)

0

1

2

3

4

5 4.86

2.96

3.29

3.62

MT_1 MT_2 MT_4 UT_1

n
o

rm
a

liz
e

d
 d

u
ra

ti
o

n
 (

s
)

0

1

2

3

4

5

2.43

2.96

3.29

1.81

Figure 3.11: Cost of atomic memory bus locks on a twin core host.
The first figure presents the raw measurements and the second figure presents the
normalized durations per physical processor. MT means a multiprocessor rump
kernel with hardware atomic locks and UT designates a uniprocessor rump kernel
without hardware atomic locks. The number designates the amount of threads
concurrently executing within the rump kernel. Notably, in the case of four threads
there are twice as many threads executing within the rump kernel as there are
physical CPUs.

112

The kernel with uniprocessor locking performs 34% better than the multiprocessor

version on a uniprocessor rump kernel. This significant difference can be explained

by the fact that creating files on memory file systems (rump_sys_open(O_CREAT))

is very much involved with taking and releasing locks (such as file descriptor locks,

directory locks, file object locks ...) and very little involved with I/O or hyper-

visor calls. To verify our results, we examined the number of mutex locks and

reader/writer locks and we found out they are taken 5,438,997 and 1,393,596 times,

respectively. This measurement implies the spinlock/release cycle fastpath in the

100ns range, which is what we would expect from a Core2 CPU on which the test

was run. The MT 4 case is slower than MT 2, because the test host has only two

physical cores, and four threads need to compete for the same physical cores.

The multiprocessor version where the number of threads and virtual CPUs matches

the host CPU allocation wins in wall time. However, if it is possible to distribute

work in single processor kernels on all host CPUs, they will win in total performance

due to IPC overhead being smaller than memory bus locking overhead [12].

3.6 Application Interfaces to the Rump Kernel

Application interfaces are used by clients to request services from the rump kernel.

Having the interfaces provided as part of the rump kernel framework has two pur-

poses: 1) it provides a C level prototype for the client 2) it wraps execution around

the rump kernel entry and exit points, i.e. thread context management and rump

kernel virtual CPU scheduling.

The set of available interfaces depends on the type of the client. Since the rump

kernel provides a security model for remote clients, they are restricted to the system

call interface — the system call interface readily checks the appropriate permissions

of a caller. A local client and a microkernel server’s local client are free to call

113

any functions they desire. We demonstrated the ability to call arbitrary kernel

interfaces with the example on how to access the BPF driver without going through

the file system (Figure 2.3). In that example we had to provide our own prototype

and execute the entry point manually, since we did not use predefined application

interfaces.

3.6.1 System Calls

On a regular NetBSD system, a user process calls the kernel through a stub in libc.

The libc stub’s task is to trap into the kernel. The kernel examines the trapframe

to see which system call was requested and proceeds to call the system call handler.

After the call returns from the kernel, the libc stub sets errno.

We are interested in preserving the standard libc application interface signature for

rump kernel clients. Preserving the signature will make using existing code in rump

kernel clients easier, since the calling convention for system calls will remain the

same. In this section we will examine how to generate handlers for rump kernels

with minimal manual labor. All of our discussion is written against how system

calls are implemented in NetBSD. We use lseek() as an example of the problem

and our solution.

The signature of the lseek() system call stub in libc is as follows:

off_t

lseek(int fildes, off_t offset, int whence)

Prototypes are provided in header files. The header file varies from call to call. For

example, the prototype of lseek() is made available to an application by including

114

the header file <unistd.h> while open() comes from <fcntl.h>. The system call

prototypes provided in the header files are handwritten. In other words, they are

not autogenerated. On the other hand, almost all libc stubs are autogenerated from

a list of system calls. There are some manually written exceptions for calls which do

not fit the standard mould, e.g. fork(). Since the caller of the libc stub arranges

arguments according to the platform’s calling convention per the supplied prototype

and the kernel picks them up directly from the trapframe, the libc stub in principle

has to only execute the trap instruction to initiate the handling of the system call.

In contrast to the libc application interface, the signature of the kernel entry point

for the handler of the lseek system call is:

int

sys_lseek(struct lwp *l, const struct sys_lseek_args *uap, register_t *rv)

This function is called by the kernel trap handler after it has copied parameters

from the trapframe to the args structure.

Native system calls are described by a master file in kernel source tree located

at sys/kern/syscalls.master. The script sys/kern/makesyscalls.sh uses the

data file to autogenerate, among other things, the above prototype for the in-kernel

implementation and the definition of the args structure.

We added support to the makesyscalls script for generating the necessary wrappers

and headers for rump kernel clients. For a caller to be able to distinguish between

a native system call and a rump kernel system call, the latter is exported with a

rump_sys-prefix, e.g. rump_sys_lseek(). The makesyscalls script generates rump

system call prototypes to sys/rump/include/rump/rump_syscalls.h. A wrap-

per which takes care of arranging the function parameters into the args structure is

115

off_t

rump___sysimpl_lseek(int fd, off_t offset, int whence)

{

register_t retval[2] = {0, 0};

int error = 0;

off_t rv = -1;

struct sys_lseek_args callarg;

SPARG(&callarg, fd) = fd;

SPARG(&callarg, PAD) = 0;

SPARG(&callarg, offset) = offset;

SPARG(&callarg, whence) = whence;

error = rsys_syscall(SYS_lseek, &callarg, sizeof(callarg), retval);

rsys_seterrno(error);

if (error == 0) {

if (sizeof(off_t) > sizeof(register_t))

rv = *(off_t *)retval;

else

rv = *retval;

}

return rv;

}

Figure 3.12: Call stub for rump_sys_lseek(). The arguments from the client
are marshalled into the argument structure which is supplied to the kernel entry
point. The execution of the system call is requested using the rsys_syscall()
routine. This routine invokes either a direct function call into the rump kernel or a
remote request, depending on if the rump kernel is local or remote, respectively.

generated into sys/rump/librump/rumpkern/rump_syscalls.c — in our exam-

ple this arranging means moving the arguments that rump_sys_lseek() was called

with into the fields of struct sys_lseek_args. The wrapper for lseek is pre-

sented in Figure 3.12. The name of the wrapper in the illustration does not match

rump_sys_lseek(). but the reference will be correctly translated by an alias in the

rump system call header. We will not go into details, except to say that the reason

for it is to support compatibility system calls. For interested parties, the details are

available in the rump_syscalls.h header file.

116

The same wrapper works both for local and remote clients. For a local client,

rsys_syscall() does a function call into the rump kernel, while for a remote client

it invokes a remote procedure call so as to call the rump kernel. Remote clients are

discussed in more detail in Section 3.12. In both cases, the implementation behind

rsys_syscall() calls the rump kernel entry and exit routines.

While modifying the makesyscalls script to generate prototypes and wrappers, we

ran into a number of unexpected cases:

1. Almost all system calls return -1 (or NULL) in case of an error and set the

errno variable to indicate which error happened. However, there are excep-

tions. For example, the posix_fadvise() call is specified to return an error

number and not to adjust errno. In libc this discrepancy between error vari-

able conventions is handled by a field in the Makefile which autogenerates

syscall stubs. For our purposes of autogeneration, we added a NOERR flag to

syscalls.master. This flag causes the generator to create a stub which does

not set errno, much like what the libc build process does.

2. Some existing software looks only at errno instead of the system call’s return

value. Our initial implementation set errno only in case the system call

returned failure. This implementation caused such software to not function

properly and we adjusted errno to always be set to reflect the value from

the latest call.

3. System calls return three values from the kernel: an integer and an array

containing two register-size values (the register_t *rv parameter). In the

typical case, the integer carries errno and rv[0] carries the return value. In

almost all cases the second element of the register vector can be ignored. The

first exception to this rule is the system call pipe(int fildes[2]), which

returns two file descriptors from the kernel: one in rv[0] and the other in

rv[1]. We handle pipe() as a special case in the generator script.

117

[....]

2194: e8 fc ff ff ff call 2195 <rump___sysimpl_lseek+0x52>

2199: 85 db test %ebx,%ebx

219b: 75 0c jne 21a9 <rump___sysimpl_lseek+0x66>

219d: 8b 45 f4 mov 0xfffffff4(%ebp),%eax

21a0: 8b 55 f8 mov 0xfffffff8(%ebp),%edx

21a3: 83 c4 24 add $0x24,%esp

21a6: 5b pop %ebx

21a7: 5d pop %ebp

21a8: c3 ret

[....]

Figure 3.13: Compile-time optimized sizeof() check. The assembly of the
generated code compiled for i386 is presented.

4. The second exception to the above is the lseek() call on 32bit architectures.

The call returns a 64bit off_t 10 with the low bits occupying one register and

the high bits the other one. Since NetBSD supports all combinations of 32bit,

64bit, little endian and big endian architectures, care had to be taken to have

the translation from a two-element register_t vector to a variable work for

all calls on all architectures. We use a compile-time check for data type sizes

and typecast accordingly. To see why the check is required, consider the

following. If the typecast is never done, lseek breaks on 32bit architectures.

If the typecast to the return type is done for all calls, system calls returning

an integer break on 64bit big-endian architectures.

The above is not the only way to solve the problem. The makesyscalls.sh

script detects 64bit return values and sets the SYCALL_RET_64 flag in a system

call’s description. We could have hooked into the facility and created a special

wrapper for lseek without the “if (sizeof())” clause. The compiled code

is the same for both approaches (Figure 3.13), so the choice is a matter of

taste instead of runtime performance.

10 off_t is always 64bit on NetBSD instead of depending on the value of _FILE_OFFSET_BITS
which used on for example Linux and Solaris.

118

5. Some calling conventions (e.g. ARM EABI) require 64bit parameters to be

passed in even numbered registers. For example, consider the lseek call.

The first parameter is an integer and is passed to the system call in regis-

ter 0. The second parameter is 64bit, and according to the ABI it needs to

be passed in registers 2+3 instead of registers 1+2. To ensure the align-

ment constraint matches in the kernel, the system call description table

syscalls.master contains padding parameters. For example, lseek is defined

as lseek(int fd, int pad, off_t offset, int whence). Since “pad”

is not a part of the application API, we do not want to include it in the

rump kernel system call signature. However, we must include padding in

the struct sys_lseek_args parameter which is passed to the kernel. We

solved the issue by first renaming all pad parameters to the uppercase “PAD”

to decrease the possibility of conflict with an actual parameter called “pad”.

Then, we modified makesyscalls.sh to ignore all parameters named“PAD” for

the application interface side.

A possibility outside of the scope of this work is to examine if the libc system call

stubs and prototypes can now be autogenerated from syscalls.master instead of

requiring separate code in the NetBSD libc Makefiles and system headers.

3.6.2 vnode Interface

The vnode interface is a kernel internal interface. The vnode interface routines take a

vnode object along with other parameters, and call the respective method of the file

system associated with the vnode. For example, the interface for reading is the fol-

lowing: int VOP_READ(struct vnode *, struct uio *, int, kauth_cred_t);

if the first parameter is a pointer to a FFS vnode, the call will be passed to the FFS

driver.

119

int

RUMP_VOP_READ(struct vnode *vp, struct uio *uio, int ioflag, struct kauth_cred *cred)

{

int error;

rump_schedule();

error = VOP_READ(vp, uio, ioflag, cred);

rump_unschedule();

return error;

}

Figure 3.14: Implementation of RUMP_VOP_READ(). The backend kernel call
is wrapped around the rump kernel entrypoint and exitpoint.

The rump vnode interface exports the vnode interfaces to rump kernel clients. The

intended users are microkernel file servers which use rump kernels as backends. The

benefits for exporting this interface readily are the ones we listed in the beginning of

this section: a prototype for client code and automated entry/exit point handling.

The wrappers for the vnode interface are simpler than those of the system call

interface. This simplicity is because there is no need translate parameters and we

can simply pass them on to the kernel internal interface as such. To distinguish

between the internal implementation and the rump application interface, we prefix

rump client vnode interfaces with RUMP_.

The kernel vnode interface implementations and prototypes are autogenerated from

the file sys/kern/vnode_if.src by sys/kern/vnode_if.sh. We made the script

to generate our prototypes into sys/rump/include/rump/rumpvnode_if.h and

wrapper functions into sys/rump/librump/rumpvfs/rumpvnode_if.c. An exam-

ple result showing the RUMP_VOP_READ() interface is presented in Figure 3.14. The

VOP_READ() routine called by the wrapper is the standard implementation which is

extracted into a rump kernel from sys/kern/vnode_if.c.

120

int

rump_pub_lwproc_rfork(int arg1)

{

int rv;

rump_schedule();

rv = rump_lwproc_rfork(arg1);

rump_unschedule();

return rv;

}

Figure 3.15: Application interface implementation of lwproc rfork().
The backend kernel call is wrapped around the rump kernel entrypoint and exitpoint.

3.6.3 Interfaces Specific to Rump Kernels

Some interfaces are available only in rump kernels, for example the lwp/process

context management interfaces (manual page rump lwproc.3 at A–23). In a sim-

ilar fashion to other interface classes we have discussed, we supply autogenerated

prototypes and wrappers.

The application interface names are prefixed with rump_pub_ (shorthand for public).

The respective internal interfaces are prefixed rump_. As an example, we present

the wrapper for rump_pub_lwproc_rfork() in Figure 3.15. The public interface

wraps the internal interface around the entrypoint and exitpoint.

The master files for rump kernel interfaces are contained in the subdirectory of each

faction in an .ifspec file. The script sys/rump/librump/makeifspec.sh analyzes

this file and autogenerates the prototypes and wrappers.

Additionally, there exist bootstrap interfaces which can be called only before the

rump kernel is bootstrapped. An example is rump_boot_sethowto() which sets the

121

boothowto variable. Since there is no virtual CPU to schedule before bootstrap,

no entry/exit wrappers are necessary. These bootstrap interfaces provided as non-

generated prototypes in sys/rump/include/rump/rump.h.

3.7 Rump Kernel Root File System

Full operating systems require a root file system with persistent storage for files such

as /bin/ls and /etc/passwd. A rump kernel does not inherently require such files.

This relaxed requirement is because a rump kernel does not have a default userspace

and because client binaries are executed outside of the rump kernel. However,

specific drivers or clients may require file system support for example to open a

device, load firmware or access a file system image. In some cases, such as for

firmware files and file system images, it is likely that the backing storage for the

data to be accessed resides on the host.

We explicitly want to avoid mandating the association of persistent storage with a

rump kernel because the storage image requires setup and maintenance and would

hinder especially one-time invocations. It is not impossible to store the file system

hierarchy and data required by a specific rump kernel instance on persistent storage.

We are merely saying it is not required.

A file system driver called rumpfs was written. It is implemented in the source mod-

ule sys/rump/librump/rumpvfs/rumpfs.c. Like tmpfs, rumpfs is an in-memory

file system. Unlike tmpfs, which is as fast and as complete as possible, rumpfs is as

lightweight as possible. Most rumpfs operations have only simple implementations

and support for advanced features such as rename and NFS export has been omit-

ted. If these features are desired, an instance of tmpfs can be mounted within the

rump kernel when required. The lightweight implementation of rumpfs makes the

compiled size 3.5 times smaller than that of tmpfs.

122

By convention, file system device nodes are available in /dev. NetBSD does not

feature a device file system which dynamically creates device nodes based on the

drivers in the kernel. A standard installation of NetBSD relies on precreated de-

vice nodes residing on persistent storage. We work around this issue in two ways.

First, during bootstrap, the rump kernel VFS faction generates a selection of com-

mon device nodes such as /dev/zero. Second, we added support to various driver

attachments to create device driver nodes when the drivers are attached. These

adjustments avoid the requirement to have persistent storage mounted on /dev.

3.7.1 Extra-Terrestrial File System

The Extra-Terrestrial File System (etfs) interface provides a rump kernel with access

to files on the host. The etfs (manual page rump etfs.3 at A–20) interface is used to

register host file mappings with rumpfs. Fundamentally, the purpose of etfs is the

same as that of a hostfs available on most full system virtualization solutions. Unlike

a hostfs, which typically mounts a directory from the host, etfs is oriented towards

mapping individual files. The interface allows the registration of type and offset

translators for individual host files; a feature we will look at more closely below.

In addition, etfs only supports reading and writing files and cannot manipulate the

directory namespace on the host. This I/O-oriented approach avoids issues such as

how to map permissions on newly created hostfs files.

The mapping capability of etfs is hooked up to the lookup operation within rumpfs.

Recall, a lookup operation for a pathname will produce an in-memory file system

structure referencing the file behind that pathname. If the pathname under lookup

consists of a registered etfs key, the in-memory structure will be tagged so that

further I/O operations, i.e. read and write, will be directed to the backing file on

the host.

123

Due to how etfs is implemented as part of the file system lookup routine, the mapped

filenames is not browseable (i.e. readdir). However, it does not affect the intended

use cases such as access to firmware images, since the pathnames are hardcoded into

the kernel.

In addition to taking a lookup key and the backing file path, the etfs interface

takes an argument controlling how the mapped path is presented inside the rump

kernel. The following three options are valid for non-directory host files: regular file,

character device or block device. The main purpose of the type mapping feature is to

be able to present a regular file on the host as a block device in the rump kernel. This

mapping addresses an implementation detail in the NetBSD kernel: the only valid

backends for disk file systems are block devices. On a regular system the mapping

is done using the vnconfig utility to map regular files to /dev/vndxx block device

nodes which can be mounted 11. Avoiding vnconfig on the host is beneficial since

using it requires root privileges regardless of the permissions of the backing file.

With the etfs interface, a rump kernel requires only the minimal host privileges

which allow it to read or write the backing file and therefore more finegrained access

control is possible.

In addition to mapping files, it is possible to map directories. There are two options:

a single-level mapping or the mapping of the whole directory subtree. For example,

if /rump_a from the host is directory mapped to /a in the rump kernel, it is possible

to access /rump_a/b from /a/b in both single-level and subtree mappings. How-

ever, /rump_a/b/c is visible at /a/b/c only if the directory subtree was mapped.

Directory mappings do not allow the use of the type and offset/size translations,

but allow mappings without having to explicitly add them for every single file. The

original use case for the directory mapping functionality was to get the kernel mod-

11 For disk images with a partition table vnconfig provides multiple block devices in /dev. The
withsize variant of the etfs interface can be used to map a range of the host file corresponding to
the desired partition. The p2k and ukfs libraries’ interfaces for mounting disk file systems provide
support for this variant (manual pages at A–12 and A–38, respectively).

124

ule directory tree from /stand on the host mapped into the rump kernel namespace

so that a rump kernel could read kernel module binaries from the host.

3.8 Attaching Components

A rump kernel’s initial configuration is defined by the components that are linked in

when the rump kernel is bootstrapped. At bootstrap time, the rump kernel needs

to detect which components were included in the initial configuration and attach

them. If drivers are loaded at runtime, they need to be attached to the rump kernel

as well.

In this section we go over how loading and attaching components in a rump kernel

is similar to a regular kernel and how it is different. The host may support static

linking, dynamic linking or both. We include both alternatives in the discussion.

There are two methods for attaching components, called kernel modules and rump

components. We will discuss both and point out the differences. We start the

discussion with kernel modules.

3.8.1 Kernel Modules

In NetBSD terminology, a driver which can be loaded and unloaded at runtime is

said to be modular. The loadable binary image containing the driver is called a

kernel module, or module for short. We adapt the terminology for our discussion.

The infrastructure for supporting modular drivers on NetBSD has been available

since NetBSD 5.0 12. Some drivers offered by NetBSD are modular, and others are

12 NetBSD 5.0 was released in 2009. Versions prior to 5.0 provided kernel modules through
a different mechanism called Loadable Kernel Modules (LKM). The modules available from 5.0

125

source loading linking initiated by

builtin external external external toolchain

bootloader external kernel bootloader

file system kernel kernel syscall, kernel autoload

Table 3.3: Kernel module classification. These categories represent the types
of kernel modules that were readily present in NetBSD independent of this work.

being converted. A modular driver knows how to attach to the kernel and detach

from the kernel both when it is statically included and when it is loaded at runtime.

NetBSD divides kernel modules into three classes depending on their source and

when they are loaded. These classes are summarized in Table 3.3. Builtin modules

are linked into the kernel image when the kernel is built. The bootloader can load

kernel modules into memory at the same time as it loads the kernel image. These

modules must later be linked by the kernel during the bootstrap process. Finally,

at runtime modules must be both loaded and linked by the kernel.

The fundamental steps of loading a kernel module on NetBSD at runtime are:

1. The kernel module is loaded into the kernel’s address space.

2. The loaded code is linked with the kernel’s symbol table.

3. The module’s init routine is run. This routine informs other kernel subsys-

tems that a new module is present. For example, a file system module at a

minimum informs the VFS layer that it is possible to mount a new type of

file system.

onward are incompatible with the old LKM scheme. The reasons why LKM was retired in favor
of the new system are available from mailing list archives and beyond the scope of this document.

126

After these steps have been performed, code from the newly loaded kernel module

can be used like it had been a part of the original monolithic kernel build. Unloading

a kernel module is essentially reversing the steps.

We divide loading a module into a rump kernel in two separate cases depending

on a pivot point in the execution of the hosting process: the bootstrapping of the

rump kernel by calling rump_init(). Both the linking of the rump kernel binary

with cc ... -lrumplibs and loading libraries with dlopen() before bootstrap

are equivalent operations from our perspective. Any set of components including

the factions and the base may be added using the above methods, provided that

driver dependencies are satisfied. After the rump kernel has been bootstrapped only

modular drivers may be loaded. This limitation exists because after bootstrap only

drivers which have explicit support for it can be trusted to correctly plug themselves

into a running kernel.

init/fini

A NetBSD kernel module defines an init routine (“modcmd_init”) and a fini rou-

tine (“modcmd_fini”) using the MODULE() macro. The indicated routines attach

and detach the module with respect to the kernel. The MODULE() macro creates a

structure (struct modinfo) containing that information and places the structure

into a special .rodata section called modules. Consulting this section allows the

loading party to locate the init routine and finish initialization. The section is found

at runtime by locating the __start_section and __end_section symbols that are

generated by the linker at the starting and ending addresses of the section.

A regular kernel uses static linking. When a regular kernel is linked, all modules

sections are gathered into one in the resulting binary. The kernel consults the

contents during bootstrap to locate builtin modules and proceeds to initialize them.

127

The bootstrap procedure iterates over all of the modinfo structures. This approach

is not directly applicable to a dynamically linked environment because the dynamic

linker cannot generate a combined section like static linking can — consider e.g. how

loading and unloading would affect the section contents at runtime. Still we, need a

mechanism for locating driver init routines when the rump kernel is bootstrapped.

This task of locating the init routines is done by the rumpuser_dl_bootstrap()

hypercall. It iterates over all the dynamic shared objects present and gathers the

contents of all the modules sections individually.

A related problem we discovered was the GNU linker changing its behavior in gener-

ating the __start_section and __end_section symbols. Older versions generated

them unconditionally. In newer versions they are generated only if they are refer-

enced at link time (the “PROVIDE” mechanism). Since individual components do

not use these symbols, they do not get generated when the components are linked as

shared libraries. To address this regression, we created the component linker script

sys/rump/ldscript.rump which forces the generation of the symbols in shared

library components and restores desired behavior.

3.8.2 Modules: Loading and Linking

Runtime loading and linking in a rump kernel includes two distinct scenarios. First,

shared objects can be loaded and linked by the host’s dynamic linker. Second, static

objects can be loaded and linked by code in the rump kernel. We will discuss both

approaches next.

128

Host Dynamic Linker

Using the host’s dynamic linker requires that the component is in a format that

the dynamic linker can understand. In practice, this requirement means that the

component needs to be a shared library (ELF type ET_DYN). All loading and linking

is done by the host, but the init routine must be run by the rump kernel. Revisiting

Table 3.3, a module loaded and linked by the host is a builtin module from the

perspective of the kernel.

Since there is no system call for informing the kernel about new builtin modules

appearing at runtime, we defined a rump kernel interface for running the init routine.

The rump_pub_module_init() routine takes as an argument the pointer to the

beginning of the modules section and the number of struct modinfo pointers. An

example of client side code (adapted from lib/libukfs/ukfs.c) is presented in

Figure 3.16.

In the monolithic kernel builtin modules cannot be unloaded because they are loaded

as part of the kernel at system bootstrap time, and are not placed in separately al-

located memory. However, if builtin modules are loaded into a rump kernel with

dlopen(), it is possible to unload modules which are not busy via dlclose(). First,

the module’s fini routine should be run so that other kernel subsystems are no longer

aware of it. For running the fini routine to be possible, we added the concept of dis-

abling a builtin module to NetBSD’s kernel module support. What disabling does is

run the fini routine of the module thereby removing the functionality from the kernel.

This concept is useful also outside the scope of rump kernels, and can for example

be used to disable a driver with a newly discovered security vulnerability, perhaps

making it possible to postpone the system upgrade until a suitable time. A rump

kernel client can disable a builtin module by calling rump_pub_module_fini(). If

disabling is successful, it can proceed to call dlclose() to unload the module from

memory.

129

void *handle;

const struct modinfo *const *mi_start, *const *mi_end;

int error;

if ((handle = dlopen(fname, RTLD_LAZY|RTLD_GLOBAL)) == NULL) {

/* error branch */

}

mi_start = dlsym(handle, "__start_link_set_modules");

mi_end = dlsym(handle, "__stop_link_set_modules");

if (mi_start && mi_end) {

error = rump_pub_module_init(mi_start,

(size_t)(mi_end-mi_start));

/* ... */

} else {

/* error: not a module */

}

Figure 3.16: Loading kernel modules with dlopen(). Loading is a two-part
process. First, the module is loaded and linked using a call to the host’s dlopen()
routine. Second, the rump kernel is informed about the newly loaded module.

We stated that linking libraries with “cc -o ... -lrumpfoo” and loading them

with dlopen() before calling rump_init() are equivalent. One detail deserves

discussion: weak symbols. By default, symbols in the text segment are resolved

lazily, which means they are unresolved until they are first used. To put it another

way, the dynamic linker resolves a reference to afunction() only when, or rather

if, it is called at runtime. However, lazy resolution does not apply to variables,

including function pointers, which are resolved immediately when the program is

initially linked. Any function pointer with the initial value pointing to a weak stub

will retain the same value even if a strong version of the same symbol is later loaded

with dlopen().

Function pointers must be dynamically adjusted when the rump kernel is boot-

strapped instead of relying on weak symbols. In a rump kernel, the system call

vector was the main user of function pointers to weak symbols (the only other place

130

for (i = 0; i < SYS_NSYSENT; i++) {

void *sym;

if (rump_sysent[i].sy_flags & SYCALL_NOSYS ||

*syscallnames[i] == ’#’ ||

rump_sysent[i].sy_call == sys_nomodule)

continue;

if ((sym = rumpuser_dl_globalsym(syscallnames[i])) != NULL) {

rump_sysent[i].sy_call = sym;

}

}

Figure 3.17: Adjusting the system call vector during rump kernel boot-
strap. This adjustment makes sure that all entries in the system call vector includes
any system calls from all components which were loaded with dlopen() before the
rump kernel was bootstrapped.

is old-style networking soft interrupt handlers). The bootstrap time adjustment of

the system call vector from sys/rump/librump/rumpkern/rump.c is presented in

Figure 3.17 (the code presented in the figure is slightly adjusted for presentation

purposes).

Since any module loaded after bootstrap must be a NetBSD kernel module, the weak

symbol problem does not exist after bootstrap. Kernel modules are not allowed to

rely on weak symbols. Each kernel module’s init routine takes care of adjusting the

necessary pointer tables, for example the syscall vector in case the loaded modules

provide system calls.

The NetBSD Kernel Linker

Using the NetBSD kernel linker means letting the code in sys/kern/subr_kobj.c

handle linking. This linker is included as part of the base of a rump kernel. As

131

opposed to the host’s dynamic linker, the in-kernel linker supports only relocat-

able objects (ELF type ET_REL) and does not support dynamic objects (ELF type

ET_DYN).

Since linking is performed in the [rump] kernel, the [rump] kernel must be aware of

the addresses of the symbols it exports. For example, for the linker to be able to sat-

isfy an unresolved symbol to kmem_alloc(), it must know where the implementation

of kmem_alloc() is located in that particular instance. In a regular kernel the initial

symbol table is loaded at bootstrap time by calling the ksyms_addsyms_explicit()

or mostly equivalent ksyms_addsyms_elf() routine.

In a statically linked [rump] kernel we know the symbol addresses already when

the executable is linked. In a dynamically linked rump kernel, the exported ad-

dresses are known only at runtime after the dynamic linker has loaded them —

recall: shared libraries are position independent code and can be loaded at any ad-

dress. During bootstrap, the symbol addresses are queried and loaded as part of the

rumpuser_dl_bootstrap() hypercall. Afterwards, the kernel linker maintains the

symbol table when it links or unlinks modules.

The in-kernel linker itself works the same way as in a regular kernel. Loading a

module can be initiated either by a client by using the modctl() system call or

by the kernel when it autoloads a module to transparently provide support for a

requested service.

3.8.3 Modules: Supporting Standard Binaries

By a binary kernel module we mean a kernel module object file built for the regular

monolithic kernel and shipped with NetBSD in /stand/$arch/release/modules.

Support for binary kernel modules means these objects can be loaded and linked

132

into a rump kernel and the drivers used. This support allows a rump kernel to use

drivers for which source code is not available. Short of a full virtual machine (e.g.

QEMU), rump kernels are the only form of virtualization in NetBSD capable of

using binary kernel modules without recompilation.

There are two requirements for using binary kernel modules to be possible. First, the

kernel module must not contain any CPU instructions which cannot be executed

in unprivileged mode. As we examined in Section 3.2.2, drivers do not contain

privileged instructions. Second, the rump kernel and the host kernel must share the

same binary interface (ABI).

In practical terms, ABI compatibility means that the rump kernel code does not

provide its own headers to override system headers and therefore all the data type

definitions are the same for a regular kernel and a rump kernel. Problematic sce-

narios arise because, mainly due to historical reasons, some architecture specific

kernel interfaces are provided as macros or inline functions. This approach does not

produce a clean interface boundary, as at least part of the implementation is leaked

into the caller. From our perspective, this leakage means that providing an alternate

interface is more difficult.

Shortly before we started investigating kernel module compatibility, some x86 CPU

family headers were changed from inline/macro definitions to function interfaces by

another NetBSD developer. The commit message13 states that the change was done

to avoid ABI instability issues with kernel modules. This change essentially solved

our problem with inlines and macros. It also reinforced our belief that the anykernel

architecture follows naturally from properly structured code.

A remaining example of macro use in an interface is the pmap interface. The

pmap is the interface to the architecture dependent memory management features.

13 revision 1.146 of sys/arch/i386/include/cpu.h

133

sys/arch/x86/include/pmap.h:

#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)

sys/uvm/uvm pmap.h (MI definition):

#if !defined(pmap_is_modified)

bool pmap_is_modified(struct vm_page *);

#endif

Figure 3.18: Comparison of pmap_is_modified definitions. The definition
specific to the i386 port causes a dereference of the symbol pmap_test_attrs(),
while for all ports which do not override the definition, pmap_is_modified() is
used.

The interface specification explicitly allows some parts of the interface to be imple-

mented as macros. Figure 3.18 illustrates how the x86 pmap header overrides the

MI function interface for pmap_is_modified(). To be x86 kernel ABI compati-

ble we provide an implementation for pmap_test_attrs() in the rump kernel base

(sys/rump/librump/rumpkern/arch/i386/pmap_x86.c).

Due to the MD work required, the kernel module ABI support is currently restricted

to the AMD64 and i386 architectures. Support for AMD64 has an additional re-

striction which derives from the addressing model used by kernel code on AMD64.

Since most AMD64 instructions accept only 32bit immediate operands, and since

an OS kernel is a relatively small piece of software, kernel code is compiled with a

memory model which assumes that all symbols are within the reach of a 32bit offset.

Since immediate operands are sign extended, the values are correct when the kernel

is loaded in the upper 2GB of AMD64’s 64bit address space [65]. This address range

is not available to user processes at least on NetBSD. Instead, we used the lowest

2GB — the lowest 2GB is the same as the highest 2GB without sign-extension. As

long as the rump kernel and the binary kernel module are loaded into the low 2GB,

the binary kernel module can be used as part of the rump kernel.

134

sys/arch/x86/include/cpu.h:

#define curlwp x86_curlwp()

sys/arch/sparc64/include/{cpu,param}.h (simplified for presentation):

#define curlwp curcpu()->ci_curlwp

#define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)

#define CPUINFO_VA (KERNEND+0x018000)

#define KERNEND 0x0e0000000 /* end of kernel virtual space */

Figure 3.19: Comparison of curlwp definitions. The i386 port definition
results in a function symbol dereference, while the sparc64 port definition causes a
dereference to an absolute memory address.

For architectures which do not support the standard kernel ABI, we provide override

machine headers under the directory sys/rump/include/machine. This directory

is specified first in the include search path for rump kernel compilation, and therefore

headers contained in there override the NetBSD MD headers. Therefore, definitions

contained in the headers for that directory override the standard NetBSD defini-

tions. This way we can override problematic definitions in machine dependent code.

An example of what we consider problematic is SPARC64’s definition of curlwp,

which we previously illustrated in Figure 3.19. This approach allows us to support

rump kernels on all NetBSD architectures without having to write machine spe-

cific counterparts or edit the existing MD interface definitions. The only negative

impact is that architectures which depend on override headers cannot use binary

kernel modules and must operate with the components compiled specifically for

rump kernels.

Lastly, the kernel module must be converted to the rump kernel symbol namespace

(Section 3.2.1) before linking. This conversion can be done with the objcopy tool

similar to what is done when components are built. However, using objcopy would

require generating another copy of the same module file. Instead of the objcopy

approach, we modified the module load path in sys/kern/subr_kobj.c to contain

135

a call to kobj_renamespace() after the module has been read from storage but

before it is linked. On a regular kernel this interface is implemented by a null

operation, while in a rump kernel the call is implemented by a symbol renaming

routine in sys/rump/librump/rumpkern/kobj_rename.c. Since the translation is

done in memory, duplicate files are not required. Also, it enables us to autoload

binary modules directly from the host, as we describe next.

Autoloading

The NetBSD kernel supports autoloading of modules for extending kernel function-

ality transparently. To give an example, if mounting of an unsupported file system

type is requested, the kernel will attempt to load a kernel module containing the

appropriate driver.

Since kernel modules are loaded from a file system, loading can work only in rump

kernels with the VFS faction. Second, the modules must be present in the rump

kernel file system namespace. By default, architectures with binary kernel module

support map in the modules directory from the host using etfs (Section 3.7.1). For

example, an i386 rump kernel maps in /stand/i386/5.99.48/modules. If modules

are available in the rump kernel file system namespace, autoloading works like on a

regular kernel.

Notably, autoloading does not depend on using modules which are mapped from

the host’s file system. However, mapping avoids the extra step of having to make

the module binaries visible in the rump kernel’s file system namespace either via

mounting or run-time copying, and is therefore a good choice for the default mode

of operation.

136

3.8.4 Rump Component Init Routines

In the previous section we discussed the attachment of drivers that followed the

kernel module framework. Now we discuss the runtime attachment of drivers that

have not yet been converted to a kernel module, or code that applies to a only rump

kernel environment.

If a driver is modular, the module’s init routine should be preferred over any rump

kernel specific routines since the module framework is more generic. However, a

module’s init routine is not always enough for a rump kernel. Consider the fol-

lowing cases. On a regular system, parts of the kernel are configured by userspace

utilities. For example, the Internet address of the loopback interface (127.0.0.1)

is configured by the rc scripts instead of by the kernel. Another example is the

creation of device nodes on the file system under the directory /dev. NetBSD does

not have a dynamic device file system and device nodes are pre-created with the

MAKEDEV script. Since a rump kernel does not have an associated userland or a

persistent root file system, these configuration actions must be performed by the

rump kernel itself. A rump component init routine may be created to augment the

module init routine.

By convention, we place the rump component init routines in the component’s source

directory in a file called component.c. To define an init routine, the component

should use the RUMP_COMPONENT() macro. The use of this macro serves the same

purpose as the MODULE() macro and ensures that the init routine is automatically

called during rump kernel bootstrap. The implementation places a descriptor struc-

ture in a .rodata section called rump_components.

The RUMP_COMPONENT() macro takes as arguments a single parameter indicating

when the component should be initialized with respect to other components. This

specifier is required because of interdependencies of components that the NetBSD

137

level purpose

RUMP_COMPONENT_KERN base initialization which is done before any

factions are attached

RUMP_COMPONENT_VFS VFS components

RUMP_COMPONENT_NET basic networking, attaching of networking

domains

RUMP_COMPONENT_NET_ROUTE routing, can be done only after all domains

have attached

RUMP_COMPONENT_NET_IF interface creation (e.g. lo0)

RUMP_COMPONENT_NET_IFCFG interface configuration, must be done after

interfaces are created

RUMP_COMPONENT_DEV device components

RUMP_COMPONENT_KERN_VFS base initialization which is done after the

VFS faction has attached, e.g. base compo-

nents which do VFS operations

Table 3.4: Rump component classes. The RUMP_COMPONENT facility allows
to specify component initialization at rump kernel bootstrap time. Due to inter-
dependencies between subsystems, the component type specifies the order in which
components are initialized. The order of component initialization is from top to
bottom.

kernel code imposes. For example, the networking domains must be attached before

interfaces can be configured. It is legal (and sometimes necessary) for components

to define several init routines with different configuration times. We found it nec-

essary to define eight different levels. They are presented in Table 3.4 in order of

runtime initialization. Notably, the multitude of networking-related initialization

levels conveys the current status of the NetBSD TCP/IP stack: it is not yet modu-

lar — a modular TCP/IP stack would encode the cross-dependencies in the drivers

themselves.

