_ODE <

COMPLE

'. ':.
-
A practical nanadnook oOf Soitware constr
Py 4
T\ L P
“ a) = | 1 / .f (- @alinknl ,_|
2 JASATAS JIENTICH]

Iwo-time:winner ol theSoftware|Development Viagazine Jolt Award

Download from Wow! eBook <www.wowebook.com>

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2004 by Steven C. McConnell

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve
Code Complete / Steve McConnell.--2nd ed.
p. cm.
Includes index.
ISBN 0-7356-1967-0
1. Computer Software--Development--Handbooks, manuals, etc. 1. Title.

QA76.76.D47M39 2004
005.1--dc22 2004049981

Printed and bound in the United States of America.
151617 18192021222324QGT 654321

Distributed in Canada by H.B. Fenn and Company Ltd. A CIP catalogue record for this book is available from
the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, PowerPoint, Visual Basic, Windows, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editor: Devon Musgrave

Indexer: Bill Myers

Principal Desktop Publisher: Carl Diltz

Body Part No. X10-53130

To my wife, Ashlie, who doesn't have much to do with computer programming
but who has everything to do with enriching the rest of my life

in more ways than I could possibly describe

Further Praise for

Code Complete

“An excellent guide to programming style and software construction.”
—Martin Fowler, Refactoring

“Steve McConnell’s Code Complete . . . provides a fast track to wisdom for programmers. . . .
His books are fun to read, and you never forget that he is speaking from hard-won personal
experience.” —Jon Bentley, Programming Pearls, 2d ed.

“This is simply the best book on software construction that I've ever read. Every developer
should own a copy and read it cover to cover every year. After reading it annually for nine
years, I'm still learning things from this book!”

—John Robbins, Debugging Applications for Microsoft .NET and Microsoft Windows

“Today’s software must be robust and resilient, and secure code starts with disciplined software
construction. After ten years, there is still no better authority than Code Complete.”
—Michael Howard, Security Engineering, Microsoft Corporation; Coauthor, Writing Secure Code

“A comprehensive examination of the tactical issues that go into crafting a well-engineered
program. McConnell’s work covers such diverse topics as architecture, coding standards,
testing, integration, and the nature of software craftsmanship.”

—Grady Booch, Object Solutions

“The ultimate encyclopedia for the software developer is Code Complete by Steve McConnell.
Subtitled ‘A Practical Handbook of Software Construction,’ this 850-page book is exactly
that. Its stated goal is to narrow the gap between the knowledge of ‘industry gurus and pro-
fessors’ (Yourdon and Pressman, for example) and common commercial practice, and ‘to
help you write better programs in less time with fewer headaches.” .. . Every developer should
own a copy of McConnell's book. Its style and content are thoroughly practical.”

—Chris Loosley, High-Performance Client/Server

“Steve McConnell’s seminal book Code Complete is one of the most accessible works discuss-
ing in detail software development methods. . ..”
—Erik Bethke, Game Development and Production

“A mine of useful information and advice on the broader issues in designing and producing
good software.”

—John Dempster, The Laboratory Computer: A Practical Guide for Physiologists and Neuroscien-
tists

“If you are serious about improving your programming skills, you should get Code Complete
by Steve McConnell.”
—Jean J. Labrosse, Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C

“Steve McConnell has written one of the best books on software development independent
of computer environment . . . Code Complete.”
—Kenneth Rosen, Unix: The Complete Reference

“Every half an age or so, you come across a book that short-circuits the school of experience
and saves you years of purgatory. . . . I cannot adequately express how good this book really
is. Code Complete is a pretty lame title for a work of brilliance.”

—Jeff Duntemann, PC Techniques

“Microsoft Press has published what I consider to be the definitive book on software con-
struction. This is a book that belongs on every software developer’s shelf.”
—Warren Keutfel, Software Development

“Every programmer should read this outstanding book.” —T. L. (Frank) Pappas, Computer

“If you aspire to be a professional programmer, this may be the wisest $35 investment you'll
ever make. Don’t stop to read the rest of this review: just run out and buy it. McConnell’s stat-
ed purpose is to narrow the gap between the knowledge of industry gurus and common com-
mercial practice. . . . The amazing thing is that he succeeds.”

—Richard Mateosian, IEEE Micro

“Code Complete should be required reading for anyone . . . in software development.”
—Tommy Usher, C Users Journal

“I'm encouraged to stick my neck out a bit further than usual and recommend, without res-
ervation, Steve McConnell’s Code Complete. . . . My copy has replaced my API reference man-
uals as the book that’s closest to my keyboard while I work.”

—Jim Kyle, Windows Tech Journal

“This well-written but massive tome is arguably the best single volume ever written on the
practical aspects of software implementation.”
—Tommy Usher, Embedded Systems Programming

“This is the best book on software engineering that I have yet read.”
—Edward Kenworth, .EXE Magazine

“This book deserves to become a classic, and should be compulsory reading for all develop-
ers, and those responsible for managing them.” —Peter Wright, Program Now

Microsoft

Code Complete, Second Edition

Steve McConnell

Contents at a Glance

Part |

HwWwN

Part Il

(0}

O 00N O

Part Ill
10
11
12
13

Part IV
14
15
16
17
18
19

Laying the Foundation

Welcome to Software Construction 3
Metaphors for a Richer Understanding of Software Development... .. 9
Measure Twice, Cut Once: Upstream Prerequisites. 23
Key Construction Decisionsc.ouiiiiiniinennenennn. 61

Creating High-Quality Code

Designin Construction......... i .. 73
Working Classesottt i i i e 125
High-Quality Routines. i, 161
Defensive Programming........... ..ottt iiiiinnennnn. 187
The Pseudocode Programming Process.c..... 215
Variables

General Issues in Using Variables. 237
The Power of Variable Names 259
Fundamental Data Typescouiiiiiiininininnnnnnnnn 291
Unusual Data Types coii ittt i e it eeeeeenn 319
Statements

Organizing Straight-LineCode. i, 347
Using Conditionals. ottt 355
Controlling LoopsScoiiiiii e 367
Unusual Control Structures.o i, 391
Table-Driven Methods. i 411
General Control Issues. i 431

vii

viii

Part V
20
21
22
23
24
25
26

Part VI
27
28
29
30

Part Vil
31
32
33
34
35

Table of Contents

Code Improvements

The Software-Quality Landscape., 463
Collaborative Construction. 0 i, 479
Developer Testingcoiiiniinii it 499
Debuggingt e 535
Refactoringot i e i i 563
Code-Tuning Strategies.ovuiiniin it 587
Code-Tuning Techniques iiiiiiiiiiiiinnnnn.. 609
System Considerations

How Program Size Affects Construction 649
Managing Constructionttt ennennnn. 661
Integration e 689
Programming Tools......... i, 709
Software Craftsmanship

Layoutand Style. i 729
Self-DocumentingCodettt 777
Personal Character......... 819
Themes in Software Craftsmanship............................. 837

