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Preface

The gap between the best software engineering practice and the average practice 
is very wide—perhaps wider than in any other engineering discipline. A tool that 
disseminates good practice would be important.
—Fred Brooks

My primary concern in writing this book has been to narrow the gap between the 
knowledge of industry gurus and professors on the one hand and common commer-
cial practice on the other. Many powerful programming techniques hide in journals 
and academic papers for years before trickling down to the programming public.

Although leading-edge software-development practice has advanced rapidly in recent 
years, common practice hasn’t. Many programs are still buggy, late, and over budget, 
and many fail to satisfy the needs of their users. Researchers in both the software 
industry and academic settings have discovered effective practices that eliminate most 
of the programming problems that have been prevalent since the 1970s. Because 
these practices aren’t often reported outside the pages of highly specialized technical 
journals, however, most programming organizations aren’t yet using them today. 
Studies have found that it typically takes 5 to 15 years or more for a research develop-
ment to make its way into commercial practice (Raghavan and Chand 1989, Rogers 
1995, Parnas 1999). This handbook shortcuts the process, making key discoveries 
available to the average programmer now.

Who Should Read This Book?
The research and programming experience collected in this handbook will help you 
to create higher-quality software and to do your work more quickly and with fewer 
problems. This book will give you insight into why you’ve had problems in the past 
and will show you how to avoid problems in the future. The programming practices 
described here will help you keep big projects under control and help you maintain 
and modify software successfully as the demands of your projects change.

Experienced Programmers

This handbook serves experienced programmers who want a comprehensive, easy-to-
use guide to software development. Because this book focuses on construction, the 
most familiar part of the software life cycle, it makes powerful software development 
techniques understandable to self-taught programmers as well as to programmers 
with formal training.



xx Preface

Technical Leads

Many technical leads have used Code Complete to educate less-experienced program-
mers on their teams. You can also use it to fill your own knowledge gaps. If you’re an 
experienced programmer, you might not agree with all my conclusions (and I would be 
surprised if you did), but if you read this book and think about each issue, only rarely 
will someone bring up a construction issue that you haven’t previously considered.

Self-Taught Programmers

If you haven’t had much formal training, you’re in good company. About 50,000 new 
developers enter the profession each year (BLS 2004, Hecker 2004), but only about 
35,000 software-related degrees are awarded each year (NCES 2002). From these fig-
ures it’s a short hop to the conclusion that many programmers don’t receive a formal 
education in software development. Self-taught programmers are found in the emerg-
ing group of professionals—engineers, accountants, scientists, teachers, and small-
business owners—who program as part of their jobs but who do not necessarily view 
themselves as programmers. Regardless of the extent of your programming educa-
tion, this handbook can give you insight into effective programming practices.

Students

The counterpoint to the programmer with experience but little formal training is the 
fresh college graduate. The recent graduate is often rich in theoretical knowledge but 
poor in the practical know-how that goes into building production programs. The 
practical lore of good coding is often passed down slowly in the ritualistic tribal 
dances of software architects, project leads, analysts, and more-experienced program-
mers. Even more often, it’s the product of the individual programmer’s trials and 
errors. This book is an alternative to the slow workings of the traditional intellectual 
potlatch. It pulls together the helpful tips and effective development strategies previ-
ously available mainly by hunting and gathering from other people’s experience. It’s a 
hand up for the student making the transition from an academic environment to a 
professional one.

Where Else Can You Find This Information?
This book synthesizes construction techniques from a variety of sources. In addition 
to being widely scattered, much of the accumulated wisdom about construction has 
resided outside written sources for years (Hildebrand 1989, McConnell 1997a). 
There is nothing mysterious about the effective, high-powered programming tech-
niques used by expert programmers. In the day-to-day rush of grinding out the latest 
project, however, few experts take the time to share what they have learned. Conse-
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quently, programmers may have difficulty finding a good source of programming 
information.

The techniques described in this book fill the void after introductory and advanced 
programming texts. After you have read Introduction to Java, Advanced Java, and 
Advanced Advanced Java, what book do you read to learn more about programming? 
You could read books about the details of Intel or Motorola hardware, Microsoft Win-
dows or Linux operating-system functions, or another programming language—you 
can’t use a language or program in an environment without a good reference to such 
details. But this is one of the few books that discusses programming per se. Some of 
the most beneficial programming aids are practices that you can use regardless of the 
environment or language you’re working in. Other books generally neglect such prac-
tices, which is why this book concentrates on them.

The information in this book is distilled from many sources, as shown below. The 
only other way to obtain the information you’ll find in this handbook would be to 
plow through a mountain of books and a few hundred technical journals and then 
add a significant amount of real-world experience. If you’ve already done all that, you 
can still benefit from this book’s collecting the information in one place for easy refer-
ence.

Key Benefits of This Handbook
Whatever your background, this handbook can help you write better programs in less 
time and with fewer headaches.

Complete software-construction reference This handbook discusses general aspects 
of construction such as software quality and ways to think about programming. It gets 
into nitty-gritty construction details such as steps in building classes, ins and outs of 
using data and control structures, debugging, refactoring, and code-tuning tech-
niques and strategies. You don’t need to read it cover to cover to learn about these top-
ics. The book is designed to make it easy to find the specific information that interests 
you.

Professional 
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Other software 
books

Programming 
language books

Magazine 
articlesTechnology 

references

Construction
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Ready-to-use checklists This book includes dozens of checklists you can use to 
assess your software architecture, design approach, class and routine quality, variable 
names, control structures, layout, test cases, and much more.

State-of-the-art information This handbook describes some of the most up-to-date 
techniques available, many of which have not yet made it into common use. Because 
this book draws from both practice and research, the techniques it describes will 
remain useful for years.

Larger perspective on software development This book will give you a chance to rise 
above the fray of day-to-day fire fighting and figure out what works and what doesn’t. 
Few practicing programmers have the time to read through the hundreds of books 
and journal articles that have been distilled into this handbook. The research and real-
world experience gathered into this handbook will inform and stimulate your think-
ing about your projects, enabling you to take strategic action so that you don’t have to 
fight the same battles again and again.

Absence of hype Some software books contain 1 gram of insight swathed in 10 
grams of hype. This book presents balanced discussions of each technique’s strengths 
and weaknesses. You know the demands of your particular project better than anyone 
else. This book provides the objective information you need to make good decisions 
about your specific circumstances.  

Concepts applicable to most common languages This book describes techniques 
you can use to get the most out of whatever language you’re using, whether it’s C++, 
C#, Java, Microsoft Visual Basic, or other similar languages.

Numerous code examples The book contains almost 500 examples of good and bad 
code. I’ve included so many examples because, personally, I learn best from exam-
ples. I think other programmers learn best that way too.

The examples are in multiple languages because mastering more than one language is 
often a watershed in the career of a professional programmer. Once a programmer 
realizes that programming principles transcend the syntax of any specific language, 
the doors swing open to knowledge that truly makes a difference in quality and pro-
ductivity.

To make the multiple-language burden as light as possible, I’ve avoided esoteric lan-
guage features except where they’re specifically discussed. You don’t need to under-
stand every nuance of the code fragments to understand the points they’re making. If 
you focus on the point being illustrated, you’ll find that you can read the code regard-
less of the language. I’ve tried to make your job even easier by annotating the signifi-
cant parts of the examples.

Access to other sources of information This book collects much of the available 
information on software construction, but it’s hardly the last word. Throughout the 
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chapters, “Additional Resources” sections describe other books and articles you can 
read as you pursue the topics you find most interesting.

cc2e.com/1234 Book website Updated checklists, books, magazine articles, Web links, and other 
content are provided on a companion website at cc2e.com. To access information 
related to Code Complete, 2d ed., enter cc2e.com/ followed by a four-digit code, an 
example of which is shown here in the left margin. These website references appear 
throughout the book.

Why This Handbook Was Written
The need for development handbooks that capture knowledge about effective devel-
opment practices is well recognized in the software-engineering community. A report 
of the Computer Science and Technology Board stated that the biggest gains in soft-
ware-development quality and productivity will come from codifying, unifying, and 
distributing existing knowledge about effective software-development practices 
(CSTB 1990, McConnell 1997a). The board concluded that the strategy for spreading 
that knowledge should be built on the concept of software-engineering handbooks.

The Topic of Construction Has Been Neglected 

At one time, software development and coding were thought to be one and the same. 
But as distinct activities in the software-development life cycle have been identified, 
some of the best minds in the field have spent their time analyzing and debating meth-
ods of project management, requirements, design, and testing. The rush to study 
these newly identified areas has left code construction as the ignorant cousin of soft-
ware development.

Discussions about construction have also been hobbled by the suggestion that treat-
ing construction as a distinct software development activity implies that construction 
must also be treated as a distinct phase. In reality, software activities and phases don’t 
have to be set up in any particular relationship to each other, and it’s useful to discuss 
the activity of construction regardless of whether other software activities are per-
formed in phases, in iterations, or in some other way.

Construction Is Important

Another reason construction has been neglected by researchers and writers is the mis-
taken idea that, compared to other software-development activities, construction is a 
relatively mechanical process that presents little opportunity for improvement. Noth-
ing could be further from the truth.
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Code construction typically makes up about 65 percent of the effort on small projects 
and 50 percent on medium projects. Construction accounts for about 75 percent of 
the errors on small projects and 50 to 75 percent on medium and large projects. Any 
activity that accounts for 50 to 75 percent of the errors presents a clear opportunity 
for improvement. (Chapter 27 contains more details on these statistics.)

Some commentators have pointed out that although construction errors account for a 
high percentage of total errors, construction errors tend to be less expensive to fix 
than those caused by requirements and architecture, the suggestion being that they 
are therefore less important. The claim that construction errors cost less to fix is true 
but misleading because the cost of not fixing them can be incredibly high. Researchers 
have found that small-scale coding errors account for some of the most expensive soft-
ware errors of all time, with costs running into hundreds of millions of dollars (Wein-
berg 1983, SEN 1990). An inexpensive cost to fix obviously does not imply that fixing 
them should be a low priority.

The irony of the shift in focus away from construction is that construction is the only 
activity that’s guaranteed to be done. Requirements can be assumed rather than devel-
oped; architecture can be shortchanged rather than designed; and testing can be 
abbreviated or skipped rather than fully planned and executed. But if there’s going to 
be a program, there has to be construction, and that makes construction a uniquely 
fruitful area in which to improve development practices.

No Comparable Book Is Available

In light of construction’s obvious importance, I was sure when I conceived this book 
that someone else would already have written a book on effective construction prac-
tices. The need for a book about how to program effectively seemed obvious. But I 
found that only a few books had been written about construction and then only on 
parts of the topic. Some had been written 15 years or more earlier and employed rel-
atively esoteric languages such as ALGOL, PL/I, Ratfor, and Smalltalk. Some were 
written by professors who were not working on production code. The professors 
wrote about techniques that worked for student projects, but they often had little idea 
of how the techniques would play out in full-scale development environments. Still 
other books trumpeted the authors’ newest favorite methodologies but ignored the 
huge repository of mature practices that have proven their effectiveness over time.

When art critics get together 
they talk about Form and 
Structure and Meaning. 
When artists get together 
they talk about where you 
can buy cheap turpentine. 
—Pablo Picasso

In short, I couldn’t find any book that had even attempted to capture the body of prac-
tical techniques available from professional experience, industry research, and aca-
demic work. The discussion needed to be brought up to date for current 
programming languages, object-oriented programming, and leading-edge develop-
ment practices. It seemed clear that a book about programming needed to be written 
by someone who was knowledgeable about the theoretical state of the art but who 
was also building enough production code to appreciate the state of the practice. I 



Preface xxv

conceived this book as a full discussion of code construction—from one programmer 
to another.

Author Note
I welcome your inquiries about the topics discussed in this book, your error reports, 
or other related subjects. Please contact me at stevemcc@construx.com, or visit my 
website at www.stevemcconnell.com.

Bellevue, Washington
Memorial Day, 2004

Microsoft Learning Technical Support
Every effort has been made to ensure the accuracy of this book. Microsoft Press 
provides corrections for books through the World Wide Web at the following 
address:

http://www.microsoft.com/learning/support/

To connect directly to the Microsoft Knowledge Base and enter a query regard-
ing a question or issue that you may have, go to: 

http://www.microsoft.com/learning/support/search.asp

If you have comments, questions, or ideas regarding this book, please send 
them to Microsoft Press using either of the following methods: 

Postal Mail: 

Microsoft Press  
Attn: Code Complete 2E Editor  
One Microsoft Way  
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com
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Chapter 1

Welcome to Software 
Construction

cc2e.com/0178 Contents

■ 1.1 What Is Software Construction?: page 3

■ 1.2 Why Is Software Construction Important?: page 6

■ 1.3 How to Read This Book: page 8

Related Topics

■ Who should read this book: Preface 

■ Benefits of reading the book: Preface 

■ Why the book was written: Preface

You know what “construction” means when it’s used outside software development. 
“Construction” is the work “construction workers” do when they build a house, a 
school, or a skyscraper. When you were younger, you built things out of “construction 
paper.” In common usage, “construction” refers to the process of building. The con-
struction process might include some aspects of planning, designing, and checking 
your work, but mostly “construction” refers to the hands-on part of creating something.

1.1 What Is Software Construction?
Developing computer software can be a complicated process, and in the last 25 years, 
researchers have identified numerous distinct activities that go into software develop-
ment. They include

■ Problem definition

■ Requirements development 

■ Construction planning

■ Software architecture, or high-level design

■ Detailed design

■ Coding and debugging 

■ Unit testing 
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■ Integration testing

■ Integration

■ System testing

■ Corrective maintenance

If you’ve worked on informal projects, you might think that this list represents a lot of 
red tape. If you’ve worked on projects that are too formal, you know that this list rep-
resents a lot of red tape! It’s hard to strike a balance between too little and too much 
formality, and that’s discussed later in the book.

If you’ve taught yourself to program or worked mainly on informal projects, you might 
not have made distinctions among the many activities that go into creating a software 
product. Mentally, you might have grouped all of these activities together as “program-
ming.” If you work on informal projects, the main activity you think of when you think 
about creating software is probably the activity the researchers refer to as “construction.”

This intuitive notion of “construction” is fairly accurate, but it suffers from a lack of 
perspective. Putting construction in its context with other activities helps keep the 
focus on the right tasks during construction and appropriately emphasizes important 
nonconstruction activities. Figure 1-1 illustrates construction’s place related to other 
software-development activities.

Figure 1-1 Construction activities are shown inside the gray circle. Construction focuses on 
coding and debugging but also includes detailed design, unit testing, integration testing, 
and other activities.
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As the figure indicates, construction is mostly coding and debugging but also involves 
detailed design, construction planning, unit testing, integration, integration testing, 
and other activities. If this were a book about all aspects of software development, it 
would feature nicely balanced discussions of all activities in the development process. 
Because this is a handbook of construction techniques, however, it places a lopsided 
emphasis on construction and only touches on related topics. If this book were a dog, 
it would nuzzle up to construction, wag its tail at design and testing, and bark at the 
other development activities.

Construction is also sometimes known as “coding” or “programming.” “Coding” isn’t 
really the best word because it implies the mechanical translation of a preexisting 
design into a computer language; construction is not at all mechanical and involves 
substantial creativity and judgment. Throughout the book, I use “programming” inter-
changeably with “construction.”

In contrast to Figure 1-1’s flat-earth view of software development, Figure 1-2 shows 
the round-earth perspective of this book.

Figure 1-2 This book focuses on coding and debugging, detailed design, construction 
planning, unit testing, integration, integration testing, and other activities in roughly these 
proportions.

Figure 1-1 and Figure 1-2 are high-level views of construction activities, but what 
about the details? Here are some of the specific tasks involved in construction:

■ Verifying that the groundwork has been laid so that construction can proceed 
successfully

■ Determining how your code will be tested
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■ Designing and writing classes and routines 

■ Creating and naming variables and named constants

■ Selecting control structures and organizing blocks of statements

■ Unit testing, integration testing, and debugging your own code

■ Reviewing other team members’ low-level designs and code and having them 
review yours

■ Polishing code by carefully formatting and commenting it

■ Integrating software components that were created separately

■ Tuning code to make it faster and use fewer resources

For an even fuller list of construction activities, look through the chapter titles in the 
table of contents.

With so many activities at work in construction, you might say, “OK, Jack, what activ-
ities are not part of construction?” That’s a fair question. Important nonconstruction 
activities include management, requirements development, software architecture, 
user-interface design, system testing, and maintenance. Each of these activities affects 
the ultimate success of a project as much as construction—at least the success of any 
project that calls for more than one or two people and lasts longer than a few weeks. 
You can find good books on each activity; many are listed in the “Additional 
Resources” sections throughout the book and in Chapter 35, “Where to Find More 
Information,” at the end of the book.

1.2 Why Is Software Construction Important?
Since you’re reading this book, you probably agree that improving software quality 
and developer productivity is important. Many of today’s most exciting projects use 
software extensively. The Internet, movie special effects, medical life-support systems, 
space programs, aeronautics, high-speed financial analysis, and scientific research are 
a few examples. These projects and more conventional projects can all benefit from 
improved practices because many of the fundamentals are the same. 

If you agree that improving software development is important in general, the question 
for you as a reader of this book becomes, Why is construction an important focus?
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Here’s why:

Cross-Reference For details 
on the relationship between 
project size and the percent-
age of time consumed by 
construction, see “Activity 
Proportions and Size” in Sec-
tion 27.5.

Construction is a large part of software development Depending on the size of the 
project, construction typically takes 30 to 80 percent of the total time spent on a 
project. Anything that takes up that much project time is bound to affect the success 
of the project.

Construction is the central activity in software development Requirements and 
architecture are done before construction so that you can do construction effectively. 
System testing (in the strict sense of independent testing) is done after construction 
to verify that construction has been done correctly. Construction is at the center of the 
software-development process.

Cross-Reference For data on 
variations among program-
mers, see “Individual Varia-
tion” in Section 28.5.

With a focus on construction, the individual programmer’s productivity can improve 
enormously A classic study by Sackman, Erikson, and Grant showed that the pro-
ductivity of individual programmers varied by a factor of 10 to 20 during construction 
(1968). Since their study, their results have been confirmed by numerous other stud-
ies (Curtis 1981, Mills 1983, Curtis et al. 1986, Card 1987, Valett and McGarry 1989, 
DeMarco and Lister 1999, Boehm et al. 2000). This book helps all programmers learn 
techniques that are already used by the best programmers. 

Construction’s product, the source code, is often the only accurate description of the 
software In many projects, the only documentation available to programmers is the 
code itself. Requirements specifications and design documents can go out of date, but 
the source code is always up to date. Consequently, it’s imperative that the source 
code be of the highest possible quality. Consistent application of techniques for 
source-code improvement makes the difference between a Rube Goldberg contraption 
and a detailed, correct, and therefore informative program. Such techniques are most 
effectively applied during construction.

Construction is the only activity that’s guaranteed to be done The ideal software 
project goes through careful requirements development and architectural design 
before construction begins. The ideal project undergoes comprehensive, statistically 
controlled system testing after construction. Imperfect, real-world projects, however, 
often skip requirements and design to jump into construction. They drop testing 
because they have too many errors to fix and they’ve run out of time. But no matter 
how rushed or poorly planned a project is, you can’t drop construction; it’s where the 
rubber meets the road. Improving construction is thus a way of improving any soft-
ware-development effort, no matter how abbreviated.