138

RUMP_COMPONENT(RUMP_COMPONENT_NET)

{

DOMAINADD(inetdomain);

[omitted: attach other domains]

}

RUMP_COMPONENT(RUMP_COMPONENT_NET_IFCFG)

{

[omitted: local variables]

if ((error = socreate(AF_INET, &so, SOCK_DGRAM, 0, curlwp, NULL)) != 0)

panic("lo0 config: cannot create socket");

/* configure 127.0.0.1 for lo0 */

memset(&ia, 0, sizeof(ia));

strcpy(ia.ifra_name, "lo0");

sin = (struct sockaddr_in *)&ia.ifra_addr;

sin->sin_family = AF_INET;

sin->sin_len = sizeof(struct sockaddr_in);

sin->sin_addr.s_addr = inet_addr("127.0.0.1");

[omitted: define lo0 netmask and broadcast address]

in_control(so, SIOCAIFADDR, &ia, lo0ifp, curlwp);

soclose(so);

}

Figure 3.20: Example: selected contents of component.c for netinet. The
inet domain is attached in one constructor. The presence of the domain is required
for configuring an inet address for lo0. The interface itself is provided and created
by the net component (not shown).

139

An example of a component file is presented in Figure 3.20. The two routines spec-

ified in the component file will be automatically executed at the appropriate times

during rump kernel bootstrap so as to ensure that any dependent components have

been initialized before. The full source code for the file can be found from the

source tree path sys/rump/net/lib/libnetinet/component.c. The userspace

rc script etc/rc/network provides the equivalent functionality in a regular mono-

lithic NetBSD setup.

3.9 I/O Backends

I/O backends allow a rump kernel to access I/O resources on the host and beyond.

The vast majority of access is done via the rumpuser hypercall interface first by

opening a host device and then performing I/O via read/write. In this section

we will discuss the implementation possibilities and choices for the backends for

networking and file systems (block devices).

3.9.1 Networking

The canonical way an operating system accesses the network is via an interface

driver which communicates with a network interface device. The interface driver is

at bottom of the network stack and is invoked when all layers of network processing

in the OS have been performed. The interface itself has the capability for sending

raw networking packets which are handed to it by the OS. Sending and receiving

raw network data is regarded as a privileged operation and is not allowed for all

users. Rather, unprivileged programs only have the capability to send and receive

data via the sockets interfaces instead of deciding the full contents of a networking

packet.

140

We have three distinct cases we wish to support in rump kernels. We list them

below and then proceed to discuss their implementations in more detail. Figure 3.21

contains an illustration.

1. full network stack with raw access to the host’s network. In this

case the rump kernel can send and receive raw network packets. An example

of when this type of access is desired is an IP router. Elevated privileges

are required, as well as selecting a host device through which the network is

accessed.

2. full network stack without access to the host’s network. In this use

case we are interested in being able to send raw networking packets between

rump kernels, but are not interested in being able to access the network on

the host. Automated testing is the main use case for this type of setup. We

can fully use all of the networking stack layers, with the exception of the

physical device driver, on a fully unprivileged account without any prior host

resource allocation.

3. unprivileged use of host’s network for sending and receiving data.

In this case we are interested in the ability to send and receive data via

the host’s network, but do not care about the IP address associated with

our rump kernel. An example use case is the NFS client driver: we wish to

isolate and virtualize the handling of the NFS protocol (i.e. the file system

portion). However, we still need to transmit the data to the server. Using

a full networking stack would not only require privileges, but also require

configuring the networking stack (IP address, etc.). Using the host’s stack to

send and receive data avoids these complications.

This option is directed at client side services, since all rump kernel instances

will share the host’s port namespace, and therefore it is not possible to start

multiple instances of the same service.

141

�������	
�� �������	
��

	�����	
��	�����	
��	�����	
�� 	�����	
��

������

��	
���

������������ ������

������

��	
���

�������

���������������
����	�

������

��	
���

�������

������

��	
���

�������

��	
���

��	
��

����	��������

�	����

�����������	 �
�	

�������	
��

�������

��

Figure 3.21: Networking options for rump kernels. The virtif facility
provides a full networking stack by interfacing with the host’s tap driver. The
shmem facility uses interprocess shared memory to provide an Ethernet-like bus
to communicate between multiple rump kernels on a single host without requiring
elevated privileges on the host. The sockin facility provides unprivileged network
access for all in-kernel socket users via the host’s sockets.

Raw network access

The canonical way to access an Ethernet network from a virtualized TCP/IP stack

running in userspace is to use the tap driver with the /dev/tap device node. The tap

driver presents a file type interface to packet networking, and raw Ethernet frames

can be received and sent from an open device node using the read() and write()

calls. If the tap interface on the host is bridged with a hardware Ethernet interface,

access to a physical network is available since the hardware interface’s traffic will be

available via the tap interface as well. This tap/bridge scenario was illustrated in

Figure 3.21.

142

ifconfig tap0 create

ifconfig tap0 up

ifconfig bridge0 create

brconfig bridge0 add tap0 add re0

brconfig bridge0 up

Figure 3.22: Bridging a tap interface to the host’s re0. The allows the tap
device to send and receive network packets via re0.

The commands for bridging a tap interface on NetBSD are provided in Figure 3.22.

Note that IP addresses are not configured for the tap interface on the host.

The virt (manual page virt.4 at A–49) network interface driver we implemented uses

hypercalls to open the tap device on the host and to transmit packets via it. The

source code for the driver is located in sys/rump/net/lib/libvirtif.

Full network stack without host network access

Essentially, we need an unprivileged Ethernet-like bus. All interfaces which are

attached to the same bus will be able to talk to each other directly, while other

nodes may be reached via routers. Accessing the host’s network is possible if one

rump kernel in the network uses the virt driver and routes traffic between the rump-

only network and the real network.

One option for implementing packet distribution is to use a userland daemon which

listens on a local domain socket [26]. The client kernels use hypercalls to access

the local domain socket of the daemon. The daemon takes care of passing Ethernet

frames to the appropriate listeners. The downside of the daemon is that there is an

extra program to install, start and stop. Extra management is in conflict with the

goals of rump kernels, and that is why we chose another implementation strategy.

143

We use shared memory provided by a memory mapped file as the network bus.

The filename acts as the bus handle — all network interfaces configured to be on

the same bus use the same filename. The shmif driver (manual page shmif.4 at

A–47) in the rump kernel accesses the bus. Each driver instance accesses one bus,

so it is possible to connect a rump kernel to multiple different busses by configuring

multiple drivers. Since all nodes have full access to bus contents, the approach does

not protect against malicious nodes. As our main use case is testing, this lack of

protection is not an issue. Also, the creation of a file on the host is not an issue,

since testing is commonly carried out in a working directory which is removed after

a test case has finished executing.

The shmif driver memory maps the file and uses it as a ring buffer. The header

contains pointers to the first and last packet and a generation number, along with

bus locking information. The bus lock is a spinlock based on cross-process shared

memory. A downside to this approach is that if a rump kernel crashes while holding

the bus lock, the whole bus will halt. However, we have never encountered this

situation, so we do not consider it a serious flaw.

Sending a packet requires locking the bus and copying the contents of the packet to

the buffer. Receiving packets is based on the ability of the kqueue interface to be

able to deliver notifications to processes when a file changes. The interface driver

gets a kqueue notification, it locks the bus and analyzes the bus header. If there are

new packets for the interface on question, the driver passes them up to the IP layer.

An additional benefit of using a file is that there is always one ringbuffer’s worth of

traffic available in a postmortem situation. The shmif_dumpbus tool (manual page

shmif dumpbus.1 at A–10) can be used to convert a busfile into the pcap format

which the tcpdump tool understands. This conversion allows running a post-mortem

tcpdump on a rump kernel’s network packet trace.

144

Unprivileged use of host’s network

Some POSIX-hosted virtualization solutions such as QEMU and UML provide un-

privileged zero-configuration network access via a facility called Slirp [6]. Slirp is a

program which was popular during the dial-up era. It enables running a SLIP [102]

endpoint on top of a regular UNIX shell without a dedicated IP. Slirp works by

mapping the SLIP protocol to socket API calls. For example, when an application

on the client side makes a connection, Slirp processes the SLIP frame from the client

and notices a TCP SYN is being sent. Slirp then opens a socket and initiates a TCP

connection on it. Note that both creating a socket and opening the connection are

performed at this stage. This bundling happens because opening the socket in the

application does not cause network traffic to be sent, and therefore Slirp is unaware

of it.

Since the host side relies only on the socket API, there is no need to perform network

setup on the host. Furthermore, elevated privileges are not required for the use of

TCP and UDP. On the other hand, ICMP is not available since using it requires

access to raw sockets on the host. Also, any IP address configured on the guest will

be purely fictional, since socket traffic sent from Slirp will use the IP address of the

host Slirp is running on.

Since Slirp acts as the peer for the guest’s TCP/IP stack, it requires a complete

TCP/IP stack implementation. The code required for complete TCP/IP processing

is sizeable: over 10,000 lines of code.

Also, extra processing power is required, since the traffic needs to be converted mul-

tiple times: the guest converts the application data to IP datagrams, Slirp converts

it back into data and socket family system call parameters, and the host’s TCP/IP

stack converts input from Slirp again to IP datagrams.

145

Our implementation is different from the above. Instead of doing transport and

network layer processing in the rump kernel, we observe that regardless of what the

guest does, processing will be done by the host. At best, we would need to undo what

the guest did so that we can feed the payload data to the host’s sockets interface.

Instead of using the TCP/IP protocol suite in the rump kernel, we redefine the inet

domain, and attach our implementation at the protocol switch layer [114]. We call

this new implementation sockin to reflect it being socket inet. The attachment

to the kernel is illustrated in Figure 3.23. Attaching at the domain level means

communication from the kernel’s socket layer is done with usrreq ’s, which in turn

map to the host socket API in a very straightforward manner. For example, for

PRU_ATTACH we call socket(), for PRU_BIND we call bind(), for PRU_CONNECT

we call connect(), and so forth. The whole implementation is 500 lines of code

(including whitespace and comments), making it 1/20th of the size of Slirp.

Since sockin attaches as the Internet domain, it is mutually exclusive with the regular

TCP/IP protocol suite. Furthermore, since the interface layer is excluded, the sockin

approach is not suitable for scenarios which require full TCP/IP processing within

the virtual kernel, e.g. debugging the TCP/IP stack. In such cases one of the other

two networking models should be used. This choice may be made individually for

each rump kernel instance.

3.9.2 Disk Driver

A disk block device driver provides storage medium access and is instrumental to

the operation of disk-based file systems. The main interface is simple: a request

instructs the driver to read or write a given number of sectors at a given offset.

The disk driver queues the request and returns. The request is handled in an order

according to a set policy, e.g. the disk head elevator. The request must be handled in

a timely manner, since during the period that the disk driver is handling the request

146

DOMAIN_DEFINE(sockindomain);

const struct protosw sockinsw[] = {

{

.pr_type = SOCK_DGRAM, /* UDP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_UDP,

.pr_flags = PR_ATOMIC | PR_ADDR,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,

},{

.pr_type = SOCK_STREAM, /* TCP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_TCP,

.pr_flags = PR_CONNREQUIRED | PR_WANTRCVD | PR_LISTEN | PR_ABRTACPTDIS,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,

}};

struct domain sockindomain = {

.dom_family = PF_INET,

.dom_name = "socket_inet",

.dom_init = sockin_init,

.dom_externalize = NULL,

.dom_dispose = NULL,

.dom_protosw = sockinsw,

.dom_protoswNPROTOSW = &sockinsw[__arraycount(sockinsw)],

.dom_rtattach = rn_inithead,

.dom_rtoffset = 32,

.dom_maxrtkey = sizeof(struct sockaddr_in),

.dom_ifattach = NULL,

.dom_ifdetach = NULL,

.dom_ifqueues = { NULL },

.dom_link = { NULL },

.dom_mowner = MOWNER_INIT("",""),

.dom_rtcache = { NULL },

.dom_sockaddr_cmp = NULL

};

Figure 3.23: sockin attachment. Networking domains in NetBSD are attached
by specifying a struct domain. Notably, the sockin family attaches a PF_INET
type family since it aims to provide an alternative implementation for inet sockets.

147

the object the data belongs to (e.g. vm page) is held locked. Once the request is

complete, the driver signals the kernel that the request has been completed. In case

the caller waits for the request to complete, the request is said to be synchronous,

otherwise asynchronous.

There are two ways to provide a disk backend: buffered and unbuffered. A buffered

backend stores writes to a buffer and flushes them to the backing storage later. An

unbuffered backend will write to storage immediately. Examples of these backend

types are a regular file and a character special device, respectively.

There are three approaches to implementing the block driver using standard userspace

interfaces.

• Use read() and write() in caller context: this is the simplest method.

However, this method effectively makes all requests synchronous. Addition-

ally, this method blocks other read operations when read-ahead is being per-

formed.

• Asynchronous read/write: in this model the request is handed off to an

I/O thread. When the request has been completed, the I/O thread signals

completion.

A buffered backend must flush synchronously executed writes. The only

standard interface available for flushing is fsync(). However, it will flush all

buffered data before returning, including previous asynchronous writes. Non-

standard ranged interfaces such as fsync_range() exist, but they usually

flush at least some file metadata in addition the actual data causing extra

unnecessary I/O.

A userlevel write to an unbuffered backend goes directly to storage. The

system call will return only after the write has been completed. No flushing

is required, but since userlevel I/O is serialized on Unix, it is not possible to

148

issue another write before the first one finishes. This ordering means that a

synchronous write must block and wait until any earlier write calls have been

fully executed.

The O_DIRECT file descriptor flag causes a write on a buffered backend to

bypass cache and go directly to storage. The use of the flag also invalidates

the cache for the written range, so it is safe to use in conjunction with buffered

I/O. However, the flag is advisory. If conditions are not met, the I/O will

silently fall back to the buffer. The direct I/O method can therefore be used

only when it is certain that direct I/O applies.

• Memory-mapped I/O: this method works only for regular files. The bene-

fits are that the medium access fastpath does not involve any system calls and

that the msync() system call can be portably used to flush ranges instead of

the whole memory cache.

The file can be mapped using windows. Windows provide two advantages.

First, files larger than the available VAS can be accessed. Second, in case of

a crash, the core dump is only increased by the size of the windows instead

of the size of the entire file. We found that the number of windows does not

have a significant performance impact; we default to 16 1MB windows with

LRU recycling.

The downside of the memory mapping approach is that to overwrite data, the

contents must first be paged in, then modified, and only after that written.

The pagein step is to be contrasted to explicit I/O requests, where it is

possible to decide if a whole page is being written, and if so, skip pagein

before write.

Of the above, we found that on buffered backends O_DIRECT works best. Ranged

syncing and memory mapped I/O have roughly equal performance and full syncing

performs poorly. The disk driver question is revisited in Section 4.6.5, where we

compare rump kernel file system performance against an in-kernel mount.

149

3.10 Hardware Device Drivers: A Case of USB

Hardware device drivers require access to their counterpart to function. This coun-

terpart can either be hardware itself or software which emulates the hardware.

Throughout this section our default assumption is that the virtualized driver is con-

trolling real hardware. Hardware access means that the hardware must be present

on the system where the driver is run and that the driver has to have the appropriate

privileges to access hardware. Access is typically available only when the CPU is

operating in privileged (kernel) mode.

The kernel USB driver stack exports USB device access to userspace via the USB

generic driver, or ugen. After ugen attaches to a USB bus node, it provides ac-

cess to the attached hardware (i.e. not the entire USB bus) from userspace via the

/dev/ugen<n> device nodes. While hardware must still be present, providing access

via a device node means that any entity on the host with the appropriate privileges

to access the device node may communicate with the hardware. A key point is that

the USB protocol offered by ugen is essentially unchanged from the USB hardware

protocol. This protocol compatibility allows preexisting kernel drivers to use ugen

without protocol translation.

Our main goal with USB support was to show it is possible to do kernel hardware

device driver development in userspace. The two subproblems we had to solve were

being able to attach drivers to the ugen device nodes and to integrate with the

device autoconfiguration subsystem [108].

3.10.1 Structure of USB

At the root of the USB bus topology is a USB host controller. It controls all traffic

on the USB bus. All device access on the bus is done through the host controller

150

using an interface called USBDI, or USB Driver Interface. The role of the host

controller, along with ugen, is a detail which makes USB especially suitable for

userspace drivers: we need to implement a host controller which maps USBDI to

the ugen device node instead of having to care about all bus details.

We implemented a host controller called ugenhc. When the kernel’s device autocon-

figuration subsystem calls the ugenhc driver to probe the device, the ugenhc driver

tries to open /dev/ugen on the host. If the open is successful, the host kernel has

attached a device to the respective ugen instance and ugenhc can return a successful

match. Next, the ugenhc driver is attached in the rump kernel, along with a USB

bus and a USB root hub. The root hub driver explores the bus to see which devices

are connected to it, causing the probes to be delivered first to ugenhc and through

/dev/ugen to the host kernel and finally to the actual hardware. Figure 3.24 con-

tains a “dmesg” of a server with four ugenhc devices configured and one USB mass

media attached.

3.10.2 Defining Device Relations with Config

Device autoconfiguration [108] is used to attach hardware device drivers in the

NetBSD kernel. A configuration file determines the relationship of device drivers

in the system and the autoconfiguration subsystem attempts to attach drivers ac-

cording to the configuration. The configuration is expressed in a domain specific

language (DSL). The language is divided into two parts: a global set of descriptions

for which drivers can attach to which busses, and a system-specific configuration

of what hardware is expected to be present and how this particular configuration

allows devices to attach. For example, even though the USB bus allows a USB hub

to be attached to another hub, the device configuration might allow a USB hub to

be attached only to the host controller root hub and not other hubs.

151

golem> rump_server -lrumpvfs -lrumpdev -lrumpdev_disk -lrumpdev_usb \

-lrumpdev_ugenhc -lrumpdev_scsipi -lrumpdev_umass -v unix:///tmp/usbserv

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,

2006, 2007, 2008, 2009, 2010, 2011

The NetBSD Foundation, Inc. All rights reserved.

Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. All rights reserved.

NetBSD 5.99.48 (RUMP-ROAST) #0: Mon May 9 21:55:18 CEST 2011

pooka@pain-rustique.localhost:/usr/allsrc/cleansrc/sys/rump/librump/rumpkern

total memory = unlimited (host limit)

timecounter: Timecounters tick every 10.000 msec

timecounter: Timecounter "rumpclk" frequency 100 Hz quality 0

cpu0 at thinair0: rump virtual cpu

cpu1 at thinair0: rump virtual cpu

root file system type: rumpfs

mainbus0 (root)

ugenhc0 at mainbus0

usb0 at ugenhc0: USB revision 2.0

uhub0 at usb0: vendor 0x7275 product 0x6d70, class 9/0, rev 0.00/0.00, addr 1

uhub0: 1 port with 1 removable, self powered

ugenhc1 at mainbus0

usb1 at ugenhc1: USB revision 2.0

uhub1 at usb1: vendor 0x7275 product 0x6d70, class 9/0, rev 0.00/0.00, addr 1

uhub1: 1 port with 1 removable, self powered

ugenhc2 at mainbus0

usb2 at ugenhc2: USB revision 2.0

uhub2 at usb2: vendor 0x7275 product 0x6d70, class 9/0, rev 0.00/0.00, addr 1

uhub2: 1 port with 1 removable, self powered

ugenhc3 at mainbus0

usb3 at ugenhc3: USB revision 2.0

uhub3 at usb3: vendor 0x7275 product 0x6d70, class 9/0, rev 0.00/0.00, addr 1

uhub3: 1 port with 1 removable, self powered

Chicony Electronics Chicony Electronics, class 0/0, rev 2.00/1.00, addr 2, uhub0 port 1 not configured

AuthenTec AuthenTec, class 255/255, rev 1.10/6.21, addr 2, uhub1 port 1 not configured

umass0 at uhub2 port 1 configuration 1 interface 0

umass0: Apple Computer product 0x1301, rev 2.00/1.00, addr 2

umass0: using SCSI over Bulk-Only

scsibus0 at umass0: 2 targets, 1 lun per target

sd0 at scsibus0 target 0 lun 0: <Apple, iPod, 2.70> disk removable

sd0: 968 MB, 30 cyl, 255 head, 63 sec, 2048 bytes/sect x 495616 sectors

golem>

Figure 3.24: dmesg of USB pass-through rump kernel with mass media
attached. The mass media is probed from the host’s USB ports.

152

The kernel device configuration language and tools were originally designed for a

monolithic build. In a monolithic build one configuration is written for the entire

system. This configuration is translated into a set of C language constructs by a

tool called config, and the result is compiled into a kernel. Compiling the device

information statically into the kernel is not a suitable approach for kernel modules

(which we discussed in Section 3.8.1), since it is not possible to know at kernel

compile time which modules may be loaded at runtime.

Since the config tool lacked support for specifying the attachment relationships of

individual drivers, kernel modules typically included hand-edited tables for the spec-

ifications. Not only was creating them taxing work, but handcoding the relationships

in C lacked the sanity checks performed by the config utility. Furthermore, debug-

ging any potential errors was very cumbersome. While in the regular kernel most

drivers could be compiled in at kernel build time, a rump kernel has no built-in

drivers and therefore all drivers required the above style handcoding.

To address the issue, we added two new keywords to the config DSL. We will first

describe them and then proceed to present examples.

• The ioconf keyword instructs config to generate a runtime loadable device

configuration description. The created tables are loaded by the driver init

routine and subsequently the autoconfiguration subsystem is invoked to probe

hardware.

• The pseudo-root keyword specifies a local root for the configuration file.

By default, config will refuse a device configuration where a device attempts

to attach to an unknown parent. The pseudo-root keyword can be used

to specify a parent which is assumed to be present. If the parent is not

present at runtime, the driver will not attach. Without going into too much

detail, pseudo-roots are usually given in the most generic form possible, e.g.

153

the audio driver attaches to an audiobus interface attribute. This generic

specification means that even though not all drivers which can provide audio

are known at compile time, the audio driver will still attach as long as the

parent provides the correct interface attribute.

The example in Figure 3.25 specifies a USB mass media controller which may attach

to a USB hub. The hub may be the root hub provided by the ugenhc host controller.

The umass driver itself does not provide access to USB mass storage devices. This

access is handled by disk driver and CD/DVD driver. A configuration file specifying

their attachments is presented in Figure 3.26. The pseudo-root specified in this

configuration file also encompasses umass, since the umass bus provides both the

SCSI and ATAPI interface attributes.

It needs to be noted, though, that this example is not maximally modular: it includes

configuration information both for SCSI and ATAPI disk and CD devices. This lack

of modularity is due to the umass driver using old-style compile-time definitions (cf.

our discussion from Section 3.1). A configuration time macro signals the presence

of SCSI or ATAPI to the drivers (e.g. NATAPIBUS) and if one fails to be present the

resulting kernel fails to link. Therefore, we include both. An improved and fully

modular version of the driver would not have this compile-time limitation.

3.10.3 DMA and USB

Direct memory access (DMA) allows devices to be programmed to access memory

directly without involving the CPU. Being able to freely program the DMA controller

to read or write any physical memory address from an application is a security and

stability issue. Allowing any unprivileged process to perform DMA on any memory

address cannot be allowed in a secure and safe environment. Limiting the capability

154

$NetBSD: UMASS.ioconf,v 1.4 2010/08/23 20:49:53 pooka Exp $

#

ioconf umass

include "conf/files"

include "dev/usb/files.usb"

pseudo-root uhub*

USB Mass Storage

umass* at uhub? port ? configuration ? interface ?

Figure 3.25: USB mass storage configuration. A USB hub pseudo-root is
used to specify a node to which umass can attach.

$NetBSD: SCSIPI.ioconf,v 1.1 2010/08/23 20:49:53 pooka Exp $

#

ioconf scsipi

include "conf/files"

include "dev/scsipi/files.scsipi"

pseudo-root scsi*

pseudo-root atapi*

SCSI support

scsibus* at scsi?

sd* at scsibus? target ? lun ?

cd* at scsibus? target ? lun ?

ATAPI support

atapibus* at atapi?

sd* at atapibus? drive ? flags 0x0000

cd* at atapibus? drive ? flags 0x0000

Figure 3.26: SCSI device configuration. This configuration supports both
SCSI and APAPI disks and optical media drives.

155

can be accomplished with a hardware IOMMU unit, but at least currently they are

not available on all standard computer systems.

Due to USBDI, USB drivers do not perform DMA operations. Instead, all DMA

operations are done by the host controller on behalf of the devices. We only need

to be able to handle DMA requests in the host controller. Since the ugenhc host

controller passes requests to the host kernel’s ugen driver, there is no need to support

DMA in a rump kernel for the purpose of running unmodified USB drivers.

Drivers will still allocate DMA-safe memory to pass to the host controller so that

the host controller can perform the DMA operations. We must be able to correctly

emulate the allocation of this memory. In NetBSD, all modern device drivers use

the machine independent bus dma [107] framework for DMA memory. bus dma

specifies a set of interfaces and structures which different architectures and busses

must implement for machine independent drivers to be able to use DMA memory.

We implement the bus dma interface in sys/rump/librump/rumpdev/rumpdma.c.

3.10.4 USB Hubs

A ugen can access only the specific USB device it is attached to; this prevents for

example security issues by limiting access to one device on the USB bus. For USB

functions, such as mass memory or audio, there are no implications. However, USB

hubs expose other USB devices (functions or other USB hubs) further down the bus.

If a USB hub is attached as ugen, it is possible to detect that devices are attached

to the hub, but it is not possible to access any devices after the USB hub, including

ones directly attached to it – all ugen access will be directed at the hub. Figure 3.27

illustrates the matter in terms of a device tree, while Figure 3.28 and Figure 3.29

present the same situation in terms of kernel bootlogs. In practice dealing with hubs

is not an issue: the host needs to prioritized HUBs over ugen.

156

???

Hub1 (uhub)

keyboard

USB Host Controller

Hub0 (root)

Hub2 (ugen)

mouse umass Hub3

Figure 3.27: Attaching USB Hubs. In case a USB hub is attached by the host
kernel as ugen instead of as a hub, devices tree behind the hub will not be visible.

host probe:

ugen2 at uhub1 port 1

ugen2: OnSpec Generic USB Hub

rump kernel probe:

ugenhc2 at mainbus0

usb2 at ugenhc2: USB revision 2.0

uhub2 at usb2

uhub2: 1 port with 1 removable

uhub3 at uhub2 port 1: OnSpec Inc.

uhub3: 2 ports with 0 removable

uhub4 at uhub3 port 1: OnSpec Inc.

uhub5 at uhub3 port 2: OnSpec Inc.

Figure 3.28: USB device probe without host HUBs.

157

host probe:

uhub5 at uhub2 port 1: OnSpec Generic Hub

uhub5: 2 ports with 0 removable

ugen2 at uhub5 port 1

ugen2: Alcor Micro FD7in1

ugen3 at uhub5 port 2

ugen3: CITIZEN X1DE-USB

rump kernel probe:

ugenhc2 at mainbus0

usb2 at ugenhc2: USB revision 2.0

uhub2 at usb2

umass0 at uhub2

umass0: Alcor Micro

umass0: using SCSI over Bulk-Only

scsibus0 at umass0

sd0 at scsibus0

sd0: 93696 KB, 91 cyl, 64 head, 32 sec, 512 bytes/sect x 187392 sectors

sd1 at scsibus0

sd1: drive offline

ugenhc3 at mainbus0

usb3 at ugenhc3: USB revision 2.0

uhub3 at usb3

umass1 at uhub3

umass1: using UFI over CBI with CCI

atapibus0 at umass1

sd2 at atapibus0 drive 0

sd2: 1440 KB, 80 cyl, 2 head, 18 sec, 512 bytes/sect x 2880 sectors

Figure 3.29: USB device probe with host HUBs. The devices behind the
hub are visible.

158

����������	

��������	

� ���

	�
����	�

����
	���

�����

�����

����
�����

���
���

���

Figure 3.30: File system server. The request from the microkernel client is
transported by the host kernel to the rump kernel running providing the kernel file
system driver. Although only system calls are illustrated, page faults created by the
client may be handled by the server as well.

3.11 Microkernel Servers: Case Study with File Servers

In this section we investigate using rump kernels as microkernel style servers for file

systems. Our key motivation is to prevent a malfunctioning file system driver from

damaging the host kernel by isolating it in a userspace server.

The NetBSD framework for implementing file servers in userspace is called puffs [53].

We use puffs to attach the rump kernel file server to the host’s file system namespace.

Conceptually, after the file system has been mounted, the service works as follows: a

file system request is transported from the host kernel to the userspace server using

puffs. The server makes a local call into the rump kernel to service the request.

When servicing the request is complete, the response is returned to the host kernel

using puffs. The architecture of this solution is presented in Figure 3.30. It is worth

noting that a userlevel application is not the only possible consumer. Any VFS user,

such as an NFS server running in the host kernel, is a valid consumer in this model.

159

3.11.1 Mount Utilities and File Servers

Before a file system can be accessed, it must be mounted. Standard kernel file

systems are mounted with utilities such as mount_efs, mount_tmpfs, etc. These

utilities parse the command line arguments and call the mount() system call with

a file system specific argument structure built from the command line arguments.

One typical way of invoking these utilities is to use the mount command with an

argument specifying the file system. For example, mount -t efs /dev/sd0e /mnt

invokes mount_efs to do the actual mounting.

Instead of directly calling mount(), our server does the following: we bootstrap a

rump kernel, mount the file system in the rump kernel, and attach this process as a

puffs server to the host. All of these tasks are performed by our mount commands

counterparts: rump_efs, rump_tmpfs, etc. The usage of the rump kernel variants

is unchanged from the originals, only the name is different. To maximize integra-

tion, these file servers share the same command line argument parsing code with

the regular mount utilities. Sharing was accomplished by restructuring the mount

utilities to provide an interface for command line argument parsing and by calling

those interfaces from the rump_xfs utilities.

Sharing argument parsing means that the file servers have the same syntax. This

feature makes usage interchangeable just by altering the command name. We also

added a rump option to the mount command. For example, consider the following

command: mount -t efs -o rump /dev/sd0e /mnt. It will invoke rump_efs in-

stead of mount_efs and therefore the file system will be mounted with a rump kernel

file system driver. The rump option works also in /etc/fstab, as is illustrated in

Figure 3.31. The flag allows the use of rump kernel file servers to handle specific

mounts such as USB devices and CD/DVD by adding just one option. The figure

also demonstrates how the NFS client (same applies to SMBFS/CIFS) running in-

side a rump kernel or the host kernel are completely interchangeable since the rump

160

in-kernel mount:

/dev/sd0e /m/usb msdos rw,-u=1000

10.181.181.181:/m/dm /m/dm nfs rw,-p

equivalent rump kernel file server mount:

/dev/sd0e /m/usb msdos rw,-u=1000,rump

10.181.181.181:/m/dm /m/dm nfs rw,-p,rump

Figure 3.31: Use of -o rump in /etc/fstab. The syntax for a file system
served by an in-kernel driver or a rump kernel is the same apart from the rump flag.

kernel drivers use the sockin networking facility (Section 3.9.1) and therefore share

the same IP address with the host.

The list of kernel file system drivers available as rump servers is available in the

“SEE ALSO” section of the mount(8) manual page on a NetBSD system. Support

in 5.99.48 consists of ten disk-based and two network-based file systems.

3.11.2 Requests: The p2k Library

We attach to the host as a puffs file server, so the file system requests we receive

are in the format specified by puffs. We must feed the requests to the rump kernel

to access the backend file system. To be able to do so, we must convert the requests

to a suitable format. Since the interface offered by puffs is close to the kernel’s

VFS/vnode interface [71] we can access the rump kernel directly at the VFS/vnode

layer if we translate the puffs protocol to the VFS/vnode protocol.

We list some examples of differences between the puffs protocol and VFS/vnode

protocol that we must deal with by translations. For instance, the kernel refer-

161

int

p2k_node_read(struct puffs_usermount *pu, puffs_cookie_t opc,

uint8_t *buf, off_t offset, size_t *resid, const struct puffs_cred *pcr, int ioflag)

{

struct vnode *vp = OPC2VP(opc);

struct kauth_cred *cred = cred_create(pcr);

struct uio *uio = rump_pub_uio_setup(buf, *resid, offset, RUMPUIO_READ);

int rv;

RUMP_VOP_LOCK(vp, LK_SHARED);

rv = RUMP_VOP_READ(vp, uio, ioflag, cred);

RUMP_VOP_UNLOCK(vp);

*resid = rump_pub_uio_free(uio);

cred_destroy(cred);

return rv;

}

Figure 3.32: Implementation of p2k_node_read(). The parameters from the
puffs interface are translated to parameters expected by the kernel vnode interface.
Kernel data types are not exposed to userspace, so rump kernel public routines are
used to allocate, initialize and release such types.

ences a file using a struct vnode pointer, whereas puffs references one using a

puffs_cookie_t value. Another example of a difference is the way (address, size)-

tuples are indicated. In the kernel struct uio is used. In puffs, the same informa-

tion is passed as separate pointer and byte count parameters.

The p2k, or puffs-to-kernel, library is a request translator between the puffs userspace

file system interface and the kernel virtual file system interface (manual page p2k.3

at A–12). It also interprets the results from the kernel file systems and converts

them back to a format that puffs understands.

Most of the translation done by the p2k library is a matter of converting data

types back and forth. To give an example of p2k operation, we discuss reading a

file, which is illustrated by the p2k read routine in Figure 3.32. We see the uio

162

structure being created by rump_uio_setup() before calling the vnode operation

and being freed after the call while saving the results. We also notice the puffs credit

type being converted to the opaque kauth_cred_t type used in the kernel. This

conversion is done by the p2k library’s cred_create() routine, which in turn uses

rump_pub_cred_create().

The RUMP_VOP_LOCK() and RUMP_VOP_UNLOCK()macros in p2k to deal with NetBSD

kernel virtual file system locking protocol. They take a lock on the vnode and un-

lock it, respectively. From one perspective, locking at this level is irrelevant, since

puffs in the host kernel takes care of locking. However, omitting lock operations

from the rump kernel causes assertions such as KASSERT(VOP_ISLOCKED(vp)); in

kernel drivers to fire. Therefore, proper locking is necessary at this layer to satisfy

the driver code.

3.11.3 Unmounting

A p2k file server can be unmounted from the host’s namespace in two ways: either

using the umount command (and the unmount() system call) on the host or by

killing the file server. The prior method is preferred, since it gives the kernel cache

in puffs a chance to flush all data. It also allows the p2k library to call the rump

kernel and ask it to unmount the file system and mark it clean.

3.12 Remote Clients

Remote clients are clients which are disjoint from the rump kernel. In a POSIX

system, they are running in different processes, either on the same host or not. The

advantage of a remote client is that the relationship between the remote client and a

rump kernel is much like that of a regular kernel and a process: the clients start up,

163

����������	

����
���	��

����

�����������	�

�������	��

�����������

�������

�����������

��������	��

����������	�

����

�����������	�

����������	�

����

�����������	�

����

������

�������	��

�������

������

�����������

����

Figure 3.33: Remote client architecture. Remote clients communicate with
the rump kernel through the rumpclient library. The client and rump kernel may
or may not reside on the same host.

run and exit independently. This independence makes it straightforward to adapt

existing programs as rump kernel clients, and as we will see later in this section,

allows existing binaries to use services from a rump kernel without recomplication.

For example, it is possible to configure an unmodified Firefox browser to use a

TCP/IP stack provided by a rump kernel.

The general architecture of remote rump clients is illustrated in Figure 3.33. It is

explained in detail in the following sections.

Communication is done using host sockets. Currently, two protocol families can

be used for client-server communication: Unix domain sockets and TCP/IP. The

advantages of Unix domain sockets are that the available namespace is virtually

unlimited and it is easy to bind a private server in a local directory without fear of

a resource conflict. Also, it is possible to use host credentials (via chmod) to control

who has access to the server. The TCP method does not have these advantages —

in the general case it is not possible to guarantee that a predefined port is not in use

— but TCP does work over the Internet. Generally speaking, Unix domain sockets

should be used when the server and client reside on the same host.

164

3.12.1 Client-Kernel Locators

Before the client is able to contact the rump kernel, the client must know where the

kernel is located. In the traditional Unix model locating the kernel is simple, since

there is one unambiguous kernel (“host kernel”) which is the same for every process.

However, remote clients can communicate with any rump kernel which may or may

not reside on the same machine.

The client and rump kernel find each other by specifying a location using a URL.

For example, the URL tcp://1.2.3.4:4321/ specifies a TCP connection on IP

address 1.2.3.4 port 4321, while unix://serversocket specifies a UNIX domain

socket relative to the current working directory.

While service discovery models [21] are possible, they are beyond the scope of this

dissertation, and manual configuration is currently required. In most cases, such

as for all the rump kernel using tests we have written, the URL can simply be

hardcoded.

3.12.2 The Client

A remote client, unlike a local client, is not linked against the rump kernel. Instead,

it is linked against librumpclient (manual page rumpclient.3 at A–27). Linking can

happen either when a program is compiled or when it is run. The former approach

is usually used when writing programs with explicit rump kernel knowledge. The

latter approach uses the dynamic linker and can be used for programs which were

written and compiled without knowledge of a rump kernel.

The rumpclient library provides support for connecting to a rump kernel and ab-

stracts communication between the client and the server. Furthermore, it provides

165

function interfaces for system calls, as described in Section 3.6.1. Other interfaces

such as the VFS interfaces and rump kernel private interfaces are not provided, since

they do not implement the appropriate access control checks for remote clients.

The librumpclient library supports both singlethreaded and multithreaded clients.

Multithreaded clients are supported transparently, i.e. all the necessary synchroniza-

tion is handled internally by the library. The librumpclient library also supports

persistent operation, meaning it can be configured to automatically try to recon-

nect in case the connection with the server is severed. Notably, as a reconnect may

mean for instance that the kernel server crashed and was restarted, the applications

using this facility need to be resilient against kernel state loss. One good example

is Firefox, which requires only a page reload in case a TCP/IP server was killed in

the middle of loading a page.

The server URL is read from the RUMP_SERVER environment variable. The environ-

ment is used instead of a command line parameter so that applications which were

not originally written to be rump clients can still be used as rump clients without

code changes.

3.12.3 The Server

A rump kernel can be configured as a server by calling the rump kernel interface

rump_init_server(url) from the local client. The argument the routine takes is

a URL indicating an address the server will be listening to. The server will handle

remote requests automatically in the background. Initializing the serverside will not

affect the local client’s ability to communicate with the rump kernel.