Where to Find More Information 855

Table of Contents

Preface e Xix
Acknowledgments.t e e XXVii

List of Checklists oo e XXiX

Listof Tables. e XXXi

List Of Figures. e e XXxiii

part | Laying the Foundation

1 Welcome to Software Construction 3
1.1 What Is Software Construction?.t 3

1.2 Why Is Software Construction Important?.............. 6

1.3 How to Read This Book. i 8

2 Metaphors for a Richer Understanding of Software Development... .. 9
2.1 The Importance of Metaphors. 9

2.2 How to Use Software Metaphors. i, 11

2.3 Common Software Metaphors. 13

3 Measure Twice, Cut Once: Upstream Prerequisites. 23
3.1 Importance of Prerequisites. 24

3.2 Determine the Kind of Software You're WorkingOn. 31

3.3 Problem-Definition Prerequisite i 36

3.4 Requirements Prerequisiteo 38

3.5 Architecture Prerequisite 43

3.6 Amount of Time to Spend on Upstream Prerequisites 55

4 Key Construction Decisionsc.ooiiiiiiieinnennaan.. 61
4.1 Choice of Programming Language.ooiiiiiii i, 61

4.2 Programming ConVventioNnsttt 66

4.3 Your Location on the Technology Wave 66

4.4 Selection of Major Construction Practices................................. 69

ix

Quratek
Typewritten Text
V413HAV

X Table of Contents

part I Creating High-Quality Code

5 Designin Construction......... i, 73
5.1 Design Challenges. 74
5.2 Key Design CONCEPLSottt 77
5.3 Design Building Blocks: Heuristics i 87
54 Design PractiCes. 110
5.5 Comments on Popular Methodologies, 118
6 Working Classesoiiiii i 125
6.1 Class Foundations: Abstract Data Types (ADTS)ccooviiiieie... 126
6.2 Good Class Interfacest 133
6.3 Design and Implementation Issues. i i 143
6.4 Reasons to Create @ Class. 152
6.5 Language-Specific ISSUESottt 156
6.6 Beyond Classes: Packagesooiiiiiiin e 156
7 High-Quality Routines. i, 161
7.1 Valid Reasons to Create a Routine i, 164
7.2 Design at the Routine Level. i i 168
7.3 Good Routine Names 171
74 How Long CanaRoutineBe? i 173
7.5 How to Use Routine Parameters.......... 174
7.6 Special Considerations in the Use of Functions 181
7.7 Macro Routines and Inline Routines. i i i 182
8 Defensive Programming...............o it nnnennnn. 187
8.1 Protecting Your Program from Invalid Inputs. 188
8.2 ASSEITIONS . . .o 189
8.3 Error-Handling Techniques et 194
84 EXCEPLIONS. . oo 198
8.5 Barricade Your Program to Contain the Damage Caused by Errors.......... 203
8.6 Debugging Aids. 205
8.7 Determining How Much Defensive Programming to Leave in
Production Code 209

8.8 Being Defensive About Defensive Programming.......................... 210

Table of Contents xi

9 The Pseudocode Programming Process. 215
9.1 Summary of Steps in Building Classes and Routines 216
9.2 Pseudocode for Prosot 218
9.3 Constructing Routines by Usingthe PPP, 220
9.4 Alternatives to the PPP 232

Part Il Variables

10 General Issues in Using Variables. 237
10.1 Data Literacy. . ..o vttt 238
10.2 Making Variable Declarations Easy. ..., 239
10.3 Guidelines for Initializing Variables. 240
104 SCOPE . . oo 244
10.5 Persistence i 251
10.6 Binding Time. . ..o o 252
10.7 Relationship Between Data Types and Control Structures 254
10.8 Using Each Variable for Exactly One Purposecooooinan. 255
11 The Power of Variable Names 259
11.1 Considerations in Choosing Good Names.ccoiiiiiiinnn.. 259
11.2 Naming Specific Typesof Data 264
11.3 The Power of Naming Conventions, 270
11.4 Informal Naming Conventionsouuuiiiiiiiiiiiennnnn.. 272
11.5 Standardized Prefixes 279
11.6 Creating Short Names That Are Readable........... 282
11.7 Kinds of Names to Avoid 285
12 Fundamental Data Typesttt iiiiinnnnn.. 291
12.1 Numbersin General. ... 292
12,2 INE QRIS . o ottt 293
12.3 Floating-Point Numbers. 295
124 Characters and Strings i 297
12.5Boolean Variables o 301
12.6 Enumerated TYPeS. . ..o ottt 303
12.7 Named Constantsooiii 307
1208 AITaYS . o oottt 310

12.9 Creating Your Own Types (Type Aliasing)o ... 311

619670.fm Page iv Thursday, April 7,2011 5:54 PM

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2004 by Steven C. McConnell

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
McConnell, Steve
Code Complete / Steve McConnell.--2nd ed.
p. cm.
Includes index.
ISBN 0-7356-1967-0
1. Computer Software--Development--Handbooks, manuals, etc. 1. Title.

QA76.76.D47M39 2004
005.1--dc22 2004049981

Printed and bound in the United States of America.
15161718192021222324QGT654321

Distributed in Canada by H.B. Fenn and Company Ltd. A CIP catalogue record for this book is available from
the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, PowerPoint, Visual Basic, Windows, and Windows NT are either registered trade-
marks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editors: Linda Engelman and Robin Van Steenburgh
Project Editor: Devon Musgrave

Indexer: Bill Myers

Principal Desktop Publisher: Carl Diltz

Body Part No. X10-53130

Part V

20

21

22

23

Table of Contents xiii

19.3 Null Statementso 444
19.4 Taming Dangerously Deep Nesting i ... 445
19.5 A Programming Foundation: Structured Programming 454
19.6 Control Structures and Complexity.............. 456

Code Improvements

The Software-Quality Landscape........... o it 463
20.1 Characteristics of Software Quality 463
20.2 Techniques for Improving Software Quality 466
20.3 Relative Effectiveness of Quality Techniques. ..., 469
20.4 When to Do Quality ASSUranCe 473
20.5 The General Principle of Software Quality............., 474

Collaborative Construction. i, 479
21.1 Overview of Collaborative Development Practices 480
21.2 Pair Programming eet et 483
213 Formal INSpeCtions.t 485
21.4 Other Kinds of Collaborative Development Practices 492

Developer Testingcoiiiiiiin ittt 499
22.1 Role of Developer Testing in Software Quality 500
22.2 Recommended Approach to Developer Testing 503
223 Bag of Testing Tricksottt 505
224 Typical Brrors oo 517
22.5 Test-Support TOOIS.t 523
22.6 Improving Your Testingottt 528
22.7 Keeping Test Recordst 529

Debuggingt e 535
23.1 Overview of Debugging Issues i 535
232 Finding @ Defect.t 540
233 Fixinga Defect 550
23.4 Psychological Considerations in Debugging. 554

23.5 Debugging Tools—Obvious and Not-So-Obvious. 556

Xiv Table of Contents

24 Refactoringt i i e 563
24.1 Kinds of Software Evolution. i 564
24.2 Introduction to Refactoring. ... i i 565
24.3 Specific Refactorings. 571
244 Refactoring Safelyo 579
24.5 Refactoring Strategiesoooviiiiiinii 582
25 Code-Tuning Strategies.ccviiiiiin ittt iiinennnn 587
25.1 Performance OVEIVIEW oottt et et e 588
25.2 Introduction to Code TUNINGottt e 591
25.3 Kinds of Fatand Molassest 597
254 Measurement.o 603
25 S eration 605
25.6 Summary of the Approachto Code Tuning 606
26 Code-Tuning Techniques 609
26,0 LOGIC - ettt e 610
26.2 LOOPS. o ettt 616
26.3 Data Transformations.cooiiiiii i 624
26,4 EXPIESSIONS . o o\ttt et e e e e e e e 630
26.5 ROULINES . . oo 639
26.6 Recoding in a Low-Level Language i 640
26.7 The More Things Change, the More They Stay the Same 643

pPart Vi System Considerations

27 How Program Size Affects Construction 649
27.1 Communicationand Size............. .. 650
27.2 Range Of Project Sizes ... 651
27.3 Effect of Project Sizeon Errors 651
27 .4 Effect of Project Size on Productivity................., 653

27.5 Effect of Project Size on Development Activities......................... 654

Table of Contents Xv

28 Managing Construction o il 661
28.1 Encouraging Good Coding.oiii it 662
28.2 Configuration Management. 664
28.3 Estimating a Construction Schedule............, 671
284 Measurementt 677
28.5 Treating Programmers as People i 680
28.6 Managing Your Managert 686
29 Integration i e 689
29.1 Importance of the Integration Approach., 689
29.2 Integration Frequency—Phased or Incremental?......................... 691
29.3 Incremental Integration Strategies 694
29.4 Daily Build and Smoke Testt 702
30 Programming Tools. i, 709
30.1 DesSign TOOIS . . o oottt 710
30.2 Source-Code TOOIS. . ..ttt 710
30.3 Executable-Code ToOlSt 716
30.4 Tool-Oriented ENVIFONMENTS\ttt 720
30.5 Building Your Own Programming Tools, 721
30.6 Tool Fantasyland 722

part vil Software Craftsmanship

31 Layoutand Style.o 729
31.1 Layout Fundamentals 730
31.2 Layout TEChNIQUES. . . . v vttt 736
313 Layout Styles. . ..o 738
31.4 Laying Out Control Structures.t 745
31.5 Laying Out Individual Statements.o 753
31.6 Laying Out CommENtSttt 763
31.7 Laying OUt ROULINGESo 766