KEY POINT
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1.3 How to Read This Book
This book is designed to be read either cover to cover or by topic. If you like to read 
books cover to cover, you might simply dive into Chapter 2, “Metaphors for a Richer 
Understanding of Software Development.” If you want to get to specific programming 
tips, you might begin with Chapter 6, “Working Classes,” and then follow the cross ref-
erences to other topics you find interesting. If you’re not sure whether any of this applies 
to you, begin with Section 3.2, “Determine the Kind of Software You’re Working On.”

Key Points
■ Software construction is the central activity in software development; construc-

tion is the only activity that’s guaranteed to happen on every project. 

■ The main activities in construction are detailed design, coding, debugging, inte-
gration, and developer testing (unit testing and integration testing).

■ Other common terms for construction are “coding” and “programming.”

■ The quality of the construction substantially affects the quality of the software.

■ In the final analysis, your understanding of how to do construction determines 
how good a programmer you are, and that’s the subject of the rest of the book.
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Computer science has some of the most colorful language of any field. In what other 
field can you walk into a sterile room, carefully controlled at 68°F, and find viruses, 
Trojan horses, worms, bugs, bombs, crashes, flames, twisted sex changers, and fatal 
errors?

These graphic metaphors describe specific software phenomena. Equally vivid meta-
phors describe broader phenomena, and you can use them to improve your under-
standing of the software-development process.

The rest of the book doesn’t directly depend on the discussion of metaphors in this 
chapter. Skip it if you want to get to the practical suggestions. Read it if you want to 
think about software development more clearly.

2.1 The Importance of Metaphors
Important developments often arise out of analogies. By comparing a topic you under-
stand poorly to something similar you understand better, you can come up with 
insights that result in a better understanding of the less-familiar topic. This use of met-
aphor is called “modeling.”

The history of science is full of discoveries based on exploiting the power of meta-
phors. The chemist Kekulé had a dream in which he saw a snake grasp its tail in its 
mouth. When he awoke, he realized that a molecular structure based on a similar ring 
shape would account for the properties of benzene. Further experimentation con-
firmed the hypothesis (Barbour 1966).
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The kinetic theory of gases was based on a “billiard-ball” model. Gas molecules were 
thought to have mass and to collide elastically, as billiard balls do, and many useful 
theorems were developed from this model.

The wave theory of light was developed largely by exploring similarities between light 
and sound. Light and sound have amplitude (brightness, loudness), frequency (color, 
pitch), and other properties in common. The comparison between the wave theories 
of sound and light was so productive that scientists spent a great deal of effort looking 
for a medium that would propagate light the way air propagates sound. They even 
gave it a name —“ether”—but they never found the medium. The analogy that had been 
so fruitful in some ways proved to be misleading in this case.

In general, the power of models is that they’re vivid and can be grasped as conceptual 
wholes. They suggest properties, relationships, and additional areas of inquiry. Some-
times a model suggests areas of inquiry that are misleading, in which case the meta-
phor has been overextended. When the scientists looked for ether, they overextended 
their model.

As you might expect, some metaphors are better than others. A good metaphor is sim-
ple, relates well to other relevant metaphors, and explains much of the experimental 
evidence and other observed phenomena.

Consider the example of a heavy stone swinging back and forth on a string. Before 
Galileo, an Aristotelian looking at the swinging stone thought that a heavy object 
moved naturally from a higher position to a state of rest at a lower one. The Aristote-
lian would think that what the stone was really doing was falling with difficulty. When 
Galileo saw the swinging stone, he saw a pendulum. He thought that what the stone 
was really doing was repeating the same motion again and again, almost perfectly.

The suggestive powers of the two models are quite different. The Aristotelian who saw 
the swinging stone as an object falling would observe the stone’s weight, the height to 
which it had been raised, and the time it took to come to rest. For Galileo’s pendulum 
model, the prominent factors were different. Galileo observed the stone’s weight, the 
radius of the pendulum’s swing, the angular displacement, and the time per swing. 
Galileo discovered laws the Aristotelians could not discover because their model led 
them to look at different phenomena and ask different questions.

Metaphors contribute to a greater understanding of software-development issues in 
the same way that they contribute to a greater understanding of scientific questions. 
In his 1973 Turing Award lecture, Charles Bachman described the change from the 
prevailing earth-centered view of the universe to a sun-centered view. Ptolemy’s earth-
centered model had lasted without serious challenge for 1400 years. Then in 1543, 
Copernicus introduced a heliocentric theory, the idea that the sun rather than the 
earth was the center of the universe. This change in mental models led ultimately to 
the discovery of new planets, the reclassification of the moon as a satellite rather than 
as a planet, and a different understanding of humankind’s place in the universe.
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The value of metaphors 
should not be underesti-
mated. Metaphors have the 
virtue of an expected behav-
ior that is understood by all. 
Unnecessary communication 
and misunderstandings are 
reduced. Learning and edu-
cation are quicker. In effect, 
metaphors are a way of 
internalizing and abstracting 
concepts, allowing one’s 
thinking to be on a higher 
plane and low-level mistakes 
to be avoided.
—Fernando J. Corbató

Bachman compared the Ptolemaic-to-Copernican change in astronomy to the change 
in computer programming in the early 1970s. When Bachman made the comparison 
in 1973, data processing was changing from a computer-centered view of information 
systems to a database-centered view. Bachman pointed out that the ancients of data 
processing wanted to view all data as a sequential stream of cards flowing through a 
computer (the computer-centered view). The change was to focus on a pool of data on 
which the computer happened to act (a database-oriented view).

Today it’s difficult to imagine anyone thinking that the sun moves around the earth. 
Similarly, it’s difficult to imagine a programmer thinking that all data could be viewed 
as a sequential stream of cards. In both cases, once the old theory has been discarded, 
it seems incredible that anyone ever believed it at all. More fantastically, people who 
believed the old theory thought the new theory was just as ridiculous then as you 
think the old theory is now.

The earth-centered view of the universe hobbled astronomers who clung to it after a 
better theory was available. Similarly, the computer-centered view of the computing 
universe hobbled computer scientists who held on to it after the database-centered 
theory was available.

It’s tempting to trivialize the power of metaphors. To each of the earlier examples, the 
natural response is to say, “Well, of course the right metaphor is more useful. The 
other metaphor was wrong!” Though that’s a natural reaction, it’s simplistic. The his-
tory of science isn’t a series of switches from the “wrong” metaphor to the “right” one. 
It’s a series of changes from “worse” metaphors to “better” ones, from less inclusive to 
more inclusive, from suggestive in one area to suggestive in another.

In fact, many models that have been replaced by better models are still useful. Engineers 
still solve most engineering problems by using Newtonian dynamics even though, the-
oretically, Newtonian dynamics have been supplanted by Einsteinian theory.

Software development is a younger field than most other sciences. It’s not yet mature 
enough to have a set of standard metaphors. Consequently, it has a profusion of com-
plementary and conflicting metaphors. Some are better than others. Some are worse. 
How well you understand the metaphors determines how well you understand soft-
ware development.

2.2 How to Use Software Metaphors
A software metaphor is more like a searchlight than a road map. It doesn’t tell you 
where to find the answer; it tells you how to look for it. A metaphor serves more as a 
heuristic than it does as an algorithm.

An algorithm is a set of well-defined instructions for carrying out a particular task. An 
algorithm is predictable, deterministic, and not subject to chance. An algorithm tells 

KEY POINT
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you how to go from point A to point B with no detours, no side trips to points D, E, 
and F, and no stopping to smell the roses or have a cup of joe.

A heuristic is a technique that helps you look for an answer. Its results are subject to 
chance because a heuristic tells you only how to look, not what to find. It doesn’t tell 
you how to get directly from point A to point B; it might not even know where point A 
and point B are. In effect, a heuristic is an algorithm in a clown suit. It’s less predict-
able, it’s more fun, and it comes without a 30-day, money-back guarantee.

Here is an algorithm for driving to someone’s house: Take Highway 167 south to Puy-
allup. Take the South Hill Mall exit and drive 4.5 miles up the hill. Turn right at the 
light by the grocery store, and then take the first left. Turn into the driveway of the 
large tan house on the left, at 714 North Cedar.

Cross-Reference For details 
on how to use heuristics in 
designing software, see 
“Design Is a Heuristic Pro-
cess” in Section 5.1.

Here’s a heuristic for getting to someone’s house: Find the last letter we mailed you. 
Drive to the town in the return address. When you get to town, ask someone where 
our house is. Everyone knows us—someone will be glad to help you. If you can’t find 
anyone, call us from a public phone, and we’ll come get you.

The difference between an algorithm and a heuristic is subtle, and the two terms over-
lap somewhat. For the purposes of this book, the main difference between the two is 
the level of indirection from the solution. An algorithm gives you the instructions 
directly. A heuristic tells you how to discover the instructions for yourself, or at least 
where to look for them.

Having directions that told you exactly how to solve your programming problems 
would certainly make programming easier and the results more predictable. But pro-
gramming science isn’t yet that advanced and may never be. The most challenging 
part of programming is conceptualizing the problem, and many errors in program-
ming are conceptual errors. Because each program is conceptually unique, it’s difficult 
or impossible to create a general set of directions that lead to a solution in every case. 
Thus, knowing how to approach problems in general is at least as valuable as knowing 
specific solutions for specific problems.

How do you use software metaphors? Use them to give you insight into your program-
ming problems and processes. Use them to help you think about your programming 
activities and to help you imagine better ways of doing things. You won’t be able to 
look at a line of code and say that it violates one of the metaphors described in this 
chapter. Over time, though, the person who uses metaphors to illuminate the soft-
ware-development process will be perceived as someone who has a better understand-
ing of programming and produces better code faster than people who don’t use them.
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2.3 Common Software Metaphors
A confusing abundance of metaphors has grown up around software development. 
David Gries says writing software is a science (1981). Donald Knuth says it’s an art 
(1998). Watts Humphrey says it’s a process (1989). P. J. Plauger and Kent Beck say it’s 
like driving a car, although they draw nearly opposite conclusions (Plauger 1993, 
Beck 2000). Alistair Cockburn says it’s a game (2002). Eric Raymond says it’s like a 
bazaar (2000). Andy Hunt and Dave Thomas say it’s like gardening. Paul Heckel says 
it’s like filming Snow White and the Seven Dwarfs (1994). Fred Brooks says that it’s like 
farming, hunting werewolves, or drowning with dinosaurs in a tar pit (1995). Which 
are the best metaphors? 

Software Penmanship: Writing Code

The most primitive metaphor for software development grows out of the expression 
“writing code.” The writing metaphor suggests that developing a program is like writing 
a casual letter—you sit down with pen, ink, and paper and write it from start to finish. It 
doesn’t require any formal planning, and you figure out what you want to say as you go.

Many ideas derive from the writing metaphor. Jon Bentley says you should be able to 
sit down by the fire with a glass of brandy, a good cigar, and your favorite hunting dog 
to enjoy a “literate program” the way you would a good novel. Brian Kernighan and 
P. J. Plauger named their programming-style book The Elements of Programming Style 
(1978) after the writing-style book The Elements of Style (Strunk and White 2000). 
Programmers often talk about “program readability.”

For an individual’s work or for small-scale projects, the letter-writing metaphor works 
adequately, but for other purposes it leaves the party early—it doesn’t describe soft-
ware development fully or adequately. Writing is usually a one-person activity, 
whereas a software project will most likely involve many people with many different 
responsibilities. When you finish writing a letter, you stuff it into an envelope and mail 
it. You can’t change it anymore, and for all intents and purposes it’s complete. Soft-
ware isn’t as difficult to change and is hardly ever fully complete. As much as 90 per-
cent of the development effort on a typical software system comes after its initial 
release, with two-thirds being typical (Pigoski 1997). In writing, a high premium is 
placed on originality. In software construction, trying to create truly original work is 
often less effective than focusing on the reuse of design ideas, code, and test cases 
from previous projects. In short, the writing metaphor implies a software-develop-
ment process that’s too simple and rigid to be healthy.

1
2
3

HARD DATA
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Plan to throw one away; you 
will, anyhow. 
—Fred Brooks

If you plan to throw one 
away, you will throw away 
two.
 —Craig Zerouni

Unfortunately, the letter-writing metaphor has been perpetuated by one of the most 
popular software books on the planet, Fred Brooks’s The Mythical Man-Month (Brooks 
1995). Brooks says, “Plan to throw one away; you will, anyhow.” This conjures up an 
image of a pile of half-written drafts thrown into a wastebasket, as shown in Figure 2-1.

Figure 2-1 The letter-writing metaphor suggests that the software process relies on expen-
sive trial and error rather than careful planning and design.

Planning to throw one away might be practical when you’re writing a polite how-do-
you-do to your aunt. But extending the metaphor of “writing” software to a plan to 
throw one away is poor advice for software development, where a major system 
already costs as much as a 10-story office building or an ocean liner. It’s easy to grab 
the brass ring if you can afford to sit on your favorite wooden pony for an unlimited 
number of spins around the carousel. The trick is to get it the first time around—or to 
take several chances when they’re cheapest. Other metaphors better illuminate ways 
of attaining such goals.

Software Farming: Growing a System

In contrast to the rigid writing metaphor, some software developers say you should 
envision creating software as something like planting seeds and growing crops. You 
design a piece, code a piece, test a piece, and add it to the system a little bit at a time. 
By taking small steps, you minimize the trouble you can get into at any one time.

Sometimes a good technique is described with a bad metaphor. In such cases, try to 
keep the technique and come up with a better metaphor. In this case, the incremental 
technique is valuable, but the farming metaphor is terrible. 

Further Reading For an 
illustration of a different 
farming metaphor, one that’s 
applied to software mainte-
nance, see the chapter “On 
the Origins of Designer Intu-
ition” in Rethinking Systems 
Analysis and Design (Wein-
berg 1988).

The idea of doing a little bit at a time might bear some resemblance to the way crops 
grow, but the farming analogy is weak and uninformative, and it’s easy to replace with 
the better metaphors described in the following sections. It’s hard to extend the farm-
ing metaphor beyond the simple idea of doing things a little bit at a time. If you buy 
into the farming metaphor, imagined in Figure 2-2, you might find yourself talking 
about fertilizing the system plan, thinning the detailed design, increasing code yields 
through effective land management, and harvesting the code itself. You’ll talk about 

KEY POINT
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rotating in a crop of C++ instead of barley, of letting the land rest for a year to increase 
the supply of nitrogen in the hard disk.

The weakness in the software-farming metaphor is its suggestion that you don’t have 
any direct control over how the software develops. You plant the code seeds in the 
spring. Farmer’s Almanac and the Great Pumpkin willing, you’ll have a bumper crop of 
code in the fall.

Figure 2-2 It’s hard to extend the farming metaphor to software development 
appropriately. 

Software Oyster Farming: System Accretion

Sometimes people talk about growing software when they really mean software accre-
tion. The two metaphors are closely related, but software accretion is the more insight-
ful image. “Accretion,” in case you don’t have a dictionary handy, means any growth or 
increase in size by a gradual external addition or inclusion. Accretion describes the 
way an oyster makes a pearl, by gradually adding small amounts of calcium carbonate. 
In geology, “accretion” means a slow addition to land by the deposit of waterborne 
sediment. In legal terms, “accretion” means an increase of land along the shores of a 
body of water by the deposit of waterborne sediment.

Cross-Reference For details 
on how to apply incremental 
strategies to system integra-
tion, see Section 29.2, “Inte-
gration Frequency—Phased 
or Incremental?”

This doesn’t mean that you have to learn how to make code out of waterborne sedi-
ment; it means that you have to learn how to add to your software systems a small 
amount at a time. Other words closely related to accretion are “incremental,” “itera-
tive,” “adaptive,” and “evolutionary.” Incremental designing, building, and testing are 
some of the most powerful software-development concepts available. 

In incremental development, you first make the simplest possible version of the sys-
tem that will run. It doesn’t have to accept realistic input, it doesn’t have to perform 
realistic manipulations on data, it doesn’t have to produce realistic output—it just has 
to be a skeleton strong enough to hold the real system as it’s developed. It might call 
dummy classes for each of the basic functions you have identified. This basic begin-
ning is like the oyster’s beginning a pearl with a small grain of sand.

After you’ve formed the skeleton, little by little you lay on the muscle and skin. You 
change each of the dummy classes to real classes. Instead of having your program 
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pretend to accept input, you drop in code that accepts real input. Instead of having 
your program pretend to produce output, you drop in code that produces real output. 
You add a little bit of code at a time until you have a fully working system.

The anecdotal evidence in favor of this approach is impressive. Fred Brooks, who in 
1975 advised building one to throw away, said that nothing in the decade after he 
wrote his landmark book The Mythical Man-Month so radically changed his own 
practice or its effectiveness as incremental development (1995). Tom Gilb made the 
same point in his breakthrough book, Principles of Software Engineering Management 
(1988), which introduced Evolutionary Delivery and laid the groundwork for much 
of today’s Agile programming approach. Numerous current methodologies are based 
on this idea (Beck 2000, Cockburn 2002, Highsmith 2002, Reifer 2002, Martin 
2003, Larman 2004).

As a metaphor, the strength of the incremental metaphor is that it doesn’t overpromise. 
It’s harder than the farming metaphor to extend inappropriately. The image of an oyster 
forming a pearl is a good way to visualize incremental development, or accretion.

Software Construction: Building Software

The image of “building” software is more useful than that of “writing” or “growing” 
software. It’s compatible with the idea of software accretion and provides more 
detailed guidance. Building software implies various stages of planning, preparation, 
and execution that vary in kind and degree depending on what’s being built. When 
you explore the metaphor, you find many other parallels.

Building a four-foot tower requires a steady hand, a level surface, and 10 undamaged 
beer cans. Building a tower 100 times that size doesn’t merely require 100 times as 
many beer cans. It requires a different kind of planning and construction altogether.

If you’re building a simple structure—a doghouse, say—you can drive to the lumber 
store and buy some wood and nails. By the end of the afternoon, you’ll have a new 
house for Fido. If you forget to provide for a door, as shown in Figure 2-3, or make 
some other mistake, it’s not a big problem; you can fix it or even start over from the 
beginning. All you’ve wasted is part of an afternoon. This loose approach is appropri-
ate for small software projects too. If you use the wrong design for 1000 lines of code, 
you can refactor or start over completely without losing much. 

KEY POINT
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Figure 2-3 The penalty for a mistake on a simple structure is only a little time and maybe 
some embarrassment.

If you’re building a house, the building process is more complicated, and so are the 
consequences of poor design. First you have to decide what kind of house you want to 
build—analogous in software development to problem definition. Then you and an 
architect have to come up with a general design and get it approved. This is similar to 
software architectural design. You draw detailed blueprints and hire a contractor. This 
is similar to detailed software design. You prepare the building site, lay a foundation, 
frame the house, put siding and a roof on it, and plumb and wire it. This is similar to 
software construction. When most of the house is done, the landscapers, painters, 
and decorators come in to make the best of your property and the home you’ve built. 
This is similar to software optimization. Throughout the process, various inspectors 
come to check the site, foundation, frame, wiring, and other inspectables. This is sim-
ilar to software reviews and inspections.

Greater complexity and size imply greater consequences in both activities. In building 
a house, materials are somewhat expensive, but the main expense is labor. Ripping 
out a wall and moving it six inches is expensive not because you waste a lot of nails 
but because you have to pay the people for the extra time it takes to move the wall. You 
have to make the design as good as possible, as suggested by Figure 2-4, so that you 
don’t waste time fixing mistakes that could have been avoided. In building a software 
product, materials are even less expensive, but labor costs just as much. Changing a 
report format is just as expensive as moving a wall in a house because the main cost 
component in both cases is people’s time.
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Figure 2-4 More complicated structures require more careful planning.