The rump_server daemon (manual page rump server.1 at A–5) is provided with

NetBSD with the standard distribution for serving remote clients. The factions and

166

A tmpfs server listening on INADDR_ANY port 12765:

$ rump_server -lrumpvfs -lrumpfs_tmpfs tcp://0:12765/

Map 1GB host file dk.img as the block device /dev/dk using etfs, specify local

domain URL using a relative path:

$ rump_allserver -d key=/dev/dk,hostpath=dk.img,size=1g unix://dkserv

A TCP/IP server with the if_virt driver, specify socket using an absolute path:

$ rump_server -lrumpnet -lrumpnet_net -lrumpnet_netinet \

-lrumpnet_virt unix:///tmp/tcpip

Figure 3.34: Example invocations lines of rump_server. All invocations
create rump kernels listening for clients at different addresses with different capa-
bilities.

drivers supported by the server are given as command line arguments and dynam-

ically loaded by the server. The variant rump_allserver includes all rump kernel

components that were available at the time that the system was built. Figure 3.34

illustrates server usage with examples.

The data transport and protocol layer for remote clients is implemented entirely

within the hypervisor. Because host sockets were used already, those layers were

convenient to implement there. This implementation locus means that the kernel

side of the server and the hypercall layer need to communicate with each other. The

interfaces used for communication are a straightforward extension of the communi-

cation protocol we will discuss in detail next (Section 3.12.4); we will not discuss

the interfaces. The interfaces are defined in sys/rump/include/rump/rumpuser.h

and are implemented in lib/librumpuser/rumpuser_sp.c for the hypervisor and

sys/rump/librump/rumpkern/rump.c for the kernel.

167

3.12.4 Communication Protocol

The communication protocol between the client and server is a protocol where the

main feature is a system call. The rest of the requests are essentially support

features for the system call. To better understand the request types, let us first

look at an example of what happens when a NetBSD process requests the opening

of /dev/null from a regular kernel.

1. The user process calls the routine open("/dev/null", O_RDWR);. This rou-

tine resolves to the system call stub in libc.

2. The libc system call stub performs a system call trap causing a context switch

to the kernel. The calling userspace thread is suspended until the system call

returns.

3. The kernel receives the request, examines the arguments and determines

which system call the request was for. It begins to service the system call.

4. The path of the file to be opened is required by the kernel. By convention,

only a pointer to the path string is passed as part of the arguments. The

string is copied in from the process address space only if it is required. The

copyinstr() routine is called to copy the pathname from the user process

address space to the kernel address space.

5. The file system code does a lookup for the pathname. If the file is found,

and the calling process has permissions to open it in the mode specified,

and various other conditions are met, the kernel allocates a file descriptor

for the current process and sets it to reference a file system node describing

/dev/null.

6. The system call returns the fd (or error along with errno) to the user process

and the user process continues execution.

168

Request Arguments Response Description

handshake type (guest,

authenticated or

exec), name of

client program

success/fail Establish or update a process con-

text in the rump kernel.

syscall syscall number,

syscall args

return value, er-

rno

Execute a system call.

prefork none authentication

cookie

Establish a fork authentication

cookie.

Table 3.5: Requests from the client to the kernel.

We created a communication protocol between the client and rump kernel which

supports interactions of the above type. The request types from the client to the

kernel are presented and explained in Table 3.5 and the requests from the kernel to

the client are presented and explained in Table 3.6.

Now that we know the communication protocol, we will compare the operations

executed in the regular case and in the rump remote client case side-by-side. The

first part of the comparison is in Table 3.7 and the second part is in Table 3.8.

3.12.5 Of Processes and Inheritance

The process context for a remote client is controlled by the rump kernel server and

the rump lwproc interfaces available for local clients (manual page rump lwproc.3

at A–23) cannot be used by remote clients. Whenever a client connects to a rump

kernel and performs a handshake, a new process context is created in the rump

kernel. All requests executed through the same connection are executed on the

same rump kernel process context.

169

Request Arguments Response Description

copyin +

copyinstr

client address

space pointer,

length

data The client sends data from its ad-

dress space to the kernel. The

“str” variant copies up to the

length of a null-terminated string,

i.e. length only determines the

maximum. The actual length

is implicitly specified by the re-

sponse frame length.

copyout +

copyoutstr

address, data,

data length

none (kernel

does not expect

a response)

Requests the client to copy the at-

tached data to the given address

in the client’s address space.

anonmmap mmap size address anon

memory was

mapped at

Requests the client to mmap a

window of anonymous memory.

This request is used by drivers

which allocate userspace memory

before performing a copyout.

raise signal number none (kernel

does not expect

a response)

Deliver a host signal to the client

process. This request is used to

implement the rump“raise”signal

model.

Table 3.6: Requests from the kernel to the client.

170

Host syscall rump syscall

1. open("/dev/null", O_RDWR) 1. rump_sys_open("/dev/null",

O_RDWR) is called

2. libc executes the syscall trap. 2. librumpclient marshalls the argu-

ments and sends a“syscall”request

over the communication socket.

the calling thread is suspended un-

til the system call returns.

3. syscall trap handler calls

sys_open()

3. rump kernel receives syscall re-

quest and uses a thread associated

with the process to handle request

4. thread is scheduled, determines

that sys_open() needs to be

called, and proceeds to call it.

4. pathname lookup routine calls

copyinstr()

5. pathname lookup routine needs

the path string and calls

copyinstr() which sends a

copyinstr request to the client

6. client receives copyinstr request

and responds with string datum

7. kernel server receives a response to

its copyinstr request and copies the

string datum to a local buffer

Table 3.7: Step-by-step comparison of host and rump kernel syscalls,
part 1/2.

171

Host syscall rump syscall

5. the lookup routine runs and al-

locates a file descriptor referenc-

ing a backing file system node for

/dev/null

8. same

6. the system call returns the fd 9. the kernel sends the return values

and errno to the client

10. the client receives the response to

the syscall and unblocks the thread

which executed this particular sys-

tem call

11. the calling thread wakes up, sets

errno (if necessary) and returns

with the return value received from

the kernel

Table 3.8: Step-by-step comparison of host and rump kernel syscalls,
part 2/2.

172

A client’s initial connection to a rump kernel is like a login: the client is given a rump

kernel process context with the specified credentials. After the initial connection,

the client builds its own process family tree. Whenever a client performs a fork after

the initial connection, the child must inherit both the properties of the host process

and the rump kernel process to ensure correct operation. When a client performs

exec, the process context must not change.

Meanwhile, if another client, perhaps but not necessarily from another physical

machine, connects to the rump kernel server, it gets its own pristine login process

and starts building its own process family tree through forks.

By default, all new connections currently get root credentials by performing a guest

handshake. We recognize that root credentials are not always optimal in all circum-

stances, and an alternative could be a system where cryptographic verification is

used to determine the rump kernel credentials of a remote client. Possible examples

include Kerberos [79] and TLS [97] with clientside certificates. Implementing any of

these mechanisms was beyond the scope of our work.

When a connection is severed, the rump kernel treats the process context as a

killed process. The rump kernel wakes up any and all threads associated with the

connection currently blocking inside the rump kernel, waits for them to exit, and

then proceeds to free all resources associated with the process.

3.12.6 System Call Hijacking

The only difference in calling convention between a rump client syscall function and

the corresponding host syscall function in libc is the rump_sys-prefix for a rump

syscall. It is possible to select the entity the service is requested from by adding or

removing a prefix from the system call name. The benefit of explicit source-level

173

�������	�
��

������������������

���� �������������

	��������� ����������

������
����
����
���
���

������
����
����
���
���

��������

������

����

���� ��������

��������

������

�������������

Figure 3.35: System call hijacking. The rumphijack library intercepts system
calls and determines whether the syscall request should be sent to the rump kernel
or the host kernel for processing.

selection is that there is full control of which system call goes where. The downside

is that it requires source level control and compilation. To use unmodified binaries,

we must come up with a policy which determines which kernel handles each syscall.

A key point for us to observe is that in Unix a function call API in libc (e.g.

open(const char *path, int flags, mode_t mode)) exists for all system calls.

The libc stub abstracts the details of user-kernel communication. The abstraction

makes it possible to change the nature of the call just by intercepting the call

to open() and directing it elsewhere. If the details of making the request were

embedded in the application itself, it would be much more difficult to override them

to call a remote rump kernel instead of the local host kernel.

The rumphijack library (lib/librumphijack, Figure 3.35) provides a mechanism

and a configurable policy for unmodified applications to capture and route part of

174

their system calls to a rump kernel instead of the host kernel. Rumphijack is based

on the technique of using LD_PRELOAD to instruct the dynamic linker to load a

library so that all unresolved symbols are primarily resolved from that library. The

library provides its own system call stubs that select which kernel the call should

go to. While the level of granularity is not per-call like in the explicit source control

method, using the classification technique we present below, this approach works in

practice for all applications.

From the perspective of librumphijack, system calls can be divided into roughly the

following categories. These categories determine where each individual system call

is routed to.

• purely host kernel calls: These system calls are served only by the host

kernel and never the rump kernel, but nevertheless require action on behalf

of the rump kernel context. Examples include fork() and execve().

• create an object: the system call creates a file descriptor. Examples include

open() and accept().

• decide the kernel based on an object identifier: the system call is

directed either to the host kernel or rump kernel based on a file descriptor

value or pathname.

• globally pre-directed to one kernel: the selection of kernel is based on

user configuration rather than parameter examination. For example, calls to

socket() with the same parameters will always be directed to a predefined

kernel, since there is no per-call information available.

• require both kernels to be called simultaneously: the asynchronous

I/O calls (select(), poll() and variants) pass in a list of descriptors which

may contain file descriptors from both kernels.

175

Note: the categories are not mutually exclusive. For example, socket() and open()

belong to several of them. In case open() is given a filename under a configurable

prefix (e.g. /rump), it will call the rump kernel to handle the request and new rump

kernel file descriptor will be returned to the application as a result.

The rest of this section describes advanced rumphijack features beyond simple sys-

tem call routing. Nevertheless, those features are commonly required for supporting

many real-world applications.

File Descriptor Games

A rump kernel file descriptor is differentiated from a host kernel file descriptor by the

numerical value of the file descriptor. Before a rump kernel descriptor is returned

to the application, it is offset by a per-process configurable constant. Generally

speaking, if the file descriptor parameter for a system call is greater than the offset,

it belongs to the rump kernel and the system call should be directed to the rump

kernel.

The default offset was selected to be half of select()’s FD_SETSIZE and is 128.

This value allows almost all applications to work, including historic ones that use

select() and modern ones that use a fairly large number of file descriptors. In

case the host returns a file descriptor which is equal to or greater than the process’s

hijack fd offset, rumphijack closes the fd and sets errno to ENFILE.

A problem arises from the dup2() interface which does not fit the above model: in

dup2 the new file descriptor number is decided by the caller. For example, a common

scheme used e.g. by certain web servers is accepting a connection on a socket, forking

a handler, and dup2’ing the accepted socket connection to stdin/stdout. The new

file descriptor must belong to the same kernel as the old descriptor, but in case of

176

stdin/stdout, the new file descriptor numbers always signify the host kernel. To

solve this conflict, we maintain a file descriptor aliasing table which keeps track of

cross-kernel dup2’s. There are a number of details involved, such as making sure that

closing the original fd does not close the dup2’d fd in the different kernel namespace,

and making sure we do not return a host descriptor with a value duplicate to one in

the dup2 space. In fact, a large portion of the code in the hijack library exists solely

to deal with complexities related to dup2. All of the complexity is fully contained

within the hijack and rumpclient libraries and it is not visible to applications using

the libraries.

Another issue we must address is protecting the file descriptors used by rumpclient.

Currently they include the communication socket file descriptor and the kqueue

descriptor which rumpclient uses for I/O multiplexing. Recall, the socket connection

between the remote client and the rump kernel associates the remote client with a

rump kernel process context, and if the connection is lost all process state such

as file descriptors are lost with it. In some scenarios applications want to close file

descriptors en masse. One example of such a scenario is when an application prepares

to call exec(). There are two approaches to mass closing: either calling close() in a

loop up to an arbitrary descriptor number or calling closefrom() (which essentially

calls fcntl(F_DUPFD)). Since the application never sees the rumpclient internal file

descriptors and hence should not close them, we take precautions to prevent it from

happening. The hijack library notifies rumpclient every time a descriptor is going

to be closed. There are two distinct cases:

• A call closes an individual host descriptor. In addition to the obvious close()

call, dup2() also belongs into this category. Here we inform rumpclient of a

descriptor being closed and in case it is a rumpclient descriptor, it is dup’d

to another value, after which the hijack library can proceed to invalidate the

file descriptor by calling close or dup2.

177

• The closefrom() routine closes all file descriptors equal to or greater than

the given descriptor number. We handle this operation in two stages. First,

we loop and call close() for all descriptors which are not internal to rump-

client. After we reach the highest rumpclient internal descriptor we can

execute a host closefrom() using one greater than the highest rumpclient

descriptor as the argument. Next, we execute closefrom() for the rump

kernel, but this time we avoid closing any dup2’d file descriptors.

Finally, we must deal with asynchronous I/O calls that may have to call both kernels.

For example, in networking clients it is common to pass in one descriptor for the

client’s console and one descriptor for the network socket. Since we do not have a

priori knowledge of which kernel will have activity first, we must query both. This

simultaneous query is done by creating a thread to call the second kernel. Since

only one kernel is likely to produce activity, we also add one host kernel pipe and

one rump kernel pipe to the file descriptor sets being polled. After the operation

returns from one kernel, we write to the pipe of the other kernel to signal the end

of the operation, join the thread, collect the results, and return.

3.12.7 A Tale of Two Syscalls: fork() and execve()

The fork() and execve() system calls require extra consideration both on the client

side and the rump kernel side due to their special semantics. We must preserve those

semantics both for the client application and the rump kernel context. While these

operations are implemented in librumpclient, they are most relevant when running

hijacked clients. Many programs such as the OpenSSH [90] sshd or the mutt [83]

MUA fail to operate as remote rump clients if support is handled incorrectly.

178

Supporting fork()

Recall, the fork() system call creates a copy of the calling process which essentially

differs only by the process ID number. After forking, the child process shares the

parent’s file descriptor table and therefore it shares the rumpclient socket. A shared

connection cannot be used, since use of the same socket from multiple independent

processes will result in corrupt transmissions. Another connection must be initiated

by the child. However, as stated earlier, a new connection is treated like an initial

login and means that the child will not have access to the parent’s rump kernel

state, including file descriptors. Applications such as web servers and shell input

redirection depend on the behavior of file descriptors being correctly preserved over

fork.

We solve the issue by dividing forking into three phases. First, the forking process

informs the rump kernel that it is about to fork. The rump kernel does a fork of the

rump process context, generates a cookie and sends that to the client as a response.

Next, the client process calls the host’s fork routine. The parent returns immedi-

ately to the caller. The newly created child establishes its own connection to the

rump kernel server. It uses the cookie to perform a handshake where it indicates

it wants to attach to the rump kernel process the parent forked off earlier. Only

then does the child return to the caller. Both host and rump process contexts retain

expected semantics over a host process fork. The client side fork() implementa-

tion is illustrated in Figure 3.36. A hijacked fork call is a simple case of calling

rumpclient_fork().

Supporting execve()

The requirements of exec are the “opposite” of fork. Instead of creating a new

process, the same rump process context must be preserved over a host’s exec call.

179

pid_t

rumpclient_fork()

{

pid_t rv;

cookie = rumpclient_prefork();

switch ((rv = host_fork())) {

case 0:

rumpclient_fork_init(cookie);

break;

default:

break;

case -1:

error();

}

return rv;

}

Figure 3.36: Implementation of fork() on the client side. The prefork
cookie is used to connect the newly created child to the parent when the new remote
process performs the rump kernel handshake.

Since calling exec replaces the memory image of a process with that of a new one

from disk, we lose all of the rump client state in memory. Important state in memory

includes for example rumpclient’s file descriptors. For hijacked clients the clearing

of memory additionally means we will lose e.g. the dup2 file descriptor alias table.

Recall, though, that exec closes only those file descriptors which are set FD_CLOEXEC.

Before calling the host’s execve, we first augment the environment to contain all

the rump client state; librumpclient and librumphijack have their own sets of state

as was pointed out above. After that, execve() is called with the augmented

environment. When the rump client constructor runs, it will search the environment

for these variables. If found, it will initialize state from them instead of starting from

a pristine state.

180

As with fork, most of the kernel work is done by the host system. However, there is

also some rump kernel state we must attend to when exec is called. First, the process

command name changes to whichever process was exec’d. Furthermore, although

file descriptors are in general not closed during exec, ones marked with FD_CLOEXEC

should be closed, and we call the appropriate kernel routine to have them closed.

The semantics of exec also require that only the calling thread is present after exec.

While the host takes care of removing all threads from the client process, some

of them might have been blocking in the rump kernel and will continue to block

until their condition has been satisfied. If they alter the rump kernel state after

their blocking completes at an arbitrary time in the future, incorrect operation may

result. Therefore, during exec we signal all lwps belonging to the exec’ing process

that they should exit immediately. We complete the exec handshake only after all

such lwps have returned from the rump kernel.

3.12.8 Performance

Figure 3.37 shows the amount of time it takes to perform 100,000 system call requests

as a function of the amount of copyin/out pairs required for servicing the system

call. A system call which does nothing except copyin/out on 64 byte buffers was

created for the experiment. The measurement was done both for a local client and

a remote client accessing a server hosted on the same system. We see that for

the remote client copyin/out dominates the cost — if the system call request itself

is interpreted as a copyin and copyout operation, the time is a linear function of

the number of copyin/out operations. In contrast, for the local case the duration

increases from 0.34s to 0.43s when going from 0 to 8 copyin/out requests. This data

shows that copyin/out I/O is a factor in total cost for local calls, but it does not

have a dominant impact. Therefore, we conclude that the IPC between the client

and server is the dominating cost for remote system calls.

181

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8

tim
e

(s
)

copyin/out pairs

remote (unix domain)

local

Figure 3.37: Local vs. Remote system call overhead. The cost of remote
system calls is dominated by the amount of client-kernel roundtrips necessary due
to copying data in and out. For local clients the cost of a system call is virtually
independent of the amount of copies in and out.

The straightforward optimization which does not involve modifying the host system

is to decrease the number of remote copyin/out requests required for completing a

syscall request. This decrease can be reached in a fairly straightforward manner by

augmenting the syscall definitions and pre-arranging parameters so that pre-known

copyin/out I/O can be avoided. Possible options are piggy-backing the data copy

as part of syscall request/response, or by using interprocess shared memory in case

the client and server are on the same machine. For example, the open() syscall

will, barring an early error, always copy in the pathname string. We can make the

syscall code set things up so that the pathname copyin is immediately satisfied with

a local copy operation instead of a remote request and the associated round trip

delay.

182

Anecdotal analysis

For several weeks the author did his day-to-day web browsing with Firefox acting as

a remote client for a rump kernel TCP/IP stack. There was no human-perceivable

difference between the performance of a rump networking stack and the host net-

working stack, either in bulk downloads of speeds up to 10Mbps, flash content or

interactive page loads. The only human-perceivable difference was the ability to re-

boot the TCP/IP stack from under the browser without having to close the browser

first.

Microbenchmarks show that remote system calls are orders of magnitude slower than

local system calls especially due to copyin/out I/O. However, this“macrobenchmark”

suggests that others factors in real application hugely mitigate this performance dif-

ference. We conclude that without a specific application use case any optimizations

are premature. In the event of such use cases emerging, optimizations know from

literature [14, 63] may be attempted.

3.13 Summary

We began this chapter by describing the cornerstone techniques for how to convert

an existing monolithic kernel codebase into an anykernel. To retain the existing

properties of the monolithic kernel, we did not introduce any new technologies,

and adjusted the codebase using the following techniques: code moving, function

pointers and weak symbols. These techniques were enough to convert the NetBSD

kernel into an anykernel with an independent base and orthogonal factions.

We went over the various rump kernel implementation aspects such as implicit thread

creation and the CPU scheduler. After that, we studied the effects that feature

183

relegation has on the implementation of the virtual memory subsystem and locking

facilities. The rest of the chapter discussed various segments of the implementation,

such as microkernel style file servers with rump kernel backends, USB hardware

drivers and accessing rump kernels over the Internet.

We found out that many of the adjustments we did to NetBSD pertaining to the

subject matter had a wider benefit. One example was the addition of the ioconf

and pseudo-root keywords to a config file. This improvement simplified creating

kernel modules out of device drivers and has been used by dozens of non rump

kernel drivers since. Another modification we did was the ability to disable builtin

kernel modules. This modification made it possible to disable drivers with newly

discovered vulnerabilities without having to immediately reboot the system. These

out-of-band benefits show that not only were our modifications useful in addressing

our problem set, but they also benefit the original monolithic kernel.

184

185

4 Evaluation

This chapter evaluated the work in a broad scope. First, evaluate the general feasi-

bility of the implementation. After that, we evaluate rump kernels as the solutions

for the motivating problems we gave in Section 1.1: development, security and reuse

of kernel code in applications. Finally, we look at performance metrics to measure

that rump kernels perform better than other solutions for our use cases.

4.1 Feasibility

The feasibility of an implementation needs to take into account both the initial effort

and the maintenance effort. Both must be reasonably low for an implementation to

be feasible over a period of time.

feasibility =
1

implementation+maintenance
(4.1)

4.1.1 Implementation Effort

To measure implementation effort we compare the size of the supported driver code-

base against amount of code required for rump kernel support. The complete reim-

plemented part along with a selection of supported drivers is presented in Figure 4.1.

The extracted drivers depicted represent only a fraction of the total supported

drivers. In most cases, smaller drivers were included and larger ones were left out;

for example, the omitted FFS driver is three times the size of the FAT driver. From

this data we observe that the amount of driver code supported by a rump kernel is

far greater than the amount of code implemented for supporting them.

186

user kern net

S
L

O
C

0

1000

2000

3000

4000

5000

6000

7000

8000

b
a

s
e

th
re

a
d

in
g

 a
n

d
 s

y
n

c
h

ro
n

iz
a

ti
o

n

h
o

s
t

s
o

c
k
e

ts

b
a

s
e

m
is

c
 e

m
u

la
ti
o

n

in
te

rr
u

p
ts

 a
n

d
 c

lo
c
k

s
y
n

c
h

ro
n

iz
a

ti
o

n

v
m

re
m

o
te

 s
y
s
te

m
 c

a
lls

m
e

m
o

ry
 a

llo
c
a

ti
o

n

fi
le

 d
e

s
c
ri
p

to
rs

m
is

c

a
s
y
n

c
 i
/o

ti
m

e

d
e

v
ic

e
 g

lu
e

a
u

th
e

n
ti
c
a

ti
o

n

k
e

rn
e

l
m

ib

a
to

m
ic

 o
p

s

s
y
s
c
a

ll
s
tu

b
s

v
m

g
lu

e

ta
p

 i
n

te
rf

a
c
e

s
h

m
 i
n

te
rf

a
c
e

s
o

c
k
e

ts

n
e

tw
o

rk
in

g
 s

y
s
c
a

lls

n
e

tw
o

rk
 b

u
ff

e
rs

ro
u

ti
n

g

m
is

c

if
 f

ra
m

e
w

o
rk

ra
w

 n
e

tw
o

rk
in

g

a
rp ip

ip
v
6

ip
v
6

 s
u

b
ro

u
ti
n

e
s

n
e

ig
h

b
o

u
r

d
is

c
o

ic
m

p

tc
p

u
d

p

u
n

ix
 d

o
m

a
in

vfs dev

S
L

O
C

0

1000

2000

3000

4000

5000

6000

7000

8000

v
ir
tu

a
l
b

lo
c
k
 d

e
v
ic

e

v
m

 g
lu

e

ru
m

p
 r

o
o

tf
s

b
a

s
ic

 i
n

te
rf

a
c
e

s

v
fs

 c
a

c
h

e
s

n
a

m
e

i

fs
 s

y
s
c
a

lls

b
u

ff
e

r
p

ri
o

ri
ti
e

s

v
fs

 s
u

b
r

g
e

n
e

ri
c
 j
o

u
rn

a
lli

n
g

g
e

n
e

ri
c
 f

ile
 s

y
s
te

m
 c

o
d

e

v
n

o
d

e
 p

a
g

e
r

v
m

 v
n

o
d

e
 r

o
u

ti
n

e
s

F
A

T

tm
p

fs

c
d

9
6

6
0

e
fs

 (
r/

o
)

g
lu

e

w
la

n
−

a
t−

u
s
b

 a
u

to
c
o

n
f

g
lu

e

rn
d

 a
tt

a
c
h

m
e

n
t

ra
id

fr
a

m
e

 a
tt

a
c
h

m
e

n
t

/d
e

v
/s

m
b

 a
tt

a
c
h

m
e

n
t

c
g

d
 (

c
ry

p
to

d
is

k
)

a
tt

a
c
h

m
e

n
t

s
c
s
i−

a
t−

u
m

a
s
s
 a

u
to

c
o

n
f

g
lu

e

ru
m

p
 u

s
b

 h
o

s
t

c
o

n
tr

o
lle

r

d
e

v
ic

e
 a

u
to

c
o

n
f

8
0

2
.1

1
 c

ry
p

to

8
0

2
.1

1
 i
n

p
u

t/
o

u
tp

u
t

8
0

2
.1

1
 i
o

c
tl

8
0

2
.1

1
 m

is
c

s
c
s
i
m

id
la

y
e

r

s
c
s
i
d

is
k

u
s
b

u
m

a
s
s

rn
d

ra
id

fr
a

m
e

1

ra
id

fr
a

m
e

2

ra
id

fr
a

m
e

3

ra
id

fr
a

m
e

4

/d
e

v
/s

m
b

c
g

d
 (

c
ry

p
to

d
is

k
)

implemented extracted

Figure 4.1: Source Lines Of Code in rump kernel and selected drivers.
The amount of code usable without modification is vastly greater than the amount
of support code necessary. A majority of the drivers tested to work in rump kernels
is not included in the figure due to the limited space available for presentation. The
size difference between rump kernel specific support code and drivers is evident.

187

rump Xen UML Alpha AMD64 i386

k
L

o
C

0

10

20

30

40

50

kLoC

Figure 4.2: Lines of code for platform support. All listed platforms with the
exception of User Mode Linux (UML) are NetBSD platforms. The figure for UML
was measured from the Linux kernel sources.

To get another perspective on the amount of code, the total number of lines for code

and headers under sys/rump is 16k. This directory not only contains the code im-

plemented for the rump kernel base and factions, but also the drivers implemented

for a rump kernel (e.g. the if virt networking interface which was described in Sec-

tion 3.9.1). Out of the code in sys/rump, 6k lines are autogenerated (system call

wrappers alone are 4.5k lines of autogenerated code), leaving 10k lines as imple-

mented code. From the remaining 10k lines, a fifth (2k lines) consists of the rump

root file system (Section 3.7) and the USB ugen host controller (Section 3.10).

For comparison, we present the amount of code for full kernel support in Figure 4.2.

Given that architecture support is commonly developed with the copy-and-modify

approach, looking purely at the figure for lines of code does not give a full estimate

of implementation effort. For example, normal architectures include the standard

MI VM and interface it to the platform with the pmap module. In contrast, in a

rump kernel we provide a partial rewrite for the MI VM interfaces. However, these

comparisons give us a rough idea of how much code is required.

188

Total commits to the kernel 9,640

Total commits to sys/rump 438

Commits touching only sys/rump 347

Build fixes 17

Unique committers 30

Table 4.1: Commit log analysis for sys/rump Aug 2007 - Dec 2008.

4.1.2 Maintenance Effort

After support has been implemented, it must be maintained or it will bitrot due to

code in the rest of the system changing over time. An example of this maintenance in

a rump kernel is as follows: an UVM interface is changed, but the implementation

in the rump kernel is not changed. If this change is committed, the rump VM

implementation still uses the old interface and will fail to build. Here we look at how

often the build of NetBSD was broken due to unrelated changes being committed

and causing problems with rump kernels.

To evaluate build breakage, we manually examined NetBSD commit logs from Au-

gust 2007 to December 2008. Support for rump kernels was initially committed in

August 2007, so this period represents the first 17 months of maintenance effort, and

was the most volatile period since the concept was new to the NetBSD developer

community. The findings are presented in Table 4.1.

To put the figure of one problem per month into context, we examine the i386 port

build logs [40]: the NetBSD source tree has 15–20 build problems in a typical month.

When looking at the total number of commits, we see that 99.8% of kernel commits

did not cause problems for rump kernels. We conclude that maintaining requires

non-zero effort, but breakage amounts to only a fraction of total breakage.

189

build.sh rumptest

When rump kernel support was initially added, the NetBSD developer community

criticized it because it made checking kernel changes against build problems in un-

related parts of the kernel more time consuming. Before, it was possible to perform

the test by building a kernel. After support was added, a more time consuming full

build was required.

A full build was required since linking a rump kernel depends on the rumpuser

hypercall library which in turn depends on libc. Therefore, it is not possible to build

and link a rump kernel without building at least a selection of userspace libraries.

More so, it was not obvious to the developer community what the canonical build

test was.

Using the NetBSD crossbuild tool build.sh [77] it is possible to [cross]build a kernel

with a single command. A popular kernel configuration for build testing is the i386

ALL configuration, which can be built by invoking the build.sh tool in the following

manner:

build.sh -m i386 kernel=ALL.

We wanted something which made testing as fast and easy as doing a buildtest

with build.sh. We added a rumptest subcommand to build.sh. The command

crossbuilds rump kernel components. It then passes various valid rump component

combinations directly to ld. Since these sets are missing the rumpuser library,

linking will naturally be unsuccessful. Instead, we monitor the error output of the

linker for unresolved symbols. We use the closure of the rump kernel C namespace

to locate any in-kernel link errors. If there are some, we display them and flag an

error. Otherwise, we signal a successful test.

190

rumptest GENERIC ALL build

b
u

ild
 t

im
e

 (
m

in
u

te
s
)

0

20

40

60

80

100

120

Figure 4.3: Duration for various i386 target builds. The targets with names
written in capital letter are kernel-only builds for popular test configurations. Prior
to the introduction of the rumptest target, the build target was the fastest way to
check that modifications to kernel code did not introduce build problems for rump
kernels.

The rumptest command is not a substitute for a full OS build, but it addresses a

practical concern of attaining “99%” certainty of the correctness of kernel changes in

1/30th of the time required for a full build. Build times are presented in Figure 4.3.

The addition of the rumptest command addressed the problem: it made build-testing

quick and obvious.

4.2 Use of Rump Kernels in Applications

4.2.1 fs-utils

Userspace implementations of file system drivers exist. For example, there is mtools [89]

for FAT file systems, e2fsprogs [2] for ext2/3/4, isoread for CD9660 and ntfsprogs

191

for NTFS. The benefit is that file systems can be accessed in userspace without

kernel support or privileges. The downside is that all tools use different command

line arguments. Another drawback is that if a userspace driver for a file system is

not implemented, such a utility does not exist.

The fs-utils project [116] attached standard NetBSD file utilities (ls, cat, mv, etc.)

to rump kernel file system drivers as local clients. There are two benefits to this

approach:

1. standard command line parameters are preserved i.e. ls accepts the familiar

-ABcFhL parameter string

2. all NetBSD file systems with kernel drivers are supported

The only exception to command line arguments is that the first parameter is inter-

preted as the location specifier the file system is mounted from. The tools make

an attempt to auto-detect the type of file system, so passing the file system type is

optional. For example, fsu_ls /dev/rwd0a -l might list the contents of a FFS on

the hard drive, while fsu_ls 10.181.181.181:/m/dm -l would do the same for

an NFS export 14.

We conclude it is possible to use rump kernels as application libraries to imple-

ment functionality which was previously done using userspace reimplementations of

drivers.

14 In case of NFS, the sockin networking facility (Section 3.9.1) is used, so no TCP/IP stack
configuration is required.

192

4.2.2 makefs

For a source tree to be fully cross-buildable with build.sh [77], the build process

cannot rely on any non-standard kernel functionality because the functionality might

not exist on a non-NetBSD build host. The build.sh mandate also demands that a

build can be performed fully unprivileged, i.e. a root account is not required.

Before build.sh, the canonical approach to building a file system image for boot

media was to be to create a regular file, mount it using the loopback driver, copy the

files to the file system and unmount the image. This approach was not compatible

with the goals of build.sh.

When build.sh was introduced to NetBSD, it came with a tool called makefs which

creates a file system image from a given directory tree using only application level

code. In other words, the makefs application contains the file system driver imple-

mented for a userspace environment. This approach does not require privileges to

mount a file system or support of the target file system in the kernel. The origi-

nal utility had support for Berkeley FFS and was implemented by modifying and

reimplementing the FFS kernel code to be able to run in userspace. This copy-and-

modify approach was the only good approach available at the time.

The process of makefs consists of four phases:

1. scan the source directory

2. calculate target image size based on scan data

3. create the target image

4. copy source directory files to the target image

193

original rump kernel backend

FFS SLOC 1748 247

supported file

systems

FFS FFS, ext2, FAT,

SysVBFS

FFS effort > 2.5 weeks (100 hours) 2 hours

total effort 7 weeks (280 hours) 2 days (16 hours)

Table 4.2: makefs implementation effort comparison.

In the original version of makefs all of the phases were implemented in a single C

program. Notably, phase 4 is the only one that requires a duplicate implementation

of features offered by the kernel file system driver.

We implemented makefs using a rump kernel backend for phase 4. We partially

reused code from the original makefs, since we had to analyze the source tree to

determine the image size (phases 1&2). We rely on an external newfs/mkfs program

for creating an empty file system image (phase 3). For phase 4 we use fs-utils to

copy a directory hierarchy to a file system image.

For phase 3, we had to make sure that the mkfs/newfs utility can create an empty

file system in a regular file. Historically, such utilities operate on device special

files. Out of the supported file systems, we had to add support for regular files to

the NetBSD FAT and SysVBFS file system creation utilities. Support for each was

approximately 100 lines of modification.

We obtained the implementation effort for the original implementation from the

author [76] and compare the two implementations in Table 4.2. As can be observed,

over a third of the original effort was for implementing support for a single file system

driver. Furthermore, the time cited is only for the original implementation and does

194

not include later debugging [76]. Since we reuse the kernel driver, we get the driver

functionality for free. All of the FFS code for the rump kernel implementation is

involved in calculating the image size and was available from makefs. If code for this

calculation had not been available, we most likely would have implemented it using

shell utilities. However, since determining the size involves multiple calculations

such as dealing with hard links and rounding up directory entry sizes, we concluded

that reusing working code was a better option.

The makefs implementation with a rump kernel backend is available from the oth-

ersrc module at othersrc/usr.sbin/makefs-rump. It also uses the utility at

othersrc/usr.sbin/makefs-analyzetree. Note that the othersrc module is

separate from the src module we mentioned in Section 1.6.1, and the code must be

retrieved from the NetBSD source repository separately.

Interested readers are also invited to look at Appendix B.4, where we present another

method for makefs functionality using standard system utilities as remote clients for

rump kernel servers.

4.3 On Portability

There are two things to consider with portability. First, given that the NetBSD

kernel was ported to run on a hypercall interface, what are the practical implications

for hosting a NetBSD rump kernel on either a non-NetBSD system or a NetBSD

system of a different version. We call these systems non-native. Second, we want

to know if the concept of rump kernel construction is unique to the NetBSD kernel

codebase, or if it can be applied to other operating systems as well.

195

4.3.1 Non-native Hosting

When hosting NetBSD kernel code in a foreign environment, there are a number of

practical issues to consider:

1. Building the source code for the target system.

2. Accessing the host services from a rump kernel.

3. Interfacing with the rump kernel from clients.

For each subpoint, we offer further discussion based on experiences. We have had

success with non-native hosting of NetBSD rump kernels on Linux, FreeBSD and

various versions of NetBSD, including the NetBSD 4 and NetBSD 5 branches.

Building

First, we define the build host and the build target. The build host is the system the

build is happening on. The build target is the system that the build is happening

for, i.e. which system will be able to run the resulting binaries. For a kernel, the

target involves having a compiler targeted at the correct CPU architecture. For a

userspace program, it additionally requires having access to the target headers and

libraries for compiling and linking, respectively.

The build tool build.sh we already mentioned in Section 4.1.2 and Section 4.2.2

automatically builds the right tools and compiler so that the NetBSD source tree can

be built for a NetBSD target architecture on any given host. What we want is slightly

different: a compilation targeted for a non-NetBSD system. Having build.sh provide

196

the necessary tools such as make15 and mtree is helpful. These tools can be used,

but the compiler should be replaced with the foreign host targeted compiler. Also,

when building for a different version of NetBSD build.sh is helpful since occasionally

features are implemented in the build tools after which the build process starts

depending on them. Older versions of NetBSD may not be able to build newer

versions using native tools alone.

The pkgsrc packaging system [5] provides support for building a rump kernel and

the rumpuser hypervisor library on Linux and FreeBSD. Support is provided by

the package in pkgsrc/misc/rump. While as of writing this text the rump kernel

version support from pkgsrc is older than the one described in this document, the

package can be used as a general guideline on how to build a NetBSD rump kernel

targeted at a foreign host.

Host Services

To be able to run, a rump kernel uses the hypercall interface to access the neces-

sary host services, e.g. memory allocation. We already touched the problems when

discussing the hypercall interface in Section 3.2.3. To recap, the rump kernel and

the host must agree on the types being passed between each other. Commonly used

but not universally constant types such as time_t cannot be used as part of the

hypercall interface and unambiguous types such as int64_t should be used instead.

Compound types such as struct stat and struct timeval cannot generally be

used, as the binary layout varies from one system to another — in these cases, both

structures contain time_t which is enough to make them non-eligible. Furthermore,

system-defined macros such as O_RDONLY may not be used, since their representation

will depend on the system they are from. Since the hypercall interface is relatively

small and used only for the specific purpose of interacting with the rump kernel

15 The “flavour” of make required to build NetBSD is different from for example GNU make.

197

hypervisor, it is possible to construct the interface without relying on forbidden

types.

In case any host services which are not standard across operating systems are to be

used, a suitable driver must exist within the rump kernel. Examples include raw

network access and generic USB access, which may require host-specific handling.

Strictly speaking, interfacing with specific host features is a driver issue instead of

a rump kernel architectural issue, but it should be kept in mind nonetheless.