31.8 Laying Out Classes. v vttt 768

xvi Table of Contents

32 Self-DocumentingCodet 777
32.1 External Documentationt 777
32.2 Programming Style as Documentation o i 778
323 ToCommentorNottoComment 781
32.4 Keys to Effective Commentsttt 785
32.5 Commenting Techniques. i 792
326 IEEE Standards 813
33 Personal Character........... ... i 819
33.1 Isn't Personal Character Off the Topic?o 820
33.2 Intelligence and Humility. 821
33 3 CUNOSIEY .« vttt e 822
334 Intellectual Honesty oo 826
33.5 Communication and Cooperation ...ttt 828
33.6 Creativity and Discipline. ... i 829
337 LAZINESS . . o v vttt 830
33.8 Characteristics That Don't Matter As Much As You Might Think 830
339 Habits ... 833
34 Themes in Software Craftsmanship............. 837
34.1 Conquer COMPIEXItY. . .. v vt et 837
34.2 Pick YOUI ProCess.o e e e 839
34.3 Write Programs for People First, Computers Second 841
34.4 Program into Your Language, Notinlt..................o i, 843
34.5 Focus Your Attention with the Help of Conventions. 844
34.6 Program in Terms of the Problem Domain.............................. 845
34.7 Watch for Falling Rocks 848
34.8 Iterate, Repeatedly, Again and Again ... 850

34.9 Thou Shalt Rend Software and Religion Asunder 851

Table of Contents xvii

35 Where to Find More Information 855
35.1 Information About Software Construction 856
35.2 Topics Beyond Construction i 857
353 PeriodiCals. . ..o 859
35.4 A Software Developer's Reading Plan., 860
35.5 Joining a Professional Organization............... i, 862
Bibliography. e 863
Ve =3t 885
What do think of this book? Microsoft is interested in hearing your feedback about this publication so we can

continually improve our books and learning resources for you. To participate in a brief
want to "‘ﬂffﬁﬂ’mm online survey, please visit: www.microsoft.com/learning/booksurvey/

Preface

The gap between the best software engineering practice and the average practice
is very wide—perhaps wider than in any other engineering discipline. A tool that
disseminates good practice would be important.

—Fred Brooks

My primary concern in writing this book has been to narrow the gap between the
knowledge of industry gurus and professors on the one hand and common commer-
cial practice on the other. Many powerful programming techniques hide in journals
and academic papers for years before trickling down to the programming public.

Although leading-edge software-development practice has advanced rapidly in recent
years, common practice hasn’t. Many programs are still buggy, late, and over budget,
and many fail to satisfy the needs of their users. Researchers in both the software
industry and academic settings have discovered effective practices that eliminate most
of the programming problems that have been prevalent since the 1970s. Because
these practices aren’t often reported outside the pages of highly specialized technical
journals, however, most programming organizations aren’t yet using them today.
Studies have found that it typically takes 5 to 15 years or more for a research develop-
ment to make its way into commercial practice (Raghavan and Chand 1989, Rogers
1995, Parnas 1999). This handbook shortcuts the process, making key discoveries
available to the average programmer now.

Who Should Read This Book?

The research and programming experience collected in this handbook will help you
to create higher-quality software and to do your work more quickly and with fewer
problems. This book will give you insight into why you’ve had problems in the past
and will show you how to avoid problems in the future. The programming practices
described here will help you keep big projects under control and help you maintain
and modify software successfully as the demands of your projects change.

Experienced Programmers

This handbook serves experienced programmers who want a comprehensive, easy-to-
use guide to software development. Because this book focuses on construction, the
most familiar part of the software life cycle, it makes powerful software development
techniques understandable to self-taught programmers as well as to programmers
with formal training.

Xix

XX Preface

Technical Leads

Many technical leads have used Code Complete to educate less-experienced program-
mers on their teams. You can also use it to fill your own knowledge gaps. If you're an
experienced programmer, you might not agree with all my conclusions (and I would be
surprised if you did), but if you read this book and think about each issue, only rarely
will someone bring up a construction issue that you haven’t previously considered.

Self-Taught Programmers

Students

If you haven’t had much formal training, you're in good company. About 50,000 new
developers enter the profession each year (BLS 2004, Hecker 2004), but only about
35,000 software-related degrees are awarded each year (NCES 2002). From these fig-
ures it’s a short hop to the conclusion that many programmers don’t receive a formal
education in software development. Self-taught programmers are found in the emerg-
ing group of professionals—engineers, accountants, scientists, teachers, and small-
business owners—who program as part of their jobs but who do not necessarily view
themselves as programmers. Regardless of the extent of your programming educa-
tion, this handbook can give you insight into effective programming practices.

The counterpoint to the programmer with experience but little formal training is the
fresh college graduate. The recent graduate is often rich in theoretical knowledge but
poor in the practical know-how that goes into building production programs. The
practical lore of good coding is often passed down slowly in the ritualistic tribal
dances of software architects, project leads, analysts, and more-experienced program-
mers. Even more often, it’s the product of the individual programmer’s trials and
errors. This book is an alternative to the slow workings of the traditional intellectual
potlatch. It pulls together the helpful tips and effective development strategies previ-
ously available mainly by hunting and gathering from other people’s experience. It's a
hand up for the student making the transition from an academic environment to a
professional one.

Where Else Can You Find This Information?

This book synthesizes construction techniques from a variety of sources. In addition
to being widely scattered, much of the accumulated wisdom about construction has
resided outside written sources for years (Hildebrand 1989, McConnell 1997a).
There is nothing mysterious about the effective, high-powered programming tech-
niques used by expert programmers. In the day-to-day rush of grinding out the latest
project, however, few experts take the time to share what they have learned. Conse-

Preface Xxi

quently, programmers may have difficulty finding a good source of programming
information.

The techniques described in this book fill the void after introductory and advanced
programming texts. After you have read Introduction to Java, Advanced Java, and
Advanced Advanced Java, what book do you read to learn more about programming?
You could read books about the details of Intel or Motorola hardware, Microsoft Win-
dows or Linux operating-system functions, or another programming language—you
can’t use a language or program in an environment without a good reference to such
details. But this is one of the few books that discusses programming per se. Some of
the most beneficial programming aids are practices that you can use regardless of the
environment or language you're working in. Other books generally neglect such prac-
tices, which is why this book concentrates on them.

The information in this book is distilled from many sources, as shown below. The
only other way to obtain the information you'll find in this handbook would be to
plow through a mountain of books and a few hundred technical journals and then
add a significant amount of real-world experience. If you've already done all that, you
can still benefit from this book’s collecting the information in one place for easy refer-
ence.

Professional
experience
Other software
books

Programming
language books

Construction
Magazine
Technology articles
references

Key Benefits of This Handbook

Whatever your background, this handbook can help you write better programs in less
time and with fewer headaches.

Complete software-construction reference This handbook discusses general aspects
of construction such as software quality and ways to think about programming. It gets
into nitty-gritty construction details such as steps in building classes, ins and outs of
using data and control structures, debugging, refactoring, and code-tuning tech-
niques and strategies. You don’t need to read it cover to cover to learn about these top-
ics. The book is designed to make it easy to find the specific information that interests
you.

xXxii

Preface

Ready-to-use checklists This book includes dozens of checklists you can use to
assess your software architecture, design approach, class and routine quality, variable
names, control structures, layout, test cases, and much more.

State-of-the-art information This handbook describes some of the most up-to-date
techniques available, many of which have not yet made it into common use. Because
this book draws from both practice and research, the techniques it describes will
remain useful for years.