What other parallels do the two activities share? In building a house, you won’t try to 
build things you can buy already built. You’ll buy a washer and dryer, dishwasher, 
refrigerator, and freezer. Unless you’re a mechanical wizard, you won’t consider build-
ing them yourself. You’ll also buy prefabricated cabinets, counters, windows, doors, 
and bathroom fixtures. If you’re building a software system, you’ll do the same thing. 
You’ll make extensive use of high-level language features rather than writing your own 
operating-system-level code. You might also use prebuilt libraries of container classes, 
scientific functions, user interface classes, and database-manipulation classes. It gen-
erally doesn’t make sense to code things you can buy ready-made.

If you’re building a fancy house with first-class furnishings, however, you might have 
your cabinets custom-made. You might have a dishwasher, refrigerator, and freezer 
built in to look like the rest of your cabinets. You might have windows custom-made in 
unusual shapes and sizes. This customization has parallels in software development. 
If you’re building a first-class software product, you might build your own scientific 
functions for better speed or accuracy. You might build your own container classes, 
user interface classes, and database classes to give your system a seamless, perfectly 
consistent look and feel.

Both building construction and software construction benefit from appropriate levels 
of planning. If you build software in the wrong order, it’s hard to code, hard to test, 
and hard to debug. It can take longer to complete, or the project can fall apart because 
everyone’s work is too complex and therefore too confusing when it’s all combined. 

Careful planning doesn’t necessarily mean exhaustive planning or over-planning. You 
can plan out the structural supports and decide later whether to put in hardwood 
floors or carpeting, what color to paint the walls, what roofing material to use, and so 
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on. A well-planned project improves your ability to change your mind later about 
details. The more experience you have with the kind of software you’re building, the 
more details you can take for granted. You just want to be sure that you plan enough 
so that lack of planning doesn’t create major problems later.

The construction analogy also helps explain why different software projects benefit 
from different development approaches. In building, you’d use different levels of plan-
ning, design, and quality assurance if you’re building a warehouse or a toolshed than if 
you’re building a medical center or a nuclear reactor. You’d use still different approaches 
for building a school, a skyscraper, or a three-bedroom home. Likewise, in software you 
might generally use flexible, lightweight development approaches, but sometimes you’ll 
need rigid, heavyweight approaches to achieve safety goals and other goals. 

Making changes in the software brings up another parallel with building construc-
tion. To move a wall six inches costs more if the wall is load-bearing than if it’s merely 
a partition between rooms. Similarly, making structural changes in a program costs 
more than adding or deleting peripheral features.

Finally, the construction analogy provides insight into extremely large software projects. 
Because the penalty for failure in an extremely large structure is severe, the structure has 
to be over-engineered. Builders make and inspect their plans carefully. They build in 
margins of safety; it’s better to pay 10 percent more for stronger material than to have a 
skyscraper fall over. A great deal of attention is paid to timing. When the Empire State 
Building was built, each delivery truck had a 15-minute margin in which to make its 
delivery. If a truck wasn’t in place at the right time, the whole project was delayed.

Likewise, for extremely large software projects, planning of a higher order is needed 
than for projects that are merely large. Capers Jones reports that a software system 
with one million lines of code requires an average of 69 kinds of documentation 
(1998). The requirements specification for such a system would typically be about 
4000–5000 pages long, and the design documentation can easily be two or three 
times as extensive as the requirements. It’s unlikely that an individual would be able 
to understand the complete design for a project of this size—or even read it. A greater 
degree of preparation is appropriate. 

We build software projects comparable in economic size to the Empire State Building, 
and technical and managerial controls of similar stature are needed. 

Further Reading For some 
good comments about 
extending the construction 
metaphor, see “What Sup-
ports the Roof?” (Starr 2003). 

The building-construction metaphor could be extended in a variety of other directions, 
which is why the metaphor is so powerful. Many terms common in software develop-
ment derive from the building metaphor: software architecture, scaffolding, construc-
tion, foundation classes, and tearing code apart. You’ll probably hear many more.
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Applying Software Techniques: The Intellectual Toolbox 

People who are effective at developing high-quality software have spent years accumu-
lating dozens of techniques, tricks, and magic incantations. The techniques are not 
rules; they are analytical tools. A good craftsman knows the right tool for the job and 
knows how to use it correctly. Programmers do, too. The more you learn about pro-
gramming, the more you fill your mental toolbox with analytical tools and the knowl-
edge of when to use them and how to use them correctly.

Cross-Reference For details 
on selecting and combining 
methods in design, see Sec-
tion 5.3, “Design Building 
Blocks: Heuristics.”

In software, consultants sometimes tell you to buy into certain software-development 
methods to the exclusion of other methods. That’s unfortunate because if you buy 
into any single methodology 100 percent, you’ll see the whole world in terms of that 
methodology. In some instances, you’ll miss opportunities to use other methods bet-
ter suited to your current problem. The toolbox metaphor helps to keep all the meth-
ods, techniques, and tips in perspective—ready for use when appropriate.

Combining Metaphors

Because metaphors are heuristic rather than algorithmic, they are not mutually exclu-
sive. You can use both the accretion and the construction metaphors. You can use 
writing if you want to, and you can combine writing with driving, hunting for were-
wolves, or drowning in a tar pit with dinosaurs. Use whatever metaphor or combina-
tion of metaphors stimulates your own thinking or communicates well with others on 
your team. 

Using metaphors is a fuzzy business. You have to extend them to benefit from the 
heuristic insights they provide. But if you extend them too far or in the wrong direc-
tion, they’ll mislead you. Just as you can misuse any powerful tool, you can misuse 
metaphors, but their power makes them a valuable part of your intellectual toolbox.

Additional Resources
cc2e.com/0285 Among general books on metaphors, models, and paradigms, the touchstone book is 

by Thomas Kuhn.

Kuhn, Thomas S. The Structure of Scientific Revolutions, 3d ed. Chicago, IL: The Univer-
sity of Chicago Press, 1996. Kuhn’s book on how scientific theories emerge, evolve, and 
succumb to other theories in a Darwinian cycle set the philosophy of science on its ear 
when it was first published in 1962. It’s clear and short, and it’s loaded with interesting 
examples of the rise and fall of metaphors, models, and paradigms in science. 

Floyd, Robert W. “The Paradigms of Programming.” 1978 Turing Award Lecture. 
Communications of the ACM, August 1979, pp. 455–60. This is a fascinating discus-
sion of models in software development, and Floyd applies Kuhn’s ideas to the topic.

KEY POINT

KEY POINT



Key Points 21

Key Points
■ Metaphors are heuristics, not algorithms. As such, they tend to be a little sloppy.

■ Metaphors help you understand the software-development process by relating it 
to other activities you already know about.

■ Some metaphors are better than others.

■ Treating software construction as similar to building construction suggests that 
careful preparation is needed and illuminates the difference between large and 
small projects.

■ Thinking of software-development practices as tools in an intellectual toolbox 
suggests further that every programmer has many tools and that no single tool 
is right for every job. Choosing the right tool for each problem is one key to 
being an effective programmer.

■ Metaphors are not mutually exclusive. Use the combination of metaphors that 
works best for you. 
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Before beginning construction of a house, a builder reviews blueprints, checks that all 
permits have been obtained, and surveys the house’s foundation. A builder prepares 
for building a skyscraper one way, a housing development a different way, and a dog-
house a third way. No matter what the project, the preparation is tailored to the 
project’s specific needs and done conscientiously before construction begins.

This chapter describes the work that must be done to prepare for software construc-
tion. As with building construction, much of the success or failure of the project has 
already been determined before construction begins. If the foundation hasn’t been 
laid well or the planning is inadequate, the best you can do during construction is to 
keep damage to a minimum.

The carpenter’s saying, “Measure twice, cut once” is highly relevant to the construc-
tion part of software development, which can account for as much as 65 percent of the 
total project costs. The worst software projects end up doing construction two or 
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three times or more. Doing the most expensive part of the project twice is as bad an 
idea in software as it is in any other line of work. 

Although this chapter lays the groundwork for successful software construction, it 
doesn’t discuss construction directly. If you’re feeling carnivorous or you’re already 
well versed in the software-engineering life cycle, look for the construction meat 
beginning in Chapter 5, “Design in Construction.” If you don’t like the idea of pre-
requisites to construction, review Section 3.2, “Determine the Kind of Software 
You’re Working On,” to see how prerequisites apply to your situation, and then take 
a look at the data in Section 3.1, which describes the cost of not doing prerequisites.

3.1 Importance of Prerequisites
Cross-Reference Paying 
attention to quality is also 
the best way to improve pro-
ductivity. For details, see 
Section 20.5, “The General 
Principle of Software 
Quality.”

A common denominator of programmers who build high-quality software is their use 
of high-quality practices. Such practices emphasize quality at the beginning, middle, 
and end of a project.

If you emphasize quality at the end of a project, you emphasize system testing. Testing 
is what many people think of when they think of software quality assurance. Testing, 
however, is only one part of a complete quality-assurance strategy, and it’s not the 
most influential part. Testing can’t detect a flaw such as building the wrong product or 
building the right product in the wrong way. Such flaws must be worked out earlier 
than in testing—before construction begins.

If you emphasize quality in the middle of the project, you emphasize construction 
practices. Such practices are the focus of most of this book.

If you emphasize quality at the beginning of the project, you plan for, require, and 
design a high-quality product. If you start the process with designs for a Pontiac Aztek, 
you can test it all you want to, and it will never turn into a Rolls-Royce. You might 
build the best possible Aztek, but if you want a Rolls-Royce, you have to plan from the 
beginning to build one. In software development, you do such planning when you 
define the problem, when you specify the solution, and when you design the solution.

Since construction is in the middle of a software project, by the time you get to con-
struction, the earlier parts of the project have already laid some of the groundwork for 
success or failure. During construction, however, you should at least be able to deter-
mine how good your situation is and to back up if you see the black clouds of failure 
looming on the horizon. The rest of this chapter describes in detail why proper prep-
aration is important and tells you how to determine whether you’re really ready to 
begin construction.

KEY POINT
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Do Prerequisites Apply to Modern Software Projects? 
The methodology used 
should be based on choice of 
the latest and best, and not 
based on ignorance. It 
should also be laced liberally 
with the old and dependable.
 —Harlan Mills

Some people have asserted that upstream activities such as architecture, design, and 
project planning aren’t useful on modern software projects. In the main, such asser-
tions are not well supported by research, past or present, or by current data. (See the 
rest of this chapter for details.) Opponents of prerequisites typically show examples of 
prerequisites that have been done poorly and then point out that such work isn’t 
effective. Upstream activities can be done well, however, and industry data from the 
1970s to the present day indicates that projects will run best if appropriate prepara-
tion activities are done before construction begins in earnest. 

The overarching goal of preparation is risk reduction: a good project planner clears 
major risks out of the way as early as possible so that the bulk of the project can pro-
ceed as smoothly as possible. By far the most common project risks in software devel-
opment are poor requirements and poor project planning, thus preparation tends to 
focus on improving requirements and project plans. 

Preparation for construction is not an exact science, and the specific approach to risk 
reduction must be decided project by project. Details can vary greatly among projects. 
For more on this, see Section 3.2.

Causes of Incomplete Preparation

You might think that all professional programmers know about the importance of 
preparation and check that the prerequisites have been satisfied before jumping into 
construction. Unfortunately, that isn’t so.

Further Reading For a 
description of a professional 
development program that 
cultivates these skills, see 
Chapter 16 of Professional 
Software Development 
(McConnell 2004).

cc2e.com/0316

A common cause of incomplete preparation is that the developers who are assigned to 
work on the upstream activities do not have the expertise to carry out their assignments. 
The skills needed to plan a project, create a compelling business case, develop compre-
hensive and accurate requirements, and create high-quality architectures are far from 
trivial, but most developers have not received training in how to perform these activities. 
When developers don’t know how to do upstream work, the recommendation to “do 
more upstream work” sounds like nonsense: If the work isn’t being done well in the first 
place, doing more of it will not be useful! Explaining how to perform these activities is 
beyond the scope of this book, but the “Additional Resources” sections at the end of this 
chapter provide numerous options for gaining that expertise.

Some programmers do know how to perform upstream activities, but they don’t prepare 
because they can’t resist the urge to begin coding as soon as possible. If you feed your 

KEY POINT
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horse at this trough, I have two suggestions. Suggestion 1: Read the argument in the next 
section. It may tell you a few things you haven’t thought of. Suggestion 2: Pay attention to 
the problems you experience. It takes only a few large programs to learn that you can 
avoid a lot of stress by planning ahead. Let your own experience be your guide.

A final reason that programmers don’t prepare is that managers are notoriously 
unsympathetic to programmers who spend time on construction prerequisites. Peo-
ple like Barry Boehm, Grady Booch, and Karl Wiegers have been banging the require-
ments and design drums for 25 years, and you’d expect that managers would have 
started to understand that software development is more than coding.

Further Reading For many 
entertaining variations on 
this theme, read Gerald 
Weinberg’s classic, The Psy-
chology of Computer Pro-
gramming (Weinberg 1998).

A few years ago, however, I was working on a Department of Defense project that was 
focusing on requirements development when the Army general in charge of the 
project came for a visit. We told him that we were developing requirements and that 
we were mainly talking to our customer, capturing requirements, and outlining the 
design. He insisted on seeing code anyway. We told him there was no code, but he 
walked around a work bay of 100 people, determined to catch someone program-
ming. Frustrated by seeing so many people away from their desks or working on 
requirements and design, the large, round man with the loud voice finally pointed to 
the engineer sitting next to me and bellowed, “What’s he doing? He must be writing 
code!” In fact, the engineer was working on a document-formatting utility, but the gen-
eral wanted to find code, thought it looked like code, and wanted the engineer to be 
working on code, so we told him it was code.

This phenomenon is known as the WISCA or WIMP syndrome: Why Isn’t Sam Cod-
ing Anything? or Why Isn’t Mary Programming?

If the manager of your project pretends to be a brigadier general and orders you to 
start coding right away, it’s easy to say, “Yes, Sir!” (What’s the harm? The old guy must 
know what he’s talking about.) This is a bad response, and you have several better 
alternatives. First, you can flatly refuse to do work in an ineffective order. If your rela-
tionships with your boss and your bank account are healthy enough for you to be able 
to do this, good luck.

A second questionable alternative is pretending to be coding when you’re not. Put an 
old program listing on the corner of your desk. Then go right ahead and develop your 
requirements and architecture, with or without your boss’s approval. You’ll do the 
project faster and with higher-quality results. Some people find this approach ethi-
cally objectionable, but from your boss’s perspective, ignorance will be bliss. 

Third, you can educate your boss in the nuances of technical projects. This is a good 
approach because it increases the number of enlightened bosses in the world. The 
next subsection presents an extended rationale for taking the time to do prerequisites 
before construction.
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Finally, you can find another job. Despite economic ups and downs, good program-
mers are perennially in short supply (BLS 2002), and life is too short to work in an 
unenlightened programming shop when plenty of better alternatives are available.

Utterly Compelling and Foolproof Argument for Doing Prerequisites 
Before Construction 

Suppose you’ve already been to the mountain of problem definition, walked a mile 
with the man of requirements, shed your soiled garments at the fountain of architec-
ture, and bathed in the pure waters of preparedness. Then you know that before you 
implement a system, you need to understand what the system is supposed to do and 
how it’s supposed to do it.

Part of your job as a technical employee is to educate the nontechnical people around 
you about the development process. This section will help you deal with managers 
and bosses who have not yet seen the light. It’s an extended argument for doing 
requirements and architecture—getting the critical aspects right—before you begin cod-
ing, testing, and debugging. Learn the argument, and then sit down with your boss 
and have a heart-to-heart talk about the programming process.

Appeal to Logic

One of the key ideas in effective programming is that preparation is important. It 
makes sense that before you start working on a big project, you should plan the 
project. Big projects require more planning; small projects require less. From a man-
agement point of view, planning means determining the amount of time, number of 
people, and number of computers the project will need. From a technical point of 
view, planning means understanding what you want to build so that you don’t waste 
money building the wrong thing. Sometimes users aren’t entirely sure what they want 
at first, so it might take more effort than seems ideal to find out what they really want. 
But that’s cheaper than building the wrong thing, throwing it away, and starting over.

It’s also important to think about how to build the system before you begin to build it. 
You don’t want to spend a lot of time and money going down blind alleys when 
there’s no need to, especially when that increases costs. 

Appeal to Analogy

Building a software system is like any other project that takes people and money. If 
you’re building a house, you make architectural drawings and blueprints before you 
begin pounding nails. You’ll have the blueprints reviewed and approved before you 
pour any concrete. Having a technical plan counts just as much in software.

KEY POINT
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You don’t start decorating the Christmas tree until you’ve put it in the stand. You don’t 
start a fire until you’ve opened the flue. You don’t go on a long trip with an empty tank 
of gas. You don’t get dressed before you take a shower, and you don’t put your shoes 
on before your socks. You have to do things in the right order in software, too.

Programmers are at the end of the software food chain. The architect consumes the 
requirements; the designer consumes the architecture; and the coder consumes 
the design.

Compare the software food chain to a real food chain. In an ecologically sound envi-
ronment, seagulls eat fresh salmon. That’s nourishing to them because the salmon ate 
fresh herring, and they in turn ate fresh water bugs. The result is a healthy food chain. 
In programming, if you have healthy food at each stage in the food chain, the result is 
healthy code written by happy programmers.

In a polluted environment, the water bugs have been swimming in nuclear waste, the 
herring are contaminated by PCBs, and the salmon that eat the herring swam through 
oil spills. The seagulls are, unfortunately, at the end of the food chain, so they don’t eat 
just the oil in the bad salmon. They also eat the PCBs and the nuclear waste from the 
herring and the water bugs. In programming, if your requirements are contaminated, 
they contaminate the architecture, and the architecture in turn contaminates con-
struction. This leads to grumpy, malnourished programmers and radioactive, pol-
luted software that’s riddled with defects.

If you are planning a highly iterative project, you will need to identify the critical 
requirements and architectural elements that apply to each piece you’re constructing 
before you begin construction. A builder who is building a housing development 
doesn’t need to know every detail of every house in the development before begin-
ning construction on the first house. But the builder will survey the site, map out 
sewer and electrical lines, and so on. If the builder doesn’t prepare well, construction 
may be delayed when a sewer line needs to be dug under a house that’s already been 
constructed. 

Appeal to Data

Studies over the last 25 years have proven conclusively that it pays to do things right 
the first time. Unnecessary changes are expensive.
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Researchers at Hewlett-Packard, IBM, Hughes Aircraft, TRW, and other organizations 
have found that purging an error by the beginning of construction allows rework to be 
done 10 to 100 times less expensively than when it’s done in the last part of the pro-
cess, during system test or after release (Fagan 1976; Humphrey, Snyder, and Willis 
1991; Leffingwell 1997; Willis et al. 1998; Grady 1999; Shull et al. 2002; Boehm and 
Turner 2004). 

In general, the principle is to find an error as close as possible to the time at which it 
was introduced. The longer the defect stays in the software food chain, the more dam-
age it causes further down the chain. Since requirements are done first, requirements 
defects have the potential to be in the system longer and to be more expensive. Defects 
inserted into the software upstream also tend to have broader effects than those 
inserted further downstream. That also makes early defects more expensive.

Table 3-1 shows the relative expense of fixing defects depending on when they’re 
introduced and when they’re found.

The data in Table 3-1 shows that, for example, an architecture defect that costs $1000 
to fix when the architecture is being created can cost $15,000 to fix during system 
test. Figure 3-1 illustrates the same phenomenon.