Client Interfaces

Client interfaces share the same type problem as the hypercall interface. However,

while the hypercall interface is relatively compact, the interfaces available to clients

are large — consider the system call interface. Furthermore, while we were in total

control of the hypercall interface, we cannot change the system call interface since it

is specified by POSIX and various other standards. Finally, many covert protocols

exist in the form of structures passed between the client and kernel drivers with

calls such as ioctl() and write(). Undefined operation will result where the type

systems between the rump kernel and client do not agree.

Since everything in C is in a flat namespace, it is not possible to include NetBSD

headers on for example Linux — there cannot be two different simultaneous defini-

tions for struct sockaddr. This is not an issue unique to rump kernels, but rather

to all systems which wish to provide an alternative implementation of a standard

system feature. One such example is the BSD sockets interface provided by the

lwIP TCP/IP stack [30]. Unlike rump kernels currently, lwIP exports the correct

types for the clients (e.g. struct sockaddr) in its own headers, so as long as clients

do not include host headers which supply conflicting definitions, things will work,

since both the client and the service will use the same type definitions. This ap-

198

proach of supplying alternate clientside definitions for all types is unlikely to scale

to rump kernels. Consider time_t again: the client may not include any header

which transitively includes <sys/types.h>.

One option for type compatibility is to manually go over the sources and provide

compatibility between foreign clients and the kernel. This approach was taken by

OSKit [34] to allow parts of kernel code to be hosted on non-native platforms and

run inside foreign kernels. The manual approach is uninviting for us. The anykernel

architecture and rump kernel should remain fully functional at all times during a

NetBSD development cycle instead of having dedicated releases. It is highly unlikely

open source developers will provide working translation routines for every change

they make, and any approach requiring multiple edits for the same information can

be viewed both as a burden and an invitation for bugs.

NetBSD the provides translation of system call parameters for some operating sys-

tems such as Linux and FreeBSD under sys/compat. The original idea with compat

support is to be able to run application binaries from foreign operating systems un-

der a regular NetBSD installation. As such, the compat code can be used for trans-

lation of system calls used by regular applications from supported foreign clients,

e.g. the sockets interfaces. However, sys/compat support does extend to various

configuration interfaces, such as setting the IP address of a networking interface.

In NetBSD, system headers are represented directly with C syntax. If they were

written in a higher level markup and the C representation were autogenerated from

that, some automatic translation helpers could be attempted. However, such an

undertaking is beyond the scope of this work.

Since a complete solution involves work beyond the scope of this project, we want

to know if a partial solution is useful. Currently, some compatibility definitions that

have been necessary to run NetBSD rump kernels on foreign hosts are provided in

199

fromvers () {

echo

sed -n ’1{s/\$//gp;q;}’ $1

}

fromvers ../../../sys/fcntl.h

sed -n ’/#define O_[A-Z]* *0x/s/O_/RUMP_O_/gp’ \

< ../../../sys/fcntl.h

Figure 4.4: Simple compatibility type generation.

/* NetBSD: fcntl.h,v 1.36 2010/09/21 19:26:18 chs Exp */

#define RUMP_O_RDONLY 0x00000000 /* open for reading only */

#define RUMP_O_WRONLY 0x00000001 /* open for writing only */

#define RUMP_O_RDWR 0x00000002 /* open for reading and writing */

Figure 4.5: Generated compatibility types.

sys/rump/include/rump/rumpdefs.h. These definitions are extracted from sys-

tem headers with regular expressions by a script called makerumpdefs.sh (available

from the same directory). An example portion of the script is presented in Figure 4.4

and the corresponding result is available in Figure 4.5. When examined in detail,

the weakness is that the compatibility type namespace includes neither the OS nor

the OS revision. We felt that including that information would make the names too

cluttered for the purpose of a quick fix.

Despite there being no complete client interface compatibility, the fs-utils suite runs

on Linux [116]. Old NetBSD hosts can use system calls without problems due

to system call compatibility. In fact, most of the development work described in

this dissertation was done for NetBSD-current on a NetBSD 5 host. While binary

compatibility for the vnode interface is not maintained by NetBSD, we were able to

continue running the microkernel style file servers after an ABI change by adding

compatibility translation to libp2k. We therefore conclude that while foreign clients

200

are not out-of-the-box compatible with NetBSD rump kernels, specific solutions can

be implemented with relative ease and that foreign hosting is possible.

4.3.2 Other Codebases

To investigate adding rump support to other kernels, prototypes of rump kernel

support for Linux 2.6 and the FreeBSD 8.0 kernel were implemented. Both pro-

totypes were limited in completeness: for example, the application interfaces were

manually constructed instead of being autogenerated like on NetBSD. Still, both

could provide services from their respective kernel codebases on a NetBSD host.

The Linux implementation was aimed at running the Journaling Flash File System 2

(jffs2) [113] as a microkernel style file server. This file system made an interesting

use case since NetBSD did not have a native file system suitable for flash media

back in 2008. The result was a functional jffs2 file server for NetBSD which could

read and write files in a file system image file. The amount of effort required for the

prototype was two weeks of working time.

The FreeBSD prototype is capable of using the FreeBSD UFS implementation to

access the directory namespace in a standalone application. The FreeBSD prototype

took two working days to implement. Based on additional studying of the source

code and prior experience, it is estimated that 1–2 days of work would allow the

prototype to provide full read-only support.

As the hypervisor library, both implementations could use the existing rumpuser

hypercall library and no separate implementation was required.

Both prototype implementation experiments gave reason to believe that it is possible

to adjust the respective codebases to comply with the anykernel architecture.

201

4.4 Security: A Case Study with File System Drivers

What happens in userspace stays in userspace!

– Tod McQuillin

As we mentioned in Chapter 1, in a general purpose OS drivers for disk-based file

systems are written assuming that file system images contain trusted input. While

this assumption was true long ago, in the age of USB sticks and DVDs it no longer

holds. Still, users mount untrusted file systems using kernel code. Arbitrary memory

access is known to be possible via the use of a suitable crafted file system image and

fixing each file system driver to be bullet-proof is at best extremely hard [115].

When run in a rump kernel, a file system driver dealing with an untrusted image

is isolated in its own domain thus mitigating an attack. The rump kernel can

then be attached to the host file system namespace by mounting it, as described

in Section 3.11. This separation mitigates the possibility of a direct memory access

attack on the kernel, but is transparent to users.

To give an example of a useful scenario, a mailing list posting described a problem

with mounting a FAT file system from a USB stick causing a kernel crash and com-

plete system failure. By using a rump kernel with microkernel clients, the problem

is only an application core dump. Figure 4.6 illustrates what happens when the file

system is mounted with the driver running in a rump kernel. Of course, the driver

was fixed to deal graciously with this particular bug, but others remain.

It should be stressed that mounting a file system as a server is feature wise no

different than using a driver running in the host kernel. The user and administrator

experience remains the same, and so does the functionality. Only the extra layer

of security is added. It is the author’s opinion and recommendation that untrusted

202

golem> mount -t msdos -o rump /dev/sd0e /mnt

panic: buf mem pool index 23

Abort (core dumped)

golem>

Figure 4.6: Mounting a corrupt FAT FS with the kernel driver in a
rump kernel. If the file system would have been mounted with the driver running
in the host kernel, the entire host would have crashed. With the driver running in
userspace in a rump kernel, the mount failed and a core dump was created without
otherwise affecting the host.

disk file systems should be never be mounted using a file system driver running in

kernel space.

A rump kernel has the same privileges as a process, so from the perspective of the

host system its compromise is the same as the compromise of any other application.

In case rogue applications are a concern, on most operating systems access can be

further limited by facilities such as jails [52] or sandboxing [35]. Networked file

system clients (such as NFS and CIFS) may also benefit from the application of

firewalls.

In conclusion, a rump kernel provides security benefits for the tasks it is meant for.

But like everything else, it depends on the security of the layers it is running on

and cannot make up for flaws in the underlying layers such the host OS, hardware

or laws of physics.

4.5 Testing and Developing Kernel Code

Kernel driver development is a form of software development with its own quirks [60].

The crux is the fact that the kernel is the “life support system” for the platform,

203

be the platform hardware or a hypervisor. If something goes wrong during the

test, the platform and therefore any software running on top of it may not function

properly. This section evaluates the use of rump kernels for kernel driver testing

and debugging in the context of NetBSD drivers.

4.5.1 The Approaches to Kernel Development

We start by looking at the approaches which can be used for driver development and

testing. The relevant metric we are interested in is the convenience of the approach,

i.e. how much time a developer spends catering to the needs of the approach instead

of working on driver development itself. One example of a convenience factor is

iteration speed: is iteration nearly instantaneous or does it take several seconds.

Driver-as-an-application

In this approach driver under development is isolated to a self-contained userspace

program. As mentioned in Chapter 1, doing the first attempt on the application

level is a common way to start driver development. The driver is developed against

a pseudo-kernel interface.

There are three problems with this approach. First, the emulation is often lazy and

does not reflect kernel reality and causes problems when the driver is moved to run in

the kernel. Consider development in the absence of proper lock support: even trivial

locking may be wrong, not to mention race conditions. Second, keeping the userspace

version alive after the initial development period may also prove challenging; without

constant use the #ifdef portion of the code has a tendency to bitrot and go out-

of-sync because changes to the kernel. Finally, if this technique is used in multiple

drivers, effort duplication will result.

204

Full OS

By a full OS we mean a system running on hardware or in a virtualized environment.

In this case the driver runs unmodified. For some tasks, such as development of

hardware specific code without access to a proper emulator, running on raw iron

is the only option. In this case two computers are typically used, with one used

for coding and control, and the other used for testing the OS. Booting the OS

from the network or other external media is a common approach, since that source

media avoids an extra reboot to upload an adjusted kernel after a fix. Some remote

debugging aids such as gdb-over-Ethernet or FireWire Remote Memory access may

be applicable and helpful.

The other option is to run the full OS hosted in a virtualized environment. Ei-

ther a paravirtualization such a Xen [11] or a hardware virtualization such as with

QEMU [13] may be used. Virtualized operating systems are an improvement over

developing directly on hardware since they avoid the need of dealing with physical

features such as cables.

Using a full OS for development is not as convenient as using an isolated userspace

program. We justify this statement by reduction to the absurd: if using a full OS

were as convenient for development as using an isolated application, nobody would

go through the extra trouble of building an ad-hoc userspace shim for developing

code as an isolated userspace application. Since ad-hoc userspace shims are still

being built for driver development, we conclude that development as a userspace

application is more convenient.

205

==11956== 1,048 (24 direct, 1,024 indirect) bytes in 1 blocks are definitely lost in loss record 282 of 315

==11956== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)

==11956== by 0x523044D: rumpuser__malloc (rumpuser.c:156)

==11956== by 0x5717C31: rumpns_kern_malloc (memalloc.c:72)

==11956== by 0x570013C: ??? (kern_sysctl.c:2370)

==11956== by 0x56FF6C2: rumpns_sysctl_createv (kern_sysctl.c:2086)

==11956== by 0xEFE2193: rumpns_lfs_sysctl_setup (lfs_vfsops.c:256)

==11956== by 0xEFE26CD: ??? (lfs_vfsops.c:354)

==11956== by 0x5717204: rump_module_init (rump.c:595)

==11956== by 0x56DC8C4: rump_pub_module_init (rumpkern_if_wrappers.c:53)

==11956== by 0x50293B4: ukfs_modload (ukfs.c:999)

==11956== by 0x5029544: ukfs_modload_dir (ukfs.c:1050)

==11956== by 0x4C1745E: fsu_mount (fsu_mount.c:125)

Figure 4.7: Valgrind reporting a kernel memory leak. The memory leak
detector of Valgrind found a memory leak problem in kernel code.

Rump Kernels

Rump kernels are fast, configurable, extensible, and can simulate interaction between

various kernel subsystems. While almost the full OS is provided, the benefits of

having a regular application are retained. These benefits include:

• Userspace tools: dynamic analysis tools such as Valgrind [88] can be used

to instrument the code. Although there is no full support for Valgrind on

NetBSD, a Linux host can be used to run the rump kernel. Figure 4.7 [50]

shows an example of a NetBSD kernel bug found with Valgrind on Linux.

Also, a debugger such as gdb can be used like on other userlevel applications.

• Complete isolation: Changing interface behavior for e.g. fault and crash in-

jection [46, 95] purposes can be done without worrying about bringing the

whole system down. The host the rump kernel is running on acts as “life sup-

port” just like in the application approach, as opposed to the kernel under

test itself like in the full OS approach.

206

• Rapid prototyping: One of the reasons for implementing the 4.4BSD log-

structured file system cleaner in userspace was the ability to easily try differ-

ent cleaning algorithms [100]. Using rump kernels these trials can easily be

done without having to split the runtime environment and pay the overhead

for easy development during production use.

Since it is difficult to measure the convenience of kernel development by any formal

metric, we would like to draw the following analogy: kernel development on real

hardware is to using emulators as using emulators is to developing with rump kernels.

4.5.2 Test Suites

A test suite consists of test cases. A test case produces a result to the question “is

this feature working properly?”, while the test suite produces a result to the question

“are all the features working properly?”. Ideally, the test suite involves for example

checking no bug ever encountered has resurfaced [57].

The NetBSD testing utility is called the Automated Testing Framework (ATF) [75].

The qualifier “automated” refers to the fact that the test suite end user can run the

test suite with a single command and expect to get a test report of all the test cases.

The framework takes care of all the rest. ATF consists of tools for running tests

and generating reports. One goal of ATF is to make tests easy to run, so that they

are actually run by developers and users.

Automated batchmode testing exposes several problems in the straightforward ap-

proach of using the test suite host kernel as the test target:

1. A failed test can cause a kernel panic and cause the entire test suite run to

fail.

207

2. Activity on the host, such as network traffic or the changing of global ker-

nel parameters can affect the test results (or vice versa: the test can affect

applications running on the host).

3. The host kernel test must contain the code under test. While in some cases

it may be possible to load and unload drivers dynamically, in other cases

booting a special kernel is required. Rebooting disrupts normal operation.

4. Automatically testing e.g. some aspects of the NetBSD networking code is

impossible, since we cannot assume peers to exist and even less for them to be

configured suitably for the test (network topology, link characteristics, etc.).

It is possible to add a layer of indirection and boot a separate OS in a virtual machine

and use that as the test target. This indirection, however, introduces several new

challenges which are specific to test suites:

1. Test data and results must be transmitted back and forth between the target

and the host.

2. Bootstrapping a full OS per test carries an overhead which would severely

limit testing capacity. Therefore, test OS should must be cached and man-

aged. This management involves issues like tracking the incompatible fea-

tures provided by each instance and rebooting an instance if it crashes.

3. Not only kernel crashes, but also the crashes of the test applications running

inside the test OS instances must be detected and analyzed automatically.

Solving these challenges is possible, but adds complexity. Instead of adding com-

plexity, we argue that the simplicity of rump kernels is the best solution for the

majority of kernel tests.

208

4.5.3 Testing: Case Studies

We will go over examples of test cases which use rump kernels. All of the tests

we describe are run daily as part of the NetBSD test suite. Most of the cases we

describe were written to trigger a bug which was reported by a third party. In

these cases we include the NetBSD problem report (PR) identifier. A PR identifier

is of the format “PR category/number”. The audit trail of a PR is available from

the web at http://gnats.NetBSD.org/number, e.g. PR kern/8888 is available at

http://gnats.NetBSD.org/8888.

We group the test cases we look at according to qualities provided by rump kernels.

Isolation

Isolation refers to the fact that a rump kernel is isolated from the test host. Any

changes in the rump kernel will not directly affect the host.

• PR kern/44196 describes a scenario where the BPF [67] driver leaks mbufs.

A test case in tests/net/bpf/t_bpf.c recreates the scenario in a rump

kernel. It then queries the networking resource allocation statistics from the

rump kernel (equivalent of netstat -m). If the number of mbufs allocated

is non-zero, we know the driver contains the bug. We can be sure because

we know there is absolutely no networking activity we are not aware of in a

rump kernel which serves only local clients and does not have world-visible

networking interfaces.

• As mentioned earlier in Section 3.8.1, NetBSD kernel modules are either

compiled into the kernel memory image or loaded later. Builtin modules

may be enabled and disabled at runtime, but cannot be loaded or unloaded.

209

Standard rules still apply, and the module must have a reference count of

zero before it can be disabled — otherwise threads using the driver would

find themselves in an unexpected situation. Since the builtin module code

path is different from the loadable module path, it must be tested separately.

On a regular system there is no builtin module reserved for testing. This lack

means that testing requires the booting of a special kernel.

The test in tests/modules/t_builtin.c does tests on a rump kernel with

a builtin kernfs module. Since the rump kernel instance is private to the test,

we have full certainty of both the module state and that there are no clients

which wish to use it.

• PR bin/40455 16 reported a problem when changing a reject route to a black-

hole route with the route command. Since the rump kernel’s routing table

is private and the rump kernel instance used for the test is not connected to

any network, the exact same IP addresses as in the PR could be used in the

test case in tests/net/route/t_change.sh. Not only does using a rump

kernel guarantee that running the test will never interfere with the test host’s

networking services, it also simplifies writing tests, since reported parame-

ters can be directly used without having to convert them to test parameters.

Furthermore, artificial testa parameters may eventually turn out to be incor-

rect when the test is run on a different host which is attached to a different

network.

• PR kern/43785 describes a scsipi17 problem where ejecting a CD or DVD

produces an unnecessary diagnostic kernel message about the media not be-

ing present. Requiring a CD to be attached to the test host would make

automated testing more difficult. We wrote a rump kernel virtual SCSI tar-

get suitable for testing purposes. The target driver is 255 lines long (including

comments) and is available from sys/rump/dev/lib/libscsitest. Using

16 In the end it turned out that it was “kern” problem instead of “bin”.
17 scsipi is a NetBSD term used to describe the unified SCSI/ATAPI mid-layer.

210

static void

scsitest_request(struct scsipi_channel *chan,

scsipi_adapter_req_t req, void *arg)

{

[....]

case SCSI_SYNCHRONIZE_CACHE_10:

if (isofd == -1) {

if ((xs->xs_control & XS_CTL_SILENT) == 0)

atomic_inc_uint(&rump_scsitest_err

[RUMP_SCSITEST_NOISYSYNC]);

sense_notready(xs);

}

break;

[....]

}

Figure 4.8: Flagging an error in the scsitest driver. The test is run with the
test program as a local client and the error is flagged. After the test case has been
run, the test program examines the variable to see if the problem triggered. Direct
access to the rump kernel’s memory avoids having to return test information out of
the kernel with more complex interfaces such as sysctl.

the test driver it is possible to serve a host file as media and replicate the

bug. Detecting the scsipi bug is illustrated in Figure 4.8.

The benefits of using a rump kernel over a loadable module on a regular

kernel are as follows. First, detecting the error in the test case is a simple

matter of pointer dereference instead of having to use a proper interface such

as sysctl for fetching the value. This ability to do kernel memory access in

the test makes writing both the test driver and test case simpler. Second, the

virtual CD target used for testing is always cd0 regardless of the presence

of CD/DVD devices on the host. Once again, these benefits do not mean

testing using other approaches would be impossible, only that testing is more

convenient with a rump kernel.

211

Multiplicity

Multiplicity means it is possible to run an arbitrary number of kernels and is an

important feature especially for networking tests. It allows running tests on for

example routing code by simulating a network with n arbitrarily connected hosts.

• PR kern/43548 describes a kernel panic which happens under certain con-

figurations when the ip_forward() routing routine sends an ICMP error for

a suitably crafted packet. The test case in tests/net/icmp/t_forward.c

forks two rump kernels: one is a router and the other one sends the triggering

packet. Both rump kernels are configured accordingly. When the triggering

party has finished configuration, it immediately sends the triggering packet.

Since the test setup uses shmif, we do not have to wait for the router to be

configured — the router will receive the packet from the shmif bus as soon

as it is configured.

The test monitors the status of the process containing the router. If the bug

is triggered, the result is a kernel panic. This panic causes the process to

dump core, the test case to notice it, and the test to fail.

• The Common Address Redundancy Protocol (CARP) [86] protocol allows

several hosts to handle traffic to the same IP address. A common usage

scenario is a hot spare for a router: if a router goes down, a preconfigured

hot spare will take over. The CARP protocol allows the hot spare unit to

detect the failure via timeout and assume control of the IP address of the

service.

A test in tests/net/carp tests the in-kernel hot spare functionality with

a straightforward approach. First, two rump kernels are initialized and a

common IP address is configured for them using CARP. After verifying that

the master unit responds to ping, it is killed by sending SIGKILL. The test

212

waits for the timeout and checks that the address again responds to ping due

to the spare unit having taken over the IP address.

Safety

Safety means that a test cannot crash the host. The property is closely related to

isolation, but is not the same thing. For example, container/jails based virtualization

can provide isolation but not safety. The safety property of a rump kernel is useful

especially for inserting panic-inducing test cases into the test suite immediately after

they are reported and for test-driven driver development.

• PR kern/36681 describes a locking inversion in the tmpfs rename routine.

The author is not aware of anyone hitting the problem in real life, although,

since the effect was a hang instead of an explicit kernel panic, the problem

may have gone unreported. Nevertheless, the problem triggered easily with

a test program when run on a rump kernel with more than one virtual CPU

configured, due to parts of the execution having to interleave in a certain way

(the number of host CPUs did not have high correlation).

A test case in tests/fs/tmpfs/t_renamerace.c creates two worker threads

which try to trigger the lock inversion. After n seconds the test case signals

the worker threads to exit and tries to join the threads. If the threads join

successfully, the test passes. In case the test has not passed within n + 2

seconds, it timeouts and is declared failed on the grounds that the worker

threads have deadlocked and are therefore unable to exit.

• Every file system driver is not of the same maturity and stability. For exam-

ple, the FFS and FAT drivers are stable, while LFS is experimental. Since

all file systems can be tested for functionality via the same system calls, it

goes to reason it should be done as much as possible to minimize the amount

213

of tests that have to be written. The file system independent testing facil-

ity located in tests/fs/vfs [49] applies the same test to a number of file

systems regardless of perceived stability. If an experimental driver causes a

rump kernel crash, the failure is reported and the test run continues.

The file system independent rump kernel test suite can also serve as a set of

test cases for file system driver development. The development phase is when

kernel panics are most frequent. The time taken to execute the tests is not

affected by the number of test cases ending in a kernel panic. Since testing

uses the rump kernel system call interface and the file system under test is

being accessed exactly like in a regular kernel, the tests can be expected to

provide a realistic report of the file system driver’s stability.

Easily obtainable results

• The swwdog software watchdog timer is an in-kernel watchdog which reboots

the kernel unless the watchdog is tickled often enough by an application

program. We wanted to test if the swwdog driver works correctly by checking

that it reboots the system in the correct conditions.

A test case in tests/dev/sysmon/t_swwdog.c forks a rump kernel. If the

rump kernel exits within the timeout period, the test passes. Otherwise,

the test is flagged a failure. The result of the reboot is obtained simply by

calling wait() for the child and examining the exit status. To obtain the

test result, we also need to check that the kernel under test did not reboot

when the watchdog was being tickled.

Writing this test caused us to discover that the watchdog driver could not

perform a reboot. It attempted to call reboot from a soft interrupt context,

but that had been made illegal by kernel infrastructure changes after the

watchdog was initially implemented.

214

• We noticed that even in superficially identical setups, such as installations

of the same OS version in QEMU, different results could be produced. An

example case of such a scenario was a test involving rename() on a FAT file

system. In some setups the test would simply panic the kernel with the error

“stack size exceeded” [40]. It was very difficult to start to guess where the

error was based purely on this information.

To make it easier to find problems, we adjusted the ATF test tool to automat-

ically include a stack trace in the report in case the test case dumped a core.

Since a rump kernel runs as a regular application and a kernel panic causes

a regular core dump, no special support is required for extracting the kernel

stack trace. The contents of the test report which motivated this change are

presented in Figure 4.9. The tests are run against a production build of the

binaries with compiler optimizations turned on, and the stacktrace needs to

be examined with that in mind. The information from the stack trace al-

lowed us to fix an off-by-one buffer size problem in the FAT driver’s rename

routine 18.

Low overhead

Here we do not look at any particular test case, but rather the NetBSD test suite

as a whole. The test suite in 5.99.48 contains a total of 2,053 cases. These test

cases bootstrap 911 rump kernels, with each test case using zero, one, or up to 16

rump kernels. Running the entire test suite in a NetBSD instance hosted in qemu-

kvm took 56 minutes on March 31st, 2011 [40]. For comparison, if we assume that

bootstrapping one virtualized OS for testing were to take 4 seconds, bootstrapping

911 instances would take over an hour; this overhead is more than what it took to

run the entire test suite.

18 revision 1.72 of sys/fs/msdosfs/msdosfs_vnops.c

215

test program crashed, autolisting stacktrace:

(no debugging symbols found)

Core was generated by ‘t_vnops’.

Program terminated with signal 6, Aborted.

#0 0xbb8eee57 in _lwp_kill () from /usr/lib/libc.so.12

#0 0xbb8eee57 in _lwp_kill () from /usr/lib/libc.so.12

#1 0xbb8eee15 in raise () from /usr/lib/libc.so.12

#2 0xbb8d3bfa in __nrv_alloc_D2A () from /usr/lib/libc.so.12

#3 0xbb8d3c4e in __stack_chk_fail () from /usr/lib/libc.so.12

#4 0xbb8d3c68 in __stack_chk_fail_local () from /usr/lib/libc.so.12

#5 0xbbb6e555 in rumpns_msdosfs_rename () from /usr/lib/librumpfs_msdos.so.0

#6 0xbb997e90 in rumpns_VOP_RENAME () from /usr/lib/librump.so.0

#7 0xbba225d7 in rumpns_do_sys_rename () from /usr/lib/librumpvfs.so.0

#8 0xbba226c6 in rumpns_sys_rename () from /usr/lib/librumpvfs.so.0

#9 0xbb9c08ff in rumpns_sys_unmount () from /usr/lib/librump.so.0

#10 0xbb9c3c14 in rump___sysimpl_rename () from /usr/lib/librump.so.0

#11 0x08056b87 in rename_dir ()

#12 0x08063059 in atfu_msdosfs_rename_dir_body ()

#13 0x0807b34b in atf_tc_run ()

#14 0x0807a19c in atf_tp_main ()

#15 0x0804c7a2 in main ()

stacktrace complete

Figure 4.9: Automated stack trace listing. The testing framework ATF was
modified to produce a stack trace for crashed test programs. In case a test against a
rump kernel ends in a crash or kernel panic, the kernel stack trace is automatically
included in the test report.

As a further demonstration of how lightweight rump kernels are, we point out that

the test suite run was completed in a QEMU instance which was limited to 32MB

of memory [40].

4.5.4 Regressions Caught

Next we present examples of regressions in NetBSD that were caught by the test

suite. We limit these observations to test cases which use rump kernels, and bugs

which were caught by a pre-existing test case after a commit was made [40]. Bugs

216

which were discovered during writing tests or which were found by running the test

suite prior to commit are not included. Arguably, the full test suite should always

be run prior to commit so that regressions would never hit the public tree, but doing

so is not always practical for small changes.

• VFS changes causing invariants to no longer be valid.

• Leak of vnode objects by changes to file system rename routines.

• Regression of a BPF fix which would cause it to accept programs which

execute a divide-by-zero.

• Locking problem where the kernel giant lock was released in the networking

stack although it was not held.

Although the test suite in 5.99.48 covers only a fraction of the kernel, it is capable

of detecting real regressions. As tests accumulate, this capability will increase.

Additionally, the tests using rump kernels stress the host system enough to be the

only tests to catch some host bugs, such as a kernel race condition from when TLS

support was introduced to NetBSD. In case tests are hosted on a NetBSD system,

multiple layers of bugs in NetBSD will be exercised: bugs in the host system, bugs

in the kernel code under test in a rump kernel and bugs in rump kernel support.

The benefits of using rump kernels for testing do not apply to the first set of bugs,

which again shows what we already mentioned in Section 4.4: a rump kernel cannot

make up for the deficiencies of layers below it.

217

4.5.5 Development Experiences

Since a rump kernel is slightly different from a regular kernel e.g. with VM, it is

valid to question if kernel code developed in a rump kernel can be expected to run

in a regular kernel. The author has been using rump kernels for kernel development

since mid-2007 and has not run into major problems.

One observed problem with using a rump kernel is that omitting the copyin()

or copyout() operation for moving data between the application and kernel goes

unnoticed with local clients. However, the same phenomenon happens for example

on i386 architecture on NetBSD due to the kernel being mapped on top of the

current process and code needs to be fixed afterwards 19. Therefore, this issue is not

unique to rump kernels.

Differences can also be a benefit. Varying usage patterns expose bugs where they

were hidden before. For example, NetBSD problem report kern/38057 described a

FFS bug which occurs when the file system device node is not on FFS itself, e.g.

/dev is on tmpfs. Commonly, /dev is on FFS, so regular use did not trigger the

problem. However, when using FFS in a rump kernel the device node is located on

rumpfs and the problem triggers more easily. In fact, this problem was discovered

by the author while working on the file system journaling support by using rump

file systems.

We conclude that we do not expect any more problems between rump kernels and

regular kernels than between various machine architectures. Some problems are

caught with one test setup and others are caught with another type of test setup.

19 e.g. rev. 1.9 of sys/kern/sys_module.c.

218

version swap no swap

NetBSD 5.1 17MB 20MB

NetBSD 5.99.48 18MB 24MB

Table 4.3: Minimum memory required to boot the standard installation.
The memory represents the amount required by the guest. The amount of host
memory consumed may be higher due to virtualization overhead.

kern tcp/ip tmpfs audio

m
e

m
o

ry
 u

s
a

g
e

 (
k
B

)

0

200

400

600

800

1000

1200

1400

1600

Figure 4.10: Memory usage of rump kernels per idle instance. The figures
represent the amounts of memory used on the host.

4.6 Performance

Last, we look at performance figures for rump kernels. Examples of the metrics

include syscall overhead, memory footprint and bootstrap time. We compare results

against other virtualization technologies and against the native system. Even though

the anykernel makes it possible to run the same drivers in the monolithic kernel as

well as rump kernels, the performance of a rump kernel needs to be on a level where

it does not hinder the execution of the intended use cases. Furthermore, we are

interested in seeing if rump kernels can outperform other virtualization technologies.

219

4.6.1 Memory Overhead

We define memory overhead as the amount of memory required by the virtualized

OS. We analyze the amount of memory required to successfully boot a standard

NetBSD installation up to the root shell prompt in less than 5 minutes. The results

are presented in Table 4.3. They were obtained by running anita install on the

release build and testing if the system boots with different values for qemu -m, where

the -m parameter controls the amount of hardware memory presented to the guest.

A big difference between 5.1 and 5.99.48 is that the latter uses a partially modular

kernel by default. Modularity means that all drivers are not loaded at bootstrap,

but rather on-demand as they are required. On-demand loading in turn means that

the memory requirement of the default installation of 5.99.48 is closer to what is

actually required by an application, since fewer unnecessary drivers are loaded into

unpageable kernel memory. However, it is not surprising that 5.99.48 requires more

memory due to the tendency of software to grow in size.

Still, the default installation may not represent the true minimum required by an

application. If we estimate that the memory consumption of NetBSD can be brought

down to 1/4th by rigorous source level customization, the true minimum memory

required to boot the full OS version of NetBSD 5.99.48 is 4.5MB.

Next, we present the host memory consumption for various rump kernel instances in

Figure 4.10. Again, we measure the second instance for reasons listed above. In the

figure, the kern configuration contains nothing but the rump kernel base. The net

configuration contains TCP/IP drivers. The tmpfs configuration supports mounting

a tmpfs file system, and the audio configuration provides the NetBSD pseudo-audio

driver (pad). Notably, the audio configuration also includes the vfs faction, since

audio devices are accessed via /dev/audio.

220

It needs to be stressed that Table 4.3 only measures the amount of memory used

by the virtualized NetBSD instance. The true cost is the amount of memory used

on the system hosting the virtualized instance. This cost includes the virtualization

container itself. The memory consumption, ignoring disk cache, for the second

qemu -n 24 instance for NetBSD 5.99.48 on the host is 38.2MB — measuring the

second instance avoids one-off costs, which are not relevant when talking about

scaling capability. The difference between what the guest uses and what the host

uses in this case is an additional 14.2MB in total memory consumption.

When compared to the memory usage of 38.2MB for a virtual QEMU instance, a

rump kernel’s default consumption is smaller by a factor of more than 20. This

difference exists because a rump kernel does not need to duplicate features which it

borrows from the host, and due to its flexible configurability, only the truly necessary

set of components is required in the guest.

4.6.2 Bootstrap Time

Startup time is important when the rump kernel is frequently bootstrapped and

“thrown away”. This transitory execution happens for example with utilities and in

test runs. It is also an enjoyment factor with interactive tasks, such as development

work with a frequent iteration. As we mentioned in Section 2.1, delays of over 100ms

are perceivable to humans [78].

We measured the bootstrap times of a full NetBSD system for two setups, one on

hardware and one in a QEMU guest. While bootstrap times can at least to some

degree be optimized by customization, the figures in Table 4.4 give us an indication

of how long it takes to boot NetBSD. To put the figures into use case context, let us

think about the testing setup we mentioned in Section 4.5.3. The test suite boots

911 rump kernels and an entire run takes 56 minutes. Extrapolating from Table 4.4,

221

platform version kernel boot login prompt

hardware NetBSD 5.1 8s 22s

QEMU NetBSD 5.99.48 14s 28s

Table 4.4: Bootstrap times for standard NetBSD installations.

kern dev net vfs

b
o

o
ts

tr
a

p
 t

im
e

 (
m

s
)

0

2

4

6

8

10

12

Figure 4.11: Time required to bootstrap one rump kernel. The time varies
from configuration to configuration because of the the initialization code that must
be run during bootstrap.

bootstrapping 911 instances of NetBSD in QEMU takes 7.1 hours, which is seven

and a half times as long as running the entire test suite took using rump kernels.

The bootstrap times for various rump kernel faction configurations are presented

in Figure 4.11. In general, it can be said that a rump kernel bootstraps itself in a

matter of milliseconds, i.e. a rump kernel outperforms a full system by a factor of

1000 with this metric.

222

Network clusters

Bootstrapping a single node was measured to be an operation measured in millisec-

onds. High scalability and fast startup times make rump kernel a promising option

for large-scale networking testing [44] by enabling physical hosts to have multiple

independent networking stacks and routing tables.

We measure the total time it takes to bootstrap, configure and send an ICMP ECHO

packet through a networking cluster with up to 255 instances of a rump kernel. The

purpose of the ICMP ECHO is to verify that all nodes are functional. The cluster

is of linear topology, where node n can talk to the neighboring n−1 and n+1. This

topology means that there are up to 254 hops in the network, from node 1 to 255.

We measured two different setups. In the first one we used standard binaries pro-

vided by a NetBSD installation to start and configure the rump kernels acting as

the nodes. This remote client approach is most likely the one that will be used by

most for casual testing, since it is simple and requires no coding or compiling. We

timed the script shown in Figure 4.12. In the second setup we wrote a self-contained

C program which bootstrapped a TCP/IP stack and configured its interfaces and

routing tables. This local client approach is slightly more work to implement, but

can be used if node startup and configuration is a bottleneck. Both approaches

provide the same features during runtime. The results are presented in Figure 4.13.

The standard component approach takes under 8s to start and configure a network-

ing cluster of 255 nodes. Although this approach is fast enough for most practical

purposes, when testing clusters with 10-100x as many nodes, this startup time can

already constitute a noticeable delay in case a full cluster is to be restarted. Assum-

ing linear scaling continues, i.e. hardware limits such as available memory are not

hit, the local client approach can bootstrap 10k nodes in 45 seconds, which is likely

fast enough for all cluster reboot purposes.

223

#!/bin/sh

RUMP_COMP=’-lrumpnet -lrumpnet_net -lrumpnet_netinet -lrumpnet_shmif’

[$# -ne 1] && echo ’need count’ && exit 1

[! $1 -ge 3 -o ! $1 -le 255] && echo ’count between 3 and 255’ && exit 1

tot=$1

startserver()

{

net=${1}

export RUMP_SERVER=unix://rumpnet${net}

next=$((${net} + 1))

rump_server ${RUMP_COMP} ${RUMP_SERVER}

rump.ifconfig shmif0 create

rump.ifconfig shmif0 linkstr shm/shmif${net}

rump.ifconfig shmif0 inet 1.2.${net}.1 netmask 0xffffff00

if [${net} -ne ${tot}]; then

rump.ifconfig shmif1 create

rump.ifconfig shmif1 linkstr shm/shmif${next}

rump.ifconfig shmif1 inet 1.2.${next}.2 netmask 0xffffff00

fi

[${net} -ne 1] && \

rump.route add -net 1.2.1.0 -netmask 0xffffff00 1.2.${net}.2

[${next} -ne ${tot} -a ${net} -ne ${tot}] && \

rump.route add -net 1.2.${tot}.0 -netmask 0xffffff00 1.2.${next}.1

}

for x in ‘jot ${tot}‘; do

startserver ${x}

done

env RUMP_SERVER=unix://rumpnet${tot} rump.ping -c 1 1.2.1.1

Figure 4.12: Script for starting, configuring and testing a network clus-
ter. This script can be used to test routing in up to the IP MAXTTL linearly
chained TCP/IP stacks.

224

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200 250

C
lu

st
er

 s
ta

rt
up

 (
s)

Routers in cluster

Standard components

Self-contained

Figure 4.13: Time required to start, configure and send an initial packet.

4.6.3 System Call Speed

We compared rump system call performance against other technologies: Xen, QEMU

(unaccelerated) and User-Mode Linux. We did this comparison by executing the

setrlimit() system call 5 million times per thread in two simultaneously running

host threads. We ran the UML and Xen tests on a Linux host. For calibration,

we provide both the NetBSD and Linux native cases. We were unable to get UML

or QEMU to use more than one host CPU. For a NetBSD host we present native

system calls, a rump kernel guest, and a QEMU NetBSD guest. For Linux, we have

native performance, a Linux Xen guest and a UML guest. The results are presented

in Figure 4.14. The NetBSD native call is 16% faster than the Linux native call. We

use this ratio to normalize the results when comparing rump kernels against Linux.