Larger perspective on software development This book will give you a chance to rise
above the fray of day-to-day fire fighting and figure out what works and what doesn’t.
Few practicing programmers have the time to read through the hundreds of books
and journal articles that have been distilled into this handbook. The research and real-
world experience gathered into this handbook will inform and stimulate your think-
ing about your projects, enabling you to take strategic action so that you don’t have to
fight the same battles again and again.

Absence of hype Some software books contain 1 gram of insight swathed in 10
grams of hype. This book presents balanced discussions of each technique’s strengths
and weaknesses. You know the demands of your particular project better than anyone
else. This book provides the objective information you need to make good decisions
about your specific circumstances.

Concepts applicable to most common languages This book describes techniques
you can use to get the most out of whatever language you're using, whether it's C++,
C#, Java, Microsoft Visual Basic, or other similar languages.

Numerous code examples The book contains almost 500 examples of good and bad
code. I've included so many examples because, personally, I learn best from exam-
ples. I think other programmers learn best that way too.

The examples are in multiple languages because mastering more than one language is
often a watershed in the career of a professional programmer. Once a programmer
realizes that programming principles transcend the syntax of any specific language,
the doors swing open to knowledge that truly makes a difference in quality and pro-
ductivity.

To make the multiple-language burden as light as possible, I've avoided esoteric lan-
guage features except where they're specifically discussed. You don’t need to under-
stand every nuance of the code fragments to understand the points they’re making. If
you focus on the point being illustrated, you'll find that you can read the code regard-
less of the language. I've tried to make your job even easier by annotating the signifi-
cant parts of the examples.

Access to other sources of information This book collects much of the available
information on software construction, but it’s hardly the last word. Throughout the

cc2e.com/1234

Preface xxiii

chapters, “Additional Resources” sections describe other books and articles you can
read as you pursue the topics you find most interesting.

Book website Updated checklists, books, magazine articles, Web links, and other
content are provided on a companion website at cc2e.com. To access information
related to Code Complete, 2d ed., enter cc2e.com/ followed by a four-digit code, an
example of which is shown here in the left margin. These website references appear
throughout the book.

Why This Handbook Was Written

The need for development handbooks that capture knowledge about effective devel-
opment practices is well recognized in the software-engineering community. A report
of the Computer Science and Technology Board stated that the biggest gains in soft-
ware-development quality and productivity will come from codifying, unifying, and
distributing existing knowledge about effective software-development practices
(CSTB 1990, McConnell 1997a). The board concluded that the strategy for spreading
that knowledge should be built on the concept of software-engineering handbooks.

The Topic of Construction Has Been Neglected

At one time, software development and coding were thought to be one and the same.
But as distinct activities in the software-development life cycle have been identified,
some of the best minds in the field have spent their time analyzing and debating meth-
ods of project management, requirements, design, and testing. The rush to study
these newly identified areas has left code construction as the ignorant cousin of soft-
ware development.

Discussions about construction have also been hobbled by the suggestion that treat-
ing construction as a distinct software development activity implies that construction
must also be treated as a distinct phase. In reality, software activities and phases don’t
have to be set up in any particular relationship to each other, and it’s useful to discuss
the activity of construction regardless of whether other software activities are per-
formed in phases, in iterations, or in some other way.

Construction Is Important

Another reason construction has been neglected by researchers and writers is the mis-
taken idea that, compared to other software-development activities, construction is a
relatively mechanical process that presents little opportunity for improvement. Noth-
ing could be further from the truth.

XXiv Preface

Code construction typically makes up about 65 percent of the effort on small projects
and 50 percent on medium projects. Construction accounts for about 75 percent of

the errors on small projects and 50 to 75 percent on medium and large projects. Any
activity that accounts for 50 to 75 percent of the errors presents a clear opportunity

for improvement. (Chapter 27 contains more details on these statistics.)

Some commentators have pointed out that although construction errors account for a
high percentage of total errors, construction errors tend to be less expensive to fix
than those caused by requirements and architecture, the suggestion being that they
are therefore less important. The claim that construction errors cost less to fix is true
but misleading because the cost of not fixing them can be incredibly high. Researchers
have found that small-scale coding errors account for some of the most expensive soft-
ware errors of all time, with costs running into hundreds of millions of dollars (Wein-
berg 1983, SEN 1990). An inexpensive cost to fix obviously does not imply that fixing
them should be a low priority.

The irony of the shift in focus away from construction is that construction is the only
activity that’s guaranteed to be done. Requirements can be assumed rather than devel-
oped; architecture can be shortchanged rather than designed; and testing can be
abbreviated or skipped rather than fully planned and executed. But if there’s going to
be a program, there has to be construction, and that makes construction a uniquely
fruitful area in which to improve development practices.

No Comparable Book Is Available

When art critics get together
they talk about Form and
Structure and Meaning.
When artists get together
they talk about where you
can buy cheap turpentine.
—Pablo Picasso

In light of construction’s obvious importance, I was sure when I conceived this book
that someone else would already have written a book on effective construction prac-
tices. The need for a book about how to program effectively seemed obvious. But
found that only a few books had been written about construction and then only on
parts of the topic. Some had been written 15 years or more earlier and employed rel-
atively esoteric languages such as ALGOL, PL/I, Ratfor, and Smalltalk. Some were
written by professors who were not working on production code. The professors
wrote about techniques that worked for student projects, but they often had little idea
of how the techniques would play out in full-scale development environments. Still
other books trumpeted the authors’ newest favorite methodologies but ignored the
huge repository of mature practices that have proven their effectiveness over time.

In short, I couldn’t find any book that had even attempted to capture the body of prac-
tical techniques available from professional experience, industry research, and aca-
demic work. The discussion needed to be brought up to date for current
programming languages, object-oriented programming, and leading-edge develop-
ment practices. It seemed clear that a book about programming needed to be written
by someone who was knowledgeable about the theoretical state of the art but who
was also building enough production code to appreciate the state of the practice. I

Preface XXV

conceived this book as a full discussion of code construction—from one programmer
to another.

Author Note

I welcome your inquiries about the topics discussed in this book, your error reports,
or other related subjects. Please contact me at stevemcc@construx.com, or visit my
website at www.stevemcconnell.com.

Bellevue, Washington
Memorial Day, 2004

Microsoft Learning Technical Support

Every effort has been made to ensure the accuracy of this book. Microsoft Press
provides corrections for books through the World Wide Web at the following
address:

http://www.microsoft.com/learning/support/

To connect directly to the Microsoft Knowledge Base and enter a query regard-
ing a question or issue that you may have, go to:

http://www.microsoft.com/learning/support/search.asp

If you have comments, questions, or ideas regarding this book, please send
them to Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press

Attn: Code Complete 2E Editor
One Microsoft Way

Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Acknowledgments

Abook is never really written by one person (at least none of my books are). A second edition
is even more a collective undertaking.

I’d like to thank the people who contributed review comments on significant portions of the
book: Hakon Aglistsson, Scott Ambler, Will Barns, William D. Bartholomew, Lars Bergstrom,
Tan Brockbank, Bruce Butler, Jay Cincotta, Alan Cooper, Bob Corrick, Al Corwin, Jerry Deville,
Jon Eaves, Edward Estrada, Steve Gouldstone, Owain Griffiths, Matthew Harris, Michael
Howard, Andy Hunt, Kevin Hutchison, Rob Jasper, Stephen Jenkins, Ralph Johnson and his
Software Architecture Group at the University of lllinois, Marek Konopka, Jeff Langr, Andy
Lester, Mitica Manu, Steve Mattingly, Gareth McCaughan, Robert McGovern, Scott Meyers,
Gareth Morgan, Matt Peloquin, Bryan Pflug, Jeffrey Richter, Steve Rinn, Doug Rosenberg,
Brian St. Pierre, Diomidis Spinellis, Matt Stephens, Dave Thomas, Andy Thomas-Cramer, John
Vlissides, Pavel Vozenilek, Denny Williford, Jack Woolley, and Dee Zsombor.

Hundreds of readers sent comments about the first edition, and many more sent individual
comments about the second edition. Thanks to everyone who took time to share their reac-
tions to the book in its various forms.