1
2
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Table 3-1 Average Cost of Fixing Defects Based on When They’re Introduced and Detected

Time Detected

Time Introduced Requirements Architecture Construction System Test Post-Release

Requirements 1 3 5–10 10 10–100

Architecture — 1 10 15 25–100

Construction — — 1 10 10–25

Source: Adapted from “Design and Code Inspections to Reduce Errors in Program Development” (Fagan 1976), Software Defect Removal 
(Dunn 1984), “Software Process Improvement at Hughes Aircraft” (Humphrey, Snyder, and Willis 1991), “Calculating the Return on 
Investment from More Effective Requirements Management” (Leffingwell 1997), “Hughes Aircraft’s Widespread Deployment of a 
Continuously Improving Software Process” (Willis et al. 1998), “An Economic Release Decision Model: Insights into Software Project 
Management” (Grady 1999),  “What We Have Learned About Fighting Defects” (Shull et al. 2002), and Balancing Agility and Discipline: 
A Guide for the Perplexed (Boehm and Turner 2004).
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Figure 3-1 The cost to fix a defect rises dramatically as the time from when it’s introduced 
to when it’s detected increases. This remains true whether the project is highly sequential 
(doing 100 percent of requirements and design up front) or highly iterative (doing 5 percent 
of requirements and design up front). 

The average project still exerts most of its defect-correction effort on the right side of Fig-
ure 3-1, which means that debugging and associated rework takes about 50 percent of 
the time spent in a typical software development cycle (Mills 1983; Boehm 1987a; Coo-
per and Mullen 1993; Fishman 1996; Haley 1996; Wheeler, Brykczynski, and Meeson 
1996; Jones 1998; Shull et al. 2002; Wiegers 2002). Dozens of companies have found 
that simply focusing on correcting defects earlier rather than later in a project can cut 
development costs and schedules by factors of two or more (McConnell 2004). This is 
a healthy incentive to find and fix your problems as early as you can.

Boss-Readiness Test

When you think your boss understands the importance of working on prerequisites 
before moving into construction, try the test below to be sure. 

Which of these statements are self-fulfilling prophecies?

■ We’d better start coding right away because we’re going to have a lot of debug-
ging to do.

■ We haven’t planned much time for testing because we’re not going to find many 
defects.

Phase in Which a 
Defect Is Introduced

Requirements

Architecture

Construction

System Test
Requirements

Architecture
Construction Post-Release

Phase in Which a Defect Is Detected

Cost

1
2
3
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■ We’ve investigated requirements and design so much that I can’t think of any 
major problems we’ll run into during coding or debugging.

All of these statements are self-fulfilling prophecies. Aim for the last one. 

If you’re still not convinced that prerequisites apply to your project, the next section 
will help you decide. 

3.2 Determine the Kind of Software You’re Working On
Capers Jones, Chief Scientist at Software Productivity Research, summarized 20 years 
of software research by pointing out that he and his colleagues have seen 40 different 
methods for gathering requirements, 50 variations in working on software designs, 
and 30 kinds of testing applied to projects in more than 700 different programming 
languages (Jones 2003). 

Different kinds of software projects call for different balances between preparation 
and construction. Every project is unique, but projects do tend to fall into general 
development styles. Table 3-2 shows three of the most common kinds of projects and 
lists the practices that are typically best suited to each kind of project. 

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects 

Kind of Software

Business Systems
Mission-Critical 
Systems

Embedded 
Life-Critical Systems

Typical 
applications

Internet site 

Intranet site

Inventory 
management

Games

Management 
information systems

Payroll system

Embedded software

Games

Internet site

Packaged software

Software tools

Web services

Avionics software

Embedded software 

Medical devices

Operating systems

Packaged software

Life-cycle 
models

Agile development 
(Extreme Program-
ming, Scrum, time-
box development, 
and so on)

Evolutionary 
prototyping

Staged delivery 

Evolutionary 
delivery

Spiral development

Staged delivery

Spiral development

Evolutionary delivery
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On real projects, you’ll find infinite variations on the three themes presented in this 
table; however, the generalities in the table are illuminating. Business systems projects 
tend to benefit from highly iterative approaches, in which planning, requirements, 

Business Systems
Mission-Critical 
Systems

Embedded 
Life-Critical Systems

Planning and 
management

Incremental project 
planning

As-needed test and 
QA planning

Informal change 
control

Basic up-front 
planning

Basic test planning 

As-needed QA 
planning

Formal change 
control

Extensive up-front 
planning 

Extensive test 
planning 

Extensive QA 
planning

Rigorous change 
control

Requirements Informal require-
ments specification

Semiformal require-
ments specification

As-needed require-
ments reviews

Formal requirements 
specification 

Formal requirements 
inspections

Design Design and coding 
are combined

Architectural design 

Informal detailed 
design

As-needed design 
reviews

Architectural design 

Formal architecture 
inspections 

Formal detailed 
design

Formal detailed 
design inspections

Construction Pair programming 
or individual coding

Informal check-in 
procedure or no 
check-in procedure

Pair programming 
or individual coding

Informal check-in 
procedure

As-needed code 
reviews

Pair programming or 
individual coding 

Formal check-in 
procedure

Formal code 
inspections

Testing 
and QA

Developers test 
their own code

Test-first 
development

Little or no testing 
by a separate test 
group

Developers test 
their own code 

Test-first 
development 

Separate testing 
group

Developers test their 
own code 

Test-first 
development

Separate testing 
group 

Separate QA group

Deployment Informal deploy-
ment procedure

Formal deployment 
procedure

Formal deployment 
procedure

Table 3-2 Typical Good Practices for Three Common Kinds of Software Projects 

Kind of Software
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and architecture are interleaved with construction, system testing, and quality-assur-
ance activities. Life-critical systems tend to require more sequential approaches—
requirements stability is part of what’s needed to ensure ultrahigh levels of reliability. 

Iterative Approaches’ Effect on Prerequisites

Some writers have asserted that projects that use iterative techniques don’t need to 
focus on prerequisites much at all, but that point of view is misinformed. Iterative 
approaches tend to reduce the impact of inadequate upstream work, but they don’t 
eliminate it. Consider the examples shown in Table 3-3 of projects that don’t focus on 
prerequisites. One project is conducted sequentially and relies solely on testing to dis-
cover defects; the other is conducted iteratively and discovers defects as it progresses. 
The first approach delays most defect correction work to the end of the project, making 
the costs higher, as noted in Table 3-1. The iterative approach absorbs rework piecemeal 
over the course of the project, which makes the total cost lower. The data in this table 
and the next is for purposes of illustration only, but the relative costs of the two general 
approaches are well supported by the research described earlier in this chapter.

The iterative project that abbreviates or eliminates prerequisites will differ in two 
ways from a sequential project that does the same thing. First, average defect correc-
tion costs will be lower because defects will tend to be detected closer to the time 
they were inserted into the software. However, the defects will still be detected late 
in each iteration, and correcting them will require parts of the software to be 
redesigned, recoded, and retested—which makes the defect-correction cost higher 
than it needs to be. 

Table 3-3 Effect of Skipping Prerequisites on Sequential and Iterative Projects

Approach #1: Sequential 
Approach Without 
Prerequisites

Approach #2: Iterative 
Approach Without 
Prerequisites

Project Completion 
Status Cost of Work

Cost of 
Rework Cost of Work

Cost of 
Rework

20% $100,000 $0 $100,000 $75,000

40% $100,000 $0 $100,000 $75,000

60% $100,000 $0 $100,000 $75,000

80% $100,000 $0 $100,000 $75,000

100% $100,000 $0 $100,000 $75,000

End-of-Project 
Rework $0 $500,000 $0 $0

TOTAL $500,000 $500,000 $500,000 $375,000

GRAND TOTAL $1,000,000 $875,000
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Second, with iterative approaches costs will be absorbed piecemeal, throughout the 
project, rather than being clustered at the end. When all the dust settles, the total cost 
will be similar but it won’t seem as high because the price will have been paid in small 
installments over the course of the project, rather than paid all at once at the end. 

As Table 3-4 illustrates, a focus on prerequisites can reduce costs regardless of 
whether you use an iterative or a sequential approach. Iterative approaches are usually 
a better option for many reasons, but an iterative approach that ignores prerequisites 
can end up costing significantly more than a sequential project that pays close atten-
tion to prerequisites. 

As Table 3-4 suggested, most projects are neither completely sequential nor com-
pletely iterative. It isn’t practical to specify 100 percent of the requirements or design 
up front, but most projects find value in identifying at least the most critical require-
ments and architectural elements early. 

Cross-Reference For details 
on how to adapt your devel-
opment approach for pro-
grams of different sizes, see 
Chapter 27, “How Program 
Size Affects Construction.”

One common rule of thumb is to plan to specify about 80 percent of the requirements 
up front, allocate time for additional requirements to be specified later, and then prac-
tice systematic change control to accept only the most valuable new requirements as 
the project progresses. Another alternative is to specify only the most important 20 
percent of the requirements up front and plan to develop the rest of the software in 
small increments, specifying additional requirements and designs as you go. Figures 
3-2 and 3-3 reflect these different approaches.

Table 3-4 Effect of Focusing on Prerequisites on Sequential and Iterative 
Projects 

Approach #3: Sequential 
Approach with Prerequisites

Approach #4: Iterative 
Approach with Prerequisites

Project completion 
status Cost of Work

Cost of 
Rework Cost of Work

Cost of 
Rework

20% $100,000 $20,000 $100,000 $10,000

40% $100,000 $20,000 $100,000 $10,000

60% $100,000 $20,000 $100,000 $10,000

80% $100,000 $20,000 $100,000 $10,000

100% $100,000 $20,000 $100,000 $10,000

End-of-Project 
Rework $0 $0 $0 $0

TOTAL $500,000 $100,000 $500,000 $50,000

GRAND TOTAL $600,000 $550,000

KEY POINT
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Figure 3-2 Activities will overlap to some degree on most projects, even those that are 
highly sequential. 

Figure 3-3 On other projects, activities will overlap for the duration of the project. One key 
to successful construction is understanding the degree to which prerequisites have been 
completed and adjusting your approach accordingly.

Choosing Between Iterative and Sequential Approaches

The extent to which prerequisites need to be satisfied up front will vary with the 
project type indicated in Table 3-2, project formality, technical environment, staff 
capabilities, and project business goals. You might choose a more sequential (up-
front) approach when 

■ The requirements are fairly stable.

■ The design is straightforward and fairly well understood.

■ The development team is familiar with the applications area.

Quality Assurance/System Testing

Requirements

Architecture

Detailed Design

Construction

Time

Time

Quality Assurance/System Testing

Requirements

Detailed Design
Architecture

Detailed Design

Construction
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■ The project contains little risk.

■ Long-term predictability is important.

■ The cost of changing requirements, design, and code downstream is likely to be 
high.

You might choose a more iterative (as-you-go) approach when

■ The requirements are not well understood or you expect them to be unstable for 
other reasons.

■ The design is complex, challenging, or both.

■ The development team is unfamiliar with the applications area.

■ The project contains a lot of risk.

■ Long-term predictability is not important.

■ The cost of changing requirements, design, and code downstream is likely to be 
low.

Software being what it is, iterative approaches are useful much more often than 
sequential approaches are. You can adapt the prerequisites to your specific project by 
making them more or less formal and more or less complete, as you see fit. For a 
detailed discussion of different approaches to large and small projects (also known as 
the different approaches to formal and informal projects), see Chapter 27.

The net impact on construction prerequisites is that you should first determine what 
construction prerequisites are well suited to your project. Some projects spend too lit-
tle time on prerequisites, which exposes construction to an unnecessarily high rate of 
destabilizing changes and prevents the project from making consistent progress. 
Some projects do too much up front; they doggedly adhere to requirements and plans 
that have been invalidated by downstream discoveries, and that can also impede 
progress during construction. 

Now that you’ve studied Table 3-2 and determined what prerequisites are appropriate 
for your project, the rest of this chapter describes how to determine whether each spe-
cific construction prerequisite has been “prereq’d” or “prewrecked.”

3.3 Problem-Definition Prerequisite
If the “box” is the boundary 
of constraints and condi-
tions, then the trick is to find 
the box.... Don’t think out-
side the box—find the box.
—Andy Hunt and Dave 
Thomas

The first prerequisite you need to fulfill before beginning construction is a clear state-
ment of the problem that the system is supposed to solve. This is sometimes called 
“product vision,” “vision statement,” “mission statement,” or “product definition.” 
Here it’s called “problem definition.” Since this book is about construction, this sec-
tion doesn’t tell you how to write a problem definition; it tells you how to recognize 
whether one has been written at all and whether the one that’s written will form a 
good foundation for construction.
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A problem definition defines what the problem is without any reference to possible 
solutions. It’s a simple statement, maybe one or two pages, and it should sound like a 
problem. The statement “We can’t keep up with orders for the Gigatron” sounds like 
a problem and is a good problem definition. The statement “We need to optimize our 
automated data-entry system to keep up with orders for the Gigatron” is a poor prob-
lem definition. It doesn’t sound like a problem; it sounds like a solution.

As shown in Figure 3-4, problem definition comes before detailed requirements work, 
which is a more in-depth investigation of the problem.

Figure 3-4 The problem definition lays the foundation for the rest of the programming 
process.

The problem definition should be in user language, and the problem should be 
described from a user’s point of view. It usually should not be stated in technical com-
puter terms. The best solution might not be a computer program. Suppose you need 
a report that shows your annual profit. You already have computerized reports that 
show quarterly profits. If you’re locked into the programmer mindset, you’ll reason 
that adding an annual report to a system that already does quarterly reports should be 
easy. Then you’ll pay a programmer to write and debug a time-consuming program 
that calculates annual profits. If you’re not locked into the programmer mindset, 
you’ll pay your secretary to create the annual figures by taking one minute to add up 
the quarterly figures on a pocket calculator.

The exception to this rule applies when the problem is with the computer: compile 
times are too slow or the programming tools are buggy. Then it’s appropriate to state 
the problem in computer or programmer terms.

As Figure 3-5 suggests, without a good problem definition, you might put effort into 
solving the wrong problem.

Problem Definition

Requirements

Architecture

Construction

System testing

Future 
Improvements
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Figure 3-5 Be sure you know what you’re aiming at before you shoot.  

The penalty for failing to define the problem is that you can waste a lot of time solving 
the wrong problem. This is a double-barreled penalty because you also don’t solve the 
right problem.

3.4 Requirements Prerequisite
Requirements describe in detail what a software system is supposed to do, and they 
are the first step toward a solution. The requirements activity is also known as 
“requirements development,” “requirements analysis,” “analysis,” “requirements defi-
nition,” “software requirements,” “specification,” “functional spec,” and “spec.” 

Why Have Official Requirements?

An explicit set of requirements is important for several reasons.

Explicit requirements help to ensure that the user rather than the programmer drives 
the system’s functionality. If the requirements are explicit, the user can review them 
and agree to them. If they’re not, the programmer usually ends up making require-
ments decisions during programming. Explicit requirements keep you from guessing 
what the user wants.

Explicit requirements also help to avoid arguments. You decide on the scope of the 
system before you begin programming. If you have a disagreement with another pro-
grammer about what the program is supposed to do, you can resolve it by looking at 
the written requirements.

Paying attention to requirements helps to minimize changes to a system after develop-
ment begins. If you find a coding error during coding, you change a few lines of code 
and work goes on. If you find a requirements error during coding, you have to alter 
the design to meet the changed requirement. You might have to throw away part of the 
old design, and because it has to accommodate code that’s already written, the new 
design will take longer than it would have in the first place. You also have to discard 

KEY POINT

KEY POINT
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code and test cases affected by the requirement change and write new code and test 
cases. Even code that’s otherwise unaffected must be retested so that you can be sure 
the changes in other areas haven’t introduced any new errors.

As Table 3-1 reported, data from numerous organizations indicates that on large 
projects an error in requirements detected during the architecture stage is typically 3 
times as expensive to correct as it would be if it were detected during the requirements 
stage. If detected during coding, it’s 5–10 times as expensive; during system test, 10 
times; and post-release, a whopping 10–100 times as expensive as it would be if it were 
detected during requirements development. On smaller projects with lower adminis-
trative costs, the multiplier post-release is closer to 5–10 than 100 (Boehm and Turner 
2004). In either case, it isn’t money you’d want to have taken out of your salary.

Specifying requirements adequately is a key to project success, perhaps even more 
important than effective construction techniques. (See Figure 3-6.) Many good books 
have been written about how to specify requirements well. Consequently, the next few 
sections don’t tell you how to do a good job of specifying requirements, they tell you 
how to determine whether the requirements have been done well and how to make 
the best of the requirements you have.

Figure 3-6 Without good requirements, you can have the right general problem but miss 
the mark on specific aspects of the problem.

The Myth of Stable Requirements
Requirements are like water. 
They’re easier to build on 
when they’re frozen. 
—Anonoymous

Stable requirements are the holy grail of software development. With stable require-
ments, a project can proceed from architecture to design to coding to testing in a way 
that’s orderly, predictable, and calm. This is software heaven! You have predictable 
expenses, and you never have to worry about a feature costing 100 times as much to 
implement as it would otherwise because your user didn’t think of it until you were 
finished debugging.

1
2
3

HARD DATA
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It’s fine to hope that once your customer has accepted a requirements document, no 
changes will be needed. On a typical project, however, the customer can’t reliably 
describe what is needed before the code is written. The problem isn’t that the custom-
ers are a lower life form. Just as the more you work with the project, the better you 
understand it, the more they work with it, the better they understand it. The develop-
ment process helps customers better understand their own needs, and this is a major 
source of requirements changes (Curtis, Krasner, and Iscoe 1988; Jones 1998; Wieg-
ers 2003). A plan to follow the requirements rigidly is actually a plan not to respond 
to your customer.

How much change is typical? Studies at IBM and other companies have found that the 
average project experiences about a 25 percent change in requirements during devel-
opment (Boehm 1981, Jones 1994, Jones 2000), which accounts for 70 to 85 percent 
of the rework on a typical project (Leffingwell 1997, Wiegers 2003).

Maybe you think the Pontiac Aztek was the greatest car ever made, belong to the Flat 
Earth Society, and make a pilgrimage to the alien landing site at Roswell, New Mexico, 
every four years. If you do, go ahead and believe that requirements won’t change on 
your projects. If, on the other hand, you’ve stopped believing in Santa Claus and the 
Tooth Fairy, or at least have stopped admitting it, you can take several steps to mini-
mize the impact of requirements changes.

Handling Requirements Changes During Construction

Here are several things you can do to make the best of changing requirements during 
construction:

Use the requirements checklist at the end of the section to assess the quality of your 
requirements If your requirements aren’t good enough, stop work, back up, and 
make them right before you proceed. Sure, it feels like you’re getting behind if you stop 
coding at this stage. But if you’re driving from Chicago to Los Angeles, is it a waste of 
time to stop and look at a road map when you see signs for New York? No. If you’re 
not heading in the right direction, stop and check your course.

Make sure everyone knows the cost of requirements changes Clients get excited 
when they think of a new feature. In their excitement, their blood thins and runs to 
their medulla oblongata and they become giddy, forgetting all the meetings you had to 
discuss requirements, the signing ceremony, and the completed requirements docu-
ment. The easiest way to handle such feature-intoxicated people is to say, “Gee, that 
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sounds like a great idea. Since it’s not in the requirements document, I’ll work up a 
revised schedule and cost estimate so that you can decide whether you want to do it 
now or later.” The words “schedule” and “cost” are more sobering than coffee and a 
cold shower, and many “must haves” will quickly turn into “nice to haves.”

If your organization isn’t sensitive to the importance of doing requirements first, point 
out that changes at requirements time are much cheaper than changes later. Use this 
chapter’s “Utterly Compelling and Foolproof Argument for Doing Prerequisites Before 
Construction.”