We did not investigate the reason for the difference between NetBSD and Linux.

225

nbnat nbrump lnat lxen

ru
n

ti
m

e
 (

s
)

0

1

2

3

4

5

‘
2

.4
7

 s
e

c

‘
1

.6
1

 s
e

c

‘
2

.8
4

 s
e

c

‘
2

.8
7

 s
e

c

‘
2

.8
2

 s
e

c

‘
1

.6
9

 s
e

c

‘
1

.7
8

 s
e

c

‘
2

.0
5

 s
e

c

‘
3

.1
9

 s
e

c

‘
3

.9
6

 s
e

c

‘
3

.9
2

 s
e

c

wall system user

nbqemu luml

ru
n

ti
m

e
 (

s
)

0

30

60

90

120

150

‘

 4
9

.8
4

 s
e

c

‘

 1
2

5
.2

9
 s

e
c

‘

 4
4

.0
4

 s
e

c

‘

 2
.1

 s
e

c

‘

 7
.0

4
 s

e
c

‘

 1
6

.4
7

 s
e

c

wall system user

Figure 4.14: Time to execute 5M system calls per thread in 2 parallel
threads. We divide the measurements into two figures since the durations are vastly
different. The prefixes “nb” and “l” denote NetBSD and Linux hosts, respectively.
As can be seen by comparing the user/system and walls times in the first figure, the
technologies measured there are capable of using more than one host CPU. Smaller
wall times are better.

226

Rump kernel calls, as expected, carry the least overhead and are the faster by

over 50% when compared to native system calls. When compared with the UML

normalized performance, a rump kernel system call performs 6707% better. We

are unsure why UML performance is this poor in wall time even though based on

literature [11, 61] we expected it to be significantly slower than a rump kernel.

QEMU performance is where we expect it to be.

4.6.4 Networking Latency

To test packet transmission performance in virtual network cluster, we used a linear

setup like the one described in Section 4.6.2 and measure the time it takes for a

UDP packet to travel from one peer to another and back. The results as a function

of the number of hops are displayed in Figure 4.15. In the case of 255 nodes, the

RTT translates to a 15.5μs processing time per hop.

The cluster size we tested is limited by the maximum number of hops that the IP

time-to-live (TTL) field supports (255). The recommended default from RFC1340

is 64 hops, so we had to adjust the TTL to 255 manually (this adjustment was not

an issue in Section 4.6.2, since the ping utility does so automatically).

4.6.5 Backend: Disk File Systems

In the original implementation, the Fast File System (FFS) [69] maintains its consis-

tency by executing critical metadata writes synchronously and improves its perfor-

mance by allowing non-critical writes (such as writes which do not include an explicit

synchronization request) to land on disk asynchronously [69, 71]. The synchronous

metadata operations make sure the file system remains consistent on-disk, but espe-

cially creating a large number of small files and directories is a slow operation due

227

0

2

4

6

8

10

50 100 150 200 250

RTT (ms)

Hops

UDP "ping"

Figure 4.15: UDP packet RTT. All rump kernel TCP/IP stacks are run on a
single host.

to the number of synchronous metadata writes required. Since then, a variety of

techniques have been developed to address this slowness. These techniques include

soft updates [72], metadata journaling [85] and a combination of the two previous

ones [74].

While the kernel has direct access to the disk driver and can choose to wait for

the completion of every write or none at all, the interfaces available to a rump

kernel in a POSIX environment are not as fine-grained as ones available in the

kernel. We investigated how this affects performance. First, we tested FFS in the

traditional mode. These results have been published earlier [55]. Second, we tested

how a journaled FFS [85] performs. The test setup is not 100% equivalent, although

mostly similar.

228

Traditional FFS

We measure the performance of three macro level operations: directory traversal

with ls -lR, recursively copying a directory hierarchy containing both small and

large files with cp -R, and copying a large file with cp. For measuring rump kernel

performance we used the fs-utils (Section 4.2.1) counterparts of the commands. For

the copy operations the source data was precached. The figures are the duration

from mount to operation to unmount. Unmounting the file system at the end ensures

all caches have been flushed.

We performed the measurements on a 4GB FFS disk image hosted on a regular

file and a 20GB FFS partition directly on the hard disk. Both file systems were

aged [103]: the first one artificially by copying and deleting files. The latter one has

been daily use on the author’s laptop for years and has, by definition, aged. The file

systems were always mounted so that I/O is performed in the classic manner, i.e.

FFS integrity is maintained by performing key metadata operations synchronously.

This mode exacerbates the issues with a mix of async and sync I/O requests.

The results are presents in Figure 4.16 and Figure 4.17. The figures between the

graphs are not directly comparable, as the file systems have a different layout and

different aging. The CD image used for the large copy and the kernel source tree

used for the treecopy are the same. The file systems have different contents, so the

listing figures are not comparable at all.

Analysis. The results are in line with the expectations.

• The directory traversal shows that the read operations in a rump kernel

perform roughly the same on a regular file and 6% slower for an unbuffered

backend. This difference is explained by the fact that the buffered file includes

read ahead, while the kernel mount accesses the disk unbuffered.

229

• Copying the large file was measured to consist of 98.5% asynchronous data

writes. Memory mapped I/O is almost twice as slow as read/write, since as

explained in Section 3.9.2, the relevant parts of the image must be paged in

before they can be overwritten and thus I/O bandwidth requirement is dou-

ble. Unbuffered userspace read/write is 1.5% slower than the kernel mount.

• Copying a directory tree is a mix of directory metadata and file data op-

erations and one third of the I/O is done synchronously in this case. The

memory mapped case does not suffer as badly as the large copy, as locality

is better. The rump read/write case performs 10% better than the kernel

due to a buffered backend. The tradeoff is increased memory use. In the

unbuffered case the problem of not being able to issue synchronous write

operations while an asynchronous one is in progress shows.

Notably, we did not look into modifying the host kernel to provide more finegrained

interfaces for selective cache flushing and I/O to character devices. For now, we

maintain that performance for the typical workload is acceptable when compared to

a kernel mount. We still emphasize that due to the anykernel a kernel mount can

be used for better performance where it is safe to do so.

Journaled FFS

We measured the large file copy and copy of a directory structure tests similarly

as for traditional FFS. We did not measure read-only operation since journaling is

meant to speed up write operations. We did not measure the MMIO rump kernel

block device or the character device backend, since they were already shown to be

inferior. The tests were done as in the previous section, with the exception that the

file system mounted with -o log. The results are presented in Figure 4.18.

230

ls bigcp treecp

s
e

c
o

n
d

s

0

10

20

30

40

50

60

70

80

kern rump r/w rump mmio

Figure 4.16: Performance of FFS with the file system a regular file.

ls bigcp treecp

s
e

c
o

n
d

s

0

10

20

30

40

50

60

70

80

kern rump r/w

Figure 4.17: Performance of FFS on a HD partition (raw device).

231

bigcp treecp

s
e

c
o

n
d

s

0

10

20

30

40

50

60

70

80

kern rump r/w

Figure 4.18: Performance of a journaled FFS with the file system on a
regular file.

As expected, journaling does not affect writing one large file, since a majority of

the operations involve data and not metadata (earlier, we quoted the figure 98.5%

of the operations). In the directory write test a rump kernel still outperforms the

regular kernel. As above, we conclude this is due to better prefaulting of metadata

in the rump kernel backend.

4.6.6 Backend: Networking

We measured the latency of ICMP pinging the TCP/IP stack on common virtu-

alization technologies. The ping response is handled by the TCP/IP stack in the

kernel, so there is no process scheduling involved. Since User Mode Linux requires

a Linux host, the test against UML was run on Linux. We ran the Xen test with

Linux dom0/domU as well.

232

The results are presented in Figure 4.19. Rump kernels perform second best in the

test after User Mode Linux. However, the figures are not directly comparable due

to different hosts.

All virtualization technologies perform significantly worse than the native case. This

performance drop is because pinging a local address allows the system to route the

packet through the loopback address. Since a virtualized OS does not have a local

address configured on the host, the packet must be transmitted to the virtual OS

instance and back.

4.6.7 Web Servers

A web server performance test provides a macro benchmark of the performance of

the TCP/IP stack in a rump kernel. We tested by adapting the thttpd [7] web

server as a local client for a rump kernel. We used ApacheBench to measure the

total execution time for 10,000 requests of an 80 byte root document on the web

server. ApacheBench is always running against the host kernel TCP/IP stack, while

the web server was run both against the host stack and the virtual stack. The rump

kernel uses the virt interface, so as to access the host network. The results are

displayed in Figure 4.20.

With concurrency of 4 and above, the difference is about 0.1s in total time. The

figure translates to a 0.01ms (3%) difference per request. We attribute this difference

to the fact that in addition to the normal interface path, the rump kernel setup must

deliver packets through the tap and bridge drivers. We did not attempt to optimize

the host for Ethernet access to be available from userspace more directly.

While the above is most likely an obvious result, there are more delicate implications.

Running ApacheBench put 10,000 connections in TIME_WAIT on the server. This

233

native rump Xen UML qemu

p
in

g
 r

tt
 (

u
s
)

0

20

40

60

80

100

120

11

28 32 27

117

Figure 4.19: RTT of ping with various virtualization technologies. The
test measures how fast the virtualized kernel responds to an ICMP ping sent from
the host. The UML test is not fully comparable, as it was run with Linux as the
host operating system.

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120

to
ta

l t
im

e
(s

)

concurrent requests

thttpd, rump TCP/IP

thttpd, native TCP/IP

Figure 4.20: Speed of 10,000 HTTP GET requests over LAN.

234

behavior is required by the active close of the TCP state machine. Having 10k

connections waiting forced us to wait for the timeout between running the tests for

the host kernel networking stack. In contrast, we could kill the process hosting the

rump kernel networking stack and start out with a new IP and a clean state in a

fraction of a second. While using the host TCP/IP stack was 0.03 times faster than

using a TCP/IP stack in the rump kernel, executing the benchmarks on the host

stack took over 10 times as long in wall time.

4.7 Summary

We evaluated the anykernel architecture and rump kernels in numerous different

ways, both with synthetic benchmarks and analyzing real world data from NetBSD

collected between 2007 and 2011.

We found that maintaining the anykernel architecture and rump kernel support

in the codebase adds minor maintenance effort. We found that less than 0.2% of

repository commits to the kernel source tree caused rump kernel build problems. We

added a special rumptest build command, which exploits the rump kernel symbol

closure to test linking. The command made it 30 times faster to buildtest rump

kernel support.

The use of rump kernels as an application library was evaluated with file system re-

lated applications and was found to be a working approach. The makefs application

for NetBSD was reimplemented as a local rump kernel client, and the new version

was implemented in under 1/17th of the time taken for the original. This speedup

was due to the fact that the existing kernel file system driver could be used directly.

The new version also supports four additional file systems because driver support is

available without further effort.

235

We evaluated the portability of the work in two ways. First, we tested running

NetBSD rump kernels on foreign platforms. While support for portability is not

complete, it works in practice enough to run code. Furthermore, we implemented

prototypes for Linux and FreeBSD, and found no reason to suspect that a full

implementation would not be possible.

Our security use case demonstrated that file system drivers running inside the kernel

are vulnerable to untrusted file system images. A rump kernel running as a micro-

kernel style server can be used to isolate vulnerable kernel code into a separate

domain when dealing with untrusted images, and retain full in-kernel performance

when this isolation is not necessary.

There are close to a thousand tests that use rump kernels in daily NetBSD test runs.

We looked at many different types of tests, compared the implementation, result

gathering and runtime overhead with other possibilities for testing, and concluded

that rump kernels are superior for driver testing. We also included examples of what

real-life regressions testing with rump kernels has enabled to detect in NetBSD.

Finally, performance micro benchmarks confirmed that rump kernels are lightweight

and fast. The memory overhead for a rump kernel can be as low as 1/20th of that

of a full kernel. Bootstrapping a rump kernel is 1,000 times faster than booting a

full virtualized kernel in QEMU. We could boot a 255-node networking cluster with

255 virtualized TCP/IP stacks, configure all nodes and run an initial roundtrip

packet through them in 1.2 seconds. System call performance for local rump kernels

is better than with any other virtualization technology, and was measured to be

6707% faster than for example User-Mode Linux and 50% faster than Xen.

236

237

5 Related Work

This chapter surveys and compares work related to the anykernel architecture and

rump kernels.

5.1 Running Kernel Code in Userspace

Operating systems running in userspace [26, 31] make it possible to run an en-

tire monolithic operating system inside a userspace process. At a basic level this

approach shares the same drawbacks for our purposes as any other full system vir-

tualization solution. The use of the host OS as the VMM can be both a simplifying

factor and a complicating one. It simplifies things because no separate VMM is

required; the host OS is enough. On the other hand, it complicates things because

there is no portability layer. For example, the Dragonfly vkernel [31] relies heavily

on host kernel interfaces to be able to create virtual memory spaces for processes of

the guest OS. A usermode OS port has overlap with a rump kernel. For example,

the virtual I/O drivers described in Section 3.9 can be used equally in a rump kernel

and a usermode OS. The differences stem from the fact that while a usermode OS

ports the entire OS as-is on top of the host, a rump kernel adapts the OS codebase

so that it is both componentized and can relegate functionality directly to the host.

The Alpine [32] network protocol development infrastructure provides an environ-

ment for running unmodified FreeBSD 3.3 kernel TCP/IP code in userspace without

requiring full virtualization of the source OS. Alpine is implemented before the sys-

tem call layer by overriding libc with the TCP/IP stack itself run in application

process context. It can be viewed as an early and domain specific version of a rump

kernel.

238

Rialto [29] is an operating system with a unified interface both for userspace and

the kernel making it possible to run most code in either environment. Rialto was

designed and implemented from ground-up as opposed to our approach of starting

with an existing system. Interesting ideas include the definition of both internal and

external linkage for an interface.

The Linux Kernel Library [98] (LKL) provides the Linux kernel as a monolithic

library to be used with 3rd party code such as applications. It is implemented

as a separate architecture for Linux which is configured and compiled to produce

the library kernel. This approach contrasts the rump kernel approach where the

functionality consists of multiple components which are combined by the linker to

produce the final result. LKL uses many of the same basic approaches, such as

relying on host threads. However, in contrast to our lightweight CPU scheduler,

the Linux scheduler is involved with scheduling in LKL, so there are two layers of

schedulers at runtime.

5.2 Microkernel Operating Systems

Microkernel operating systems [9, 43, 45, 64] aim for minimal functionality running

in privileged mode. The bare minimum is considered to be IPC and scheduling.

Driver-level code such as file systems, the networking stack and system call handlers

run in unprivileged mode. Microkernel operating systems can be roughly divided

into two categories: monolithic and multiserver.

Monolithic servers contain all drivers within a single server. This monolithic nature

means that a single component failing will affect the entire server. Monolithic servers

can be likened with full system virtualization if the microkernel can be considered

a virtual machine monitor. Monolithic servers share the same basic code structure

as a monolithic kernel. From an application’s perspective the implications are much

239

the same too: if one component in the monolithic server fails fatally, it may affect

all others as well.

Multiserver microkernels divide services into various independent servers. This di-

vision means that each component may fail independently. For example, if the

TCP/IP server fails, file systems may still be usable (it depends on the application

if this single failure has any impact or not).

Part of the effort in building a microkernel operating system is coming up with

the microkernel itself and the related auxiliary functions. The rest of the effort is

implementing drivers. A rump kernel in itself is agnostic about how it is accessed.

As we have shown, it is possible to use rump kernels as microkernel style servers on

systems based on the monolithic kernel. The main idea of the anykernel is not to

argue how the kernel code should be structured, but rather to give the freedom of

running drivers in all configurations.

5.3 Partitioned Operating Systems

Partitioned operating systems [12, 112] run components in independent servers and

use message passing for communication between the servers. The motivations for

partitioning the OS have to do with the modern processor architecture. The trend

is for chips to contain an increasing number of cores, and the structure of the chip

the cores are located on starts looking like a networked system with routing and

core-to-core latency becoming real issues. Therefore, it makes sense to structure

the OS around a networked paradigm with explicit message-passing between servers

running on massively multicore architectures. Since rump kernels allow hosting

drivers in independent servers, they are a viable option for the driver components

of partitioned operating systems.

240

One argument for partitioned operating systems is that performance and code sim-

plicity is improved since a single parallel thread in a server runs until it blocks.

This means that there are no atomic memory bus level locks in the model. We

investigated the performance claim in Section 3.5.2 and agree with the performance

benefit. However, based on the author’s experiences with implementing production

quality file servers on top of the puffs [53] cooperative multitasking model, we dis-

agree about concurrent data access being easier in a model without implicit thread

scheduling — concurrency still needs to be handled.

5.4 Plan 9

Plan 9 [93] made the idea “everything is a file” reality. Everything in Plan 9 is

accessed through the file interface. Kernel devices are driven by walking the file

name namespace to obtain a handle and then doing read and write operations on

the handle. In most cases the control protocol is text, although there are some

exceptions for efficiency reasons, such as the frame buffer. Remote resources can be

attached to a process’s view of the file namespace. The side-effect of this file-oriented

operation is that distributed computing is implied; from the application perspective

everything looks the same, regardless of whether the resource is local or remote.

Since the communication protocol is text, there are no incompatibilities in binary

representation between various machine types. However, the practical implication

is that the whole system must be built from ground up to conform to the paradigm.

We showed with our remote clients that a Unix system is capable of limited dis-

tributed operation without having to rewrite drivers or build the entire OS from

ground up. The limitation is that the current system call interface carries many

binary subprotocols which are incompatible between heterogeneous hosts. Also, not

all standard system calls that applications can expect are supported, mmap() being

the canonical example — memory mapping cannot be extended to a distributed

241

environment without the interface contract toward the application being severed.

We do not claim that our result is as flexible as the one offered by Plan 9, but we

do argue that it offers 98% of the practical functionality with 2% of the effort.

5.5 Namespace Virtualization

Containers

Containers use namespace virtualization to provide multiple different views of the

operating system’s namespaces to an application, e.g. the file system namespace.

These views are provided on top of one kernel instance. Examples of the container

approach include FreeBSD jails [52], Linux OpenVZ or the Featherweight Virtual

Machine [117]. The effect is the ability to present the illusion of a virtual machine to

applications. This illusion is accomplished by keeping track of which namespace each

process has access to. When combined with the ability to virtualize the networking

stack [118], it is possible to run entire disjoint guest operating systems.

The major difference to rump kernels is that in namespace virtualization all code

runs in a single kernel. The implications are reflected in the use cases. Namespace

virtualization can be used to present applications a system-defined policy on the

namespace they are allowed to view. A rump kernel as a concept is agnostic to who

establishes the policy (cf. local and microkernel clients). Namespace virtualization

cannot be substituted for any rump kernel use case where the integrity of the kernel

is in danger (e.g. testing and secure mounting of disk file systems) since damage to

any namespace can affect the entire host kernel and therefore all virtual operating

systems offered by it.

242

View OS

The View OS [37] approach to namespace virtualization is to give the application

multiple choices of the entities providing various services conventionally associated

with the kernel, e.g. networking or file systems. System calls made by processes are

intercepted and redirected to service provides.

System call interception is done using ptrace() or alternatively an optimized ver-

sion called utrace(), which requires special host kernel support. This approach

allows the redirection policy to exist outside of the client. As servers, the View OS

uses specially adapted code which mimics kernel functionality, such as LWIPv6 for

the networking service. The clientside functionality and ideology of the View OS

and virtualized lightweight servers consisting of preexisting kernel code as offered

by rump kernels can be seen to complement each other.

5.6 Lib OS

A library OS means a system where part of the OS functionality runs in the same

space as the application. Initially, the library OS was meant to lessen the amount of

functionality hidden by the OS abstractions by allowing applications low-level access

to OS routines [33, 51]. A later approach [94] used a library as indirection to provide

lightweight application sandboxing. What is common between these approaches is

that they target the application. We have demonstrated that it is possible, although

not most convenient, to use existing kernel code as libraries and access functionality

at a mode detailed layer than what is exposed by standard system calls. Our work

was focused on the reuse of kernel code, and we did not target application-level

sandboxing.

243

5.7 Inter-OS Kernel Code

The common approach for moving kernel code operating system A to operating

system B is to port it. Porting means that the original code from A is taken,

incompatible changes are made, and the code is dropped into B. Any improvements

made by A or B will not be compatible with B or A, respectively, and if such

improvements are desired, they require manual labor.

Another approach is a portability layer. Here the driver code itself can theoretically

be shared between multiple systems and differences between systems are handled by

a separate portability layer. For example, the USB device drivers in BSD systems

used to have a portability header caller usb_port.h. Drivers which were written

against this header could theoretically be shared between different BSD operating

systems. It did not work very well in reality, and use of the macro was retired from

NetBSD in 2010. Part of the problem was that there was no established master,

and drivers were expected to flow between different operating systems, all of which

were continuously evolving.

The portability layer approach is better when the flow of code is unidirectional,

i.e. all improvements are made in OS A and at a later date transferred to OS B.

For example, the ZFS port of NetBSD has been done this way. New revisions

of OpenSolaris could be directly imported into NetBSD without having to merge

changes.

Next, we look at various projects which provide 3rd party support with the intent

of being able to host the kernel either in or out of the kernel on a foreign system.

244

OSKit

Instead of making system A’s drivers available for system B, the OSKit project [34]

had a different motivation. It made system A’s drivers available for virtually ev-

eryone via portability layers. In fact, there was no single source system, and OS-

Kit offered drivers from multiple different operating systems such as FreeBSD and

NetBSD. The approach OSKit took was to take code from the source systems, in-

corporate it into the OSKit tree, and produce an OSKit release. Since OSKit func-

tionality was not maintained within the source systems, every update takes manual

effort. The latest release of OSKit was in 2002.

While the anykernel architecture defines a portability layer for kernel code, we do

not claim it is as such the ideal approach for integrating kernel code into foreign

monolithic kernels. It does not produce a tightly integrated solution, since many

subsystems such as the memory allocator are replicated. However, in a system where

drivers are separate servers, such as a multiserver microkernel or a hybrid kernel,

the anykernel approach with rump kernel is feasible.

Device Driver Environment (DDE)

The DDE (Device Driver Environment) is set of patches to a guest system which

allows hosting drivers on other platforms with the DDEKit interface [1]. These

concepts map to reimplemented code in the rump kernel and the rumpuser interface,

respectively. The purpose of DDE is to allow to running drivers as servers, and only

the lower layers of the kernel are supported. Lower layer operation is comparable to

rump kernels with microkernel clients which call into the kernel below the system

call layer. As an example of use, it is possible to run the unmodified Linux kernel

E1000 PCI NIC driver as userspace server on Linux [111] with DDE/Linux.

245

NDIS

NDIS stands for “Network Driver Interface Specification”. It is the interface against

which networking components are implemented on the Windows operating system.

Among these components are the network interface card (NIC) drivers, which are

classified as miniport drivers according to Windows Driver Model. The Windows

NIC drivers are interesting for other operating systems for two reasons:

1. There is a large number of different NICs and therefore a large number of

NIC drivers are required. Implementing each driver separately for each OS

constitutes a large amount of work.

2. Some drivers support devices for which no public documentation is available.

The previous examples of use of foreign kernel code involved having access to the

source code. Windows drivers are distributed only as binary and this distribution

model places additional limitations. First, the code can only run on the CPU archi-

tecture the driver was compiled for, namely i386 and amd64. Second, the system

hosting the foreign code must provide the same ABI as the driver — mere API

compatibility is not enough.

The relevant part of the Windows kernel ABI, including NDIS, is emulated by

the NDIS wrapper [36]. The wrapper has been ported to most BSD operating

systems, and enables including binary-only Windows NIC drivers. In addition to

providing the correct interfaces for the drivers to use, the wrapper must also take

care of adjusting the function calling convention, since BSD operating systems use

a different one from Windows.

The wrapper implementation redefines all structures used by the NDIS interface.

It does not introduce any techniques which could have been useful solutions when

246

discussing the type incompatibility challenges with running NetBSD code in a foreign

host (Section 4.3.1). The fact that is possible to define a function interface to attach

drivers suggests that Windows does not suffer from the inline/macro problems which

affect our ability to use standard NetBSD kernel modules on non-x86 platforms

(Section 3.8.3).

5.8 Safe Virtualized Drivers

Safe drivers in virtualized context depend on the ability to limit driver access to

only the necessary resources. In most cases, limiting access is straightforward. For

example, file system drivers require access only to the backing storage. In case of

malfunction or malice, damage will be limited to everything the driver had access

to.

Hardware device drivers are typically more difficult to limit since they perform DMA.

For example, PCI devices are bus mastering, and DMA is done by programming the

necessary physical memory addresses to the device and letting the device handle the

I/O. Incorrect or malicious addresses will be read or written by the device. Limiting

DMA access is possible if the hardware includes an IOMMU. This capability has

been used for safe unmodified virtual device drivers [62].

Notably though, hardware devices do not imply problems with DMA. We demon-

strated working USB hardware device drivers. The rump kernel infrastructure does

not currently support hardware device drivers in the general case. Still, there is no

reason why it could not be done on systems with IOMMU support.

247

5.9 Testing and Development

Sun’s ZFS file system ships with a userspace testing library, libzpool [8]. In addition

to kernel interface emulation routines, it consists of the Data Management Unit

and Storage Pool Allocator components of ZFS compiled from the kernel sources.

The ztest program plugs directly to these components. This approach has several

shortcomings compared to using rump kernels. First, it does not include the entire

file system architecture, e.g. the VFS layer. The effort of implementing the VFS

interface (in ZFS terms the ZFS POSIX Layer) was specifically mentioned as the

hardest part of porting ZFS to FreeBSD [22]. Therefore, it should receive non-zero

support from the test framework. Second, the approach requires special organization

of the code for an individual driver. Finally, the test program is specific to ZFS.

In contrast, integrating ZFS into the NetBSD FS-independent rump kernel test

framework (described in Section 4.5.3) required roughly 30 minutes of work and 30

lines of code. Using a rump kernel it is possible to test the entire driver stack in

userspace from system call to VFS layer to ZFS implementation.

5.10 Single Address Space OS

As the name suggests, a Single Address Space OS (SASOS) runs entirely in a single

virtual memory address space, typically 64bit, with different applications located in

different parts of the address space. The single system-wide address space is in con-

trast to the approach where each process runs in its own address space. Protection

between applications can be provided either by the traditional memory management

hardware approach [17, 41] or by means of software-isolated processes (SIP) [47].

A rump kernel with local clients is essentially a SASOS. It is possible to use multiple

process contexts against the local rump kernel with the rump_lwproc interfaces. The

248

difference to the abovementioned SASOSs is that the runtime enforces neither fair

scheduling nor protection between these process contexts. In other words, everything

is based on cooperation. For our case cooperation is a reasonable assumption, since

all processes are provided by the same binary.

Another “single address space” limitation we had to overcome was having the kernel

and application in a joint symbol namespace. Any symbols exported both by the

application portion and the kernel, e.g. printf(), would cause a collision. While

there are SASOS solutions which, among other things, handle similar symbol colli-

sion problems [23], they require modifications to the linking and loading procedure.

Since we wanted things to work out-of-the-box on a Unix-style system, we opted for

the renaming approach (Section 3.2.1).

249

6 Conclusions

We set out with the goals of improving characteristics of monolithic kernel operating

systems, namely security, code reusability and testing and development character-

istics. Our view is that a codebase’s real value lies not in the fact that it exists, but

that it has been proven and hardened “out there”. Any approach which required us

to start building the codebase from scratch for an alternate kernel architecture was

not a viable solution for us. In contrast, our work was driven by the needs of the

existing codebase, and how to gain maximal use out of it.

We claimed that a properly architected and maintained monolithic kernel provides

a flexible codebase. We defined an anykernel to be an organization of kernel code

which allows the kernel’s unmodified drivers to be run in various configurations

such as application libraries and network servers, and also in the original monolithic

kernel. We showed by implementation that the NetBSD monolithic kernel could be

turned into an anykernel with relatively simple modifications.

An anykernel can be instantiated into units which virtualize the minimum support

functionality for kernel drivers; support which can be used directly from the host

is used directly from the host without a layer of indirection. The virtualized kernel

driver instances are called rump kernels since they retain only a part of the original

features. Our implementation hosts rump kernels in a process on a POSIX host.

We discuss other possible hosts at the end of this chapter alongside future work.

The development effort for turning a monolithic kernel into an anykernel is insignif-

icant next to the total effort a real world capable monolithic kernel has received.

The anykernel architecture by itself is not a solution to the problems; instead, it is

merely a concept which enables solving the problems while still retaining the ability

to run the kernel in the original monolithic configuration.

250

At runtime, a rump kernel can assume the role of an application library or the role

of a server. Programs requesting services from rump kernels are called rump kernel

clients or simply clients. We defined three client types and implemented support for

them. Each client type maps to the best alternative for solving one of our motivating

problems.

1. Local: the rump kernel is used in a library capacity. Requests are issues as

local function calls.

2. Microkernel: the host routes client requests from regular processes to drivers

running in isolated servers.

3. Remote: the client and rump kernel are running in different containers (pro-

cesses) with the client deciding which services to request from the rump

kernel. The kernel and client can exist either on the same host or on different

hosts and communicate over the Internet.

Local clients allow using kernel drivers as libraries for applications, where everything

runs in a single process. This execution model is not only fast, but also convenient,

since to an outside observer it looks just like an application, i.e. it is easy to start,

debug and stop one.

Microkernel servers allow running kernel code of questionable stability in a separate

address space with total application transparency. However, they require both host

support for the callback protocol (e.g. VFS for file systems) and superuser privileges

to configure the service (in the case of file systems: mount it).

Remote client system call routing is configured for each client instance separately.

However, doing so does not require privileges, and this approach is the best choice

for virtual kernels to be used in testing and development.

251

The key performance characteristics of rump kernels are:

• Bootstrap time until application-readiness is in the order of 10ms. On the

hardware we used it was generally under 10ms.

• Memory overhead depends on the components included in the rump kernel,

and is typically from 700kB to 1.5MB.

• System call overhead for a local rump kernel is 53% of a native system call

for uniprocessor configurations and 44% for a dual CPU configuration (i.e.

a rump kernel performs a null system call twice as fast), and less than 1.5%

of that of User-Mode Linux (the rump kernel syscall mechanism is over 67

times as fast).

Our case study for improving security was turning a file system mount using an

in-kernel driver to one using a rump kernel server. From the user perspective,

nothing changes. From the system administrator perspective, the only difference is

one extra flag which is required at mount time (-o rump). Using isolated servers

prevents corrupt and malicious file systems from damaging the host kernel. Due to

the anykernel architecture, the ability to use the same file system drivers in kernel

mode is still possible.

Our application case study involved a redo of the makefs application, which cre-

ates a file system image out of a directory tree without relying on in-kernel drivers.

Due to the new ability of being able to reuse the kernel file system drivers directly

in applications, our reimplementation was done in under 6% of the time the origi-

nal implementation required. In other words, it required days instead of weeks to

implement. For another example of using a rump kernel in an application, see Ap-

pendix B.2 where using the in-kernel crypto driver for creating an encrypted disk

image is explained using binaries available on an out-of-the-box NetBSD installation.

252

For testing and development we added close to 1,000 test cases using rump kernels

as the test backends. The test suite is run against daily NetBSD changes and has

been able to find real regressions, including kernel panics which would have caused

the test suite to fail if testing was done against the test host kernel. Testing against

rump kernels means that a kernel panic is inconsequential to the test run and allows

the test run to complete in constant time irrespective of how many tests cause a

kernel crash. Additionally, when problems are discovered, the test program that

was used to discover the problem can directly be used to debug the relevant kernel

code without the need to set up a separate kernel debugging environment.

6.1 Future Directions and Challenges

The hosting of NetBSD-based rump kernels on other POSIX-style operating systems

such as Linux was analyzed. Running a limited set of applications was possible, but

interfacing between the host and rump namespaces is not yet supported on a general

level. For example, the file status structure is called struct stat in the client and

rump kernel namespaces, but the binary layouts may not match, since the client

uses the host representation and the rump kernel uses the NetBSD representation.

If a reference to a mismatching data structure is passed from the client to the rump

kernel, the rump kernel will access incorrect fields. Data passed over the namespace

boundary need to be translated. NetBSD readily contains system call parameter

translation code for a number of operating systems such as Linux and FreeBSD

under sys/compat. We wish to investigate using this already existing translation

code where possible to enlarge the set of supported client ABIs.

Another approach to widening host platform support is to port rump kernels to a

completely new type of non-POSIX host. Fundamentally, the host must provide

the rump kernel a single memory address space and thread scheduling. Therefore,

existing microkernel interfaces such as L4 and Minix make interesting cases. Again,

253

translation may be needed when passing requests from the clients to NetBSD-based

rump kernels. However, since interface use is likely to be limited to a small subset,

such as the VFS/vnode interfaces, translation is possible with a small amount of

work even if support is not readily provided under sys/compat.

Multiserver microkernel systems may want to further partition a rump kernel. We

investigated this partitioning with the sockin facility. Instead of requiring a full

TCP/IP stack in every rump kernel which accesses the network, the sockin facility

enables a rump kernel to communicate its intentions to a remote server which does

TCP/IP. In our case, the remote server was the host kernel.

The lowest possible target for the rump kernel hypercall layer is firmware and hard-

ware. This adaption would allow the use of anykernel drivers both in bootloaders

and lightweight appliances. A typical firmware does not provide a thread scheduler,

and this lack would either mandate limited driver support, i.e. running only drivers

which do not create or rely on kernel threads, or the addition of a simple thread

scheduler in the rump kernel hypervisor. If there is no need to run multiple isolated

rump kernels, virtual memory support is not necessary.

An anykernel architecture can be seen as a gateway from current all-purpose oper-

ating systems to more specialized operating systems running on ASICs. Anykernels

enable the device manufacturer to provide a compact hypervisor and select only

the critical drivers from the original OS for their purposes. The unique advantage

is that drivers which have been used and proven in general-purpose systems, e.g.

the TCP/IP stack, may be included without modification as standalone drivers in

embedded products.

254

255

References

[1] DDE/DDEKit. URL http://wiki.tudos.org/DDE/DDEKit.

[2] E2fsprogs: Ext2/3/4 Filesystem Utilities. URL http://e2fsprogs.

sourceforge.net/.

[3] fuse-ext2. URL http://sourceforge.net/projects/fuse-ext2/.

[4] libguestfs: tools for accessing and modifying virtual machine disk images.

URL http://libguestfs.org/.

[5] pkgsrc: The NetBSD Packages Collection. URL http://www.pkgsrc.org/.

[6] Slirp, the PPP/SLIP-on-terminal emulator. URL http://slirp.

sourceforge.net/.

[7] thttpd – tiny/turbo/throttling HTTP server. URL http://www.acme.com/

software/thttpd/.

[8] ZFS Source Tour. URL http://www.opensolaris.org/os/community/

zfs/source/.

[9] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B. Golub,

Richard F. Rashid, Avadis Tevanian, and Michael Young. 1986. Mach: A New

Kernel Foundation for UNIX Development. In: Proceedings of the USENIX

Summer Technical Conference, pages 93–113.

[10] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.

Levy. 1992. Scheduler Activations: Effective Kernel Support for the User-

level Management of Parallelism. ACM Transactions on Computer Systems

10, no. 1, pages 53–79.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the

256

Art of Virtualization. In: Proceedings of the ACM Symposium on Operating

Systems Principles, pages 164–177.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-

becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh

Singhania. 2009. The Multikernel: A new OS architecture for scalable multi-

core systems. In: Proceedings of the ACM Symposium on Operating Systems

Principles, pages 29–44.

[13] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In:

Proceedings of the USENIX Annual Technical Conference, FREENIX Track,

pages 41–46.

[14] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.

Levy. 1990. Lightweight Remote Procedure Call. ACM Transactions on

Computer Systems 8, pages 37–55.

[15] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel Memory

Allocator. In: Proceedings of the USENIX Summer Technical Conference,

pages 87–98.

[16] Jeff Bonwick. Oct 31, 2005. ZFS: The Last Word in Filesystems. URL

http://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in.

[17] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.

1994. Sharing and Protection in a Single-Address-Space Operating System.

ACM Transactions on Computer Systems 12, no. 4, pages 271–307.

[18] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson En-

gler. 2001. An Empirical Study of Operating Systems Errors. In: Proceed-

ings of the ACM Symposium on Operating Systems Principles, pages 73–88.

ACM.

[19] Adam M. Costello and George Varghese. 1995. Redesigning the BSD Callout

and Timer Facilities. Technical Report WUCS-95-23, Washington University.

257

[20] Charles D. Cranor. 1998. Design and Implementation of the UVM Virtual

Memory System. Ph.D. thesis, Washington University.

[21] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,

and Randy H. Katz. 1999. An Architecture for a Secure Service Discovery

Service. In: Proceedings of the 5th MobiCom, pages 24–35.

[22] Pawel Jakub Dawidek. 2007. Porting the ZFS file system to the FreeBSD

operating system. In: Proceedings of AsiaBSDCon, pages 97–103.

[23] Luke Deller and Gernot Heiser. 1999. Linking Programs in a Single Address

Space. In: Proceedings of the USENIX Annual Technical Conference, pages

283–294.

[24] Mathieu Desnoyers. 2009. Low-Impact Operating System Tracing. Ph.D.

thesis, Ecole Polytechnique de Montréal.

[25] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais,

and Jonathan Walpole. 2012. User-Level Implementations of Read-Copy

Update. IEEE Transactions on Parallel and Distributed Systems 23, no. 2,

pages 375–382.

[26] Jeff Dike. 2001. A user-mode port of the Linux kernel. In: Proceedings of

the Atlanta Linux Showcase. URL http://www.linuxshowcase.org/2001/

full_papers/dike/dike.pdf.

[27] Peter Dinda. January, 2002. The Minet TCP/IP Stack. Technical Report

NWU-CS-02-08, Northwestern University Department of Computer Science.

[28] Roland C. Dowdeswell and John Ioannidis. 2003. The CryptoGraphic Disk

Driver. In: Proceedings of the USENIX Annual Technical Conference,

FREENIX Track, pages 179–186.

[29] Richard Draves and Scott Cutshall. 1997. Unifying the User and Kernel

Environments. Technical Report MSR-TR-97-10, Microsoft.