Special thanks to the Construx Software reviewers who formally inspected the entire manu-
script: Jason Hills, Bradey Honsinger, Abdul Nizar, Tom Reed, and Pamela Perrott. I was truly
amazed at how thorough their review was, especially considering how many eyes had scruti-
nized the book before they began working on it. Thanks also to Bradey, Jason, and Pamela for
their contributions to the cc2e.com website.

Working with Devon Musgrave, project editor for this book, has been a special treat. I've
worked with numerous excellent editors on other projects, and Devon stands out as espe-
cially conscientious and easy to work with. Thanks, Devon! Thanks to Linda Engleman who
championed the second edition; this book wouldn’t have happened without her. Thanks also
to the rest of the Microsoft Press staff, including Robin Van Steenburgh, Elden Nelson, Carl
Diltz, Joel Panchot, Patricia Masserman, Bill Myers, Sandi Resnick, Barbara Norfleet, James
Kramer, and Prescott Klassen.

I'd like to remember the Microsoft Press staff that published the first edition: Alice Smith,
Arlene Myers, Barbara Runyan, Carol Luke, Connie Little, Dean Holmes, Eric Stroo, Erin
O'Connor, Jeannie McGivern, Jeff Carey, Jennifer Harris, Jennifer Vick, Judith Bloch,
Katherine Erickson, Kim Eggleston, Lisa Sandburg, Lisa Theobald, Margarite Hargrave, Mike
Halvorson, Pat Forgette, Peggy Herman, Ruth Pettis, Sally Brunsman, Shawn Peck, Steve Mur-
ray, Wallis Bolz, and Zaafar Hasnain.

XXvii

XXviii

Acknowledgments

Thanks to the reviewers who contributed so significantly to the first edition: Al Corwin, Bill
Kiestler, Brian Daugherty, Dave Moore, Greg Hitchcock, Hank Meuret, Jack Woolley, Joey
Wyrick, Margot Page, Mike Klein, Mike Zevenbergen, Pat Forman, Peter Pathe, Robert L.
Glass, Tammy Forman, Tony Pisculli, and Wayne Beardsley. Special thanks to Tony Garland
for his exhaustive review: with 12 years’ hindsight, I appreciate more than ever how excep-
tional Tony’s several thousand review comments really were.

Checklists

Requirements 42

Architecture 54

Upstream Prerequisites 59

Major Construction Practices 69

Design in Construction 122

Class Quality 157

High-Quality Routines 185

Defensive Programming 211

The Pseudocode Programming Process 233
General Considerations In Using Data 257
Naming Variables 288

Fundamental Data 316

Considerations in Using Unusual Data Types 343
Organizing Straight-Line Code 353

Using Conditionals 365

Loops 388

Unusual Control Structures 410
Table-Driven Methods 429
Control-Structure Issues 459

A Quality-Assurance Plan 476

Effective Pair Programming 484

Effective Inspections 491

Test Cases 532

Debugging Reminders 559

Reasons to Refactor 570

Summary of Refactorings 577

Refactoring Safely 584

Code-Tuning Strategies 607

Code-Tuning Techniques 642

XXiX

XXX Checklists

Configuration Management 669
Integration 707

Programming Tools 724

Layout 773

Self-Documenting Code 780
Good Commenting Technique 816

Tables

Table 3-1 Average Cost of Fixing Defects Based on When They're Introduced and
Detected 29

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects 31
Table 3-3 Effect of Skipping Prerequisites on Sequential and Iterative Projects 33
Table 3-4 Effect of Focusing on Prerequisites on Sequential and Iterative Projects 34

Table 4-1 Ratio of High-Level-Language Statements to Equivalent C Code 62
Table 5-1 Popular Design Patterns 104

Table 5-2 Design Formality and Level of Detail Needed 116

Table 6-1 Variations on Inherited Routines 145

Table 8-1 Popular-Language Support for Exceptions 198

Table 11-1 Examples of Good and Bad Variable Names 261

Table 11-2 Variable Names That Are Too Long, Too Short, or Just Right 262
Table 11-3 Sample Naming Conventions for C++ and Java 277

Table 11-4 Sample Naming Conventions for C 278

Table 11-5 Sample Naming Conventions for Visual Basic 278

Table 11-6 Sample of UDTs for a Word Processor 280

Table 11-7 Semantic Prefixes 280

Table 12-1 Ranges for Different Types of Integers 294

Table 13-1 Accessing Global Data Directly and Through Access Routines 341
Table 13-2 Parallel and Nonparallel Uses of Complex Data 342

Table 16-1 The Kinds of Loops 368

Table 19-1 Transformations of Logical Expressions Under DeMorgan’s Theorems 436
Table 19-2 Techniques for Counting the Decision Points in a Routine 458
Table 20-1 = Team Ranking on Each Objective 469

Table 20-2 Defect-Detection Rates 470

Table 20-3 Extreme Programming’s Estimated Defect-Detection Rate 472
Table 21-1 Comparison of Collaborative Construction Techniques 495

Table 23-1 Examples of Psychological Distance Between Variable Names 556
Table 25-1 Relative Execution Time of Programming Languages 600

Table 25-2 Costs of Common Operations 601

Xxxi

XXXii

Tables

Table 27-1
Table 27-2
Table 28-1
Table 28-2
Table 28-3

Project Size and Typical Error Density 652
Project Size and Productivity 653

Factors That Influence Software-Project Effort 674
Useful Software-Development Measurements 678

One View of How Programmers Spend Their Time 681

Figures

Figure 1-1
Figure 1-2

Figure 2-1
Figure 2-2
Figure 2-3

Figure 2-4
Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5
Figure 3-6

Figure 3-7

Figure 5-1

Construction activities are shown inside the gray circle. Construction
focuses on coding and debugging but also includes detailed design, unit
testing, integration testing, and other activities. 4

This book focuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in
roughly these proportions. 5

The letter-writing metaphor suggests that the software process relies on
expensive trial and error rather than careful planning and design. 14

It’s hard to extend the farming metaphor to software development
appropriately. 15

The penalty for a mistake on a simple structure is only a little time and
maybe some embarrassment. 17

More complicated structures require more careful planning. 18

The cost to fix a defect rises dramatically as the time from when it’s intro-
duced to when it’s detected increases. This remains true whether the
project is highly sequential (doing 100 percent of requirements and design
up front) or highly iterative (doing 5 percent of requirements and design
up front). 30

Activities will overlap to some degree on most projects, even those that are
highly sequential. 35

On other projects, activities will overlap for the duration of the project. One
key to successful construction is understanding the degree to which prereq-
uisites have been completed and adjusting your approach accordingly. 35

The problem definition lays the foundation for the rest of the programming
process. 37

Be sure you know what you're aiming at before you shoot. 38

Without good requirements, you can have the right general problem but
miss the mark on specific aspects of the problem. 39

Without good software architecture, you may have the right problem but the
wrong solution. It may be impossible to have successful construction. 44

The Tacoma Narrows bridge—an example of a wicked problem. 75

Xxxiii

XXXiV

Figures

Figure 5-2

Figure 5-3
Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 8-1

Figure 8-2

Figure 9-1

Figure 9-2

Figure 9-3

Figure 10-1

Figure 10-2
Figure 10-3

The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the
classes are divided into routines and data (4). The inside of each routine is
also designed (5). 82

An example of a system with six subsystems. 83

An example of what happens with no restrictions on intersubsystem
communications. 83

With a few communication rules, you can simplify subsystem interactions
significantly. 84

This billing system is composed of four major objects. The objects have been
simplified for this example. 88

Abstraction allows you to take a simpler view of a complex concept. 90

Encapsulation says that, not only are you allowed to take a simpler view of a
complex concept, you are not allowed to look at any of the details of the
complex concept. What you see is what you get—it’s all you get! 91

A good class interface is like the tip of an iceberg, leaving most of the class
unexposed. 93

G. Polya developed an approach to problem solving in mathematics that's
also useful in solving problems in software design (Polya 1957). 109

Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and
the bridge became too heavy to float. During construction, protecting your-
self against the small stuff matters more than you might think. 189

Defining some parts of the software that work with dirty data and some that
work with clean data can be an effective way to relieve the majority of the
code of the responsibility for checking for bad data. 204