Cross-Reference For details 
on handling changes to 
design and code, see Section 
28.2, “Configuration 
Management.”

Set up a change-control procedure If your client’s excitement persists, consider 
establishing a formal change-control board to review such proposed changes. It’s all 
right for customers to change their minds and to realize that they need more capabil-
ities. The problem is their suggesting changes so frequently that you can’t keep up. 
Having a built-in procedure for controlling changes makes everyone happy. You’re 
happy because you know that you’ll have to work with changes only at specific times. 
Your customers are happy because they know that you have a plan for handling their 
input.

Cross-Reference For details 
on iterative development 
approaches, see “Iterate” in 
Section 5.4 and Section 29.3, 
“Incremental Integration 
Strategies.” 

Use development approaches that accommodate changes Some development 
approaches maximize your ability to respond to changing requirements. An evolution-
ary prototyping approach helps you explore a system’s requirements before you send 
your forces in to build it. Evolutionary delivery is an approach that delivers the system 
in stages. You can build a little, get a little feedback from your users, adjust your design 
a little, make a few changes, and build a little more. The key is using short develop-
ment cycles so that you can respond to your users quickly.

Further Reading For details 
on development approaches 
that support flexible require-
ments, see Rapid Develop-
ment (McConnell 1996). 

Dump the project If the requirements are especially bad or volatile and none of the 
suggestions above are workable, cancel the project. Even if you can’t really cancel the 
project, think about what it would be like to cancel it. Think about how much worse it 
would have to get before you would cancel it. If there’s a case in which you would dump 
it, at least ask yourself how much difference there is between your case and that case.

Cross-Reference For details 
on the differences between 
formal and informal projects 
(often caused by differences 
in project size), see Chapter 
27, “How Program Size 
Affects Construction.”

Keep your eye on the business case for the project Many requirements issues disap-
pear before your eyes when you refer back to the business reason for doing the project. 
Requirements that seemed like good ideas when considered as “features” can seem like 
terrible ideas when you evaluate the “incremental business value.” Programmers who 
remember to consider the business impact of their decisions are worth their weight in 
gold—although I’ll be happy to receive my commission for this advice in cash. 
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cc2e.com/0323 Checklist: Requirements
The requirements checklist contains a list of questions to ask yourself about 
your project’s requirements. This book doesn’t tell you how to do good require-
ments development, and the list won’t tell you how to do one either. Use the list 
as a sanity check at construction time to determine how solid the ground that 
you’re standing on is—where you are on the requirements Richter scale.

Not all of the checklist questions will apply to your project. If you’re working on 
an informal project, you’ll find some that you don’t even need to think about. 
You’ll find others that you need to think about but don’t need to answer for-
mally. If you’re working on a large, formal project, however, you may need to 
consider every one. 

Specific Functional Requirements
❑ Are all the inputs to the system specified, including their source, accuracy, 

range of values, and frequency?

❑ Are all the outputs from the system specified, including their destination, 
accuracy, range of values, frequency, and format?

❑ Are all output formats specified for Web pages, reports, and so on?

❑ Are all the external hardware and software interfaces specified?

❑ Are all the external communication interfaces specified, including hand-
shaking, error-checking, and communication protocols?

❑ Are all the tasks the user wants to perform specified?

❑ Is the data used in each task and the data resulting from each task specified?

Specific Nonfunctional (Quality) Requirements
❑ Is the expected response time, from the user’s point of view, specified for 

all necessary operations?

❑ Are other timing considerations specified, such as processing time, data-
transfer rate, and system throughput?

❑ Is the level of security specified?

❑ Is the reliability specified, including the consequences of software failure, 
the vital information that needs to be protected from failure, and the strat-
egy for error detection and recovery?

❑ Are minimum machine memory and free disk space specified?

❑ Is the maintainability of the system specified, including its ability to adapt 
to changes in specific functionality, changes in the operating environment, 
and changes in its interfaces with other software?

❑ Is the definition of success included? Of failure? 
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Requirements Quality
❑ Are the requirements written in the user’s language? Do the users think 

so? 

❑ Does each requirement avoid conflicts with other requirements?

❑ Are acceptable tradeoffs between competing attributes specified—for 
example, between robustness and correctness?

❑ Do the requirements avoid specifying the design?

❑ Are the requirements at a fairly consistent level of detail? Should any 
requirement be specified in more detail? Should any requirement be spec-
ified in less detail?

❑ Are the requirements clear enough to be turned over to an independent 
group for construction and still be understood? Do the developers think 
so?

❑ Is each item relevant to the problem and its solution? Can each item be 
traced to its origin in the problem environment?

❑ Is each requirement testable? Will it be possible for independent testing to 
determine whether each requirement has been satisfied?

❑ Are all possible changes to the requirements specified, including the like-
lihood of each change?

Requirements Completeness
❑ Where information isn’t available before development begins, are the 

areas of incompleteness specified?

❑ Are the requirements complete in the sense that if the product satisfies 
every requirement, it will be acceptable?

❑ Are you comfortable with all the requirements? Have you eliminated 
requirements that are impossible to implement and included just to 
appease your customer or your boss?

3.5 Architecture Prerequisite
Cross-Reference For more 
information on design at all 
levels, see Chapters 5 
through 9.

Software architecture is the high-level part of software design, the frame that holds the 
more detailed parts of the design (Buschman et al. 1996; Fowler 2002; Bass Clements, 
Kazman 2003; Clements et al. 2003). Architecture is also known as “system architec-
ture,” “high-level design,” and “top-level design.” Typically, the architecture is 
described in a single document referred to as the “architecture specification” or “top-
level design.” Some people make a distinction between architecture and high-level 
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design—architecture refers to design constraints that apply systemwide, whereas high-
level design refers to design constraints that apply at the subsystem or multiple-class 
level, but not necessarily systemwide.

Because this book is about construction, this section doesn’t tell you how to develop 
a software architecture; it focuses on how to determine the quality of an existing archi-
tecture. Because architecture is one step closer to construction than requirements, 
however, the discussion of architecture is more detailed than the discussion of 
requirements.

Why have architecture as a prerequisite? Because the quality of the architecture deter-
mines the conceptual integrity of the system. That in turn determines the ultimate 
quality of the system. A well-thought-out architecture provides the structure needed to 
maintain a system’s conceptual integrity from the top levels down to the bottom. It 
provides guidance to programmers—at a level of detail appropriate to the skills of the 
programmers and to the job at hand. It partitions the work so that multiple develop-
ers or multiple development teams can work independently.

Good architecture makes construction easy. Bad architecture makes construction 
almost impossible. Figure 3-7 illustrates another problem with bad architecture.

Figure 3-7 Without good software architecture, you may have the right problem but the 
wrong solution. It may be impossible to have successful construction.

Architectural changes are expensive to make during construction or later. The time 
needed to fix an error in a software architecture is on the same order as that needed to 
fix a requirements error—that is, more than that needed to fix a coding error (Basili 
and Perricone 1984, Willis 1998). Architecture changes are like requirements changes 
in that seemingly small changes can be far-reaching. Whether the architectural 
changes arise from the need to fix errors or the need to make improvements, the ear-
lier you can identify the changes, the better.

KEY POINT
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Typical Architectural Components
Cross-Reference For details 
on lower-level program 
design, see Chapters 5 
through 9.

Many components are common to good system architectures. If you’re building the 
whole system yourself, your work on the architecture will overlap your work on the 
more detailed design. In such a case, you should at least think about each architec-
tural component. If you’re working on a system that was architected by someone else, 
you should be able to find the important components without a bloodhound, a deer-
stalker cap, and a magnifying glass. In either case, here are the architectural compo-
nents to consider.

Program Organization

If you can’t explain some-
thing to a six-year-old, you 
really don’t understand it 
yourself.
—Albert Einstein

A system architecture first needs an overview that describes the system in broad 
terms. Without such an overview, you’ll have a hard time building a coherent picture 
from a thousand details or even a dozen individual classes. If the system were a little 
12-piece jigsaw puzzle, your one-year-old could solve it between spoonfuls of strained 
asparagus. A puzzle of 12 subsystems is harder to put together, and if you can’t put it 
together, you won’t understand how a class you’re developing contributes to the sys-
tem.

In the architecture, you should find evidence that alternatives to the final organization 
were considered and find the reasons for choosing the final organization over its alterna-
tives. It’s frustrating to work on a class when it seems as if the class’s role in the system 
has not been clearly conceived. By describing the organizational alternatives, the architec-
ture provides the rationale for the system organization and shows that each class has 
been carefully considered. One review of design practices found that the design rationale 
is at least as important for maintenance as the design itself (Rombach 1990).

Cross-Reference For details 
on different size building 
blocks in design, see “Levels 
of Design” in Section 5.2.

The architecture should define the major building blocks in a program. Depending on 
the size of the program, each building block might be a single class or it might be a 
subsystem consisting of many classes. Each building block is a class, or it’s a collec-
tion of classes or routines that work together on high-level functions such as interact-
ing with the user, displaying Web pages, interpreting commands, encapsulating 
business rules, or accessing data. Every feature listed in the requirements should be 
covered by at least one building block. If a function is claimed by two or more building 
blocks, their claims should cooperate, not conflict.

Cross-Reference Minimiz-
ing what each building block 
knows about other building 
blocks is a key part of infor-
mation hiding. For details, 
see “Hide Secrets (Informa-
tion Hiding)” in Section 5.3.

What each building block is responsible for should be well defined. A building block 
should have one area of responsibility, and it should know as little as possible about 
other building blocks’ areas of responsibility. By minimizing what each building block 
knows about the other building blocks, you localize information about the design into 
single building blocks.
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The communication rules for each building block should be well defined. The archi-
tecture should describe which other building blocks the building block can use 
directly, which it can use indirectly, and which it shouldn’t use at all. 

Major Classes

Cross-Reference For details 
on class design, see Chapter 
6, “Working Classes.”

The architecture should specify the major classes to be used. It should identify the 
responsibilities of each major class and how the class will interact with other classes. 
It should include descriptions of the class hierarchies, of state transitions, and of 
object persistence. If the system is large enough, it should describe how classes are 
organized into subsystems. 

The architecture should describe other class designs that were considered and give 
reasons for preferring the organization that was chosen. The architecture doesn’t need 
to specify every class in the system. Aim for the 80/20 rule: specify the 20 percent of 
the classes that make up 80 percent of the system’s behavior (Jacobsen, Booch, and 
Rumbaugh 1999; Kruchten 2000). 

Data Design

Cross-Reference For details 
on working with variables, 
see Chapters 10 through 13. 

The architecture should describe the major files and table designs to be used. It 
should describe alternatives that were considered and justify the choices that were 
made. If the application maintains a list of customer IDs and the architects have cho-
sen to represent the list of IDs using a sequential-access list, the document should 
explain why a sequential-access list is better than a random-access list, stack, or hash 
table. During construction, such information gives you insight into the minds of the 
architects. During maintenance, the same insight is an invaluable aid. Without it, 
you’re watching a foreign movie with no subtitles. 

Data should normally be accessed directly by only one subsystem or class, except 
through access classes or routines that allow access to the data in controlled and 
abstract ways. This is explained in more detail in “Hide Secrets (Information Hiding)” 
in Section 5.3.

The architecture should specify the high-level organization and contents of any data-
bases used. The architecture should explain why a single database is preferable to 
multiple databases (or vice versa), explain why a database is preferable to flat files, 
identify possible interactions with other programs that access the same data, explain 
what views have been created on the data, and so on. 

Business Rules

If the architecture depends on specific business rules, it should identify them and 
describe the impact the rules have on the system’s design. For example, suppose the 
system is required to follow a business rule that customer information should be no 
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more than 30 seconds out of date. In that case, the impact that rule has on the archi-
tecture’s approach to keeping customer information up to date and synchronized 
should be described. 

User Interface Design

The user interface is often specified at requirements time. If it isn’t, it should be spec-
ified in the software architecture. The architecture should specify major elements of 
Web page formats, GUIs, command line interfaces, and so on. Careful architecture of 
the user interface makes the difference between a well-liked program and one that’s 
never used.

The architecture should be modularized so that a new user interface can be substi-
tuted without affecting the business rules and output parts of the program. For exam-
ple, the architecture should make it fairly easy to lop off a group of interactive interface 
classes and plug in a group of command line classes. This ability is often useful, espe-
cially since command line interfaces are convenient for software testing at the unit or 
subsystem level.

cc2e.com/0393 The design of user interfaces deserves its own book-length discussion but is outside 
the scope of this book.

Resource Management

The architecture should describe a plan for managing scarce resources such as data-
base connections, threads, and handles. Memory management is another important 
area for the architecture to treat in memory-constrained applications areas such as 
driver development and embedded systems. The architecture should estimate the 
resources used for nominal and extreme cases. In a simple case, the estimates should 
show that the resources needed are well within the capabilities of the intended imple-
mentation environment. In a more complex case, the application might be required to 
more actively manage its own resources. If it is, the resource manager should be archi-
tected as carefully as any other part of the system.

cc2e.com/0330 Security

Further Reading For an 
excellent discussion of soft-
ware security, see Writing 
Secure Code, 2d Ed. (Howard 
and LeBlanc 2003) as well as 
the January 2002 issue of 
IEEE Software.

The architecture should describe the approach to design-level and code-level security. If a 
threat model has not previously been built, it should be built at architecture time. Coding 
guidelines should be developed with security implications in mind, including 
approaches to handling buffers, rules for handling untrusted data (data input from users, 
cookies, configuration data, and other external interfaces), encryption, level of detail con-
tained in error messages, protecting secret data that’s in memory, and other issues.
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Performance

Further Reading For addi-
tional information on design-
ing systems for performance, 
see Connie Smith’s Perfor-
mance Engineering of 
Software Systems (1990).

If performance is a concern, performance goals should be specified in the require-
ments. Performance goals can include resource use, in which case the goals should 
also specify priorities among resources, including speed vs. memory vs. cost. 

The architecture should provide estimates and explain why the architects believe the 
goals are achievable. If certain areas are at risk of failing to meet their goals, the archi-
tecture should say so. If certain areas require the use of specific algorithms or data 
types to meet their performance goals, the architecture should say that. The architec-
ture can also include space and time budgets for each class or object.

Scalability

Scalability is the ability of a system to grow to meet future demands. The architecture 
should describe how the system will address growth in number of users, number of 
servers, number of network nodes, number of database records, size of database 
records, transaction volume, and so on. If the system is not expected to grow and scal-
ability is not an issue, the architecture should make that assumption explicit. 

Interoperability

If the system is expected to share data or resources with other software or hardware, 
the architecture should describe how that will be accomplished. 

Internationalization/Localization

“Internationalization” is the technical activity of preparing a program to support mul-
tiple locales. Internationalization is often known as “I18n” because the first and last 
characters in “internationalization” are “I” and “N” and because there are 18 letters in 
the middle of the word. “Localization” (known as “L10n” for the same reason) is the 
activity of translating a program to support a specific local language. 

Internationalization issues deserve attention in the architecture for an interactive sys-
tem. Most interactive systems contain dozens or hundreds of prompts, status dis-
plays, help messages, error messages, and so on. Resources used by the strings should 
be estimated. If the program is to be used commercially, the architecture should show 
that the typical string and character-set issues have been considered, including char-
acter set used (ASCII, DBCS, EBCDIC, MBCS, Unicode, ISO 8859, and so on), kinds 
of strings used (C strings, Visual Basic strings, and so on), maintaining the strings 
without changing code, and translating the strings into foreign languages with mini-
mal impact on the code and the user interface. The architecture can decide to use 
strings in line in the code where they’re needed, keep the strings in a class and refer-
ence them through the class interface, or store the strings in a resource file. The archi-
tecture should explain which option was chosen and why.
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Input/Output

Input/output (I/O) is another area that deserves attention in the architecture. The 
architecture should specify a look-ahead, look-behind, or just-in-time reading scheme. 
And it should describe the level at which I/O errors are detected: at the field, record, 
stream, or file level.

Error Processing

Error processing is turning out to be one of the thorniest problems of modern com-
puter science, and you can’t afford to deal with it haphazardly. Some people have esti-
mated that as much as 90 percent of a program’s code is written for exceptional, error-
processing cases or housekeeping, implying that only 10 percent is written for nomi-
nal cases (Shaw in Bentley 1982). With so much code dedicated to handling errors, a 
strategy for handling them consistently should be spelled out in the architecture. 

Error handling is often treated as a coding-convention-level issue, if it’s treated at all. 
But because it has systemwide implications, it is best treated at the architectural level. 
Here are some questions to consider:

■ Is error processing corrective or merely detective? If corrective, the program can 
attempt to recover from errors. If it’s merely detective, the program can continue 
processing as if nothing had happened, or it can quit. In either case, it should 
notify the user that it detected an error.

■ Is error detection active or passive? The system can actively anticipate errors—for 
example, by checking user input for validity—or it can passively respond to them 
only when it can’t avoid them—for example, when a combination of user input 
produces a numeric overflow. It can clear the way or clean up the mess. Again, in 
either case, the choice has user-interface implications.

■ How does the program propagate errors? Once it detects an error, it can imme-
diately discard the data that caused the error, it can treat the error as an error 
and enter an error-processing state, or it can wait until all processing is complete 
and notify the user that errors were detected (somewhere).

■ What are the conventions for handling error messages? If the architecture 
doesn’t specify a single, consistent strategy, the user interface will appear to be a 
confusing macaroni-and-dried-bean collage of different interfaces in different 
parts of the program. To avoid such an appearance, the architecture should 
establish conventions for error messages.

■ How will exceptions be handled? The architecture should address when the 
code can throw exceptions, where they will be caught, how they will be logged, 
how they will be documented, and so on. 

1
2
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Cross-Reference A consis-
tent method of handling bad 
parameters is another aspect 
of error-processing strategy 
that should be addressed 
architecturally. For examples, 
see Chapter 8, “Defensive 
Programming.”

■ Inside the program, at what level are errors handled? You can handle them at 
the point of detection, pass them off to an error-handling class, or pass them up 
the call chain.

■ What is the level of responsibility of each class for validating its input data? Is 
each class responsible for validating its own data, or is there a group of classes 
responsible for validating the system’s data? Can classes at any level assume that 
the data they’re receiving is clean?

■ Do you want to use your environment’s built-in exception-handling mechanism 
or build your own? The fact that an environment has a particular error-handling 
approach doesn’t mean that it’s the best approach for your requirements.

Fault Tolerance

Further Reading For a good 
introduction to fault toler-
ance, see the July 2001 issue 
of IEEE Software. In addition 
to providing a good intro-
duction, the articles cite 
many key books and key 
articles on the topic. 

The architecture should also indicate the kind of fault tolerance expected. Fault toler-
ance is a collection of techniques that increase a system’s reliability by detecting 
errors, recovering from them if possible, and containing their bad effects if not.

For example, a system could make the computation of the square root of a number 
fault tolerant in any of several ways:

■ The system might back up and try again when it detects a fault. If the first 
answer is wrong, it would back up to a point at which it knew everything was all 
right and continue from there.

■ The system might have auxiliary code to use if it detects a fault in the primary 
code. In the example, if the first answer appears to be wrong, the system 
switches over to an alternative square-root routine and uses it instead.

■ The system might use a voting algorithm. It might have three square-root classes 
that each use a different method. Each class computes the square root, and then 
the system compares the results. Depending on the kind of fault tolerance built 
into the system, it then uses the mean, the median, or the mode of the three 
results.

■ The system might replace the erroneous value with a phony value that it knows 
to have a benign effect on the rest of the system.