258

[30] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP Stack.

Technical report, Swedish Institute of Computer Science.

[31] Aggelos Economopoulos. 2007. A Peek at the DragonFly Virtual Kernel.

LWN.net. URL http://lwn.net/Articles/228404/.

[32] David Ely, Stefan Savage, and David Wetherall. 2001. Alpine: A User-Level

Infrastructure for Network Protocol Development. In: Proceedings of the

USENIX Symposium on Internet Technologies and Systems, pages 171–184.

[33] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. 1995. Ex-

okernel: An Operating System Architecture for Application-Level Resource

Management. In: Proceedings of the ACM Symposium on Operating Systems

Principles, pages 251–266.

[34] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin

Shivers. 1997. The Flux OSKit: A Substrate for OS and Language Research.

In: Proceedings of the ACM Symposium on Operating Systems Principles,

pages 38–51.

[35] Bryan Ford and Russ Cox. 2008. Vx32: Lightweight User-level Sandboxing

on the x86. In: Proceedings of the USENIX Annual Technical Conference,

pages 293–306.

[36] FreeBSD Kernel Interfaces Manual. March 2010. ndis – NDIS miniport driver

wrapper.

[37] Ludovico Gardenghi, Michael Goldweber, and Renzo Davoli. 2008. View-

OS: A New Unifying Approach Against the Global View Assumption. In:

Proceedings of the 8th International Conference on Computational Science,

Part I, pages 287–296.

[38] Tal Garfinkel and Mendel Rosenblum. 2005. When Virtual is Harder than

Real: Security Challenges in Virtual Machine Based Computing Environ-

259

ments. In: Proceedings of the Workshop on Hot Topics in Operating Sys-

tems. URL http://static.usenix.org/event/hotos05/final_papers/

full_papers/garfinkel/garfinkel.pdf.

[39] Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks. 1987.

Shared Libraries in SunOS. In: Proceedings of the USENIX Summer Tech-

nical Conference, pages 375–390.

[40] Andreas Gustafsson. NetBSD-current/i386 build status. URL http://www.

gson.org/netbsd/bugs/build/.

[41] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and

Jochen Liedtke. 1998. The Mungi Single-Address-Space Operating System.

Software: Practice and Experience 28, no. 9, pages 901–928.

[42] James P. Hennessy, Damian L. Osisek, and Joseph W. Seigh II. 1989. Passive

Serialization in a Multitasking Environment. US Patent 4,809,168.

[43] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.

Tanenbaum. 2006. MINIX 3: a highly reliable, self-repairing operating sys-

tem. ACM SIGOPS Operating Systems Review 40, no. 3, pages 80–89.

[44] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Gu-

ruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. 2008. Large-scale Virtu-

alization in the Emulab Network Testbed. In: Proceedings of the USENIX

Annual Technical Conference, pages 113–128.

[45] Dan Hildebrand. 1992. An Architectural Overview of QNX. In: Proceedings

of the Workshop on Micro-kernels and Other Kernel Architectures, pages

113–126. USENIX Association.

[46] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. 1997. Fault

Injection Techniques and Tools. IEEE Computer 30, no. 4, pages 75–82.

260

[47] Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the soft-

ware stack. ACM SIGOPS Operating Systems Review 41, no. 2, pages 37–49.

[48] Xuxian Jiang and Dongyan Xu. 2003. SODA: A Service-On-Demand Archi-

tecture for Application Service Hosting Utility Platforms. In: Proceedings of

the 12th IEEE International Symposium on High Performance Distributed

Computing, pages 174–183.

[49] Nicolas Joly. May-June 2010. Private communication.

[50] Nicolas Joly. November 2009. Private communication.

[51] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.

Briceno, Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm,

John Jannotti, and Kenneth Mackenzie. 1997. Application Performance and

Flexibility on Exokernel Systems. In: Proceedings of the ACM Symposium

on Operating Systems Principles, pages 52–65.

[52] Poul-Henning Kamp and Robert N. M. Watson. 2000. Jails: Confining the

omnipotent root. In: Proceedings of SANE Conference. URL http://www.

sane.nl/events/sane2000/papers/kamp.pdf.

[53] Antti Kantee. 2007. puffs - Pass-to-Userspace Framework File System. In:

Proceedings of AsiaBSDCon, pages 29–42.

[54] Antti Kantee. 2009. Environmental Independence: BSD Kernel TCP/IP in

Userspace. In: Proceedings of AsiaBSDCon, pages 71–80.

[55] Antti Kantee. 2009. Rump File Systems: Kernel Code Reborn. In: Proceed-

ings of the USENIX Annual Technical Conference, pages 201–214.

[56] Antti Kantee. 2010. Rump Device Drivers: Shine On You Kernel Diamond.

In: Proceedings of AsiaBSDCon, pages 75–84.

[57] Brian Kernighan. 2006. Code Testing and Its Role in Teaching. ;login: The

USENIX Magazine 31, no. 2, pages 9–18.

261

[58] Steve R. Kleiman. 1986. Vnodes: An Architecture for Multiple File System

Types in Sun UNIX. In: Proceedings of the USENIX Annual Technical

Conference, pages 238–247.

[59] Butler W. Lampson. 1983. Hints for Computer System Design. ACM

SIGOPS Operating Systems Review 17, no. 5, pages 33–48.

[60] Greg Lehey. 2006. Debugging kernel problems. URL http://www.lemis.

com/grog/Papers/Debug-tutorial/tutorial.pdf.

[61] Ben Leslie, Carl van Schaik, and Gernot Heiser. 2005. Wombat: A

Portable User-Mode Linux for Embedded Systems. In: Proceedings

of the 6th Linux.Conf.Au. URL http://www.linux.org.au/conf/

2005/Papers/Ben%20Leslie/Wombat_%20A%20portable%20user-mode%

20Linux%20for%20embedded%20systems/index.html.

[62] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. 2004. Un-

modified Device Driver Reuse and Improved System Dependability Via Vir-

tual Machines. In: Proceedings of the 6th USENIX Symposium on Operating

Systems Design and Implementation, pages 17–30.

[63] Jochen Liedtke. 1993. Improving IPC by Kernel Design. In: Proceedings of

the ACM Symposium on Operating Systems Principles, pages 175–188.

[64] Jochen Liedtke. 1995. On μ-Kernel Construction. In: Proceedings of the

ACM Symposium on Operating Systems Principles, pages 237–250.

[65] Michael Matz, Jan Hubička, Andreas Jaeger, and Mark Mitchell. 2010.

System V Application Binary Interface, AMD64 Architecture Proces-

sor Supplement, Draft Version 0.99.5. URL http://www.x86-64.org/

documentation/abi-0.99.5.pdf.

[66] Jim Mauro and Richard McDougall. 2001. Solaris Internals: Core Kernel

Architecture. Sun Microsystems, Inc. ISBN 0-13-022496-0.

262

[67] Steven McCanne and Van Jacobson. 1993. The BSD packet filter: a new

architecture for user-level packet capture. In: Proceedings of the USENIX

Winter Technical Conference, pages 259–269.

[68] Paul E. McKenney. 2004. Exploiting Deferred Destruction: An Analysis of

Read-Copy-Update Techniques in Operating System Kernels. Ph.D. thesis,

OGI School of Science and Engineering at Oregon Health and Sciences Uni-

versity.

[69] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.

Fabry. 1984. A Fast File System for UNIX. Computer Systems 2, no. 3,

pages 181–197.

[70] Marshall Kirk McKusick. September 2007. Implementing FFS. Private com-

munication.

[71] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quar-

terman. 1996. The Design and Implementation of the 4.4BSD Operating

System. Addison Wesley. ISBN 0-201-54979-4.

[72] Marshall Kirk McKusick and Gregory R. Ganger. 1999. Soft Updates: A

Technique for Eliminating Most Synchronous Writes in the Fast Filesystem.

In: Proceedings of the USENIX Annual Technical Conference, pages 1–17.

[73] Marshall Kirk McKusick and Michael J. Karels. 1988. Design of a General

Purpose Memory Allocator for the 4.3BSD UNIX Kernel. In: Proceedings of

the USENIX Summer Technical Conference, pages 295–304.

[74] Marshall Kirk McKusick and Jeffery Roberson. 2010. Journaled Soft-updates.

In: Proceedings of EuroBSDCon 2010. URL http://www.mckusick.com/

BSDCan/bsdcan2010.pdf.

[75] Julio Merino. Automated Testing Framework. URL http://www.NetBSD.

org/~jmmv/atf/.

263

[76] Luke Mewburn. April 2009. Private communication.

[77] Luke Mewburn and Matthew Green. 2003. build.sh: Cross-building NetBSD.

In: Proceedings of the USENIX BSD Conference, pages 47–56.

[78] Robert B. Miller. 1968. Response time in man-computer conversational trans-

actions. In: Proceedings of the Fall Joint Computer Conference, AFIPS (Fall,

part I), pages 267–277.

[79] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. 1988. Kerberos

Authentication and Authorization System. In: Project Athena Technical

Plan.

[80] Ronald G. Minnich and David J. Farber. February 1993. The Mether System:

Distributed Shared Memory for SunOS 4.0. Technical Report MS-CIS-93-

24, University of Pennsylvania Department of Computer and Information

Science.

[81] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van

Renesse, and Hans van Staveren. 1990. Amoeba: A Distributed Operating

System for the 1990s. Computer 23, no. 5, pages 44–53.

[82] Madanlal Musuvathi and Dawson R. Engler. 2004. Model Checking Large

Network Protocol Implementations. In: Proceedings of the USENIX Sympo-

sium on Networked Systems Design and Implementation, pages 155–168.

[83] Mutt E-Mail Client. URL http://www.mutt.org/.

[84] NetBSD Kernel Interfaces Manual. November 2007. pud – Pass-to-Userspace

Device.

[85] NetBSD Kernel Interfaces Manual. November 2010. WAPBL – Write Ahead

Physical Block Logging file system journaling.

[86] NetBSD Kernel Interfaces Manual. October 2003. carp – Common Address

Redundancy Protocol.

264

[87] NetBSD Project. URL http://www.NetBSD.org/.

[88] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for

Heavyweight Dynamic Binary Instrumentation. In: Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 89–100.

[89] David Niemi and Alain Knaff. 2007. Mtools. URL http://mtools.linux.

lu/.

[90] OpenSSH. URL http://www.openssh.com/.

[91] Thomas J. Ostrand and Elaine J. Weyuker. 2002. The Distribution of Faults

in a Large Industrial Software System. SIGSOFT Softw. Eng. Notes 27, pages

55–64.

[92] Rob Pike. 2000. Systems Software Research is Irrelevant. URL http://doc.

cat-v.org/bell_labs/utah2000/.

[93] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. 1990. Plan 9

from Bell Labs. In: Proceedings of the Summer UKUUG Conference, pages

1–9.

[94] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and

Galen C. Hunt. 2011. Rethinking the Library OS from the Top Down. In:

Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 291–304.

[95] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,

Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2005. IRON File Systems. ACM SIGOPS Operating Systems

Review 39, no. 5, pages 206–220.

[96] Prashant Pradhan, Srikanth Kandula, Wen Xu, Anees Shaikh, and Erich

Nahum. 2002. Daytona : A User-Level TCP Stack. URL http://nms.

csail.mit.edu/%7Ekandula/data/daytona.pdf.

265

[97] The Transport Layer Security (TLS) Protocol. 2008. RFC 5246.

[98] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. 2010. LKL:

The Linux Kernel Library. In: Proceedings of the RoEduNet International

Conference, pages 328–333.

[99] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert

Baron, David Black, William Bolosky, and Jonathan Chew. 1987. Machine-

Independent Virtual Memory Management for Paged Uniprocessor and Mul-

tiprocessor Architectures. SIGARCH Computer Architecture News 15, pages

31–39.

[100] Margo I. Seltzer, Keith Bostic, Marshall K. McKusick, and Carl Staelin.

1993. An Implementation of a Log-Structured File System for UNIX. In:

Proceedings of the USENIX Winter Technical Conference, pages 307–326.

[101] Chuck Silvers. 2000. UBC: An Efficient Unified I/O and Memory Caching

Subsystem for NetBSD. In: Proceedings of the USENIX Annual Technical

Conference, FREENIX Track, pages 285–290.

[102] A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS OVER

SERIAL LINES: SLIP. 1988. RFC 1055.

[103] Keith A. Smith and Margo I. Seltzer. 1997. File System Aging—Increasing

the Relevance of File System Benchmarks. SIGMETRICS Perform. Eval.

Rev. 25, no. 1, pages 203–213.

[104] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry

Peterson. 2007. Container-based Operating System Virtualization: A Scal-

able, High-performance Alternative to Hypervisors. In: Proceedings of the

2nd ACM SIGOPS/EuroSys European Conference on Computer Systems,

pages 275–287.

[105] Jack Sun, Daniel Fryer, Ashvin Goel, and Angela Demke Brown. 2011. Using

Declarative Invariants for Protecting File-System Integrity. In: Proceedings

266

of the 6th Workshop on Programming Languages and Operating Systems,

pages 6:1–6:5.

[106] Miklós Szeredi. FUSE: Filesystem in Userspace. URL http://fuse.

sourceforge.net/.

[107] Jason Thorpe. 1998. A Machine-Independent DMA Framework for NetBSD.

In: Proceedings of the USENIX Annual Technical Conference, FREENIX

track, pages 1–12.

[108] Chris Torek. December 1992. Device Configuration in 4.4BSD. URL http:

//www.netbsd.org/docs/kernel/config-torek.ps.

[109] Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX

Server. ACM SIGOPS Operating Systems Review 36, pages 181–194.

[110] Zhikui Wang, Xiaoyun Zhu, Pradeep Padala, and Sharad Singhal. May 2007.

Capacity and Performance Overhead in Dynamic Resource Allocation to Vir-

tual Containers. In: Proceedings of the IFIP/IEEE Symposium on Integrated

Management, pages 149–158.

[111] Hannes Weisbach, Björn Döbel, and Adam Lackorzynski. 2011. Generic User-

Level PCI Drivers. In: Proceedings of the 13th Real-Time Linux Workshop.

URL http://lwn.net/images/conf/rtlws-2011/proc/Doebel.pdf.

[112] David Wentzlaff and Anant Agarwal. 2009. Factored Operating Systems

(fos): The Case for a Scalable Operating System for Multicores. ACM

SIGOPS Operating Systems Review 43, no. 2, pages 76–85.

[113] David Woodhouse. 2001. JFFS: The Journalling Flash File System.

In: Proceedings of the Ottawa Linux Symposium. URL http://www.

linuxsymposium.org/archives/OLS/Reprints-2001/woodhouse.pdf.

[114] Gary R. Wright and W. Richard Stevens. 1995. TCP/IP Illustrated, Vol-

ume 2. Addison Wesley. ISBN 0-201-63354-X.

267

[115] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler.

2006. Automatically Generating Malicious Disks using Symbolic Execution.

In: Proceedings of the IEEE Symposium on Security and Privacy, pages

243–257.

[116] Arnaud Ysmal and Antti Kantee. 2009. Fs-utils: File Systems Access Tools

for Userland. In: Proceedings of EuroBSDCon. URL http://www.netbsd.

org/~stacktic/ebc09_fs-utils_paper.pdf.

[117] Yang Yu, Fanglu Guo, Susanta Nanda, Lap-chung Lam, and Tzi-cker Chiueh.

2006. A Feather-weight Virtual Machine for Windows Applications. In:

Proceedings of the ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 24–34.

[118] Marko Zec. 2003. Implementing a Clonable Network Stack in the FreeBSD

Kernel. In: Proceedings of the USENIX Annual Technical Conference,

FREENIX Track, pages 137–150.

268

A–1

Appendix A Manual Pages

rump.dhcpclient(1): simple dhcp client for rump kernels A-2

rump.halt(1): halt a rump kernel A-3

rump server(1): rump kernel server A-5

shmif dumpbus(1): examine shmif bus contents A-10

p2k(3): puffs to kernel vfs translation library A-12

rump(3): The Rump Anykernel A-15

rump etfs(3): rump host file system interface A-20

rump lwproc(3): rump process/lwp management A-23

rumpclient(3): rump client library A-27

rumphijack(3): System call hijack library A-32

rumpuser(3): rump hypervisor interface A-37

ukfs(3): user kernel file system library interface A-38

shmif(4): rump shared memory network interface A-47

virt(4): rump virtual network interface A-49

rump sp(7): rump remote system call support A-50

A–2

RUMP.DHCPCLIENT(1) NetBSD General Commands Manual RUMP.DHCPCLIENT(1)

NAME

rump.dhcpclient -- simple dhcp client for rump kernels

SYNOPSIS

rump.dhcpclient ifname

DESCRIPTION

The rump.dhcpclient utility is a very simple DHCP client which can be

used to apply networking configuration on one interface in a rump kernel.

Unlike full DHCP clients, rump.dhcpclient does not store leases or renew

expired leases. The reason for this is the typical transient nature of a

rump kernel. Additionally, rump.dhcpclient does not save DNS resolver

information.

After having succesfully configured networking, rump.dhcpclient prints

out the networking configuration and lease time and exits.

Since rump.dhcpclient uses bpf(4) to send and receive raw network pack-

ets, the server must include support for bpf and vfs (for opening

/dev/bpf). Otherwise, the following diagnostic message is printed:

rump.dhcpclient: bpf: Function not implemented

SEE ALSO

rump_server(1), bpf(4)

CAVEATS

There is no easy way to release a lease.

NetBSD 5.99.48 January 20, 2011 NetBSD 5.99.48

A–3

RUMP.HALT(1) NetBSD General Commands Manual RUMP.HALT(1)

NAME

rump.halt -- halt a rump kernel

SYNOPSIS

rump.halt [-dhn]

DESCRIPTION

The rump.halt utility exits a rump kernel. The file system cache, if

present, is flushed. Since a rump kernel does not control its clients,

they are not directly affected by rump.halt. However, they will be

unable to request further services from the halted rump kernel.

The options are as follows:

-d Create a core dump. The core file is saved according to standard

userland program coredump rules, and can be later examined with a

debugger.

-h By default the process hosting the rump kernel exits. Using this

option shuts down rump kernel activity, but does not cause the

hosting process to exit.

-n Do not flush the file system cache. This option should be used

with extreme caution. It can be used if a virtual disk or a vir-

tual processor is virtually on fire.

SEE ALSO

rump(3)

HISTORY

The rump.halt command appeared in NetBSD 6.0.

NetBSD 5.99.48 December 12, 2010 NetBSD 5.99.48

A–4

RUMP.HALT(1) NetBSD General Commands Manual RUMP.HALT(1)

CAVEATS

While using -h makes it impossible to issue further system calls, it does

not necessarily stop all activity in a rump kernel. It is recommended

this option is used only for debugging purposes.

NetBSD 5.99.48 December 12, 2010 NetBSD 5.99.48

A–5

RUMP_SERVER(1) NetBSD General Commands Manual RUMP_SERVER(1)

NAME

rump_server, rump_allserver -- rump kernel server

SYNOPSIS

rump_server [-s] [-c ncpu] [-d drivespec] [-l library] [-m module] url

DESCRIPTION

The rump_server utility is used to provide a rump kernel service.

Clients can use the system calls provided by rump_server via url.

The difference between rump_server and rump_allserver is that rump_server

offers only a minimalistic set of features, while rump_allserver provides

all rump kernel components which were available when the system was

built. At execution time it is possible to load components from the com-

mand line as described in the options section.

-c ncpu

Configure ncpu virtual CPUs on SMP-capable archs. By default,

the number of CPUs equals the number of CPUs on the host.

-d drivespec

The argument drivespec maps a host file in the rump fs namespace.

The string drivespec must be of comma-separated ‘‘name=value’’

format and must contain the following tokens:

key Block device path in rump namespace. This must be

specified according to the rules for a key in

rump_etfs(3).

hostpath Host file used for storage. If the file does not

exist, it will be created.

NetBSD 5.99.48 February 21, 2011 NetBSD 5.99.48

A–6

RUMP_SERVER(1) NetBSD General Commands Manual RUMP_SERVER(1)

size Size of the mapping. Similar to dd(1), this argu-

ment accepts a suffix as the multiplier for the

number. The special value ‘‘host’’ indicates that

the current size of hostpath will be used. In this

case it is assumed that hostpath exists and is a

regular file.

OR

disklabel Use a disklabel partition identifier to specify the

offset and size of the mapping. hostpath must con-

tain an existing and valid disklabel within the

first 64k.

The following are optional:

offset Offset of the mapping. The window into hostpath

therefore is [offset, offset+size]. In case this

parameter is not given, the default value 0 is

used.

type The type of file that key is exposed as within the

rump kernel. The possibilities are ‘‘blk’’,

‘‘chr’’, and ‘‘reg’’ for block device, character

device and regular file, respectively. The default

is a block device.

Note: the contents of block devices are cached in

the rump kernel’s buffer cache. To avoid cache

incoherency, it is advisable not to access a file

NetBSD 5.99.48 February 21, 2011 NetBSD 5.99.48

A–7

RUMP_SERVER(1) NetBSD General Commands Manual RUMP_SERVER(1)

through the host namespace while it is mapped as a

block device in a rump kernel.

In case hostpath does not exist, it will be created as a regular

file with mode 0644 (plus any restrictions placed by umask). In

case hostpath is a regular file and is not large enough to accom-

modate the specified size, it will be extended to the specified

size.

-l library

Call dlopen() on library before initializing the rump kernel. In

case library provides a kernel module, it will appear as a

builtin module in the rump kernel. Any rump component present in

library will also be initialized.

The argument library can contain a full path or a filename, in

which case the standard dynamic library search path will be used.

Libraries are loaded in the order they are given. Dependencies

are not autoloaded, and the order must be specified correctly.

-m module

Load and link a kernel module after the rump kernel is initial-

ized. For this to work, the rump kernel must include the vfs

faction, since the module is loaded using kernel vfs code (see

EXAMPLES).

-r total_ram

Sets the limit of kernel memory allocatable by the server to

total_ram as opposed to the default which allows the server to

allocate as much memory as the host will give it. This parameter

is especially useful for VFS servers, since by default the vir-

NetBSD 5.99.48 February 21, 2011 NetBSD 5.99.48

A–8

RUMP_SERVER(1) NetBSD General Commands Manual RUMP_SERVER(1)

tual file system will attempt to consume as much memory as it

can, and accessing large files can cause an excessive amount of

memory to be used as file system cache.

-s Do not detach from the terminal. By default, rump_server

detaches from the terminal once the service is running on url.

-v Set bootverbose.

After use, rump_server can be made to exit using rump.halt(1).

EXAMPLES

Start a server and load the tmpfs file system module, and halt the server

immediately afterwards:

$ rump_server -lrumpvfs -m /modules/tmpfs.kmod unix://sock

$ env RUMP_SERVER=unix://sock rump.halt

Start a server with the one gigabyte host file dk.img mapped as the block

device /dev/dk in the rump kernel.

$ rump_allserver -d key=/dev/dk,hostpath=dk.img,size=1g unix://sock

Start a server which listens on INADDR_ANY port 3755

$ rump_server tcp://0:3755/

Start a FFS server with a 16MB kernel memory limit.

$ rump_server -lrumpvfs -lrumpfs_ffs -r 16m unix:///tmp/ffs_server

NetBSD 5.99.48 February 21, 2011 NetBSD 5.99.48

A–9

RUMP_SERVER(1) NetBSD General Commands Manual RUMP_SERVER(1)

SEE ALSO

rump.halt(1), dlopen(3), rump(3), rump_sp(7)

NetBSD 5.99.48 February 21, 2011 NetBSD 5.99.48

A–10

SHMIF_DUMPBUS(1) NetBSD General Commands Manual SHMIF_DUMPBUS(1)

NAME

shmif_dumpbus -- examine shmif bus contents

SYNOPSIS

shmif_dumpbus [-h] [-p pcapfile] busfile

DESCRIPTION

The shmif_dumpbus utility examines the bus of an shmif(4) Ethernet inter-

face. The most useful feature is converting the bus to the pcap(3) file

format for later examination. shmif_dumpbus itself is limited to dis-

playing only very basic information about each frame.

shmif_dumpbus accepts the following flags:

-h Print bus header only and skip contents.

-p pcapfile Convert bus contents to the pcap(3) format and write the

result to pcapfile. The file - signifies stdout.

EXAMPLES

Feed the busfile contents to pcap:

$ shmif_dumpbus -p - busfile | tcpdump -r -

SEE ALSO

pcap(3), shmif(4), tcpdump(8)

CAVEATS

shmif_dumpbus does not lock the busfile and is best used for post-mortem

analysis of the bus traffic.

NetBSD 5.99.48 January 12, 2011 NetBSD 5.99.48

A–11

SHMIF_DUMPBUS(1) NetBSD General Commands Manual SHMIF_DUMPBUS(1)

The timestamp for each frame contains the sender’s timestamp and may not

be monotonically increasing with respect to the frame order in the dump.

NetBSD 5.99.48 January 12, 2011 NetBSD 5.99.48

A–12

P2K(3) NetBSD Library Functions Manual P2K(3)

NAME

p2k -- puffs to kernel vfs translation library

LIBRARY

p2k Library (libp2k, -lp2k)

SYNOPSIS

#include <rump/p2k.h>

struct p2k_mount *

p2k_init(uint32_t puffs_flags);

void

p2k_cancel(struct p2k_mount *p2m, int error);

int

p2k_setup_fs(struct p2k_mount *p2m, const char *vfsname,

const char *devpath, const char *mountpath, int mntflags, void *arg,

size_t alen);

p2k_setup_diskfs(struct p2k_mount *p2m, const char *vfsname,

const char *devpath, int partition, const char *mountpath,

int mntflags, void *arg, size_t alen);

int

p2k_mainloop(struct p2k_mount *p2m);

int

p2k_run_fs(const char *vfsname, const char *devpath,

const char *mountpath, int mntflags, void *arg, size_t alen,

uint32_t puffs_flags);

NetBSD 5.99.48 January 7, 2011 NetBSD 5.99.48

A–13

P2K(3) NetBSD Library Functions Manual P2K(3)

int

p2k_run_diskfs(const char *vfsname, const char *devpath, int partition,

const char *mountpath, int mntflags, void *arg, size_t alen,

uint32_t puffs_flags);

DESCRIPTION

The p2k library translates the puffs protocol to the kernel vfs(9) proto-

col and back again. It can therefore be used to mount and run kernel

file system code as a userspace daemon.

Calling the library interface function mounts the file system and, if

succesful, starts handling requests. The parameters are handled by

ukfs_mount() (see ukfs(3)), with the exception that mountpath and

puffs_flags are handled by puffs(3). The "run_fs" variants of the inter-

faces are provided as a convenience for the common case. They execute

all of init, setup and mainloop in one call.

ENVIRONMENT

The following environment variables affect the behaviour of p2k. They

are useful mostly for debugging purposes. The flags are environment

variables because typically the command line arguments to p2k utilities

are parsed using versions not aware of p2k options; for example, the

rump_cd9660(8) arguments are really parsed by mount_cd9660(8).

P2K_DEBUG Do not detach from tty and print information about

each puffs operation. In case the daemon receives

SIGINFO (typically from ctrl-T), it dumps out the

status of the mount point. Sending SIGUSR1 causes a

dump of all the vnodes (verbose).

NetBSD 5.99.48 January 7, 2011 NetBSD 5.99.48

A–14

P2K(3) NetBSD Library Functions Manual P2K(3)

P2K_NODETACH Do not detach from tty.

P2K_NOCACHE_PAGE Do not use the puffs page cache.

P2K_NOCACHE_NAME Do not use the puffs name cache.

P2K_NOCACHE Do not use the puffs page or name cache.

P2K_WIZARDUID If set, use the value of the variable to determine

the UID of the caller of each operation instead of

the actual caller supplied by puffs(3). This can be

used for example to simplify modifying an OS instal-

lation’s root image as a non-root user.

SEE ALSO

puffs(3), rump(3), ukfs(3), rump_cd9660(8), rump_efs(8), rump_ext2fs(8),

rump_ffs(8), rump_hfs(8), rump_lfs(8), rump_msdos(8), rump_nfs(8),

rump_ntfs(8), rump_smbfs(8), rump_syspuffs(8), rump_sysvbfs(8),

rump_tmpfs(8), rump_udf(8)

NetBSD 5.99.48 January 7, 2011 NetBSD 5.99.48

A–15

RUMP(3) NetBSD Library Functions Manual RUMP(3)

NAME

rump -- The Rump Anykernel

LIBRARY

rump Library (librump, -lrump)

SYNOPSIS

#include <rump/rump.h>

#include <rump/rump_syscalls.h>

DESCRIPTION

rump is part of the realization of a flexible anykernel architecture for

NetBSD. An anykernel architecture enables using kernel code in a number

of different kernel models. These models include, but are not limited

to, the original monolithic kernel, a microkernel server, or an exokernel

style application library. rump itself makes it possible to run unmodi-

fied kernel components in a regular userspace process. Most of the time

"unmodified" means unmodified source code, but some architectures can

also execute unmodified kernel module binaries in userspace. Examples of

different use models are running file system drivers as userspace servers

(see p2k(3)) and being able to write standalone applications which under-

stand file system images.

Regardless of the kernel model used, a rump kernel is a fullfledged ker-

nel with its own virtual namespaces, including a file system hierarchy,

CPUs, TCP/UDP ports, device driver attachments and file descriptors.

This means that any modification to the system state on the host running

the rump kernel will not show up in the rump kernel and vice versa. A

rump kernel may also be significantly more lightweight than the host, and

might not include include for example file system support at all.

NetBSD 5.99.48 March 25, 2011 NetBSD 5.99.48

A–16

RUMP(3) NetBSD Library Functions Manual RUMP(3)

Clients using services provided by rump kernels can exist either in the

same process as the rump kernel or in other processes. Local clients

access the rump kernel through direct function calls. They also natu-

rally have access to the kernel memory space. This document is geared

towards local clients. For more information on remote clients, see

rump_sp(7). It is also possible to use unmodified application binaries

as remote clients with rumphijack(3).

A rump kernel is bootstrapped by calling rump_init(). Before bootstrap-

ping the kernel, it is possible to control its functionality by setting

various environment variables:

RUMP_NCPU If set, indicates the number of virtual CPUs configured

into a rump kernel. The default is the number of host

CPUs. The number of virtual CPUs controls how many

threads can enter the rump kernel simultaneously.

RUMP_VERBOSE If set to non-zero, activates bootverbose.

RUMP_THREADS If set to 0, prevents the rump kernel from creating any

kernel threads. This is possible usually only for file

systems, as other subsystems depend on threads to work.

RUMP_MEMLIMIT If set, indicates how many bytes of memory a rump kernel

will allocate before attempting to purge caches. The

default is as much as the host allows.

RUMP_NVNODES Sets the value of the kern.maxvnodes sysctl node to the

indicated amount. Adjusting this may be useful for

example when testing vnode reclaim code paths. While

the same value can be set by means of sysctl, the env

NetBSD 5.99.48 March 25, 2011 NetBSD 5.99.48

A–17

RUMP(3) NetBSD Library Functions Manual RUMP(3)

variable is often more convenient for quick testing. As

expected, this option has effect only in rump kernels

which support VFS. The current default is 1024 vnodes.

A number of interfaces are available for requesting services from a rump

kernel. The most commonly used ones are the rump system calls. They are

exactly like regular system calls but with the exception that they target

the rump kernel of the current process instead of the host kernel. For

example, rump_sys_socket() takes the same parameters as socket() and will

open a socket in the rump kernel. The resulting file descriptor may be

used only in other rump system calls and will have undefined results if

passed to the host kernel.

Another set of interfaces specifically crafted for rump kernels are the

rump public calls. These calls reside in the rump_pub namespace. An

example is rump_pub_module_init() which initializes a prelinked kernel

module.

A rump kernel is constructed at build time by linking a set of libraries

with application level code. The mandatory libraries are the kernel base

(librump) and the rump hypercall library (librumpuser) which a rump ker-

nel uses to request services from the host. Beyond that, there are three

factions which define the flavour of a rump kernel (librumpdev, librump-

net and librumpvfs) and driver components which use features provided by

the base and factions. Notably, components may have interdependencies.

For example, a rump kernel providing a virtual IP router requires the

following components: rumpnet_netinet, rumpnet_net, rumpnet, rumpnet_vir-

tif, rump, and rumpuser. A rump kernel providing an NFS client requires

the above and additionally rumpfs_nfs and rumpvfs.

In addition to defining the configuration at link time, it is also possi-

NetBSD 5.99.48 March 25, 2011 NetBSD 5.99.48

A–18

RUMP(3) NetBSD Library Functions Manual RUMP(3)

ble to load components at runtime. There are two ways of doing this:

using dlopen() to link a shared library into a rump kernel and initializ-

ing with rump_pub_module_init() or specifying a module on the file system

to rump_sys_modctl() and letting the rump kernel do the linking.

Notably, in the latter case debugging with symbols is not possible since

the host gdb does not know about symbols loaded by the rump kernel. Gen-

erally speaking, dynamically loadable components must follow kernel mod-

ule boundaries.

SEE ALSO

rump_server(1), p2k(3), rump_etfs(3), rump_lwproc(3), rumpclient(3),

rumphijack(3), rumpuser(3), ukfs(3), rump_sp(7)

Antti Kantee, "Environmental Independence: BSD Kernel TCP/IP in

Userspace", Proceedings of AsiaBSDCon 2009, pp. 71-80, March 2009.

Antti Kantee, "Kernel Development in Userspace - The Rump Approach",

BSDCan 2009, May 2009.

Antti Kantee, "Rump File Systems: Kernel Code Reborn", Proceedings of the

2009 USENIX Annual Technical Conference, pp. 201-214, June 2009.

Arnaud Ysmal and Antti Kantee, "Fs-utils: File Systems Access Tools for

Userland", EuroBSDCon 2009, September 2009.

Antti Kantee, "Rump Device Drivers: Shine On You Kernel Diamond",

Proceedings of AsiaBSDCon 2010, pp. 75-84, March 2010.

HISTORY

rump appeared as an experimental concept in NetBSD 5.0. The first stable

version was released in NetBSD 6.0.

NetBSD 5.99.48 March 25, 2011 NetBSD 5.99.48

A–19

RUMP(3) NetBSD Library Functions Manual RUMP(3)

AUTHORS

Antti Kantee <pooka@iki.fi>

NetBSD 5.99.48 March 25, 2011 NetBSD 5.99.48

A–20

RUMP_ETFS(3) NetBSD Library Functions Manual RUMP_ETFS(3)

NAME

rump_etfs -- rump host file system interface

LIBRARY

rump kernel (librump, -lrump)

SYNOPSIS

#include <rump/rump.h>

int

rump_pub_etfs_register(const char *key, const char *hostpath,

enum rump_etfs_type ftype);

int

rump_pub_etfs_register_withsize(const char *key, const char *hostpath,

enum rump_etfs_type ftype, uint64_t begin, uint64_t size);

int

rump_pub_etfs_remove(const char *key);

DESCRIPTION

The rump ExtraTerrestrial File System (rump_etfs) is used to provide

access to the host file system namespace within a rump kernel.

The operation is based on registered key values which each map to a

hostpath. A key must be an absolute path (i.e. begin with ‘‘/’’). Mul-

tiple leading slashes are collapsed to one (i.e. ‘‘/key’’ is the same as

‘‘//key’’). The rest of the path, including slashes, is compared verba-

tim (i.e. ‘‘/key/path’’ does not match ‘‘/key//path’’).

The hostpath is interpreted in host system context for the current work-

NetBSD 5.99.48 February 3, 2011 NetBSD 5.99.48

A–21

RUMP_ETFS(3) NetBSD Library Functions Manual RUMP_ETFS(3)

ing directory and can be either absolute or relative.

The ftype parameter specifies how etfs file will be presented and does

not have to match the host type, although some limitations apply. Possi-

ble values are:

RUMP_ETFS_REG regular file.

RUMP_ETFS_BLK block device. This is often used when mapping

file system images.

RUMP_ETFS_CHR character device.

RUMP_ETFS_DIR directory. This option is valid only when

hostpath is a directory. The immediate chil-

dren of the host directory will be accessible

inside a rump kernel.

RUMP_ETFS_DIR_SUBDIRS directory. This option is valid only when

hostpath is a directory. This option recur-

sively applies to all subdirectories, and

allows a rump kernel to access an entire direc-

tory tree.

The interfaces are:

rump_pub_etfs_register(key, hostpath, ftype)

Map key to a file of type ftype with the contents of hostpath.

rump_pub_etfs_register_withsize(key, hostpath, ftype, begin, size)

Like the above, but map only [begin, begin+size] from hostpath.

NetBSD 5.99.48 February 3, 2011 NetBSD 5.99.48

A–22

RUMP_ETFS(3) NetBSD Library Functions Manual RUMP_ETFS(3)

This is useful when mapping disk images where only one partition is

relevant to the application. If size is given the special value

RUMP_ETFS_SIZE_ENDOFF, the underlying file is mapped from begin to

the end of the file.

rump_pub_etfs_remove(key)

Remove etfs mapping for key. This routine may be called only if

the file related to the mapping is not in use.

EXAMPLES

Map a host image file to a mountable /dev/harddisk path using window off-

sets from the disklabel.

rump_pub_etfs_register_withsize("/dev/harddisk", "disk.img",

RUMP_ETFS_BLK,

pp->p_offset << DEV_BSHIFT, pp->p_size << DEV_BSHIFT);

Make the host kernel module directory hierarchy available within the rump

kernel.

rump_pub_etfs_register("/stand/i386/5.99.41",

"/stand/i386/5.99.41", RUMP_ETFS_DIR_SUBDIRS);

SEE ALSO

rump(3)

HISTORY

rump_etfs first appeared in NetBSD 6.0.

NetBSD 5.99.48 February 3, 2011 NetBSD 5.99.48

A–23

RUMP_LWPROC(3) NetBSD Library Functions Manual RUMP_LWPROC(3)

NAME

rump_lwproc -- rump process/lwp management

LIBRARY

rump kernel (librump, -lrump)

SYNOPSIS

#include <rump/rump.h>

int

rump_pub_lwproc_rfork(int flags);

int

rump_pub_lwproc_newlwp(pid_t pid);

void

rump_pub_lwproc_switch(struct lwp *l);

void

rump_pub_lwproc_releaselwp();

struct lwp *

rump_pub_lwproc_curlwp();

DESCRIPTION

In a normal operating system model a process is a resource container and

a thread (lwp) is the execution context. Every lwp is associated with

exactly one process, and a process is associated with one or more lwps.