Details of class construction vary, but the activities generally occur in the
order shown here. 216

These are the major activities that go into constructing a routine. They’re
usually performed in the order shown. 217

You'll perform all of these steps as you design a routine but not necessarily
in any particular order. 225

“Long live time” means that a variable is live over the course of many state-
ments. “Short live time” means it’s live for only a few statements. “Span”
refers to how close together the references to a variable are. 246

Sequential data is data that's handled in a defined order. 254

Selective data allows you to use one piece or the other, but not both. 255

Figure 10-4
Figure 13-1

Figure 13-2

Figure 14-1

Figure 14-2

Figure 17-1

Figure 18-1

Figure 18-2

Figure 18-3
Figure 18-4

Figure 18-5

Figure 19-1
Figure 20-1

Figure 20-2

Figure 22-1

Figure 22-2

Figure 23-1

Figure 24-1

Figures XXXV

[terative data is repeated. 255

The amount of memory used by each data type is shown by double
lines. 324

An example of a picture that helps us think through the steps involved in
relinking pointers. 329

If the code is well organized into groups, boxes drawn around related sec-
tions don’t overlap. They might be nested. 352

If the code is organized poorly, boxes drawn around related sections
overlap. 353

Recursion can be a valuable tool in the battle against complexity—when used
to attack suitable problems. 394

As the name suggests, a direct-access table allows you to access the table ele-
ment you're interested in directly. 413

Messages are stored in no particular order, and each one is identified with a
message [D. 417

Aside from the Message ID, each kind of message has its own format. 418

Rather than being accessed directly, an indexed access table is accessed via
an intermediate index. 425

The stair-step approach categorizes each entry by determining the level at
which it hits a “staircase.” The “step” it hits determines its category. 426

Examples of using number-line ordering for boolean tests. 440

Focusing on one external characteristic of software quality can affect other
characteristics positively, adversely, or not atall. 466

Neither the fastest nor the slowest development approach produces the soft-
ware with the most defects. 475

As the size of the project increases, developer testing consumes a smaller
percentage of the total development time. The effects of program size are
described in more detail in Chapter 27, “How Program Size Affects
Construction.” 502

As the size of the project increases, the proportion of errors committed dur-
ing construction decreases. Nevertheless, construction errors account for
45-75% of all errors on even the largest projects. 521

Try to reproduce an error several different ways to determine its exact
cause. 545

Small changes tend to be more error-prone than larger changes (Weinberg
1983). 581

XXXVi

Figures

Figure 24-2

Figure 24-3

Figure 27-1

Figure 27-2

Figure 27-3

Figure 27-4

Figure 28-1

Figure 28-2

Figure 29-1

Figure 29-2

Figure 29-3

Your code doesn’t have to be messy just because the real world is messy.
Conceive your system as a combination of ideal code, interfaces from the
ideal code to the messy real world, and the messy real world. 583

One strategy for improving production code is to refactor poorly written leg-
acy code as you touch it, so as to move it to the other side of the “interface to
the messy real world.” 584

The number of communication paths increases proportionate to the square
of the number of people on the team. 650

As project size increases, errors usually come more from requirements and
design. Sometimes they still come primarily from construction (Boehm
1981, Grady 1987, Jones 1998). 652

Construction activities dominate small projects. Larger projects require
more architecture, integration work, and system testing to succeed. Require-
ments work is not shown on this diagram because requirements effort is not
as directly a function of program size as other activities are (Albrecht 1979;
Glass 1982; Boehm, Gray, and Seewaldt 1984; Boddie 1987; Card 1987;
McGarry, Waligora, and McDermott 1989; Brooks 1995; Jones 1998; Jones
2000; Boehm et al. 2000). 654

The amount of software construction work is a near-linear function of
project size. Other kinds of work increase nonlinearly as project size
increases. 655

This chapter covers the software-management topics related to
construction. 661

Estimates created early in a project are inherently inaccurate. As the project
progresses, estimates can become more accurate. Reestimate periodically
throughout a project, and use what you learn during each activity to improve
your estimate for the next activity. 673

The football stadium add-on at the University of Washington collapsed
because it wasn’t strong enough to support itself during construction. It
likely would have been strong enough when completed, but it was con-
structed in the wrong order—an integration error. 690

Phased integration is also called “big bang” integration for a good
reason! 091

Incremental integration helps a project build momentum, like a snowball
going down a hill. 692

Figure 29-4

Figure 29-5

Figure 29-6

Figure 29-7

Figure 29-8

Figure 29-9

Figure 29-10

Figure 29-11

Figure 29-12

Figure 34-1

Figures xxxvii

In phased integration, you integrate so many components at once that it’s
hard to know where the error is. It might be in any of the components or in
any of their connections. In incremental integration, the error is usually
either in the new component or in the connection between the new compo-
nent and the system. 693

In top-down integration, you add classes at the top first, at the bottom
last. 695

As an alternative to proceeding strictly top to bottom, you can integrate from
the top down in vertical slices. 696

In bottom-up integration, you integrate classes at the bottom first, at the top
last. 697

As an alternative to proceeding purely bottom to top, you can integrate from
the bottom up in sections. This blurs the line between bottom-up integration
and feature-oriented integration, which is described later in this

chapter. 698

In sandwich integration, you integrate top-level and widely used bottom-
level classes first and you save middle-level classes for last. 698

In risk-oriented integration, you integrate classes that you expect to be most
troublesome first; you implement easier classes later. 699

In feature-oriented integration, you integrate classes in groups that make up
identifiable features—usually, but not always, multiple classes at a
time. 700

In T-shaped integration, you build and integrate a deep slice of the system to
verify architectural assumptions and then you build and integrate the
breadth of the system to provide a framework for developing the remaining
functionality. 701

Programs can be divided into levels of abstraction. A good design will allow
you to spend much of your time focusing on only the upper layers and ignor-
ing the lower layers. 846

Part |
Laying the Foundation

In this part:

Chapter 1: Welcome to Software Construction....................... 3
Chapter 2: Metaphors for a Richer Understanding of

Software Development. ...t e 9
Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites 23

Chapter 4: Key ConstructionDecisions.....................ooinnt. 61

cc2e.com/0178

Chapter 1

Welcome to Software
Construction

Contents

m 1.1 What Is Software Construction?: page 3
m 1.2 Why Is Software Construction Important?: page 6
m 1.3 How to Read This Book: page 8

Related Topics

m Who should read this book: Preface
B Benefits of reading the book: Preface

m Why the book was written: Preface

You know what “construction” means when it’s used outside software development.
“Construction” is the work “construction workers” do when they build a house, a
school, or a skyscraper. When you were younger, you built things out of “construction
paper.” In common usage, “construction” refers to the process of building. The con-
struction process might include some aspects of planning, designing, and checking
your work, but mostly “construction” refers to the hands-on part of creating something.

1.1 What Is Software Construction?

Developing computer software can be a complicated process, and in the last 25 years,
researchers have identified numerous distinct activities that go into software develop-
ment. They include

Problem definition
Requirements development

Construction planning

Detailed design

|
|
|
m Software architecture, or high-level design
|
m Coding and debugging

|

Unit testing

4

Chapter 1: Welcome to Software Construction

Integration testing
Integration

|
|
B System testing
|

Corrective maintenance

If you've worked on informal projects, you might think that this list represents a lot of
red tape. If you've worked on projects that are too formal, you know that this list rep-
resents a lot of red tape! It’s hard to strike a balance between too little and too much
formality, and that’s discussed later in the book.

If you've taught yourself to program or worked mainly on informal projects, you might
not have made distinctions among the many activities that go into creating a software

product. Mentally, you might have grouped all of these activities together as “program-
ming.” If you work on informal projects, the main activity you think of when you think
about creating software is probably the activity the researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a lack of
perspective. Putting construction in its context with other activities helps keep the
focus on the right tasks during construction and appropriately emphasizes important
nonconstruction activities. Figure 1-1 illustrates construction’s place related to other
software-development activities.