Other fault-tolerance approaches include having the system change to a state of par-
tial operation or a state of degraded functionality when it detects an error. It can shut 
itself down or automatically restart itself. These examples are necessarily simplistic. 
Fault tolerance is a fascinating and complex subject—unfortunately, it’s one that’s out-
side the scope of this book.



3.5 Architecture Prerequisite 51

Architectural Feasibility

The designers might have concerns about a system’s ability to meet its performance 
targets, work within resource limitations, or be adequately supported by the imple-
mentation environments. The architecture should demonstrate that the system is 
technically feasible. If infeasibility in any area could render the project unworkable, 
the architecture should indicate how those issues have been investigated—through 
proof-of-concept prototypes, research, or other means. These risks should be resolved 
before full-scale construction begins. 

Overengineering

Robustness is the ability of a system to continue to run after it detects an error. Often 
an architecture specifies a more robust system than that specified by the require-
ments. One reason is that a system composed of many parts that are minimally robust 
might be less robust than is required overall. In software, the chain isn’t as strong as 
its weakest link; it’s as weak as all the weak links multiplied together. The architecture 
should clearly indicate whether programmers should err on the side of overengineer-
ing or on the side of doing the simplest thing that works. 

Specifying an approach to overengineering is particularly important because many 
programmers overengineer their classes automatically, out of a sense of professional 
pride. By setting expectations explicitly in the architecture, you can avoid the phe-
nomenon in which some classes are exceptionally robust and others are barely ade-
quate.

Buy-vs.-Build Decisions

Cross-Reference For a list of 
kinds of commercially avail-
able software components 
and libraries, see “Code 
Libraries” in Section 30.3.

The most radical solution to building software is not to build it at all—to buy it instead 
or to download open-source software for free. You can buy GUI controls, database 
managers, image processors, graphics and charting components, Internet communi-
cations components, security and encryption components, spreadsheet tools, text-
processing tools—the list is nearly endless. One of the greatest advantages of program-
ming in modern GUI environments is the amount of functionality you get automati-
cally: graphics classes, dialog box managers, keyboard and mouse handlers, code that 
works automatically with any printer or monitor, and so on.

If the architecture isn’t using off-the-shelf components, it should explain the ways 
in which it expects custom-built components to surpass ready-made libraries and 
components.
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Reuse Decisions

If the plan calls for using preexisting software, test cases, data formats, or other mate-
rials, the architecture should explain how the reused software will be made to con-
form to the other architectural goals—if it will be made to conform.

Change Strategy

Cross-Reference For details 
on handling changes sys-
tematically, see Section 28.2, 
“Configuration Management.”

Because building a software product is a learning process for both the programmers 
and the users, the product is likely to change throughout its development. Changes 
arise from volatile data types and file formats, changed functionality, new features, and 
so on. The changes can be new capabilities likely to result from planned enhance-
ments, or they can be capabilities that didn’t make it into the first version of the sys-
tem. Consequently, one of the major challenges facing a software architect is making 
the architecture flexible enough to accommodate likely changes.

Design bugs are often subtle 
and occur by evolution with 
early assumptions being for-
gotten as new features or 
uses are added to a system. 
—Fernando J. Corbató

The architecture should clearly describe a strategy for handling changes. The architec-
ture should show that possible enhancements have been considered and that the 
enhancements most likely are also the easiest to implement. If changes are likely in 
input or output formats, style of user interaction, or processing requirements, the 
architecture should show that the changes have all been anticipated and that the 
effects of any single change will be limited to a small number of classes. The architec-
ture’s plan for changes can be as simple as one to put version numbers in data files, 
reserve fields for future use, or design files so that you can add new tables. If a code 
generator is being used, the architecture should show that the anticipated changes are 
within the capabilities of the code generator.

Cross-Reference For a full 
explanation of delaying 
commitment, see “Choose 
Binding Time Consciously” in 
Section 5.3.

The architecture should indicate the strategies that are used to delay commitment. For 
example, the architecture might specify that a table-driven technique be used rather 
than hard-coded if tests. It might specify that data for the table is to be kept in an exter-
nal file rather than coded inside the program, thus allowing changes in the program 
without recompiling.

General Architectural Quality

Cross-Reference For more 
information about how qual-
ity attributes interact, see 
Section 20.1, “Characteristics 
of Software Quality.”

A good architecture specification is characterized by discussions of the classes in the 
system, of the information that’s hidden in each class, and of the rationales for includ-
ing and excluding all possible design alternatives.

The architecture should be a polished conceptual whole with few ad hoc additions. 
The central thesis of the most popular software-engineering book ever, The Mythical 
Man-Month, is that the essential problem with large systems is maintaining their con-
ceptual integrity (Brooks 1995). A good architecture should fit the problem. When 
you look at the architecture, you should be pleased by how natural and easy the solu-
tion seems. It shouldn’t look as if the problem and the architecture have been forced 
together with duct tape.
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You might know of ways in which the architecture was changed during its develop-
ment. Each change should fit in cleanly with the overall concept. The architecture 
shouldn’t look like a U.S. Congress appropriations bill complete with pork-barrel, 
boondoggle riders for each representative’s home district.

The architecture’s objectives should be clearly stated. A design for a system with a pri-
mary goal of modifiability will be different from one with a goal of uncompromised 
performance, even if both systems have the same function. 

The architecture should describe the motivations for all major decisions. Be wary of 
“we’ve always done it that way” justifications. One story goes that Beth wanted to 
cook a pot roast according to an award-winning pot roast recipe handed down in her 
husband’s family. Her husband, Abdul, said that his mother had taught him to sprin-
kle it with salt and pepper, cut both ends off, put it in the pan, cover it, and cook it. 
Beth asked, “Why do you cut both ends off?” Abdul said, “I don’t know. I’ve always 
done it that way. Let me ask my mother.” He called her, and she said, “I don’t know. 
I’ve always done it that way. Let me ask your grandmother.” She called his grand-
mother, who said, “I don’t know why you do it that way. I did it that way because it 
was too big to fit in my pan.”

Good software architecture is largely machine- and language-independent. Admit-
tedly, you can’t ignore the construction environment. By being as independent of the 
environment as possible, however, you avoid the temptation to overarchitect the sys-
tem or to do a job that you can do better during construction. If the purpose of a pro-
gram is to exercise a specific machine or language, this guideline doesn’t apply.

The architecture should tread the line between underspecifying and overspecifying 
the system. No part of the architecture should receive more attention than it deserves, 
or be overdesigned. Designers shouldn’t pay attention to one part at the expense of 
another. The architecture should address all requirements without gold-plating (with-
out containing elements that are not required). 

The architecture should explicitly identify risky areas. It should explain why they’re 
risky and what steps have been taken to minimize the risk.

The architecture should contain multiple views. Plans for a house will include eleva-
tions, floor plan, framing plan, electrical diagrams, and other views of the house.  Soft-
ware architecture descriptions also benefit from providing different views of the 
system that flush out errors and inconsistencies and help programmers fully under-
stand the system’s design (Kruchten 1995). 

Finally, you shouldn’t be uneasy about any parts of the architecture. It shouldn’t con-
tain anything just to please the boss. It shouldn’t contain anything that’s hard for you 
to understand. You’re the one who’ll implement it; if it doesn’t make sense to you, how 
can you implement it?
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cc2e.com/0337 Checklist: Architecture
Here’s a list of issues that a good architecture should address. The list isn’t 
intended to be a comprehensive guide to architecture but to be a pragmatic way 
of evaluating the nutritional content of what you get at the programmer’s end of 
the software food chain. Use this checklist as a starting point for your own 
checklist. As with the requirements checklist, if you’re working on an informal 
project, you’ll find some items that you don’t even need to think about. If you’re 
working on a larger project, most of the items will be useful.

Specific Architectural Topics
❑ Is the overall organization of the program clear, including a good architec-

tural overview and justification?

❑ Are major building blocks well defined, including their areas of responsi-
bility and their interfaces to other building blocks?

❑ Are all the functions listed in the requirements covered sensibly, by neither 
too many nor too few building blocks?

❑ Are the most critical classes described and justified?

❑ Is the data design described and justified?

❑ Is the database organization and content specified?

❑ Are all key business rules identified and their impact on the system 
described? 

❑ Is a strategy for the user interface design described?

❑ Is the user interface modularized so that changes in it won’t affect the rest 
of the program?

❑ Is a strategy for handling I/O described and justified?

❑ Are resource-use estimates and a strategy for resource management 
described and justified for scarce resources like threads, database connec-
tions, handles, network bandwidth, and so on?

❑ Are the architecture’s security requirements described? 

❑ Does the architecture set space and speed budgets for each class, sub-
system, or functionality area? 

❑ Does the architecture describe how scalability will be achieved? 

❑ Does the architecture address interoperability?

❑ Is a strategy for internationalization/localization described? 

❑ Is a coherent error-handling strategy provided?

❑ Is the approach to fault tolerance defined (if any is needed)? 



3.6 Amount of Time to Spend on Upstream Prerequisites 55

❑ Has technical feasibility of all parts of the system been established? 

❑ Is an approach to overengineering specified?

❑ Are necessary buy-vs.-build decisions included?

❑ Does the architecture describe how reused code will be made to conform 
to other architectural objectives? 

❑ Is the architecture designed to accommodate likely changes? 

General Architectural Quality
❑ Does the architecture account for all the requirements? 

❑ Is any part overarchitected or underarchitected? Are expectations in this 
area set out explicitly?

❑ Does the whole architecture hang together conceptually?

❑ Is the top-level design independent of the machine and language that will 
be used to implement it?

❑ Are the motivations for all major decisions provided?

❑ Are you, as a programmer who will implement the system, comfortable 
with the architecture?

3.6 Amount of Time to Spend on Upstream Prerequisites
Cross-Reference The 
amount of time you spend 
on prerequisites will depend 
on your project type. For 
details on adapting prereq-
uisites to your specific 
project, see Section 3.2, 
“Determine the Kind of Soft-
ware You’re Working On,” 
earlier in this chapter. 

The amount of time to spend on problem definition, requirements, and software architec-
ture varies according to the needs of your project. Generally, a well-run project devotes 
about 10 to 20 percent of its effort and about 20 to 30 percent of its schedule to require-
ments, architecture, and up-front planning (McConnell 1998, Kruchten 2000). These fig-
ures don’t include time for detailed design—that’s part of construction.

If requirements are unstable and you’re working on a large, formal project, you’ll prob-
ably have to work with a requirements analyst to resolve requirements problems that 
are identified early in construction. Allow time to consult with the requirements ana-
lyst and for the requirements analyst to revise the requirements before you’ll have a 
workable version of the requirements.

If requirements are unstable and you’re working on a small, informal project, you’ll prob-
ably need to resolve requirements issues yourself. Allow time for defining the require-
ments well enough that their volatility will have a minimal impact on construction.



56 Chapter 3: Measure Twice, Cut Once: Upstream Prerequisites

Cross-Reference For 
approaches to handling 
changing requirements, see 
“Handling Requirements 
Changes During Construc-
tion” in Section 3.4, earlier in 
this chapter. 

If the requirements are unstable on any project—formal or informal—treat require-
ments work as its own project. Estimate the time for the rest of the project after you’ve 
finished the requirements. This is a sensible approach since no one can reasonably 
expect you to estimate your schedule before you know what you’re building. It’s as if 
you were a contractor called to work on a house. Your customer says, “What will it cost 
to do the work?” You reasonably ask, “What do you want me to do?” Your customer 
says, “I can’t tell you, but how much will it cost?” You reasonably thank the customer 
for wasting your time and go home.

With a building, it’s clear that it’s unreasonable for clients to ask for a bid before tell-
ing you what you’re going to build. Your clients wouldn’t want you to show up with 
wood, hammer, and nails and start spending their money before the architect had fin-
ished the blueprints. People tend to understand software development less than they 
understand two-by-fours and sheetrock, however, so the clients you work with might 
not immediately understand why you want to plan requirements development as a 
separate project. You might need to explain your reasoning to them.

When allocating time for software architecture, use an approach similar to the one for 
requirements development. If the software is a kind that you haven’t worked with 
before, allow more time for the uncertainty of designing in a new area. Ensure that the 
time you need to create a good architecture won’t take away from the time you need 
for good work in other areas. If necessary, plan the architecture work as a separate 
project, too.

Additional Resources
cc2e.com/0344 Following are more resources on requirements:

cc2e.com/0351 Requirements

Here are a few books that give much more detail on requirements development: 

Wiegers, Karl. Software Requirements, 2d ed. Redmond, WA: Microsoft Press, 2003. 
This is a practical, practitioner-focused book that describes the nuts and bolts of 
requirements activities, including requirements elicitation, requirements analysis, 
requirements specification, requirements validation, and requirements management. 

Robertson, Suzanne and James Robertson. Mastering the Requirements Process. Read-
ing, MA: Addison-Wesley, 1999. This is a good alternative to Wiegers’ book for the 
more advanced requirements practitioner.

cc2e.com/0358

Gilb, Tom. Competitive Engineering. Reading, MA: Addison-Wesley, 2004. This book 
describes Gilb’s requirements language, known as “Planguage.” The book covers 
Gilb’s specific approach to requirements engineering, design and design evaluation, 
and evolutionary project management. This book can be downloaded from Gilb’s 
website at www.gilb.com.
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IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements Specifications. 
Los Alamitos, CA: IEEE Computer Society Press. This document is the IEEE-ANSI 
guide for writing software-requirements specifications. It describes what should be 
included in the specification document and shows several alternative outlines for one. 

cc2e.com/0365

Abran, Alain, et al. Swebok: Guide to the Software Engineering Body of Knowledge. Los 
Alamitos, CA: IEEE Computer Society Press, 2001. This contains a detailed descrip-
tion of the body of software-requirements knowledge. It can also be downloaded from 
www.swebok.org.

Other good alternatives include the following:

Lauesen, Soren. Software Requirements: Styles and Techniques. Boston, MA: Addison-
Wesley, 2002. 

Kovitz, Benjamin L. Practical Software Requirements: A Manual of Content and Style. 
Manning Publications Company, 1998. 

Cockburn, Alistair. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2000. 

cc2e.com/0372 Software Architecture

Numerous books on software architecture have been published in the past few years. 
Here are some of the best: 

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2d ed. 
Boston, MA: Addison-Wesley, 2003. 

Buschman, Frank, et al. Pattern-Oriented Software Architecture, Volume 1: A System of 
Patterns. New York, NY: John Wiley & Sons, 1996. 

Clements, Paul, ed. Documenting Software Architectures: Views and Beyond. Boston, MA: 
Addison-Wesley, 2003. 

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architectures: Meth-
ods and Case Studies. Boston, MA: Addison-Wesley, 2002. 

Fowler, Martin. Patterns of Enterprise Application Architecture. Boston, MA: Addison-
Wesley, 2002. 

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Development 
Process. Reading, MA: Addison-Wesley, 1999.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of Software-
Intensive Systems. Los Alamitos, CA: IEEE Computer Society Press. This document is 
the IEEE-ANSI guide for creating software-architecture specifications. 
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cc2e.com/0379 General Software-Development Approaches

Many books are available that map out different approaches to conducting a software 
project. Some are more sequential, and some are more iterative. 

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press, 
1998. This book presents one particular way to conduct a project. The approach pre-
sented emphasizes deliberate up-front planning, requirements development, and 
architecture work followed by careful project execution. It provides long-range pre-
dictability of costs and schedules, high quality, and a moderate amount of flexibility. 

Kruchten, Philippe. The Rational Unified Process: An Introduction, 2d ed. Reading, MA: 
Addison-Wesley, 2000. This book presents a project approach that is “architecture-
centric and use-case driven.” Like Software Project Survival Guide, it focuses on up-front 
work that provides good long-range predictability of costs and schedules, high quality, 
and moderate flexibility. This book’s approach requires somewhat more sophisticated 
use than the approaches described in Software Project Survival Guide and Extreme Pro-
gramming Explained: Embrace Change. 

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Development 
Process. Reading, MA: Addison-Wesley, 1999. This book is a more in-depth treatment 
of the topics covered in The Rational Unified Process: An Introduction, 2d ed. 

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison-
Wesley, 2000. Beck describes a highly iterative approach that focuses on developing 
requirements and designs iteratively, in conjunction with construction. The Extreme 
Programming approach offers little long-range predictability but provides a high 
degree of flexibility. 

Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: 
Addison-Wesley, 1988. Gilb’s approach explores critical planning, requirements, and 
architecture issues early in a project and then continuously adapts the project plans as 
the project progresses. This approach provides a combination of long-range predict-
ability, high quality, and a high degree of flexibility. It requires more sophistication 
than the approaches described in Software Project Survival Guide and Extreme Program-
ming Explained: Embrace Change.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996. This 
book presents a toolbox approach to project planning. An experienced project plan-
ner can use the tools presented in this book to create a project plan that is highly 
adapted to a project’s unique needs. 

Boehm, Barry and Richard Turner. Balancing Agility and Discipline: A Guide for the Per-
plexed. Boston, MA: Addison-Wesley, 2003. This book explores the contrast between 
agile development and plan-driven development styles. Chapter 3 has four especially 
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revealing sections: “A Typical Day using PSP/TSP,” “A Typical Day using Extreme Pro-
gramming,” “A Crisis Day using PSP/TSP,” and “A Crisis Day using Extreme Program-
ming.” Chapter 5 is on using risk to balance agility, which provides incisive guidance 
for selecting between agile and plan-driven methods. Chapter 6, “Conclusions,” is also 
well balanced and gives great perspective. Appendix E is a gold mine of empirical data 
on agile practices. 

Larman, Craig. Agile and Iterative Development: A Manager’s Guide. Boston, MA: Addi-
son Wesley, 2004. This is a well-researched introduction to flexible, evolutionary 
development styles. It overviews Scrum, Extreme Programming, the Unified Process, 
and Evo. 

cc2e.com/0386 Checklist: Upstream Prerequisites
❑ Have you identified the kind of software project you’re working on and tai-

lored your approach appropriately? 

❑ Are the requirements sufficiently well defined and stable enough to begin 
construction? (See the requirements checklist for details.)

❑ Is the architecture sufficiently well defined to begin construction? (See the 
architecture checklist for details.)

❑ Have other risks unique to your particular project been addressed, such 
that construction is not exposed to more risk than necessary? 

Key Points
■ The overarching goal of preparing for construction is risk reduction. Be sure 

your preparation activities are reducing risks, not increasing them. 

■ If you want to develop high-quality software, attention to quality must be part of 
the software-development process from the beginning to the end. Attention to 
quality at the beginning has a greater influence on product quality than atten-
tion at the end.

■ Part of a programmer’s job is to educate bosses and coworkers about the soft-
ware-development process, including the importance of adequate preparation 
before programming begins.

■ The kind of project you’re working on significantly affects construction prereq-
uisites—many projects should be highly iterative, and some should be more 
sequential. 

■ If a good problem definition hasn’t been specified, you might be solving the 
wrong problem during construction.
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■ If  good requirements work hasn’t been done, you might have missed important 
details of the problem. Requirements changes cost 20 to 100 times as much in 
the stages following construction as they do earlier, so be sure the requirements 
are right before you start programming.

■ If a good architectural design hasn’t been done, you might be solving the right 
problem the wrong way during construction. The cost of architectural changes 
increases as more code is written for the wrong architecture, so be sure the archi-
tecture is right, too.

■ Understand what approach has been taken to the construction prerequisites on 
your project, and choose your construction approach accordingly.
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Key Construction Decisions
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Once you’re sure an appropriate groundwork has been laid for construction, prepara-
tion turns toward more construction-specific decisions. Chapter 3, “Measure Twice, 
Cut Once: Upstream Prerequisites,” discussed the software equivalent of blueprints 
and construction permits. You might not have had much control over those prepara-
tions, so the focus of that chapter was on assessing what you have to work with when 
construction begins. This chapter focuses on preparations that individual program-
mers and technical leads are responsible for, directly or indirectly. It discusses the soft-
ware equivalent of how to select specific tools for your tool belt and how to load your 
truck before you head out to the job site. 