The current lwp (curlwp) indicates the current process and determines

which resources, such as UID/GID, current working directory, and file

descriptor table, are currently used. These basic principles apply to

NetBSD 5.99.48 January 2, 2011 NetBSD 5.99.48

A–24

RUMP_LWPROC(3) NetBSD Library Functions Manual RUMP_LWPROC(3)

rump kernels as well, but since rump uses the host’s thread and process

context directly, the rules for how thread context is determined are dif-

ferent.

In the rump model, each host thread (pthread) is either bound to a rump

kernel lwp or accesses the rump kernel with an implicit thread context

associated with pid 1. An implicit thread context is created every time

the rump kernel is entered and disbanded upon exit. While convenient for

occasional calls, creating an implicit thread uses a shared resource

which can become highly contended in a multithreaded situation. It is

therefore recommended that dedicated threads are created.

The association between host threads and the rump kernel curlwp is left

to the caller. It is possible to create a dedicated host thread for

every rump kernel lwp or multiplex them on top of a single host thread.

After rump lwps have been created, switching curlwp is very cheap --

faster than a thread context switch on the host. In case multiple

lwps/processes are created, it is the caller’s responsibility to keep

track of them and release them when they are no longer necessary. Like

other rump kernel resources, procs/lwps will be released when the process

hosting the rump kernel exits.

rump_pub_lwproc_rfork()

Create a process, one lwp inside it and set curlwp to the new lwp.

The flags parameter controls how file descriptors are inherited

from the parent. By default (flags=0) file descriptors are shared.

Other options are:

RUMP_RFFDG Copy file descriptors from parent. This is what

fork(2) does.

NetBSD 5.99.48 January 2, 2011 NetBSD 5.99.48

A–25

RUMP_LWPROC(3) NetBSD Library Functions Manual RUMP_LWPROC(3)

RUMP_RFCFDG File descriptors neither copied nor shared, i.e. new

process does not have access to the parent’s file

descriptors.

This routine returns 0 for success or an errno indicating the rea-

son for failure. The new process id can be retrieved in the normal

fashion by calling rump_sys_getpid().

rump_pub_lwproc_newlwp(pid)

Create a new lwp attached to the process specified by pid. Sets

curlwp to the new lwp. This routine returns 0 for success or an

errno indicating the reason for failure.

rump_pub_lwproc_switch(l)

Sets curlwp to l. In case the new thread is associated with a dif-

ferent process than the current one, the process context is also

switched. The special value NULL sets curlwp to implicit context.

Switching to an already running lwp, i.e. attempting to use the

same curlwp in two host threads simultaneously causes a fatal

error.

rump_pub_lwproc_releaselwp()

Release curlwp and set curlwp to context. In case curlwp was the

last thread inside the current process, the process container is

also released. Calling this routine without a dedicated curlwp is

a fatal error.

rump_pub_lwproc_curlwp()

Returns curlwp or NULL if the current context is an implicit con-

text.

NetBSD 5.99.48 January 2, 2011 NetBSD 5.99.48

A–26

RUMP_LWPROC(3) NetBSD Library Functions Manual RUMP_LWPROC(3)

SEE ALSO

getpid(2), rump(3)

HISTORY

rump_lwproc first appeared in NetBSD 6.0.

NetBSD 5.99.48 January 2, 2011 NetBSD 5.99.48

A–27

RUMPCLIENT(3) NetBSD Library Functions Manual RUMPCLIENT(3)

NAME

rumpclient -- rump client library

LIBRARY

library ‘‘rumpclient’’ (librumpclient, -lrumpclient)

SYNOPSIS

#include <rump/rumpclient.h>

#include <rump/rump_syscalls.h>

int

rumpclient_init();

pid_t

rumpclient_fork();

pid_t

rumpclient_vfork();

struct rumpclient_fork *

rumpclient_prefork();

int

rumpclient_fork_init(struct rumpclient_fork *rfp);

void

rumpclient_fork_cancel(struct rumpclient_fork *rfp);

int

rumpclient_exec(const char *path, char *const argv[],

char *const envp[]);

NetBSD 5.99.48 February 16, 2011 NetBSD 5.99.48

A–28

RUMPCLIENT(3) NetBSD Library Functions Manual RUMPCLIENT(3)

int

rumpclient_daemon(int nochdir, int noclose);

void

rumpclient_setconnretry(time_t retrytime);

int

rumpclient_syscall(int num, const void *sysarg, size_t argsize,

register_t *retval);

DESCRIPTION

rumpclient is the clientside implementation of the rump_sp(7) facility.

It can be used to connect to a rump kernel server and make system call

style requests.

Every connection to a rump kernel server creates a new process context in

the rump kernel. By default a process is inherited from init, but

through existing connections and the forking facility offered by

rumpclient it is possible to form process trees.

rumpclient_init()

Initialize rumpclient. The server address is determined from the

environment variable RUMP_SERVER according to syntax described in

rump_sp(7). The new process is registered to the rump kernel with

the command name from getprogname(3).

rumpclient_fork()

Fork a rump client process. This also causes a host process fork

via fork(2). The child will have a copy of the parent’s rump ker-

nel file descriptors.

NetBSD 5.99.48 February 16, 2011 NetBSD 5.99.48

A–29

RUMPCLIENT(3) NetBSD Library Functions Manual RUMPCLIENT(3)

rumpclient_vfork()

Like above, but the host uses vfork(2).

rumpclient_prefork()

Low-level routine which instructs the rump kernel that the current

process is planning to fork. The routine returns a non-NULL cookie

if successful.

rumpclient_fork_init(rfp)

Low-level routine which works like rumpclient_init(), with the

exception that it uses the rfp context created by a call to

rumpclient_prefork(). This is typically called from the child of a

fork(2) call.

rumpclient_fork_cancel(rfp)

Cancel previously initiated prefork context. This is useful for

error handling in case a full fork could not be carried through.

rumpclient_exec(path, argv, envp)

This call is a rumpclient wrapper around execve(2). The wrapper

makes sure that the rump kernel process context stays the same in

the newly executed program. This means that the rump kernel PID

remains the same and the same rump file descriptors are available

(apart from ones which were marked with FD_CLOEXEC).

It should be noted that the newly executed program must call

rumpclient_init() before any other rump kernel communication can

take place. The wrapper cannot do it because it no longer has pro-

gram control. However, since all rump clients call the init rou-

tine, this should not be a problem.

NetBSD 5.99.48 February 16, 2011 NetBSD 5.99.48

A–30

RUMPCLIENT(3) NetBSD Library Functions Manual RUMPCLIENT(3)

rumpclient_daemon(noclose, nochdir)

This function performs the equivalent of daemon(3), but also

ensures that the internal call to fork(2) is handled properly.

This routine is provided for convenience.

rumpclient_setconnretry(retrytime)

Set the timeout for how long the client attempts to reconnect to

the server in case of a broken connection. After the timeout

expires the client will return a failure for that particular

request. It is critical to note that after a restablished connec-

tion the rump kernel context will be that of a newly connected

client. This means all previous kernel state such as file descrip-

tors will be lost. It is largely up to a particular application if

this has impact or not. For example, web browsers tend to recover

fairly smoothly from a kernel server reconnect, while sshd(8) gets

confused if its sockets go missing.

If retrytime is a positive integer, it means the number of seconds

for which reconnection will be attempted. The value 0 means that

reconnection will not be attempted, and all subsequent operations

will return the errno ENOTCONN.

Additionally, the following special values are accepted:

RUMPCLIENT_RETRYCONN_INFTIME

Attempt reconnection indefinitely.

RUMPCLIENT_RETRYCONN_ONCE

Attempt reconnect exactly once. What this precisely means

depends on the situation: e.g. getting EHOSTUNREACH immedi-

NetBSD 5.99.48 February 16, 2011 NetBSD 5.99.48

A–31

RUMPCLIENT(3) NetBSD Library Functions Manual RUMPCLIENT(3)

ately or the TCP connection request timeouting are considered

to be one retry.

RUMPCLIENT_RETRYCONN_DIE

In case of a broken connection is detected at runtime, call

exit(3). This is useful for example in testing. It ensures

that clients are killed immediately when they attempt to com-

municate with a halted server.

rumpclient_syscall(num, sysarg, argsize, retval)

Execute an "indirect" system call. In the normal case system calls

are executed through the interfaces in <rump/rump_syscalls.h> (for

example rump_sys_read(fd, buf, nbytes)). This interface allows

calling the server with pre-marshalled arguments.

Additionally, all of the supported rump system calls are available

through this library. See <rump/rump_syscalls.h> for a list.

RETURN VALUES

rumpclient routines return -1 in case of error and set errno. In case of

success a non-negative integer is returned, where applicable.

SEE ALSO

rump_server(1), rump(3), rump_sp(7)

CAVEATS

Interfaces for a cryptographically authenticated client-server handshake

do not currently exist. This can be worked around with e.g. host access

control and an ssh tunnel.

NetBSD 5.99.48 February 16, 2011 NetBSD 5.99.48

A–32

RUMPHIJACK(3) NetBSD Library Functions Manual RUMPHIJACK(3)

NAME

rumphijack -- System call hijack library

LIBRARY

used by ld.so(1)

DESCRIPTION

The ld.so(1) runtime linker can be instructed to load rumphijack between

the main object and other libraries. This enables rumphijack to capture

and redirect system call requests to a rump kernel instead of the host

kernel.

The behaviour of hijacked applications is affected by the following envi-

ronment variables:

RUMPHIJACK

If present, this variable specifies which system calls should be

hijacked. The string is parsed as a comma-separated list of

‘‘name=value’’ tuples. The possible lefthandside names are:

‘‘path’’ Pathname-based system calls are hijacked if the path

the system call is directed to resides under value.

In case of an absolute pathname argument, a literal

prefix comparison is made. In case of a relative

pathname, the current working direct is examined.

This also implies that neither ‘‘..’’ nor symbolic

links will cause the namespace to be switched.

‘‘blanket’’ A colon-separated list of rump path prefixes. This

acts almost like ‘‘path’’ with the difference that

the prefix does not get removed when passing the path

NetBSD 5.99.48 March 14, 2011 NetBSD 5.99.48

A–33

RUMPHIJACK(3) NetBSD Library Functions Manual RUMPHIJACK(3)

to the rump kernel. For example, if ‘‘path’’ is

/rump, accessing /rump/dev/bpf will cause /dev/bpf to

be accessed in the rump kernel. In contrast, if

‘‘blanket’’ contains /dev/bpf, accessing /dev/bpf

will cause an access to /dev/bpf in the rump kernel.

In case the current working directory is changed to a

blanketed directory, the current working directory

will still be reported with the rump prefix, if

available. Note, though, that some shells cache the

directory and may report something else. In case no

rump path prefix has been configured, the raw rump

directory is reported.

It is recommended to supply blanketed pathnames as

specific as possible, i.e. use /dev/bpf instead of

/dev unless necessary to do otherwise. Also, note

that the blanket prefix does not follow directory

borders. In other words, setting the blanket for

/dev/bpf means it is set for all pathnames with the

given prefix, not just ones in /dev.

‘‘socket’’ The specifier value contains a colon-separated list

of which protocol families should be hijacked. The

special value ‘‘all’’ can be specified as the first

element. It indicates that all protocol families

should be hijacked. Some can then be disabled by

prepending ‘‘no’’ to the name of the protocol family.

For example, ‘‘inet:inet6’’ specifies that only

PF_INET and PF_INET6 sockets should be hijacked,

NetBSD 5.99.48 March 14, 2011 NetBSD 5.99.48

A–34

RUMPHIJACK(3) NetBSD Library Functions Manual RUMPHIJACK(3)

while ‘‘all:noinet’’ specifies that all protocol fam-

ilies except PF_INET should be hijacked.

‘‘vfs’’ The specifier value contains a colon-separated list

of which vfs-related system calls should be hijacked.

These differ from the pathname-based file system

syscalls in that there is no pathname to make the

selection based on. Current possible values are

‘‘nfssvc’’, ‘‘getvfsstat’’, and ‘‘fhcalls’’. They

indicate hijacking nfssvc(), getvfsstat(), and all

file handle calls, respectively. The file handle

calls include fhopen(), fhstat(), and fhstatvfs1().

It is also possible to use ‘‘all’’ and ‘‘no’’ in the

same fashion as with the socket hijack specifier.

‘‘sysctl’’ Direct the __sysctl() backend of the sysctl(3) facil-

ity to the rump kernel. Acceptable values are

‘‘yes’’ and ‘‘no’’, meaning to call the rump or the

host kernel, respectively.

‘‘fdoff’’ Adjust the library’s fd offset to the specified

value. All rump kernel descriptors have the offset

added to them before they are returned to the appli-

cation. This should be changed only if the applica-

tion defines a low non-default FD_SETSIZE for

select() or if it opens a very large number of file

descriptors. The default value is 128.

If the environment variable is unset, the default value

"path=/rump,socket=all:nolocal" is used. The rationale for this

NetBSD 5.99.48 March 14, 2011 NetBSD 5.99.48

A–35

RUMPHIJACK(3) NetBSD Library Functions Manual RUMPHIJACK(3)

is to have networked X clients work out-of-the-box: X clients use

local sockets to communicate with the server, so local sockets

must be used as a host service.

An empty string as a value means no calls are hijacked.

RUMPHIJACK_RETRYCONNECT

Change how rumpclient(3) attempts to reconnect to the server in

case the connection is lost. Acceptable values are:

‘‘inftime’’ retry indefinitely

‘‘once’’ retry once, when that connection fails, give up

‘‘die’’ call exit(3) if connection failure is detected

n Attempt reconnect for n seconds. The value 0 means

reconnection is not attempted. The value n must be a

positive integer.

See rumpclient(3) for more discussion.

EXAMPLES

Use an alternate TCP/IP stack for firefox with a persistent server con-

nection:

$ setenv RUMP_SERVER unix:///tmp/tcpip

$ setenv LD_PRELOAD /usr/lib/librumphijack.so

$ setenv RUMPHIJACK_RETRYCONNECT inftime

$ firefox

NetBSD 5.99.48 March 14, 2011 NetBSD 5.99.48

A–36

RUMPHIJACK(3) NetBSD Library Functions Manual RUMPHIJACK(3)

SEE ALSO

ld.so(1), rump_server(1), rump(3), rumpclient(3), rump_sp(7)

NetBSD 5.99.48 March 14, 2011 NetBSD 5.99.48

A–37

RUMPUSER(3) NetBSD Library Functions Manual RUMPUSER(3)

NAME

rumpuser -- rump hypervisor interface

LIBRARY

rump User Library (librumpuser, -lrumpuser)

SYNOPSIS

#include <rump/rumpuser.h>

DESCRIPTION

rumpuser is the hypervisor interface for rump(3) style kernel virtualiza-

tion. A virtual rump kernel can make calls to the host operating system

libraries and kernel (system calls) using rumpuser interfaces. Any

"slow" hypervisor calls such as file I/O, sychronization wait, or sleep

will cause rump to unschedule the calling kernel thread from the virtual

CPU and free it for other consumers. When the hypervisor call returns to

the kernel, a new scheduling operation takes place.

For example, rump implements kernel threads directly as hypervisor calls

to host pthread(3). This avoids the common virtualization drawback of

multiple overlapping and possibly conflicting implementations of same

functionality in the software stack.

The rumpuser interface is still under development and interface documen-

tation is available only in source form from src/lib/librumpuser.

SEE ALSO

rump(3)

NetBSD 5.99.48 March 1, 2010 NetBSD 5.99.48

A–38

UKFS(3) NetBSD Library Functions Manual UKFS(3)

NAME

ukfs -- user kernel file system library interface

LIBRARY

ukfs Library (libukfs, -lukfs)

SYNOPSIS

#include <rump/ukfs.h>

DESCRIPTION

The ukfs library provides direct access to file systems without having to

specially mount a file system. Therefore, accessing a file system

through ukfs requires no special kernel support apart from standard POSIX

functionality. As ukfs is built upon rump(3), all kernel file systems

which are supported by rump are available. It allows to write utilities

for accessing file systems without having to duplicate file system inter-

nals knowledge already present in kernel file system drivers.

ukfs provides a high-level pathname based interface for accessing file

systems. If a lower level interface it desired, rump(3) should be used

directly. However, much like system calls, the interfaces of ukfs, are

self-contained and require no tracking and release of resources. The

only exception is the file system handle struct ukfs which should be

released after use.

INITIALIZATION

int

ukfs_init()

int

ukfs_modload(const char *fname)

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–39

UKFS(3) NetBSD Library Functions Manual UKFS(3)

int

ukfs_modload_dir(const char *dirname)

ssize_t

ukfs_vfstypes(char *buf, size_t buflen)

struct ukfs *

ukfs_mount(const char *vfsname, const char *devpath, const char

*mountpath, int mntflags, void *arg, size_t alen)

struct ukfs *

ukfs_mount_disk(const char *vfsname, const char *devpath, int partition,

const char *mountpath, int mntflags, void *arg, size_t alen)

int

ukfs_release(struct ukfs *ukfs, int flags)

ukfs_init() intializes the library and must be called once per process

using ukfs.

ukfs_modload() is used at runtime to dynamically load a library which

contains a file system module. For this to succeed, the rump(3) library

and the module targetted must be compiled with compatible kernel versions

and the application must be dynamically linked. Additionally, since this

routine does not handle dependencies, all the dependencies of the library

must be loaded beforehand. The routine returns -1 for fatal error, 0 for

dependency failure and 1 for success.

ukfs_modload_dir() loads all rump(3) file system modules in directory

dirname. It looks for libraries which begin with librumpfs_ and end in

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–40

UKFS(3) NetBSD Library Functions Manual UKFS(3)

.so. The routine tries to handle dependencies by retrying to load

libraries which failed due to dependencies. ukfs_modload_dir() returns

the number of vfs modules loaded or sets errno and returns -1 in case of

a fatal error in directory searching. In case a fatal error occurs after

some modules have already been loaded, the number of loaded module is

returned. Fatal errors in loading the modules themselves are ignored and

ukfs_modload() should be used directly if finegrained error reporting is

desired.

It should be noted that the above routines affect the whole process, not

just a specific instance of ukfs. It is preferable to call them from

only one thread, as the underlying dynamic library interfaces may not be

threadsafe.

ukfs_vfstypes() queries the available file system types and returns a

nul-terminated list of types separated by spaces in buf. The format of

the list is equivalent to the one returned by sysctl(3) on the name

vfs.generic.fstypes. The function returns the length of the string with-

out the trailing nul or -1 for error. Notably, the return value 0 means

there are no file systems available. If there is not enough room in the

caller’s buffer for all file system types, as many as fit will be

returned.

ukfs_mount() intializes a file system image. The handle resulting from

the operation is passed to all other routines and identifies the instance

of the mount analoguous to what a pathname specifies in a normally

mounted file system. The parameters are the following:

vfsname

Name of the file system to be used, e.g. MOUNT_FFS.

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–41

UKFS(3) NetBSD Library Functions Manual UKFS(3)

devpath

Path of file system image. It can be either a regular file,

device or, if the file system does not support the concept of

a device, an abitrary string, e.g. network address.

mountpath

Path where the file system is mounted to. This parameter is

used only by the file system being mounted. Most of the time

UKFS_DEFAULTMP is the correct path.

mntflags

Flags as passed to the mount(2) system call, for example

MNT_RDONLY. In addition to generic parameters, file system

specific parameters such as MNT_LOG (ffs) may be passed here.

arg File system private argument structure. This is passed

directly to the file system. It must match what vfsname

expects.

alen

Size of said structure.

The ukfs_mount_disk() function must be used to mount disk-based file sys-

tems. It takes the same arguments as ukfs_mount(), except for an addi-

tional argument signifying the partition number. If the image devpath

contains a disklabel, this value specifies the number of the partition

within the image used as the file system backend. If devpath does not

contain a disklabel, the value UKFS_PARTITION_NONE must be used to signal

that the file system backend is the entire image.

ukfs_release() unmounts the file system and releases the resources asso-

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–42

UKFS(3) NetBSD Library Functions Manual UKFS(3)

ciated with ukfs. The return value signals the return value of the

unmount operation. If non-zero, ukfs will continue to remain valid. The

possible values for flags are:

UKFS_RELFLAG_NOUNMOUNT Do not unmount file system, just release

ukfs handle. Release always succeeds.

UKFS_RELFLAG_FORCE Forcefully unmount the file system. This

means that any busy nodes (due to e.g.

ukfs_chdir()) will be ignored. Release

always succeeds.

OPERATION

int

ukfs_chdir(struct ukfs *ukfs, const char *path)

int

ukfs_getdents(struct ukfs *ukfs, const char *dirname, off_t *off, uint8_t

*buf, size_t bufsize)

ssize_t

ukfs_read(struct ukfs *ukfs, const char *filename, off_t off, uint8_t

*buf, size_t bufsize)

ssize_t

ukfs_write(struct ukfs *ukfs, const char *filename, off_t off, uint8_t

*buf, size_t bufsize)

int

ukfs_create(struct ukfs *ukfs, const char *filename, mode_t mode)

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–43

UKFS(3) NetBSD Library Functions Manual UKFS(3)

int

ukfs_mknod(struct ukfs *ukfs, const char *path, mode_t mode, dev_t dev)

int

ukfs_mkfifo(struct ukfs *ukfs, const char *path, mode_t mode)

int

ukfs_mkdir(struct ukfs *ukfs, const char *filename, mode_t mode)

int

ukfs_remove(struct ukfs *ukfs, const char *filename)

int

ukfs_rmdir(struct ukfs *ukfs, const char *filename)

int

ukfs_link(struct ukfs *ukfs, const char *filename, const char *f_create)

int

ukfs_symlink(struct ukfs *ukfs, const char *filename, const char

*linkname)

ssize_t

ukfs_readlink(struct ukfs *ukfs, const char *filename, char *linkbuf,

size_t buflen)

int

ukfs_rename(struct ukfs *ukfs, const char *from, const char *to)

int

ukfs_stat(struct ukfs *ukfs, const char *filename, struct stat

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–44

UKFS(3) NetBSD Library Functions Manual UKFS(3)

*file_stat)

int

ukfs_lstat(struct ukfs *ukfs, const char *filename, struct stat

*file_stat)

int

ukfs_chmod(struct ukfs *ukfs, const char *filename, mode_t mode)

int

ukfs_lchmod(struct ukfs *ukfs, const char *filename, mode_t mode)

int

ukfs_chown(struct ukfs *ukfs, const char *filename, uid_t uid, gid_t gid)

int

ukfs_lchown(struct ukfs *ukfs, const char *filename, uid_t uid, gid_t

gid)

int

ukfs_chflags(struct ukfs *ukfs, const char *filename, u_long flags)

int

ukfs_lchflags(struct ukfs *ukfs, const char *filename, u_long flags)

int

ukfs_utimes(struct ukfs *ukfs, const char *filename, const struct timeval

*tptr)

int

ukfs_lutimes(struct ukfs *ukfs, const char *filename, const struct

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–45

UKFS(3) NetBSD Library Functions Manual UKFS(3)

timeval *tptr)

The above routines operate like their system call counterparts and the

system call manual pages without the ukfs_ prefix should be referred to

for further information on the parameters.

The only call which modifies ukfs state is ukfs_chdir(). It works like

chdir(2) in the sense that it affects the interpretation of relative

paths. If succesful, all relative pathnames will be resolved starting

from the current directory. Currently the call affects all accesses to

that particular , but it might be later changed to be thread private.

UTILITIES

int

ukfs_util_builddirs(struct ukfs *ukfs, const char *pathname, mode_t mode)

Builds a directory hierarchy. Unlike mkdir, the pathname argument may

contain multiple levels of hierarchy. It is not considered an error if

any of the directories specified exist already.

SEE ALSO

rump(3)

HISTORY

ukfs first appeared in NetBSD 5.0.

AUTHORS

Antti Kantee <pooka@cs.hut.fi>

NOTES

ukfs should be considered experimental technology and may change without

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–46

UKFS(3) NetBSD Library Functions Manual UKFS(3)

warning.

BUGS

On Linux, dynamically linked binaries can include support for only one

file system due to restrictions with the dynamic linker. If more are

desired, they must be loaded at runtime using ukfs_modload(). Even

though NetBSD does not have this restriction, portable programs should

load all file system drivers dynamically.

NetBSD 5.99.48 November 22, 2009 NetBSD 5.99.48

A–47

SHMIF(4) NetBSD Kernel Interfaces Manual SHMIF(4)

NAME

shmif -- rump shared memory network interface

SYNOPSIS

#include <rump/rump.h>

int

rump_pub_shmif_create(const char *path, int *ifnum);

DESCRIPTION

The shmif interface uses a memory mapped regular file as a virtual Ether-

net bus. All interfaces connected to the same bus see each others’ traf-

fic.

Using a memory mapped regular file as a bus has two implications: 1) the

bus identifier is not in flat global namespace 2) configuring and using

the interface is possible without superuser privileges on the host (nor-

mal host file access permissions for the bus hold).

It is not possible to directly access the host networking facilities from

a rump virtual kernel using purely shmif. However, traffic can be routed

to another rump kernel instance which provides both shmif and virt(4)

networking.

An shmif interface can be created in two ways:

o Programmatically by calling rump_pub_shmif_create(). The bus path-

name is passed in path. The number of the newly created interface is

available after a succesful call by dereferencing ifnum.

o Dynamically at runtime with ifconfig(8) or equivalent using the

NetBSD 5.99.48 November 17, 2010 NetBSD 5.99.48

A–48

SHMIF(4) NetBSD Kernel Interfaces Manual SHMIF(4)

create command. In this case the bus path must be configured with

ifconfig(8) linkstr before the interface address can be configured.

Destroying an shmif interface is possible only via ifconfig(8) destroy.

SEE ALSO

rump(3), virt(4), ifconfig(8).

NetBSD 5.99.48 November 17, 2010 NetBSD 5.99.48

A–49

VIRT(4) NetBSD Kernel Interfaces Manual VIRT(4)

NAME

virt -- rump virtual network interface

SYNOPSIS

#include <rump/rump.h>

int

rump_pub_virtif_create(int num);

DESCRIPTION

The virt interface acts as a link between a rump virtual kernel and a

host tap(4) interface. Interface number <n> always corresponds with the

host tap interface tap<n>. All data sent by virt is written into

/dev/tap<n> and all data read from /dev/tap<n> is passed as Ethernet

input to the rump virtual kernel.

A virt interface can be created in two ways:

o Programmatically by calling rump_pub_virtif_create().

o Dynamically at runtime with ifconfig(8) or equivalent using the

create command.

Destroying a virt interface is possible only through ifconfig(8) destroy.

The host’s tap(4) interface can be further bridged with hardware inter-

faces to provide full internet access to a rump kernel.

SEE ALSO

rump(3), bridge(4), tap(4), brconfig(8), ifconfig(8)

NetBSD 5.99.48 November 15, 2010 NetBSD 5.99.48

A–50

RUMP_SP(7) NetBSD Miscellaneous Information Manual RUMP_SP(7)

NAME

rump_sp -- rump remote system call support

DESCRIPTION

The rump_sp facility allows clients to attach to a rump kernel server

over a socket and perform system calls. While making a local rump system

call is faster than calling the host kernel, a remote system call over a

socket is slower. This facility is therefore meant mostly for operations

which are not performance critical, such as configuration of a rump ker-

nel server.

Clients

The NetBSD base system comes with multiple preinstalled clients which can

be used to configure a rump kernel and request diagnostic information.

These clients run as hybrids partially in the host system and partially

against the rump kernel. For example, network-related clients will typi-

cally avoid making any file system related system calls against the rump

kernel, since it is not guaranteed that a rump network server has file

system support. Another example is DNS: since a rump server very rarely

has a DNS service configured, host networking is used to do DNS lookups.

Some examples of clients include rump.ifconfig which configures inter-

faces, rump.sysctl which is used to access the sysctl(7) namespace and

rump.traceroute which is used to display a network trace starting from

the rump kernel.

Also, almost any unmodified dynamically linked application (for example

telnet(1) or ls(1)) can be used as a rump kernel client with the help of

system call hijacking. See rumphijack(3) for more information.

Connecting to the server

NetBSD 5.99.48 February 7, 2011 NetBSD 5.99.48

A–51

RUMP_SP(7) NetBSD Miscellaneous Information Manual RUMP_SP(7)

A remote rump server is specified using an URL. Currently two types of

URLs are supported: TCP and local domain sockets. The TCP URL is of the

format tcp://ip.address:port/ and the local domain URL is unix://path.

The latter can accept relative or absolute paths. Note that absolute

paths require three leading slashes.

To preserve the standard usage of the rump clients’ counterparts the

environment variable RUMP_SERVER is used to specify the server URL. To

keep track of which rump kernel the current shell is using, modifying the

shell prompt is recommended -- this is analoguous to the visual clue you

have when you login from one machine to another.

Client credentials and access control

The current scheme gives all connecting clients root credentials. It is

recommended to take precautions which prevent unauthorized access. For a

unix domain socket it is enough to prevent access to the socket using

file system permissions. For TCP/IP sockets the only available means is

to prevent network access to the socket with the use of firewalls. More

fine-grained access control based on cryptographic credentials may be

implemented at a future date.

EXAMPLES

Get a list of file systems supported by a rump kernel server (in case

that particular server does not support file systems, an error will be

returned):

$ env RUMP_SERVER=unix://sock rump.sysctl vfs.generic.fstypes

SEE ALSO

rump_server(1), rump(3), rumpclient(3), rumphijack(3)

NetBSD 5.99.48 February 7, 2011 NetBSD 5.99.48

A–52

RUMP_SP(7) NetBSD Miscellaneous Information Manual RUMP_SP(7)

HISTORY

rump_sp first appeared in NetBSD 6.0.

NetBSD 5.99.48 February 7, 2011 NetBSD 5.99.48

B–1

Appendix B Tutorial on Distributed Kernel Services

When a rump kernel is coupled with the sysproxy facility it is possible to run loosely

distributed client-server ”mini-operating systems”. Since there is minimum configu-

ration and the bootstrap time is measured in milliseconds, these environments are

very cheap to set up, use, and tear down on-demand.

This section is a tutorial on how to configure and use unmodified NetBSD kernel

drivers as userspace services with utilities available from the NetBSD base system.

As part of this, it presents various use cases. One uses the kernel cryptographic disk

driver (cgd) to encrypt a partition. Another one demonstrates how to operate an

FFS server for editing the contents of a file system even though your user account

does not have privileges to use the host’s mount() system call. Additionally, using

a userspace TCP/IP server with an unmodified web browser is detailed.

You will need a NetBSD-current snapshot from March 31st 2011 or later. Alterna-

tively, although not available when writing this, you can use NetBSD 6 or later.

B.1 Important concepts and a warmup exercise

This section goes over basic concepts which help to understand how to start and

use rump servers and clients.

B.1.1 Service location specifiers

A rump kernel service location is specified with an URL. Currently, two types of

connections are supported: TCP and local domain sockets (i.e. file system sockets).

B–2

TCP connections use standard TCP/IP addressing. The URL is of the format

tcp://ip.address:port/. A local domain socket binds to a pathname on the

local system. The URL format is unix://socket/path and accepts both relative

and absolute paths. Note that absolute paths require three leading slashes.

Both the client and the server require a service URL to be specified. For the server,

the URL designates where the server should listen for incoming connections, and for

the client it specifies which server the client should connect to.

B.1.2 Servers

Kernel services are provided by rump servers. Generally speaking, any driver-like

kernel functionality can be offered by a rump server. Examples include file systems,

networking protocols, the audio subsystem and USB hardware device drivers. A

rump server is absolutely standalone and running one does not require for example

the creation and maintenance of a root file system.

The program rump server is a component-oriented rump kernel server (manpage

available in Appendix A). It can use any combination of available NetBSD kernel

components in userspace. In its most basic mode, server offers only bare-bones

functionality such as kernel memory allocation and thread support — generally

speaking nothing that is alone useful for applications.

Components are specified on the command line using a linker-like syntax. For ex-

ample, for a server with FFS capability, you need the VFS faction and the FFS com-

ponent: rump_server -lrumpvfs -lrumpfs_ffs. The -l option uses the host’s

dlopen() routine to load and link components dynamically. It is also possible to

use the NetBSD kernel loader/linker to load ELF objects by supplying -m instead,

but for simplicity this article always uses -l.

B–3

The URL the server listens to is supplied as the last argument on the command

line and is of the format described in the previous section. Other options, as docu-

mented on the manual page, control parameters such as the number of virtual CPUs

configured to the rump server and maximum amount of host memory the virtual

kernel will allocate.

B.1.3 Clients

Rump clients are programs which interface with the kernel servers. They can either

be used to configure the server or act as consumers of the functionality provided by

the server. Configuring the IP address for a TCP/IP server is an example of the

former, while web browsing is an example of the latter. Clients can be considered to

be the userland of a rump kernel, but unlike in a usermode operating system they

are not confined to a specific file system setup, and are simply run from the hosting

operating system.

A client determines the server it connects from the URL in the RUMP_SERVER envi-

ronment variable.

A client runs as a hybrid in both the host kernel and rump kernel. It uses essential

functionality from the rump kernel, while all non-essential functionality comes from

the host kernel. The direct use of the host’s resources for non-essential functionality

enables very lightweight services and is what sets rump apart from other forms of

virtualization. The set of essential functionality depends on the application. For

example, for ls fetching a directory listing with getdents() is essential function-

ality, while allocating the memory to which the directory contents are fetched to is

non-essential.

The NetBSD base system contains applications which are preconfigured to act as

B–4

rump clients. This means that just setting RUMP_SERVER will cause these applica-

tions to perform their essential functionality on the specified rump kernel server.

These applications are distinguished by a ”rump.”-prefix in their command name.

The current list of such programs is:

rump.cgdconfig rump.halt rump.modunload rump.raidctl rump.traceroute

rump.dd rump.ifconfig rump.netstat rump.route

rump.dhcpclient rump.modload rump.ping rump.sockstat

rump.envstat rump.modstat rump.powerd rump.sysctl

Additionally, almost any other dynamically linked binary can act as a rump client,

but it is up to the user to specify a correct configuration for hijacking the appli-

cation’s essential functionality. Hijacking is demonstrated in later sections of this

tutorial.

B.1.4 Client credentials and access control

The current scheme gives all connecting clients root credentials. It is recommended

to take precautions which prevent unauthorized access. For a unix domain socket it

is enough to prevent access to the socket using file system permissions. For TCP/IP

sockets the only available means is to prevent network access to the socket with the

use of firewalls. More fine-grained access control based on cryptographic credentials

may be implemented at a future date.

B.1.5 Your First Server

Putting everything together, we’re ready to start our first rump server. In the

following example we start a server, examine the autogenerated hostname it was

B–5

given, and halt the server. We also observe that the socket is removed when the

server exits.

golem> rump_server unix://rumpserver

golem> ls -l rumpserver

srwxr-xr-x 1 pooka users 0 Mar 11 14:49 rumpserver

golem> sysctl kern.hostname

kern.hostname = golem.localhost

golem> export RUMP_SERVER=unix://rumpserver

golem> rump.sysctl kern.hostname

kern.hostname = rump-06341.golem.localhost.rumpdomain

golem> rump.halt

golem> rump.sysctl kern.hostname

rump.sysctl: prog init failed: No such file or directory

golem> ls -l rumpserver

ls: rumpserver: No such file or directory

As an exercise, try the above, but use rump.halt with -d to produce a core dump.

Examine the core with gdb and especially look at the various thread that were

running (in gdb: thread apply all bt). Also, try to create another core with

kill -ABRT. Notice that you will have a stale socket in the file system when the

server is violently killed. You can remove it with rm.

As a final exercise, start the server with -s. This causes the server to not detach

from the console. Then kill it either with SIGTERM from another window (the default

signal send by kill) or by pressing Ctrl-C. You will notice that the server reboots

itself cleanly in both cases. If it had file systems, those would be unmounted too.

These features are useful for quick iteration when debugging and developing kernel

code.

In case you want to use a debugger to further examine later cases we go over

in this tutorial, it is recommended you install debugging versions of rump com-

B–6

ponents. That can be done simply by going into src/sys/rump and running

make DBG=-g cleandir dependall and after that make install as root. You

can also install the debugging versions to an alternate directory with the command

make DESTDIR=/my/dir install and run the code with LD_LIBRARY_PATH set to

/my/dir. This scheme also allows you to run kernel servers with non-standard code

modifications on a non-privileged account.

B.2 Userspace cgd encryption

The cryptographic disk driver, cgd, provides an encrypted view of a block device.

The implementation is kernel-based. This makes it convenient and efficient to layer

the cryptodriver under a file system so that all file system disk access is encrypted.

However, using a kernel driver requires that the code is loaded into the kernel and

that a user has the appropriate privileges to configure and access the driver.

Occasionally, it is desirable to encrypt a file system image before distribution. As-

sume you have a USB image, i.e. one that can boot and run directly from USB

media. The image can for example be something you created yourself, or even one

of the standard USB installation images offered at ftp.NetBSD.org. You also have

a directory tree with confidential data you wish to protect with cgd. This example

demonstrates how to use a rump cgd server to encrypt your data. This approach,

as opposed to using a driver in the host kernel, has the following properties:

• uses out-of-the-box tools on any NetBSD installation

• does not require any special kernel drivers

• does not require superuser access

• is portable to non-NetBSD systems (although requires some amount of work)

B–7

While there are multiple steps with a fair number of details, in case you plan on

doing this regularly, it is possible to script them and automate the process. It is

recommended that you follow these instructions as non-root to avoid accidentally

overwriting a cgd partition on your host due to a mistyped command.

Let’s start with the USB disk image you have. It will have a disklabel such as the

following:

golem> disklabel usb.img

usb.img:

type: unknown

disk: USB image

label:

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 16

sectors/cylinder: 1008

cylinders: 1040

total sectors: 1048576

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds

track-to-track seek: 0 # microseconds

drivedata: 0

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 981792 63 4.2BSD 1024 8192 0 # (Cyl. 0*- 974*)

b: 66721 981855 swap # (Cyl. 974*- 1040*)

c: 1048513 63 unused 0 0 # (Cyl. 0*- 1040*)

d: 1048576 0 unused 0 0 # (Cyl. 0 - 1040*)

B–8

Our goal is to add another partition after the existing ones to contain the cgd-

encrypted data. This will require extending the file containing the image, and,

naturally, a large enough USB mass storage device onto which the new image file

can be copied.