Problem
Definition

Corrective

Detailed
Design

. Maintenance
Requirements

Development

Integration
Coding and

Construction Debugging

Planning

Integration
Testing

Unit
Software Testing
Architecture

System
Testing

Figure1-1 Construction activities are shown inside the gray circle. Construction focuses on
coding and debugging but also includes detailed design, unit testing, integration testing,
and other activities.

NS
O
. ====N
KEY POINT

1.1 What Is Software Construction? 5

As the figure indicates, construction is mostly coding and debugging but also involves
detailed design, construction planning, unit testing, integration, integration testing,
and other activities. If this were a book about all aspects of software development, it
would feature nicely balanced discussions of all activities in the development process.
Because this is a handbook of construction techniques, however, it places a lopsided
emphasis on construction and only touches on related topics. If this book were a dog,
it would nuzzle up to construction, wag its tail at design and testing, and bark at the
other development activities.

Construction is also sometimes known as “coding” or “programming.” “Coding” isn’t
really the best word because it implies the mechanical translation of a preexisting
design into a computer language; construction is not at all mechanical and involves
substantial creativity and judgment. Throughout the book, I use “programming” inter-
changeably with “construction.”

In contrast to Figure 1-1’s flat-earth view of software development, Figure 1-2 shows
the round-earth perspective of this book.

Problem
Definition ¢

Detailed
Design

Corrective
Maintenance

Requirements
Development

Construction
Planning

Coding and
Debugging

Integration

Integration
Testing

Software Unit

Architecture Testing Sysf&ﬁ
Testing

Figure 1-2 This book focuses on coding and debugging, detailed design, construction
planning, unit testing, integration, integration testing, and other activities in roughly these
proportions.

Figure 1-1 and Figure 1-2 are high-level views of construction activities, but what
about the details? Here are some of the specific tasks involved in construction:

m Verifying that the groundwork has been laid so that construction can proceed
successfully

B Determining how your code will be tested

6 Chapter 1: Welcome to Software Construction

Designing and writing classes and routines

Creating and naming variables and named constants

|

|

B Selecting control structures and organizing blocks of statements
B Unit testing, integration testing, and debugging your own code
|

Reviewing other team members’ low-level designs and code and having them
review yours

Polishing code by carefully formatting and commenting it
Integrating software components that were created separately

m Tuning code to make it faster and use fewer resources

For an even fuller list of construction activities, look through the chapter titles in the
table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what activ-
ities are not part of construction?” That’s a fair question. Important nonconstruction
activities include management, requirements development, software architecture,
user-interface design, system testing, and maintenance. Each of these activities affects
the ultimate success of a project as much as construction—at least the success of any
project that calls for more than one or two people and lasts longer than a few weeks.
You can find good books on each activity; many are listed in the “Additional
Resources” sections throughout the book and in Chapter 35, “Where to Find More
Information,” at the end of the book.

1.2 Why Is Software Construction Important?

Since you're reading this book, you probably agree that improving software quality
and developer productivity is important. Many of today’s most exciting projects use
software extensively. The Internet, movie special effects, medical life-support systems,
space programs, aeronautics, high-speed financial analysis, and scientific research are
a few examples. These projects and more conventional projects can all benefit from
improved practices because many of the fundamentals are the same.

If you agree that improving software development is important in general, the question
for you as a reader of this book becomes, Why is construction an important focus?

Cross-Reference For details
on the relationship between

project size and the percent-

age of time consumed by
construction, see "Activity

Proportions and Size" in Sec-

tion 27.5.

Cross-Reference For data on
variations among program-
mers, see “Individual Varia-
tion” in Section 28.5.

‘ (—
O
. ="\
KEY POINT

1.2 Why Is Software Construction Important? 7
Here’s why:

Construction is a large part of software development Depending on the size of the
project, construction typically takes 30 to 80 percent of the total time spent on a
project. Anything that takes up that much project time is bound to affect the success
of the project.

Construction is the central activity in software development Requirements and
architecture are done before construction so that you can do construction effectively.
System testing (in the strict sense of independent testing) is done after construction
to verify that construction has been done correctly. Construction is at the center of the
software-development process.

With a focus on construction, the individual programmer’s productivity can improve
enormously A classic study by Sackman, Erikson, and Grant showed that the pro-
ductivity of individual programmers varied by a factor of 10 to 20 during construction
(1968). Since their study, their results have been confirmed by numerous other stud-
ies (Curtis 1981, Mills 1983, Curtis et al. 1986, Card 1987, Valett and McGarry 1989,
DeMarco and Lister 1999, Boehm et al. 2000). This book helps all programmers learn
techniques that are already used by the best programmers.

Construction’s product, the source code, is often the only accurate description of the
software In many projects, the only documentation available to programmers is the
code itself. Requirements specifications and design documents can go out of date, but
the source code is always up to date. Consequently, it’s imperative that the source
code be of the highest possible quality. Consistent application of techniques for
source-code improvement makes the difference between a Rube Goldberg contraption
and a detailed, correct, and therefore informative program. Such techniques are most
effectively applied during construction.

Construction is the only activity that’s guaranteed to be done The ideal software
project goes through careful requirements development and architectural design
before construction begins. The ideal project undergoes comprehensive, statistically
controlled system testing after construction. Imperfect, real-world projects, however,
often skip requirements and design to jump into construction. They drop testing
because they have too many errors to fix and they’ve run out of time. But no matter
how rushed or poorly planned a project is, you can’t drop construction; it’s where the
rubber meets the road. Improving construction is thus a way of improving any soft-
ware-development effort, no matter how abbreviated.

8 Chapter 1: Welcome to Software Construction

1.3 How to Read This Book

Key Points

This book is designed to be read either cover to cover or by topic. If you like to read
books cover to cover, you might simply dive into Chapter 2, “Metaphors for a Richer
Understanding of Software Development.” If you want to get to specific programming
tips, you might begin with Chapter 6, “Working Classes,” and then follow the cross ref-
erences to other topics you find interesting. If you’re not sure whether any of this applies
to you, begin with Section 3.2, “Determine the Kind of Software You're Working On.”

m Software construction is the central activity in software development; construc-
tion is the only activity that’s guaranteed to happen on every project.

B The main activities in construction are detailed design, coding, debugging, inte-
gration, and developer testing (unit testing and integration testing).

Other common terms for construction are “coding” and “programming.”
The quality of the construction substantially affects the quality of the software.

m In the final analysis, your understanding of how to do construction determines
how good a programmer you are, and that’s the subject of the rest of the book.

cc2e.com/0278

Chapter 2

Metaphors for a Richer
Understanding of Software
Development

Contents

m 2.1 The Importance of Metaphors: page 9
B 2.2 How to Use Software Metaphors: page 11

m 2.3 Common Software Metaphors: page 13

Related Topic
m Heuristics in design: “Design Is a Heuristic Process” in Section 5.1

Computer science has some of the most colorful language of any field. In what other
field can you walk into a sterile room, carefully controlled at 68°F, and find viruses,
Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex changers, and fatal
errors?

These graphic metaphors describe specific software phenomena. Equally vivid meta-
phors describe broader phenomena, and you can use them to improve your under-
standing of the software-development process.

The rest of the book doesn’t directly depend on the discussion of metaphors in this
chapter. Skip it if you want to get to the practical suggestions. Read it if you want to
think about software development more clearly.

2.1 The Importance of Metaphors

Important developments often arise out of analogies. By comparing a topic you under-
stand poorly to something similar you understand better, you can come up with
insights that result in a better understanding of the less-familiar topic. This use of met-
aphor is called “modeling.”

The history of science is full of discoveries based on exploiting the power of meta-
phors. The chemist Kekulé had a dream in which he saw a snake grasp its tail in its
mouth. When he awoke, he realized that a molecular structure based on a similar ring
shape would account for the properties of benzene. Further experimentation con-
firmed the hypothesis (Barbour 1966).

10 Chapter 2: Metaphors for a Richer Understanding of Software Development

The kinetic theory of gases was based on a “billiard-ball” model. Gas molecules were
thought to have mass and to collide elastically, as billiard balls do, and many useful
theorems were developed from this model.