If you feel you’ve read enough about construction preparations already, you might 
skip ahead to Chapter 5, “Design in Construction.” 

4.1 Choice of Programming Language
By relieving the brain of all unnecessary work, a good notation sets it free to con-
centrate on more advanced problems, and in effect increases the mental power of 
the race. Before the introduction of the Arabic notation, multiplication was dif-
ficult, and the division even of integers called into play the highest mathematical 
faculties. Probably nothing in the modern world would have more astonished a 
Greek mathematician than to learn that ... a huge proportion of the population 
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of Western Europe could perform the operation of division for the largest num-
bers. This fact would have seemed to him a sheer impossibility.... Our modern 
power of easy reckoning with decimal fractions is the almost miraculous result of 
the gradual discovery of a perfect notation.

—Alfred North Whitehead

The programming language in which the system will be implemented should be of 
great interest to you since you will be immersed in it from the beginning of construc-
tion to the end.

Studies have shown that the programming-language choice affects productivity and 
code quality in several ways.

Programmers are more productive using a familiar language than an unfamiliar one. 
Data from the Cocomo II estimation model shows that programmers working in a lan-
guage they’ve used for three years or more are about 30 percent more productive than 
programmers with equivalent experience who are new to a language (Boehm et al. 
2000). An earlier study at IBM found that programmers who had extensive experience 
with a programming language were more than three times as productive as those with 
minimal experience (Walston and Felix 1977). (Cocomo II is more careful to isolate 
effects of individual factors, which accounts for the different results of the two studies.)

Programmers working with high-level languages achieve better productivity and quality 
than those working with lower-level languages. Languages such as C++, Java, Smalltalk, 
and Visual Basic have been credited with improving productivity, reliability, simplicity, 
and comprehensibility by factors of 5 to 15 over low-level languages such as assembly 
and C (Brooks 1987, Jones 1998, Boehm 2000). You save time when you don’t need to 
have an awards ceremony every time a C statement does what it’s supposed to. More-
over, higher-level languages are more expressive than lower-level languages. Each line of 
code says more. Table 4-1 shows typical ratios of source statements in several high-level 
languages to the equivalent code in C. A higher ratio means that each line of code in the 
language listed accomplishes more than does each line of code in C. 

Table 4-1 Ratio of High-Level-Language Statements to Equivalent C Code

Language Level Relative to C

C 1

C++ 2.5

Fortran 95 2

Java 2.5

Perl 6

Python 6

Smalltalk 6

Microsoft Visual Basic 4.5
Source: Adapted from Estimating Software Costs (Jones 1998), Software Cost Estimation with Cocomo II 
(Boehm 2000), and “An Empirical Comparison of Seven Programming Languages” (Prechelt 2000). 

1
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Some languages are better at expressing programming concepts than others. You can 
draw a parallel between natural languages such as English and programming lan-
guages such as Java and C++. In the case of natural languages, the linguists Sapir and 
Whorf hypothesize a relationship between the expressive power of a language and the 
ability to think certain thoughts. The Sapir-Whorf hypothesis says that your ability to 
think a thought depends on knowing words capable of expressing the thought. If you 
don’t know the words, you can’t express the thought and you might not even be able 
to formulate it (Whorf 1956).

Programmers may be similarly influenced by their languages. The words available in a 
programming language for expressing your programming thoughts certainly deter-
mine how you express your thoughts and might even determine what thoughts you 
can express.

Evidence of the effect of programming languages on programmers’ thinking is com-
mon. A typical story goes like this: “We were writing a new system in C++, but most of 
our programmers didn’t have much experience in C++. They came from Fortran back-
grounds. They wrote code that compiled in C++, but they were really writing dis-
guised Fortran. They stretched C++ to emulate Fortran’s bad features (such as gotos 
and global data) and ignored C++’s rich set of object-oriented capabilities.” This phe-
nomenon has been reported throughout the industry for many years (Hanson 1984, 
Yourdon 1986a).

Language Descriptions

The development histories of some languages are interesting, as are their general capa-
bilities. Here are descriptions of the most common languages in use today.

Ada

Ada is a general-purpose, high-level programming language based on Pascal. It was 
developed under the aegis of the Department of Defense and is especially well suited 
to real-time and embedded systems. Ada emphasizes data abstraction and informa-
tion hiding and forces you to differentiate between the public and private parts of each 
class and package. “Ada” was chosen as the name of the language in honor of Ada 
Lovelace, a mathematician who is considered to have been the world’s first program-
mer. Today, Ada is used primarily in military, space, and avionics systems.

Assembly Language

Assembly language, or “assembler,” is a kind of low-level language in which each state-
ment corresponds to a single machine instruction. Because the statements use spe-
cific machine instructions, an assembly language is specific to a particular processor—
for example, specific Intel or Motorola CPUs. Assembler is regarded as the second-
generation language. Most programmers avoid it unless they’re pushing the limits in 
execution speed or code size. 



64 Chapter 4: Key Construction Decisions

C

C is a general-purpose, mid-level language that was originally associated with the 
UNIX operating system. C has some high-level language features, such as structured 
data, structured control flow, machine independence, and a rich set of operators. It 
has also been called a “portable assembly language” because it makes extensive use of 
pointers and addresses, has some low-level constructs such as bit manipulation, and 
is weakly typed.

C was developed in the 1970s at Bell Labs. It was originally designed for and used on 
the DEC PDP-11—whose operating system, C compiler, and UNIX application pro-
grams were all written in C. In 1988, an ANSI standard was issued to codify C, which 
was revised in 1999. C was the de facto standard for microcomputer and workstation 
programming in the 1980s and 1990s.

C++

C++, an object-oriented language founded on C, was developed at Bell Laboratories in 
the 1980s. In addition to being compatible with C, C++ provides classes, polymor-
phism, exception handling, templates, and it provides more robust type checking 
than C does. It also provides an extensive and powerful standard library. 

C#

C# is a general-purpose, object-oriented language and programming environment 
developed by Microsoft with syntax similar to C, C++, and Java, and it provides exten-
sive tools that aid development on Microsoft platforms. 

Cobol

Cobol is an English-like programming language that was originally developed in 
1959–1961 for use by the Department of Defense. Cobol is used primarily for busi-
ness applications and is still one of the most widely used languages today, second 
only to Visual Basic in popularity (Feiman and Driver 2002). Cobol has been updated 
over the years to include mathematical functions and object-oriented capabilities. The 
acronym “Cobol” stands for COmmon Business-Oriented Language. 

Fortran

Fortran was the first high-level computer language, introducing the ideas of variables 
and high-level loops. “Fortran” stands for FORmula TRANslation. Fortran was origi-
nally developed in the 1950s and has seen several significant revisions, including For-
tran 77 in 1977, which added block-structured if-then-else statements and character-
string manipulations. Fortran 90 added user-defined data types, pointers, classes, and 
a rich set of operations on arrays. Fortran is used mainly in scientific and engineering 
applications.
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Java

Java is an object-oriented language with syntax similar to C and C++ that was devel-
oped by Sun Microsystems, Inc. Java was designed to run on any platform by convert-
ing Java source code to byte code, which is then run in each platform within an 
environment known as a virtual machine. Java is in widespread use for programming 
Web applications. 

JavaScript

JavaScript is an interpreted scripting language that was originally loosely related to 
Java. It is used primarily for client-side programming such as adding simple functions 
and online applications to Web pages. 

Perl

Perl is a string-handling language that is based on C and several UNIX utilities. Perl is 
often used for system administration tasks, such as creating build scripts, as well as 
for report generation and processing. It’s also used to create Web applications such as 
Slashdot. The acronym “Perl” stands for Practical Extraction and Report Language. 

PHP

PHP is an open-source scripting language with a simple syntax similar to Perl, Bourne 
Shell, JavaScript, and C. PHP runs on all major operating systems to execute server-
side interactive functions. It can be embedded in Web pages to access and present 
database information. The acronym “PHP” originally stood for Personal Home Page 
but now stands for PHP: Hypertext Processor. 

Python

Python is an interpreted, interactive, object-oriented language that runs in numerous 
environments. It is used most commonly for writing scripts and small Web applica-
tions and also contains some support for creating larger programs. 

SQL

SQL is the de facto standard language for querying, updating, and managing rela-
tional databases. “SQL” stands for Structured Query Language. Unlike other lan-
guages listed in this section, SQL is a “declarative language,” meaning that it does not 
define a sequence of operations, but rather the result of some operations. 

Visual Basic

The original version of Basic was a high-level language developed at Dartmouth Col-
lege in the 1960s. The acronym BASIC stands for Beginner’s All-purpose Symbolic 
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Instruction Code. Visual Basic is a high-level, object-oriented, visual programming 
version of Basic developed by Microsoft that was originally designed for creating 
Microsoft Windows applications. It has since been extended to support customiza-
tion of desktop applications such as Microsoft Office, creation of Web programs, 
and other applications. Experts report that by the early 2000s more professional 
developers were working in Visual Basic than in any other language (Feiman and 
Driver 2002). 

4.2 Programming Conventions
Cross-Reference For more 
details on the power of con-
ventions, see Sections 11.3 
through 11.5. 

In high-quality software, you can see a relationship between the conceptual integrity 
of the architecture and its low-level implementation. The implementation must be 
consistent with the architecture that guides it and consistent internally. That’s the 
point of construction guidelines for variable names, class names, routine names, for-
matting conventions, and commenting conventions.

In a complex program, architectural guidelines give the program structural balance 
and construction guidelines provide low-level harmony, articulating each class as a 
faithful part of a comprehensive design. Any large program requires a controlling 
structure that unifies its programming-language details. Part of the beauty of a large 
structure is the way in which its detailed parts bear out the implications of its architec-
ture. Without a unifying discipline, your creation will be a jumble of sloppy variations 
in style. Such variations tax your brain—and only for the sake of understanding cod-
ing-style differences that are essentially arbitrary. One key to successful programming 
is avoiding arbitrary variations so that your brain can be free to focus on the variations 
that are really needed. For more on this, see “Software’s Primary Technical Imperative: 
Managing Complexity” in Section 5.2.

What if you had a great design for a painting, but one part was classical, one impres-
sionist, and one cubist? It wouldn’t have conceptual integrity no matter how closely 
you followed its grand design. It would look like a collage. A program needs low-level 
integrity, too.

Before construction begins, spell out the programming conventions you’ll use. Cod-
ing-convention details are at such a level of precision that they’re nearly impossible to 
retrofit into software after it’s written. Details of such conventions are provided 
throughout the book.

4.3 Your Location on the Technology Wave 
During my career I’ve seen the PC’s star rise while the mainframe’s star dipped toward 
the horizon. I’ve seen GUI programs replace character-based programs. And I’ve seen 
the Web ascend while Windows declines. I can only assume that by the time you read 
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this some new technology will be in ascendance, and Web programming as I know it 
today (2004) will be on its way out. These technology cycles, or waves, imply different 
programming practices depending on where you find yourself on the wave. 

In mature technology environments—the end of the wave, such as Web programming 
in the mid-2000s—we benefit from a rich software development infrastructure. Late-
wave environments provide numerous programming language choices, comprehen-
sive error checking for code written in those languages, powerful debugging tools, 
and automatic, reliable performance optimization. The compilers are nearly bug-free. 
The tools are well documented in vendor literature, in third-party books and articles, 
and in extensive Web resources. Tools are integrated, so you can do UI, database, 
reports, and business logic from within a single environment. If you do run into prob-
lems, you can readily find quirks of the tools described in FAQs. Many consultants 
and training classes are also available.

In early-wave environments—Web programming in the mid-1990s, for example—the 
situation is the opposite. Few programming language choices are available, and those 
languages tend to be buggy and poorly documented. Programmers spend significant 
amounts of time simply trying to figure out how the language works instead of writing 
new code. Programmers also spend countless hours working around bugs in the lan-
guage products, underlying operating system, and other tools. Programming tools in 
early-wave environments tend to be primitive. Debuggers might not exist at all, and 
compiler optimizers are still only a gleam in some programmer’s eye. Vendors revise 
their compiler version often, and it seems that each new version breaks significant 
parts of your code. Tools aren’t integrated, and so you tend to work with different 
tools for UI, database, reports, and business logic. The tools tend not to be very com-
patible, and you can expend a significant amount of effort just to keep existing func-
tionality working against the onslaught of compiler and library releases. If you run 
into trouble, reference literature exists on the Web in some form, but it isn’t always 
reliable and, if the available literature is any guide, every time you encounter a prob-
lem it seems as though you’re the first one to do so. 

These comments might seem like a recommendation to avoid early-wave program-
ming, but that isn’t their intent. Some of the most innovative applications arise from 
early-wave programs, like Turbo Pascal, Lotus 123, Microsoft Word, and the Mosaic 
browser. The point is that how you spend your programming days will depend on 
where you are on the technology wave. If you’re in the late part of the wave, you can 
plan to spend most of your day steadily writing new functionality. If you’re in the early 
part of the wave, you can assume that you’ll spend a sizeable portion of your time try-
ing to figure out your programming language’s undocumented features, debugging 
errors that turn out to be defects in the library code, revising code so that it will work 
with a new release of some vendor’s library, and so on. 

When you find yourself working in a primitive environment, realize that the program-
ming practices described in this book can help you even more than they can in mature 
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environments. As David Gries pointed out, your programming tools don’t have to 
determine how you think about programming (1981). Gries makes a distinction 
between programming in a language vs. programming into a language. Programmers 
who program “in” a language limit their thoughts to constructs that the language 
directly supports. If the language tools are primitive, the programmer’s thoughts will 
also be primitive. 

Programmers who program “into” a language first decide what thoughts they want to 
express, and then they determine how to express those thoughts using the tools pro-
vided by their specific language. 

Example of Programming into a Language

In the early days of Visual Basic, I was frustrated because I wanted to keep the busi-
ness logic, the UI, and the database separate in the product I was developing, but 
there wasn’t any built-in way to do that in the language. I knew that if I wasn’t careful, 
over time some of my Visual Basic “forms” would end up containing business logic, 
some forms would contain database code, and some would contain neither—I would 
end up never being able to remember which code was located in which place. I had 
just completed a C++ project that had done a poor job of separating those issues, and 
I didn’t want to experience déjà vu of those headaches in a different language.

Consequently, I adopted a design convention that the .frm file (the form file) was 
allowed only to retrieve data from the database and store data back into the database. 
It wasn’t allowed to communicate that data directly to other parts of the program. 
Each form supported an IsFormCompleted() routine, which was used by the calling 
routine to determine whether the form that had been activated had saved its data. 
IsFormCompleted() was the only public routine that forms were allowed to have. 
Forms also weren’t allowed to contain any business logic. All other code had to be 
contained in an associated .bas file, including validity checks for entries in the form.

Visual Basic did not encourage this kind of approach. It encouraged programmers to 
put as much code into the .frm file as possible, and it didn’t make it easy for the .frm 
file to call back into an associated .bas file. 

This convention was pretty simple, but as I got deeper into my project, I found that it 
helped me avoid numerous cases in which I would have been writing convoluted code 
without the convention. I would have been loading forms but keeping them hidden so 
that I could call the data-validity-checking routines inside them, or I would have been 
copying code from the forms into other locations and then maintaining parallel code 
in multiple places. The IsFormCompleted() convention also kept things simple. 
Because every form worked exactly the same way, I never had to second-guess the 
semantics of IsFormCompleted()—it meant the same thing every time it was used. 
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Visual Basic didn’t support this convention directly, but my use of a simple program-
ming convention—programming into the language—made up for the language’s lack of 
structure at that time and helped keep the project intellectually manageable. 

Understanding the distinction between programming in a language and program-
ming into one is critical to understanding this book. Most of the important program-
ming principles depend not on specific languages but on the way you use them. If 
your language lacks constructs that you want to use or is prone to other kinds of prob-
lems, try to compensate for them. Invent your own coding conventions, standards, 
class libraries, and other augmentations.

4.4 Selection of Major Construction Practices
Part of preparing for construction is deciding which of the many available good prac-
tices you’ll emphasize. Some projects use pair programming and test-first develop-
ment, while others use solo development and formal inspections. Either combination 
of techniques can work well, depending on specific circumstances of the project. 

The following checklist summarizes the specific practices you should consciously 
decide to include or exclude during construction. Details of these practices are con-
tained throughout the book. 

cc2e.com/0496 Checklist: Major Construction Practices
Coding 

❑ Have you defined how much design will be done up front and how much 
will be done at the keyboard, while the code is being written? 

❑ Have you defined coding conventions for names, comments, and layout?

❑ Have you defined specific coding practices that are implied by the architec-
ture, such as how error conditions will be handled, how security will be 
addressed, what conventions will be used for class interfaces, what stan-
dards will apply to reused code, how much to consider performance while 
coding, and so on? 

❑ Have you identified your location on the technology wave and adjusted 
your approach to match? If necessary, have you identified how you will 
program into the language rather than being limited by programming in it?

Teamwork 
❑ Have you defined an integration procedure—that is, have you defined the 

specific steps a programmer must go through before checking code into 
the master sources?

❑ Will programmers program in pairs, or individually, or some combination 
of the two? 

KEY POINT
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Cross-Reference For more 
details on quality assurance, 
see Chapter 20, “The Soft-
ware-Quality Landscape.”

Quality Assurance 
❑ Will programmers write test cases for their code before writing the code 

itself? 

❑ Will programmers write unit tests for their code regardless of whether 
they write them first or last? 

❑ Will programmers step through their code in the debugger before they 
check it in? 

❑ Will programmers integration-test their code before they check it in? 

❑ Will programmers review or inspect each other’s code? 

Cross-Reference For more 
details on tools, see Chapter 
30, “Programming Tools.”

Tools
❑ Have you selected a revision control tool? 

❑ Have you selected a language and language version or compiler version? 

❑ Have you selected a framework such as J2EE or Microsoft .NET or explic-
itly decided not to use a framework? 

❑ Have you decided whether to allow use of nonstandard language features? 

❑ Have you identified and acquired other tools you’ll be using—editor, refac-
toring tool, debugger, test framework, syntax checker, and so on? 

Key Points
■ Every programming language has strengths and weaknesses. Be aware of the 

specific strengths and weaknesses of the language you’re using. 

■ Establish programming conventions before you begin programming. It’s nearly 
impossible to change code to match them later.

■ More construction practices exist than you can use on any single project. Con-
sciously choose the practices that are best suited to your project. 

■ Ask yourself whether the programming practices you’re using are a response to 
the programming language you’re using or controlled by it. Remember to pro-
gram into the language, rather than programming in it. 

■ Your position on the technology wave determines what approaches will be effec-
tive—or even possible. Identify where you are on the technology wave, and 
adjust your plans and expectations accordingly.
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Design in Construction
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Some people might argue that design isn’t really a construction activity, but on small 
projects, many activities are thought of as construction, often including design. On 
some larger projects, a formal architecture might address only the system-level issues 
and much design work might intentionally be left for construction. On other large 
projects, the design might be intended to be detailed enough for coding to be fairly 
mechanical, but design is rarely that complete—the programmer usually designs part 
of the program, officially or otherwise.

Cross-Reference For details 
on the different levels of for-
mality required on large and 
small projects, see Chapter 
27, “How Program Size 
Affects Construction.”