First, we create a file system image out of our data directory using the standard

makefs command from the NetBSD base system:

golem> makefs unencrypted.ffs preciousdir

Calculated size of ‘unencrypted.ffs’: 12812288 bytes, 696 inodes

Extent size set to 8192

unencrypted.ffs: 12.2MB (25024 sectors) block size 8192, fragment size 1024

using 1 cylinder groups of 12.22MB, 1564 blks, 768 inodes.

super-block backups (for fsck -b #) at:

32,

Populating ‘unencrypted.ffs’

Image ‘unencrypted.ffs’ complete

Then, we calculate the image size in disk sectors by dividing the image size with the

disk sector size (512 bytes):

golem> expr ‘stat -f %z unencrypted.ffs‘ / 512

25024

We then edit the existing image label so that there is a spare partition large enough

to hold the image. We need to edit ”total sectors”, and the ”c” and ”d” partition.

We also need to create the ”e” partition. Make sure you use ”unknown” instead of

”unused” as the fstype for for partition e. In the following image the edited fields

are denotated with a red color.

B–9

golem> disklabel -re usb.img

usb.img:

type: unknown

disk: USB image

label:

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 16

sectors/cylinder: 1008

cylinders: 1040

total sectors: 1073600

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds

track-to-track seek: 0 # microseconds

drivedata: 0

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 981792 63 4.2BSD 1024 8192 0 # (Cyl. 0*- 974*)

b: 66721 981855 swap # (Cyl. 974*- 1040*)

c: 1073537 63 unused 0 0 # (Cyl. 0*- 1065*)

d: 1073600 0 unused 0 0 # (Cyl. 0 - 1065*)

e: 25024 1048576 unknown 0 0 # (Cyl. 1040*- 1065*)

Now, it is time to start a rump server for writing the encrypted data to the image.

We need to note that a rump kernel has a local file system namespace and therefore

cannot in its natural state see files on the host. However, the -d parameter to

rump server can be used to map files from the host into the rump kernel file system

namespace. We start the server in the following manner:

B–10

golem> export RUMP_SERVER=unix:///tmp/cgdserv

golem> rump_server -lrumpvfs -lrumpkern_crypto -lrumpdev -lrumpdev_disk \

-lrumpdev_cgd -d key=/dk,hostpath=usb.img,disklabel=e ${RUMP_SERVER}

This maps partition ”e”from the disklabel on usb.img to the key /dk inside the rump

kernel. In other words, accessing sector 0 from /dk in the rump kernel namespace

will access sector 1048576 on usb.img. The image file is also automatically extended

so that the size is large enough to contain the entire partition.

Note that everyone who has access to the server socket will have root access to the

kernel server, and hence the data you are going to encrypt. In case you are following

these instructions on a multiuser server, it is a good idea to make sure the socket is

in a directory only you have access to (directory mode 0700).

We can now verify that dumping the entire partition gives us a zero-filled partition

of the right size (25024 sectors * 512 bytes/sector = 12812288 bytes):

golem> rump.dd if=/dk bs=64k > emptypart

195+1 records in

195+1 records out

12812288 bytes transferred in 0.733 secs (17479246 bytes/sec)

golem> hexdump -x emptypart

0000000 0000 0000 0000 0000 0000 0000 0000 0000

*

0c38000

In the above example we could pipe rump.dd output directly to hexdump. However,

running two separate commands also conveniently demonstrates that we get the

right amount of data from /dk.

If we were to dd our unencrypted.img to /dk, we would have added a regular

B–11

unencrypted partition to the image. The next step is to configure a cgd so that we

can write encrypted data to the partition. In this example we’ll use a password-based

key, but you are free to use anything that is supported by cgdconfig.

golem> rump.cgdconfig -g aes-cbc > usb.cgdparams

golem> cat usb.cgdparams

algorithm aes-cbc;

iv-method encblkno1;

keylength 128;

verify_method none;

keygen pkcs5_pbkdf2/sha1 {

iterations 325176;

salt AAAAgGc4DWwqXN4t0eapskSLWTs=;

};

Note that if you have a fast machine and wish to use the resulting encrypted partition

on slower machines, it is a good idea to edit ”iterations”. The value is automatically

calibrated by cgdconfig so that encryption key generation takes about one second

on the platform where the params file is generated [28]. Key generation can take

significantly longer on slower systems.

The next step is to configure the cgd device using the paramsfile. Since we are using

password-based encryption we will be prompted for a password. Enter any password

you want to use to access the data later.

golem> rump.cgdconfig cgd0 /dk usb.cgdparams

/dk’s passphrase:

If we repeat the dd test in the encrypted partition we will get a very different result

than above. This is expected, since now we have an encrypted view of the zero-filled

partition.

B–12

golem> rump.dd if=/dev/rcgd0d | hexdump -x | sed 8q

0000000 9937 5f33 25e7 c341 3b67 c411 9d73 645c

0000010 5b7c 23f9 b694 e732 ce0a 08e0 9037 2b2a

*

0000200 0862 ee8c eafe b21b c5a3 4381 cdb5 2033

0000210 5b7c 23f9 b694 e732 ce0a 08e0 9037 2b2a

*

0000400 ef06 099d 328d a35d f4ab aac0 6aba d673

0000410 5b7c 23f9 b694 e732 ce0a 08e0 9037 2b2a

NOTE: The normal rules for the raw device names apply, and the correct device

path is /dev/rcgd0c on non-x86 archs.

To encrypt our image, we simply need to dd it to the cgd partition.

golem> dd if=unencrypted.ffs bs=64k | rump.dd of=/dev/rcgd0d bs=64k

195+1 records in

195+1 records out

12812288 bytes transferred in 0.890 secs (14395829 bytes/sec)

195+1 records in

195+1 records out

12812288 bytes transferred in 0.896 secs (14299428 bytes/sec)

We have now successfully written an encrypted version of the file system to the

image file and can proceed to shut down the rump server. This makes sure all rump

kernel caches are flushed.

golem> rump.halt

golem> unset RUMP_SERVER

You will need to make sure the cgd params file is available on the platform you

intend to use the image on. There are multiple ways to do this. It is safe even to

B–13

offer the params file for download with the image — just make sure the password is

not available for download. Notably, though, you will be telling everyone how the

image was encrypted and therefore lose the benefit of two-factor authentication.

In this example, we use fs-utils [116] to copy the params file to the unencrypted ”a”

partition of the image. That way, the params files is included with the image. Like

other utilities in this tutorial, fs-utils works purely in userspace and does not require

special privileges or kernel support.

golem> fsu_put usb.img%DISKLABEL:a% usb.cgdparams root/

golem> fsu_ls usb.img%DISKLABEL:a% -l root/usb.cgdparams

-rw-r--r-- 1 pooka users 175 Feb 9 17:50 root/usb.cgdparams

golem> fsu_chown usb.img%DISKLABEL:a% 0:0 root/usb.cgdparams

golem> fsu_ls usb.img%DISKLABEL:a% -l root/usb.cgdparams

-rw-r--r-- 1 root wheel 175 Feb 9 17:50 root/usb.cgdparams

Alternatively, we could use the method described later in Section B.4. It works

purely with base system utilities.

We are ready to copy the image to a USB stick. This step should be executed with

appropriate privileges for raw writes to USB media. If USB access is not possible

on the same machine, the image may be copied over network to a suitable machine.

golem# dd if=usb.img of=/dev/rsd0d bs=64k

8387+1 records in

8387+1 records out

549683200 bytes transferred in 122.461 secs (4488638 bytes/sec)

Finally, we can boot the target machine from the USB stick, configure the encrypted

partition, mount the file system, and access the data. Note that to perform these

operations we need root privileges on the target machine.

B–14

demogorgon# cgdconfig cgd0 /dev/sd0e /root/usb.cgdparams

/dev/sd0e’s passphrase:

demogorgon# disklabel cgd0

/dev/rcgd0d:

type: cgd

disk: cgd

label: fictitious

flags:

bytes/sector: 512

sectors/track: 2048

tracks/cylinder: 1

sectors/cylinder: 2048

cylinders: 12

total sectors: 25024

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds

track-to-track seek: 0 # microseconds

drivedata: 0

4 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 25024 0 4.2BSD 0 0 0 # (Cyl. 0 - 12*)

d: 25024 0 unused 0 0 # (Cyl. 0 - 12*)

disklabel: boot block size 0

disklabel: super block size 0

demogorgon# mount /dev/cgd0a /mnt

demogorgon# ls -l /mnt

total 1

drwxr-xr-x 9 1323 users 512 Feb 4 13:13 nethack-3.4.3

#

B–15

B.3 Networking

This section explains how to run any dynamically linked networking program against

a rump TCP/IP stack without requiring any modifications to the application, in-

cluding no recompilation. The application we use in this example is the Firefox

browser. It is an interesting application for multiple reasons. Segregating the web

browser to its own TCP/IP stack is an easy way to increase monitoring and control

over what kind of connections the web browser makes. It is also an easy way to get

some increased privacy protection (assuming the additional TCP/IP stack can have

its own external IP). Finally, a web browser is largely ”connectionless”, meaning

that once a page has been loaded a TCP/IP connection can be discarded. We use

this property to demonstrate killing and restarting the TCP/IP stack from under

the application without disrupting the application itself.

A rump server with TCP/IP capability is required. If the plan is to access the

Internet, the virt interface must be present in the rump kernel and the host kernel

must have support for tap and bridge. You also must have the appropriate privileges

for configuring the setup — while rump kernels do not themselves require privileges,

they cannot magically access host resources without the appropriate privileges. If

you do not want to access the Internet, using the shmif interface is enough and no

privileges are required. However, for purposes of this tutorial we will assume you

want to access the Internet and all examples are written for the virt+tap+bridge

combination.

Finally, if there is a desire to configure the rump TCP/IP stack with DHCP, the

rump kernel must support bpf. Since bpf is accessed via a file system device node,

vfs support is required in this case (without bpf there is no need for file system

support). Putting everything together, the rump kernel command line looks like

this:

B–16

rump_server -lrumpnet -lrumpnet_net -lrumpnet_netinet # TCP/IP networking

-lrumpvfs -lrumpdev -lrumpdev_bpf # bpf support

-lrumpnet_virtif # virt(4)

So, to start the TCP/IP server execute the following. Make sure RUMP_SERVER stays

set in the shell you want to use to access the rump kernel.

golem> export RUMP_SERVER=unix:///tmp/netsrv

golem> rump_server -lrumpnet -lrumpnet_net -lrumpnet_netinet -lrumpvfs

-lrumpdev -lrumpdev_bpf -lrumpnet_virtif $RUMP_SERVER

The TCP/IP server is now running and waiting for clients at RUMP_SERVER. For

applications to be able to use it, we must do what we do to a regular host kernel

TCP/IP stack: configure it. This is discussed in the next section.

B.3.1 Configuring the TCP/IP stack

A kernel mode TCP/IP stack typically has access to networking hardware for send-

ing and receiving packets, so first we must make sure the rump TCP/IP server has

the same capability. The canonical way is to use bridging and we will present that

here. An alternative is to use the host kernel to route the packets, but that is left as

an exercise to the reader. In both cases, the rump kernel sends and receives exter-

nal packets via a /dev/tap<n> device node. The rump kernel must have read-write

access to this device node. The details are up to you, but the recommended way is

to use appropriate group privileges.

To create a tap interface and attach it via bridge to a host Ethernet interface we

execute the following commands. You can attach as many tap interfaces to a single

B–17

bridge as you like. For example, if you run multiple rump kernels on the same

machine, adding all the respective tap interfaces on the same bridge will allow the

different kernels to see each others’ Ethernet traffic.

Note that the actual interface names will vary depending on your system and which

tap interfaces are already in use.

golem# ifconfig tap0 create

golem# ifconfig tap0 up

golem# ifconfig tap0

tap0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

address: f2:0b:a4:f1:da:00

media: Ethernet autoselect

golem# ifconfig bridge0 create

golem# brconfig bridge0 add tap0 add re0

golem# brconfig bridge0 up

golem# brconfig bridge0

bridge0: flags=41<UP,RUNNING>

Configuration:

priority 32768 hellotime 2 fwddelay 15 maxage 20

ipfilter disabled flags 0x0

Interfaces:

re0 flags=3<LEARNING,DISCOVER>

port 2 priority 128

tap0 flags=3<LEARNING,DISCOVER>

port 4 priority 128

Address cache (max cache: 100, timeout: 1200):

b2:0a:53:0b:0e:00 tap0 525 flags=0<>

go:le:ms:re:0m:ac re0 341 flags=0<>

That takes care of support on the host side. The next task is to create an interface

within the rump kernel which uses the tap interface we just created. In case you are

not using tap0, you need to know that virt<n> corresponds to the host’s tap<n>.

B–18

golem> rump.ifconfig virt0 create

golem> rump.ifconfig virt0

virt0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

address: b2:0a:bb:0b:0e:00

In case you do not have permission to open the corresponding tap device on the

host, or the host’s tap interface has not been created, you will get an error from

ifconfig when trying to create the virt interface.

Now the rump kernel interface exists. The final step is to configure an address and

routing. In case there is DHCP support on the network you bridged the rump kernel

to, you can simply run rump.dhcpclient:

golem> rump.dhcpclient virt0

virt0: adding IP address 192.168.2.125/24

virt0: adding route to 192.168.2.0/24

virt0: adding default route via 192.168.2.1

lease time: 172800 seconds (2.00 days)

If there is no DHCP service available, you can do the same manually with the same

result.

golem> rump.ifconfig virt0 inet 192.168.2.125 netmask 0xffffff00

golem> rump.route add default 192.168.2.1

add net default: gateway 192.168.2.1

You should now have network access via the rump kernel. You can verify this with

a simple ping.

B–19

golem> rump.ping www.NetBSD.org

PING www.NetBSD.org (204.152.190.12): 56 data bytes

64 bytes from 204.152.190.12: icmp_seq=0 ttl=250 time=169.102 ms

64 bytes from 204.152.190.12: icmp_seq=1 ttl=250 time=169.279 ms

64 bytes from 204.152.190.12: icmp_seq=2 ttl=250 time=169.633 ms

^C

----www.NetBSD.org PING Statistics----

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 169.102/169.338/169.633/0.270 ms

In case everything is working fine, you will see approximately the same latency as

with the host networking stack.

golem> ping www.NetBSD.org

PING www.NetBSD.org (204.152.190.12): 56 data bytes

64 bytes from 204.152.190.12: icmp_seq=0 ttl=250 time=169.134 ms

64 bytes from 204.152.190.12: icmp_seq=1 ttl=250 time=169.281 ms

64 bytes from 204.152.190.12: icmp_seq=2 ttl=250 time=169.497 ms

^C

----www.NetBSD.org PING Statistics----

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 169.134/169.304/169.497/0.183 ms

B.3.2 Running applications

We are now able to run arbitrary unmodified applications using the TCP/IP stack

provided by the rump kernel. We just have to set LD_PRELOAD to instruct the

dynamic linker to load the rump hijacking library. Also, now is a good time to make

sure RUMP_SERVER is still set and points to the right place.

golem> export LD_PRELOAD=/usr/lib/librumphijack.so

B–20

Congratulations, that’s it. Any application you run from the shell in which you set

the variables will use the rump TCP/IP stack. If you wish to use another rump

TCP/IP server (which has networking configured), simply adjust RUMP_SERVER.

Using this method you can for example segregate some ”evil” applications to their

own networking stack.

B.3.3 Transparent TCP/IP stack restarts

Since the TCP/IP stack is running in a separate process from the client, it is possible

kill and restart the TCP/IP stack from under the application without having to

restart the application. Potential uses for this are to take features available in later

releases into use or fixing a security vulnerability. Even though NetBSD kernel code

barely ever crashes, it does happen, and this will also protect against that.

Since networking stack code does not contain any checkpointing support, killing the

hosting process will cause all kernel state to go missing and for example previously

used sockets will not be available after restart. Even if checkpointing were added

for things like file descriptors, generally speaking checkpointing a TCP connection

is not possible. The reaction to this unexpected loss of state largely depends on the

application. For example, ssh will not handle this well, but Firefox will generally

speaking recover without adverse effects.

Before starting the hijacked application you should instruct the rump client library

to retry to connect to the server in case the connection is lost. This is done by

setting the RUMPHIJACK_RETRYCONNECT environment variable.

golem> export RUMPHIJACK_RETRYCONNECT=inftime

golem> firefox

B–21

Now we can use Firefox just like we would with the host kernel networking stack.

When we want to restart the TCP/IP stack, we can use any method we’d like for

killing the TCP/IP server, even kill -9 or just having it panic. The client will detect

the severed connection and print out the following diagnostic warnings.

rump_sp: connection to kernel lost, trying to reconnect ...

rump_sp: still trying to reconnect ...

rump_sp: still trying to reconnect ...

Once the server has been restarted, the following message will be printed. If the

server downtime was long, the client can take up to 10 seconds to retry, so do not

be surprised if you do not see it immediately.

rump_sp: reconnected!

Note that this message only signals that the client has a connection to the server.

In case the server has not been configured yet to have an IP address and a gateway,

the application will not be able to function regularly. However, when that step

is complete, normal service can resume. Any pages that were loading when the

TCP/IP server went down will not finish loading. However, this can be ”fixed”

simply by reloading the pages.

B.4 Emulating makefs

The makefs command takes a directory tree and creates a file system image out

of it. This groundbreaking utility was developed back when crossbuild capability

was added to the NetBSD source tree. Since makefs constructs the file system

B–22

purely in userspace, it does not depend on the buildhost kernel to have file system

support or the build process to have privileges to mount a file system. However,

its implementation requires many one-way modifications to the kernel file system

driver. Since performing these modifications is complicated, out of the NetBSD

kernel file systems with r/w support makefs supports only FFS.

This part of the tutorial will show how to accomplish the same with out-of-the-box

binaries. It applies to any r/w kernel file system for which NetBSD ships a newfs-

type utility capable of creating image files. We learn how to mount a file system

within the rump fs namespace and how to copy files to the file system image.

First, we need a suitable victim directory tree we want to create an image out of.

We will again use the nethack source tree as an example. We need to find out how

much space the directory tree will require.

golem> du -sh nethack-3.4.3/

12M nethack-3.4.3/

Next, we need to create an empty file system. We use the standard newfs tool for

this (command name will vary depending on target file system type). Since the file

system must also accommodate metadata such as inodes and directory entries, we

will create a slightly larger file system than what was indicated by du and reserve

roughly 10% more disk space. There are ways to increase the accuracy of this

calculation, but they are beyond the scope of this document.

golem> newfs -F -s 14M nethack.img

nethack.img: 14.0MB (28672 sectors) block size 4096, fragment size 512

using 4 cylinder groups of 3.50MB, 896 blks, 1696 inodes.

super-block backups (for fsck_ffs -b #) at:

32, 7200, 14368, 21536,

B–23

Now, we need to start a rump server capable of mounting this particular file system

type. As in the cgd example, we map the host image as /dk in the rump kernel

namespace.

golem> rump_server -lrumpvfs -lrumpfs_ffs

-d key=/dk,hostpath=nethack.img,size=host unix:///tmp/ffs_server

Next, we need to configure our shell for rump syscall hijacking. This is done by

pointing the LD_PRELOAD environment variable to the hijack library. Every com-

mand executed with the variable set will attempt to contact the rump server and

will fail if the server cannot contacted. This is demonstrated below by first omitting

RUMP_SERVER and attempting to run a command. Shell builtins such as export and

unset can still be run, since they do not start a new process.

golem> export LD_PRELOAD=/usr/lib/librumphijack.so

golem> lua -e ’print("Hello, rump!")’

lua: rumpclient init: No such file or directory

golem> export RUMP_SERVER=unix:///tmp/ffs_server

golem> lua -e ’print("Hello, rump!")’

Hello, rump!

Now, we can access the rump kernel file system namespace using the special path

prefix /rump.

golem> ls -l /rump

total 1

drwxr-xr-x 2 root wheel 512 Mar 12 13:31 dev

By default, a rump root file system includes only some autogenerated device nodes

based on which components are loaded. As an experiment, you can try the above

also against a server which does not support VFS.

B–24

We then proceed to create a mountpoint and mount the file system. Note, we start

a new shell here because the one where we set LD_PRELOAD in was not executed with

the variable set. That process does not have hijacking configured and we cannot cd

into /rump. There is no reason we could not perform everything without changing

the current working directory, but doing so often means less typing.

golem> $SHELL

golem> cd /rump

golem> mkdir mnt

golem> df -i mnt

Filesystem 1K-blocks Used Avail %Cap iUsed iAvail %iCap Mounted on

rumpfs 1 1 0 100% 0 0 0% /

golem> mount_ffs /dk /rump/mnt

mount_ffs: Warning: realpath /dk: No such file or directory

golem> df -i mnt

Filesystem 1K-blocks Used Avail %Cap iUsed iAvail %iCap Mounted on

/dk 13423 0 12752 0% 1 6781 0% /mnt

Note that the realpath warning from mount_ffs is only a warning and can be

ignored. It is a result of the userland utility trying to find the source device /dk,

but cannot since it is available only inside the rump kernel. Note that you need to

supply the full path for the mountpoint, i.e. /rump/mnt instead of mnt. Otherwise

the userland mount utility may adjust it incorrectly.

If you run the mount command you will note that the mounted file system is not

present. This is expected, since the file system has been mounted within the rump

kernel and not the host kernel, and therefore the host kernel does not know any-

thing about it. The list of mounted file system is fetched with the getvfsstat()

system call. Since the system call does not take any pathname, the hijacking li-

brary cannot automatically determine if the user wanted the mountpoints from the

host kernel or the rump kernel. However, it is possible for the user to configure

B–25

the behavior by setting the RUMPHIJACK environment variable to contain the string

vfs=getvfsstat.

golem> env RUMPHIJACK=vfs=getvfsstat mount

rumpfs on / type rumpfs (local)

/dk on /mnt type ffs (local)

Other ways of configuring the behavior of system call hijacking are described on

the manual page. Note that setting the variable will override the default behavior,

including the ability to access /rump. You can restore this by setting the variable

to vfs=getvfsstat,path=/rump. Like with LD_PRELOAD, setting the variable will

affect only processes you run after setting it, and the behavior of the shell it was set

in will remain unchanged.

Now we can copy the files over. Due to how pax works, we first change our working

directory to avoid encoding the full source path in the destination. The alternative

is use us the -s option, but I find that changing the directory is often simpler.

golem> cd ~/srcdir

golem> pax -rw nethack-3.4.3 /rump/mnt/

golem> df -i /rump/mnt/

Filesystem 1K-blocks Used Avail %Cap iUsed iAvail %iCap Mounted on

/dk 13423 11962 790 93% 695 6087 10% /mnt

For comparison, we present the same operation using cp. Obviously, only one of

pax or cp is necessary and you can use whichever you find more convenient.

golem> cp -Rp ~/srcdir/nethack-3.4.3 mnt/

golem> df -i /rump/mnt/

Filesystem 1K-blocks Used Avail %Cap iUsed iAvail %iCap Mounted on

/dk 13423 11962 790 93% 695 6087 10% /mnt

B–26

Then, the only thing left is to unmount the file system to make sure that we have

a clean file system image.

golem> umount -R /rump/mnt

golem> df -i /rump/mnt

Filesystem 1K-blocks Used Avail %Cap iUsed iAvail %iCap Mounted on

rumpfs 1 1 0 100% 0 0 0% /

It is necessary to give the -R option to umount, or it will attempt to adjust the path

by itself. This will usually result in the wrong path and the unmount operation

failing. It is possible to set RUMPHIJACK in a way which does not require using -R,

but that is left as an exercise for the reader.

We do not need to remove the mountpoint since the rump root file system is an

in-memory file system and will be removed automatically when we halt the server.

Congratulations, you now have a clean file system image containing the desired files.

B.5 Master class: NFS server

This section presents scripts which allow to start a rump kernel capable of serving

NFS file systems and how to mount the service using a client connected to another

kernel server.

B.5.1 NFS Server

#!/bin/sh

#

B–27

This script starts a rump kernel with NFS serving capability,

configures a network interface and starts hijacked binaries

which are necessary to serve NFS (rpcbind, mountd, nfsd).

#

directory used for all temporary stuff

NFSX=/tmp/nfsx

no need to edit below this line

haltserv()

{

RUMP_SERVER=unix://${NFSX}/nfsserv rump.halt 2> /dev/null

RUMP_SERVER=unix://${NFSX}/nfscli rump.halt 2> /dev/null

}

die()

{

haltserv

echo $*

exit 1

}

start from a fresh table

haltserv

rm -rf ${NFSX}

mkdir ${NFSX} || die cannot mkdir ${NFSX}

create ffs file system we’ll be exporting

newfs -F -s 10000 ${NFSX}/ffs.img > /dev/null || die could not create ffs

start nfs kernel server. this is a mouthful

export RUMP_SERVER=unix://${NFSX}/nfsserv

rump_server -lrumpvfs -lrumpdev -lrumpnet \

-lrumpnet_net -lrumpnet_netinet -lrumpnet_local -lrumpnet_shmif \

-lrumpdev_disk -lrumpfs_ffs -lrumpfs_nfs -lrumpfs_nfsserver \

B–28

-d key=/dk,hostpath=${NFSX}/ffs.img,size=host ${RUMP_SERVER}

[$? -eq 0] || die rump server startup failed

configure server networking

rump.ifconfig shmif0 create

rump.ifconfig shmif0 linkstr ${NFSX}/shmbus

rump.ifconfig shmif0 inet 10.1.1.1

especially rpcbind has a nasty habit of looping

export RUMPHIJACK_RETRYCONNECT=die

export LD_PRELOAD=/usr/lib/librumphijack.so

"mtree"

mkdir -p /rump/var/run

mkdir -p /rump/var/db

touch /rump/var/db/mountdtab

mkdir /rump/etc

mkdir /rump/export

create /etc/exports

echo ’/export -noresvport -noresvmnt -maproot=0:0 10.1.1.100’ | \

dd of=/rump/etc/exports 2> /dev/null

mount our file system

mount_ffs /dk /rump/export 2> /dev/null || die mount failed

touch /rump/export/its_alive

start rpcbind. we want /var/run/rpcbind.sock

RUMPHIJACK=’blanket=/var/run,socket=all’ rpcbind || die rpcbind start

ok, then we want mountd in the similar fashion

RUMPHIJACK=’blanket=/var/run:/var/db:/export,socket=all,path=/rump,vfs=all’ \

mountd /rump/etc/exports || die mountd start

finally, it’s time for the infamous nfsd to hit the stage

RUMPHIJACK=’blanket=/var/run,socket=all,vfs=all’ nfsd -tu

B–29

B.5.2 NFS Client

#!/bin/sh

#

This script starts a rump kernel which contains the drivers necessary

to mount an NFS export. It then proceeds to mount and provides

a directory listing of the mountpoint.

#

NFSX=/tmp/nfsx

export RUMP_SERVER=unix://${NFSX}/nfscli

rump.halt 2> /dev/null

rump_server -lrumpvfs -lrumpnet -lrumpnet_net -lrumpnet_netinet \

-lrumpnet_shmif -lrumpfs_nfs ${RUMP_SERVER}

rump.ifconfig shmif0 create

rump.ifconfig shmif0 linkstr ${NFSX}/shmbus

rump.ifconfig shmif0 inet 10.1.1.100

export LD_PRELOAD=/usr/lib/librumphijack.so

mkdir /rump/mnt

mount_nfs 10.1.1.1:/export /rump/mnt

echo export RUMP_SERVER=unix://${NFSX}/nfscli

echo export LD_PRELOAD=/usr/lib/librumphijack.so

B.5.3 Using it

To use the NFS server, just run both scripts. The client script will print configuration

data, so you can eval the script’s output in a Bourne type shell for the correct

B–30

configuration.

golem> sh rumpnfsd.sh

golem> eval ‘sh rumpnfsclient.sh‘

That’s it. You can start a shell and access the NFS client as normal.

golem> df /rump/mnt

Filesystem 1K-blocks Used Avail %Cap Mounted on

10.1.1.1:/export 4631 0 4399 0% /mnt

golem> sh

golem> cd /rump

golem> jot 100000 > mnt/numbers

golem> df mnt

Filesystem 1K-blocks Used Avail %Cap Mounted on

10.1.1.1:/export 4631 580 3819 13% /mnt

When you’re done, stop the servers in the normal fashion. You may also want to

remove the /tmp/nfsx temporary directory.

B.6 Further ideas

Kernel code development and debugging was a huge personal motivation for working

on this, and is a truly excellent use case especially if you want to safely and easily

learn about how various parts of the kernel work.

There are also more user-oriented applications. For example, you can construct

servers which run hardware drivers from some later release of NetBSD than what

B–31

is running on your host. You can also distribute these devices as services on the

network.

On a multiuser machine where you do not have control over how your data is backed

up you can use a cgd server to provide a file system with better confidentiality guar-

antees than your regular home directory. You can easily configure your applications

to communicate directly with the cryptographic server, and confidential data will

never hit the disk unencrypted. This, of course, does not protect against all threat

models on a multiuser system, but is a simple way of protecting yourself against one

of them.

Furthermore, you have more fine grained control over privileges. For example, open-

ing a raw socket requires root privileges. This is still true for a rump server, but

the difference is that it requires root privileges in the rump kernel, not the host

kernel. Now, if rump server runs with normal user privileges (as is recommended),

you cannot use rump kernel root privileges for full control of the hosting OS.

In the end, this document only scratched the surface of what is possible by running

kernel code as services in userspace.

B–32

C–1

Appendix C Patches to the 5.99.48 source tree

Fix a compilation error in code which is not compiled by default:

Index: sys/rump/librump/rumpkern/locks_up.c

===

RCS file: /usr/allsrc/repo/src/sys/rump/librump/rumpkern/locks_up.c,v

retrieving revision 1.5

diff -p -u -r1.5 locks_up.c

--- sys/rump/librump/rumpkern/locks_up.c 1 Dec 2010 17:22:51 -0000 1.5

+++ sys/rump/librump/rumpkern/locks_up.c 2 Dec 2011 16:40:00 -0000

@@ -160,6 +160,7 @@ mutex_owned(kmutex_t *mtx)

struct lwp *

mutex_owner(kmutex_t *mtx)

{

+ UPMTX(mtx);

return upm->upm_owner;

}

Fix a locking error in a branch which is not hit during normal execution:

Index: sys/rump/librump/rumpkern/vm.c

===

RCS file: /usr/allsrc/repo/src/sys/rump/librump/rumpkern/vm.c,v

retrieving revision 1.114

diff -u -r1.114 vm.c

--- sys/rump/librump/rumpkern/vm.c 21 Mar 2011 16:41:08 -0000 1.114

+++ sys/rump/librump/rumpkern/vm.c 12 Dec 2011 14:16:02 -0000

@@ -1132,7 +1132,6 @@

rumpuser_dprintf("pagedaemoness: failed to reclaim "

"memory ... sleeping (deadlock?)\n");

cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);

- mutex_enter(&pdaemonmtx);

}

}

C–2

This is a quick fix for making it possible to link rump kernels which do not include

the VFS faction, but include components which want to create device nodes. A

more thorough fix should not use weak symbols and examine the call sites as well

— the stubs the calls are aliased to return a failure, and not all callers tolerate that.

Index: sys/rump/librump/rumpkern/rump.c

===

RCS file: /usr/allsrc/repo/src/sys/rump/librump/rumpkern/rump.c,v

retrieving revision 1.234

diff -p -u -r1.234 rump.c

--- sys/rump/librump/rumpkern/rump.c 22 Mar 2011 15:16:23 -0000 1.234

+++ sys/rump/librump/rumpkern/rump.c 5 Jan 2012 23:42:17 -0000

@@ -160,6 +161,9 @@

rump_proc_vfs_init_fn rump_proc_vfs_init;

rump_proc_vfs_release_fn rump_proc_vfs_release;

+__weak_alias(rump_vfs_makeonedevnode,rump__unavailable);

+__weak_alias(rump_vfs_makedevnodes,rump__unavailable);

+

static void add_linkedin_modules(const struct modinfo *const *, size_t);

static void __noinline

The following patch fixes the faster I/O mode for ukfs(3). It was written to produce

the minimal diff.

Index: lib/libukfs/ukfs.c

===

RCS file: /cvsroot/src/lib/libukfs/ukfs.c,v

retrieving revision 1.57

diff -p -u -r1.57 ukfs.c

--- lib/libukfs/ukfs.c 22 Feb 2011 15:42:15 -0000 1.57

+++ lib/libukfs/ukfs.c 5 Jul 2012 20:53:34 -0000

@@ -115,14 +115,18 @@ ukfs_getspecific(struct ukfs *ukfs)

#endif

static int

-precall(struct ukfs *ukfs, struct lwp **curlwp)

+precall(struct ukfs *ukfs, struct lwp **curlwp, bool sharefd)

C–3

{

+ int rfflags = 0;

+

+ if (!sharefd)

+ rfflags = RUMP_RFCFDG;

/* save previous. ensure start from pristine context */

*curlwp = rump_pub_lwproc_curlwp();

if (*curlwp)

rump_pub_lwproc_switch(ukfs->ukfs_lwp);

- rump_pub_lwproc_rfork(RUMP_RFCFDG);

+ rump_pub_lwproc_rfork(rfflags);

if (rump_sys_chroot(ukfs->ukfs_mountpath) == -1)

return errno;

@@ -145,7 +149,17 @@ postcall(struct lwp *curlwp)

struct lwp *ukfs_curlwp; \

do { \

int ukfs_rv; \

- if ((ukfs_rv = precall(ukfs, &ukfs_curlwp)) != 0) { \

+ if ((ukfs_rv = precall(ukfs, &ukfs_curlwp, false)) != 0) { \

+ errno = ukfs_rv; \

+ return -1; \

+ } \

+} while (/*CONSTCOND*/0)

+

+#define PRECALL2() \

+struct lwp *ukfs_curlwp; \

+do { \

+ int ukfs_rv; \

+ if ((ukfs_rv = precall(ukfs, &ukfs_curlwp, true)) != 0) { \

errno = ukfs_rv; \

return -1; \

} \

@@ -848,7 +862,7 @@ ukfs_open(struct ukfs *ukfs, const char

{

int fd;

- PRECALL();

+ PRECALL2();

fd = rump_sys_open(filename, flags, 0);

POSTCALL();

if (fd == -1)

C–4

This fixes the conditionally compiled block device layer host direct I/O support.

Index: sys/rump/librump/rumpvfs/rumpblk.c

===

RCS file: /usr/allsrc/repo/src/sys/rump/librump/rumpvfs/rumpblk.c,v

retrieving revision 1.46

diff -p -u -r1.46 rumpblk.c

--- sys/rump/librump/rumpvfs/rumpblk.c 3 Feb 2011 22:16:11 -0000 1.46

+++ sys/rump/librump/rumpvfs/rumpblk.c 5 Jul 2012 21:05:18 -0000

@@ -109,9 +109,7 @@ static struct rblkdev {

char *rblk_path;

int rblk_fd;

int rblk_mode;

-#ifdef HAS_ODIRECT

int rblk_dfd;

-#endif

uint64_t rblk_size;

uint64_t rblk_hostoffset;

uint64_t rblk_hostsize;

@@ -368,7 +366,7 @@ rumpblk_init(void)

for (i = 0; i < RUMPBLK_SIZE; i++) {

mutex_init(&minors[i].rblk_memmtx, MUTEX_DEFAULT, IPL_NONE);

cv_init(&minors[i].rblk_memcv, "rblkmcv");

- minors[i].rblk_fd = -1;

+ minors[i].rblk_fd = minors[i].rblk_dfd = -1;

}

evcnt_attach_dynamic(&ev_io_total, EVCNT_TYPE_MISC, NULL,

@@ -501,6 +499,9 @@ static int

backend_open(struct rblkdev *rblk, const char *path)

{

int error, fd;

+#ifdef HAS_ODIRECT

+ int dummy;

+#endif

KASSERT(rblk->rblk_fd == -1);

fd = rumpuser_open(path, O_RDWR, &error);

@@ -514,7 +515,7 @@ backend_open(struct rblkdev *rblk, const

rblk->rblk_dfd = rumpuser_open(path,

O_RDONLY | O_DIRECT, &error);

if (error) {

- close(fd);

+ rumpuser_close(fd, &dummy);

C–5

return error;

}

#endif

@@ -525,13 +526,13 @@ backend_open(struct rblkdev *rblk, const

rblk->rblk_dfd = rumpuser_open(path,

O_RDWR | O_DIRECT, &error);

if (error) {

- close(fd);

+ rumpuser_close(fd, &dummy);

return error;

}

#endif

}

- if (rblk->rblk_ftype == RUMPUSER_FT_REG) {

+ if (rblk->rblk_ftype == RUMPUSER_FT_REG && rblk->rblk_dfd != -1) {

uint64_t fsize= rblk->rblk_hostsize, off= rblk->rblk_hostoffset;

struct blkwin *win;

int i, winsize;

@@ -591,12 +592,10 @@ backend_close(struct rblkdev *rblk)

rumpuser_fsync(rblk->rblk_fd, &dummy);

rumpuser_close(rblk->rblk_fd, &dummy);

rblk->rblk_fd = -1;

-#ifdef HAS_ODIRECT

if (rblk->rblk_dfd != -1) {

rumpuser_close(rblk->rblk_dfd, &dummy);

rblk->rblk_dfd = -1;

}

-#endif

return 0;

}

9HSTFMG*aejbgi+

ISBN 978-952-60-4916-8
ISBN 978-952-60-4917-5 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 171

/2
012

A
ntti K

antee
F

lexible O
perating System

 Internals: T
he D

esign and Im
plem

entation of the A
nykernel and R

um
p K

ernels
A

alto
 U

n
ive

rsity

Department of Computer Science and Engineering

Flexible Operating System
Internals:

The Design and
Implementation of the
Anykernel and Rump
Kernels

Antti Kantee

DOCTORAL
DISSERTATIONS