The wave theory of light was developed largely by exploring similarities between light
and sound. Light and sound have amplitude (brightness, loudness), frequency (color,
pitch), and other properties in common. The comparison between the wave theories
of sound and light was so productive that scientists spent a great deal of effort looking
for a medium that would propagate light the way air propagates sound. They even
gave it a name —‘ether’—but they never found the medium. The analogy that had been
so fruitful in some ways proved to be misleading in this case.

In general, the power of models is that they’re vivid and can be grasped as conceptual
wholes. They suggest properties, relationships, and additional areas of inquiry. Some-
times a model suggests areas of inquiry that are misleading, in which case the meta-
phor has been overextended. When the scientists looked for ether, they overextended
their model.

As you might expect, some metaphors are better than others. A good metaphor is sim-
ple, relates well to other relevant metaphors, and explains much of the experimental
evidence and other observed phenomena.

Consider the example of a heavy stone swinging back and forth on a string. Before
Galileo, an Aristotelian looking at the swinging stone thought that a heavy object
moved naturally from a higher position to a state of rest at a lower one. The Aristote-
lian would think that what the stone was really doing was falling with difficulty. When
Galileo saw the swinging stone, he saw a pendulum. He thought that what the stone
was really doing was repeating the same motion again and again, almost perfectly.

The suggestive powers of the two models are quite different. The Aristotelian who saw
the swinging stone as an object falling would observe the stone’s weight, the height to
which it had been raised, and the time it took to come to rest. For Galileo’s pendulum
model, the prominent factors were different. Galileo observed the stone’s weight, the
radius of the pendulum’s swing, the angular displacement, and the time per swing.
Galileo discovered laws the Aristotelians could not discover because their model led
them to look at different phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues in
the same way that they contribute to a greater understanding of scientific questions.
In his 1973 Turing Award lecture, Charles Bachman described the change from the
prevailing earth-centered view of the universe to a sun-centered view. Ptolemy’s earth-
centered model had lasted without serious challenge for 1400 years. Then in 1543,
Copernicus introduced a heliocentric theory, the idea that the sun rather than the
earth was the center of the universe. This change in mental models led ultimately to
the discovery of new planets, the reclassification of the moon as a satellite rather than
as a planet, and a different understanding of humankind’s place in the universe.

The value of metaphors
should not be underesti-
mated. Metaphors have the

virtue of an expected behav-

ior that is understood by all.
Unnecessary communication
and misunderstandings are
reduced. Learning and edu-
cation are quicker. In effect,
metaphors are a way of
internalizing and abstracting
concepts, allowing one's
thinking to be on a higher
plane and low-level mistakes
to be avoided.

—fernando J. Corbaté

2.2 How to Use Software Metaphors 11

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the change
in computer programming in the early 1970s. When Bachman made the comparison
in 1973, data processing was changing from a computer-centered view of information
systems to a database-centered view. Bachman pointed out that the ancients of data
processing wanted to view all data as a sequential stream of cards flowing through a
computer (the computer-centered view). The change was to focus on a pool of data on
which the computer happened to act (a database-oriented view).

Today it’s difficult to imagine anyone thinking that the sun moves around the earth.
Similarly, it’s difficult to imagine a programmer thinking that all data could be viewed
as a sequential stream of cards. In both cases, once the old theory has been discarded,
it seems incredible that anyone ever believed it at all. More fantastically, people who
believed the old theory thought the new theory was just as ridiculous then as you
think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it after a
better theory was available. Similarly, the computer-centered view of the computing
universe hobbled computer scientists who held on to it after the database-centered
theory was available.

It's tempting to trivialize the power of metaphors. To each of the earlier examples, the
natural response is to say, “Well, of course the right metaphor is more useful. The
other metaphor was wrong!” Though that’s a natural reaction, it’s simplistic. The his-
tory of science isn’t a series of switches from the “wrong” metaphor to the “right” one.
It’s a series of changes from “worse” metaphors to “better” ones, from less inclusive to
more inclusive, from suggestive in one area to suggestive in another.

In fact, many models that have been replaced by better models are still useful. Engineers
still solve most engineering problems by using Newtonian dynamics even though, the-
oretically, Newtonian dynamics have been supplanted by Einsteinian theory.

Software development is a younger field than most other sciences. It’s not yet mature
enough to have a set of standard metaphors. Consequently, it has a profusion of com-
plementary and conflicting metaphors. Some are better than others. Some are worse.

How well you understand the metaphors determines how well you understand soft-

ware development.

2.2 How to Use Software Metaphors

‘ (—
O
. ====\N
KEY POINT

A software metaphor is more like a searchlight than a road map. It doesn’t tell you
where to find the answer; it tells you how to look for it. A metaphor serves more as a
heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular task. An
algorithm is predictable, deterministic, and not subject to chance. An algorithm tells

12 Chapter 2: Metaphors for a Richer Understanding of Software Development

Cross-Reference For details
on how to use heuristics in
designing software, see
“Design Is a Heuristic Pro-
cess” in Section 5.1.

you how to go from point A to point B with no detours, no side trips to points D, E,
and F, and no stopping to smell the roses or have a cup of joe.

A heuristic is a technique that helps you look for an answer. Its results are subject to

chance because a heuristic tells you only how to look, not what to find. It doesn’t tell
you how to get directly from point A to point B; it might not even know where point A
and point B are. In effect, a heuristic is an algorithm in a clown suit. It’s less predict-

able, it's more fun, and it comes without a 30-day, money-back guarantee.

Here is an algorithm for driving to someone’s house: Take Highway 167 south to Puy-
allup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn right at the
light by the grocery store, and then take the first left. Turn into the driveway of the
large tan house on the left, at 714 North Cedar.

Here’s a heuristic for getting to someone’s house: Find the last letter we mailed you.
Drive to the town in the return address. When you get to town, ask someone where
our house is. Everyone knows us—someone will be glad to help you. If you can’t find
anyone, call us from a public phone, and we’ll come get you.

The difference between an algorithm and a heuristic is subtle, and the two terms over-
lap somewhat. For the purposes of this book, the main difference between the two is
the level of indirection from the solution. An algorithm gives you the instructions
directly. A heuristic tells you how to discover the instructions for yourself, or at least
where to look for them.

Having directions that told you exactly how to solve your programming problems
would certainly make programming easier and the results more predictable. But pro-
gramming science isn’t yet that advanced and may never be. The most challenging
part of programming is conceptualizing the problem, and many errors in program-
ming are conceptual errors. Because each program is conceptually unique, it’s difficult
or impossible to create a general set of directions that lead to a solution in every case.
Thus, knowing how to approach problems in general is at least as valuable as knowing
specific solutions for specific problems.

How do you use software metaphors? Use them to give you insight into your program-
ming problems and processes. Use them to help you think about your programming
activities and to help you imagine better ways of doing things. You won’t be able to
look at a line of code and say that it violates one of the metaphors described in this
chapter. Over time, though, the person who uses metaphors to illuminate the soft-
ware-development process will be perceived as someone who has a better understand-
ing of programming and produces better code faster than people who don’t use them.

2.3 Common Software Metaphors 13

2.3 Common Software Metaphors

A confusing abundance of metaphors has grown up around software development.
David Gries says writing software is a science (1981). Donald Knuth says it’s an art
(1998). Watts Humphrey says it’s a process (1989). P. J. Plauger and Kent Beck say it’s
like driving a car, although they draw nearly opposite conclusions (Plauger 1993,
Beck 2000). Alistair Cockburn says it’s a game (2002). Eric Raymond says it’s like a
bazaar (2000). Andy Hunt and Dave Thomas say it’s like gardening. Paul Heckel says
it’s like filming Snow White and the Seven Dwarfs (1994). Fred Brooks says that it’s like
farming, hunting werewolves, or drowning with dinosaurs in a tar pit (1995). Which
are the best metaphors?

Software Penmanship: Writing Code

3
2
1

HARD DATA

The most primitive metaphor for software development grows out of the expression

“writing code.” The writing metaphor suggests that developing a program is like writing
a casual letter—you sit down with pen, ink, and paper and write it from start to finish. It
doesn’t require any formal planning, an