On small, informal projects, a lot of design is done while the programmer sits at the 
keyboard. “Design” might be just writing a class interface in pseudocode before writ-
ing the details. It might be drawing diagrams of a few class relationships before coding 
them. It might be asking another programmer which design pattern seems like a bet-
ter choice. Regardless of how it’s done, small projects benefit from careful design just 
as larger projects do, and recognizing design as an explicit activity maximizes the ben-
efit you will receive from it.

Design is a huge topic, so only a few aspects of it are considered in this chapter. A large 
part of good class or routine design is determined by the system architecture, so be 
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sure that the architecture prerequisite discussed in Section 3.5 has been satisfied. 
Even more design work is done at the level of individual classes and routines, 
described in Chapter 6, “Working Classes,” and Chapter 7, “High-Quality Routines.”

If you’re already familiar with software design topics, you might want to just hit the 
highlights in the sections about design challenges in Section 5.1 and key heuristics in 
Section 5.3.

5.1 Design Challenges
Cross-Reference The differ-
ence between heuristic and 
deterministic processes is 
described in Chapter 2, 
“Metaphors for a Richer 
Understanding of Software 
Development.”

The phrase “software design” means the conception, invention, or contrivance of a 
scheme for turning a specification for computer software into operational software. 
Design is the activity that links requirements to coding and debugging. A good top-
level design provides a structure that can safely contain multiple lower-level designs. 
Good design is useful on small projects and indispensable on large projects. 

Design is also marked by numerous challenges, which are outlined in this section. 

Design Is a Wicked Problem
The picture of the software 
designer deriving his design 
in a rational, error-free way 
from a statement of require-
ments is quite unrealistic. No 
system has ever been devel-
oped in that way, and proba-
bly none ever will. Even the 
small program develop-
ments shown in textbooks 
and papers are unreal. They 
have been revised and pol-
ished until the author has 
shown us what he wishes he 
had done, not what actually 
did happen.
—David Parnas and 
Paul Clements

Horst Rittel and Melvin Webber defined a “wicked” problem as one that could be 
clearly defined only by solving it, or by solving part of it (1973). This paradox implies, 
essentially, that you have to “solve” the problem once in order to clearly define it and 
then solve it again to create a solution that works. This process has been motherhood 
and apple pie in software development for decades (Peters and Tripp 1976).

In my part of the world, a dramatic example of such a wicked problem was the design 
of the original Tacoma Narrows bridge. At the time the bridge was built, the main con-
sideration in designing a bridge was that it be strong enough to support its planned 
load. In the case of the Tacoma Narrows bridge, wind created an unexpected, side-to-
side harmonic ripple. One blustery day in 1940, the ripple grew uncontrollably until 
the bridge collapsed, as shown in Figure 5-1.

This is a good example of a wicked problem because, until the bridge collapsed, its 
engineers didn’t know that aerodynamics needed to be considered to such an extent. 
Only by building the bridge (solving the problem) could they learn about the addi-
tional consideration in the problem that allowed them to build another bridge that 
still stands.
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Figure 5-1 The Tacoma Narrows bridge—an example of a wicked problem.

One of the main differences between programs you develop in school and those you 
develop as a professional is that the design problems solved by school programs are 
rarely, if ever, wicked. Programming assignments in school are devised to move you in a 
beeline from beginning to end. You’d probably want to tar and feather a teacher who gave 
you a programming assignment, then changed the assignment as soon as you finished 
the design, and then changed it again just as you were about to turn in the completed pro-
gram. But that very process is an everyday reality in professional programming.

Design Is a Sloppy Process (Even If it Produces a Tidy Result)

The finished software design should look well organized and clean, but the process 
used to develop the design isn’t nearly as tidy as the end result.

Further Reading For a fuller 
exploration of this viewpoint, 
see “A Rational Design Pro-
cess: How and Why to Fake 
It” (Parnas and Clements 
1986).

Design is sloppy because you take many false steps and go down many blind alleys—
you make a lot of mistakes. Indeed, making mistakes is the point of design—it’s 
cheaper to make mistakes and correct designs than it would be to make the same mis-
takes, recognize them after coding, and have to correct full-blown code. Design is 
sloppy because a good solution is often only subtly different from a poor one. 
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Cross-Reference For a better 
answer to this question, see 
“How Much Design is 
Enough?” in Section 5.4 later 
in this chapter. 

Design is also sloppy because it’s hard to know when your design is “good enough.” 
How much detail is enough? How much design should be done with a formal design 
notation, and how much should be left to be done at the keyboard? When are you 
done? Since design is open-ended, the most common answer to that question is 
“When you’re out of time.”

Design Is About Tradeoffs and Priorities

In an ideal world, every system could run instantly, consume zero storage space, use 
zero network bandwidth, never contain any errors, and cost nothing to build. In the real 
world, a key part of the designer’s job is to weigh competing design characteristics and 
strike a balance among those characteristics. If a fast response rate is more important 
than minimizing development time, a designer will choose one design. If minimizing 
development time is more important, a good designer will craft a different design.

Design Involves Restrictions

The point of design is partly to create possibilities and partly to restrict possibilities. If 
people had infinite time, resources, and space to build physical structures, you would 
see incredible sprawling buildings with one room for each shoe and hundreds of rooms. 
This is how software can turn out without deliberately imposed restrictions. The con-
straints of limited resources for constructing buildings force simplifications of the solu-
tion that ultimately improve the solution. The goal in software design is the same.

Design Is Nondeterministic

If you send three people away to design the same program, they can easily return with 
three vastly different designs, each of which could be perfectly acceptable. There 
might be more than one way to skin a cat, but there are usually dozens of ways to 
design a computer program.

Design Is a Heuristic Process

Because design is nondeterministic, design techniques tend to be heuristics—“rules of 
thumb” or “things to try that sometimes work”—rather than repeatable processes that 
are guaranteed to produce predictable results. Design involves trial and error. A 
design tool or technique that worked well on one job or on one aspect of a job might 
not work as well on the next project. No tool is right for everything. 

Design Is Emergent
cc2e.com/0539 A tidy way of summarizing these attributes of design is to say that design is 

“emergent.” Designs don’t spring fully formed directly from someone’s brain. They 
evolve and improve through design reviews, informal discussions, experience writing 
the code itself, and experience revising the code.

KEY POINT
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Further Reading Software 
isn’t the only kind of struc-
ture that changes over time. 
Physical structures evolve, 
too—see How Buildings 
Learn (Brand 1995). 

Virtually all systems undergo some degree of design changes during their initial devel-
opment, and then they typically change to a greater extent as they’re extended into 
later versions. The degree to which change is beneficial or acceptable depends on the 
nature of the software being built.

5.2 Key Design Concepts
Good design depends on understanding a handful of key concepts. This section dis-
cusses the role of complexity, desirable characteristics of designs, and levels of design. 

Software’s Primary Technical Imperative: Managing Complexity 
Cross-Reference For discus-
sion of the way complexity 
affects programming issues 
other than design, see 
Section 34.1, “Conquer 
Complexity.”

To understand the importance of managing complexity, it’s useful to refer to Fred 
Brooks’s landmark paper, “No Silver Bullets: Essence and Accidents of Software Engi-
neering” (1987). 

Accidental and Essential Difficulties

Brooks argues that software development is made difficult because of two different 
classes of problems—the essential and the accidental. In referring to these two terms, 
Brooks draws on a philosophical tradition going back to Aristotle. In philosophy, the 
essential properties are the properties that a thing must have in order to be that thing. 
A car must have an engine, wheels, and doors to be a car. If it doesn’t have any of those 
essential properties, it isn’t really a car. 

Accidental properties are the properties a thing just happens to have, properties that 
don’t really bear on whether the thing is what it is. A car could have a V8, a turbo-
charged 4-cylinder, or some other kind of engine and be a car regardless of that detail. 
A car could have two doors or four; it could have skinny wheels or mag wheels. All 
those details are accidental properties. You could also think of accidental properties 
as incidental, discretionary, optional, and happenstance. 

Cross-Reference Accidental 
difficulties are more promi-
nent in early-wave develop-
ment than in late-wave 
development. For details, 
see Section 4.3, “Your Loca-
tion on the Technology 
Wave.”

Brooks observes that the major accidental difficulties in software were addressed long 
ago. For example, accidental difficulties related to clumsy language syntaxes were 
largely eliminated in the evolution from assembly language to third-generation lan-
guages and have declined in significance incrementally since then. Accidental difficul-
ties related to noninteractive computers were resolved when time-share operating 
systems replaced batch-mode systems. Integrated programming environments fur-
ther eliminated inefficiencies in programming work arising from tools that worked 
poorly together. 
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Brooks argues that progress on software’s remaining essential difficulties is bound to 
be slower. The reason is that, at its essence, software development consists of working 
out all the details of a highly intricate, interlocking set of concepts. The essential 
difficulties arise from the necessity of interfacing with the complex, disorderly real 
world; accurately and completely identifying the dependencies and exception cases; 
designing solutions that can’t be just approximately correct but that must be exactly 
correct; and so on. Even if we could invent a programming language that used the 
same terminology as the real-world problem we’re trying to solve, programming 
would still be difficult because of the challenge in determining precisely how the real 
world works. As software addresses ever-larger real-world problems, the interactions 
among the real-world entities become increasingly intricate, and that in turn increases 
the essential difficulty of the software solutions. 

The root of all these essential difficulties is complexity—both accidental and essential. 

Importance of Managing Complexity

There are two ways of con-
structing a software design: 
one way is to make it so sim-
ple that there are obviously 
no deficiencies, and the 
other is to make it so compli-
cated that there are no obvi-
ous deficiencies.
—C. A. R. Hoare

When software-project surveys report causes of project failure, they rarely identify 
technical reasons as the primary causes of project failure. Projects fail most often 
because of poor requirements, poor planning, or poor management. But when 
projects do fail for reasons that are primarily technical, the reason is often uncon-
trolled complexity. The software is allowed to grow so complex that no one really 
knows what it does. When a project reaches the point at which no one completely 
understands the impact that code changes in one area will have on other areas, 
progress grinds to a halt. 

Managing complexity is the most important technical topic in software development. 
In my view, it’s so important that Software’s Primary Technical Imperative has to be 
managing complexity.

Complexity is not a new feature of software development. Computing pioneer Edsger 
Dijkstra pointed out that computing is the only profession in which a single mind is 
obliged to span the distance from a bit to a few hundred megabytes, a ratio of 1 to 109, 
or nine orders of magnitude (Dijkstra 1989). This gigantic ratio is staggering. Dijkstra 
put it this way: “Compared to that number of semantic levels, the average mathemati-
cal theory is almost flat. By evoking the need for deep conceptual hierarchies, the 
automatic computer confronts us with a radically new intellectual challenge that has 
no precedent in our history.” Of course software has become even more complex 
since 1989, and Dijkstra’s ratio of 1 to 109 could easily be more like 1 to 1015 today. 

KEY POINT
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One symptom that you have 
bogged down in complexity 
overload is when you find 
yourself doggedly applying a 
method that is clearly irrele-
vant, at least to any outside 
observer. It is like the 
mechanically inept person 
whose car breaks down—so 
he puts water in the battery 
and empties the ashtrays.
—P. J. Plauger

Dijkstra pointed out that no one’s skull is really big enough to contain a modern com-
puter program (Dijkstra 1972), which means that we as software developers 
shouldn’t try to cram whole programs into our skulls at once; we should try to orga-
nize our programs in such a way that we can safely focus on one part of it at a time. 
The goal is to minimize the amount of a program you have to think about at any one 
time. You might think of this as mental juggling—the more mental balls the program 
requires you to keep in the air at once, the more likely you’ll drop one of the balls, 
leading to a design or coding error. 

At the software-architecture level, the complexity of a problem is reduced by dividing 
the system into subsystems. Humans have an easier time comprehending several sim-
ple pieces of information than one complicated piece. The goal of all software-design 
techniques is to break a complicated problem into simple pieces. The more indepen-
dent the subsystems are, the more you make it safe to focus on one bit of complexity 
at a time. Carefully defined objects separate concerns so that you can focus on one 
thing at a time. Packages provide the same benefit at a higher level of aggregation.

Keeping routines short helps reduce your mental workload. Writing programs in 
terms of the problem domain, rather than in terms of low-level implementation 
details, and working at the highest level of abstraction reduce the load on your brain. 

The bottom line is that programmers who compensate for inherent human limita-
tions write code that’s easier for themselves and others to understand and that has 
fewer errors.

How to Attack Complexity

Overly costly, ineffective designs arise from three sources:

■ A complex solution to a simple problem

■ A simple, incorrect solution to a complex problem

■ An inappropriate, complex solution to a complex problem

As Dijkstra pointed out, modern software is inherently complex, and no matter how 
hard you try, you’ll eventually bump into some level of complexity that’s inherent in the 
real-world problem itself. This suggests a two-prong approach to managing complexity: 

■ Minimize the amount of essential complexity that anyone’s brain has to deal 
with at any one time. 

■ Keep accidental complexity from needlessly proliferating. 

Once you understand that all other technical goals in software are secondary to man-
aging complexity, many design considerations become straightforward. 

KEY POINT
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Desirable Characteristics of a Design
When I am working on a 
problem I never think about 
beauty. I think only how to 
solve the problem. But when 
I have finished, if the solu-
tion is not beautiful, I know it 
is wrong.
—R. Buckminster Fuller

A high-quality design has several general characteristics. If you could achieve all these 
goals, your design would be very good indeed. Some goals contradict other goals, but 
that’s the challenge of design—creating a good set of tradeoffs from competing 
objectives. Some characteristics of design quality are also characteristics of a good 
program: reliability, performance, and so on. Others are internal characteristics of 
the design.

Cross-Reference These 
characteristics are related to 
general software-quality 
attributes. For details on 
general attributes, see Sec-
tion 20.1, “Characteristics of 
Software Quality.”

Here’s a list of internal design characteristics:

Minimal complexity The primary goal of design should be to minimize complexity 
for all the reasons just described. Avoid making “clever” designs. Clever designs are 
usually hard to understand. Instead make “simple” and “easy-to-understand” designs. 
If your design doesn’t let you safely ignore most other parts of the program when 
you’re immersed in one specific part, the design isn’t doing its job. 

Ease of maintenance Ease of maintenance means designing for the maintenance 
programmer. Continually imagine the questions a maintenance programmer would 
ask about the code you’re writing. Think of the maintenance programmer as your 
audience, and then design the system to be self-explanatory.

Loose coupling Loose coupling means designing so that you hold connections 
among different parts of a program to a minimum. Use the principles of  good abstrac-
tions in class interfaces, encapsulation, and information hiding to design classes with 
as few interconnections as possible. Minimal connectedness minimizes work during 
integration, testing, and maintenance.

Extensibility Extensibility means that you can enhance a system without causing 
violence to the underlying structure. You can change a piece of a system without 
affecting other pieces. The most likely changes cause the system the least trauma.

Reusability Reusability means designing the system so that you can reuse pieces of 
it in other systems.

High fan-in High fan-in refers to having a high number of classes that use a given 
class. High fan-in implies that a system has been designed to make good use of utility 
classes at the lower levels in the system.

 



5.2 Key Design Concepts 81

Low-to-medium fan-out Low-to-medium fan-out means having a given class use a 
low-to-medium number of other classes. High fan-out (more than about seven) indi-
cates that a class uses a large number of other classes and may therefore be overly 
complex. Researchers have found that the principle of low fan-out is beneficial 
whether you’re considering the number of routines called from within a routine or the 
number of classes used within a class (Card and Glass 1990; Basili, Briand, and Melo 
1996). 

Portability Portability means designing the system so that you can easily move it to 
another environment.

Leanness Leanness means designing the system so that it has no extra parts (Wirth 
1995, McConnell 1997). Voltaire said that a book is finished not when nothing more 
can be added but when nothing more can be taken away. In software, this is especially 
true because extra code has to be developed, reviewed, tested, and considered when 
the other code is modified. Future versions of the software must remain backward-
compatible with the extra code. The fatal question is “It’s easy, so what will we hurt by 
putting it in?”

Stratification Stratification means trying to keep the levels of decomposition strati-
fied so that you can view the system at any single level and get a consistent view. 
Design the system so that you can view it at one level without dipping into other levels. 

Cross-Reference For more 
on working with old systems, 
see Section 24.5, “Refactor-
ing Strategies.”

For example, if you’re writing a modern system that has to use a lot of older, poorly 
designed code, write a layer of the new system that’s responsible for interfacing with 
the old code. Design the layer so that it hides the poor quality of the old code, present-
ing a consistent set of services to the newer layers. Then have the rest of the system 
use those classes rather than the old code. The beneficial effects of stratified design in 
such a case are (1) it compartmentalizes the messiness of the bad code and (2) if 
you’re ever allowed to jettison the old code or refactor it, you won’t need to modify any 
new code except the interface layer.

Cross-Reference An espe-
cially valuable kind of stan-
dardization is the use of 
design patterns, which are 
discussed in “Look for Com-
mon Design Patterns” in 
Section 5.3.

Standard techniques The more a system relies on exotic pieces, the more intimidat-
ing it will be for someone trying to understand it the first time. Try to give the whole 
system a familiar feeling by using standardized, common approaches.
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Levels of Design
Design is needed at several different levels of detail in a software system. Some design tech-
niques apply at all levels, and some apply at only one or two. Figure 5-2 illustrates the levels.

Figure 5-2 The levels of design in a program. The system (1) is first organized into sub-
systems (2). The subsystems are further divided into classes (3), and the classes are divided 
into routines and data (4). The inside of each routine is also designed (5).

Level 1: Software System

In other words—and this is 
the rock-solid principle on 
which the whole of the Cor-
poration’s Galaxywide suc-
cess is founded—their 
fundamental design flaws 
are completely hidden by 
their superficial design flaws. 
—Douglas Adams

The first level is the entire system. Some programmers jump right from the system 
level into designing classes, but it’s usually beneficial to think through higher level 
combinations of classes, such as subsystems or packages. 

Level 2: Division into Subsystems or Packages

The main product of design at this level is the identification of all major subsystems. The 
subsystems can be big: database, user interface, business rules, command interpreter, 

Division into subsystems/packages2

Division into classes within packages3

Software system1

Division into data and routines within classes4

Internal routine design5
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report engine, and so on. The major design activity at this level is deciding how to parti-
tion the program into major subsystems and defining how each subsystem is allowed to 
use each other subsystem. Division at this level is typically needed on any project that 
takes longer than a few weeks. Within each subsystem, different methods of design 
might be used—choosing the approach that best fits each part of the system. In Figure 5-
2, design at this level is marked with a 2.

Of particular importance at this level are the rules about how the various subsystems 
can communicate. If all subsystems can communicate with all other subsystems, you 
lose the benefit of separating them at all. Make each subsystem meaningful by restrict-
ing communications. 

Suppose for example that you define a system with six subsystems, as shown in Fig-
ure 5-3. When there are no rules, the second law of thermodynamics will come into 
play and the entropy of the system will increase. One way in which entropy increases 
is that, without any restrictions on communications among subsystems, communica-
tion will occur in an unrestricted way, as in Figure 5-4.

Figure 5-3 An example of a system with six subsystems. 

Figure 5-4 An example of what happens with no restrictions on intersubsystem 
communications. 
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As you can see, every subsystem ends up communicating directly with every other 
subsystem, which raises some important questions:

■ How many different parts of the system does a developer need to understand at 
least a little bit to change something in the graphics subsystem?

■ What happens when you try to use the business rules in another system?

■ What happens when you want to put a new user interface on the system, per-
haps a command-line UI for test purposes?

■ What happens when you want to put data storage on a remote machine? 

You might think of the lines between subsystems as being hoses with water running 
through them. If you want to reach in and pull out a subsystem, that subsystem is 
going to have some hoses attached to it. The more hoses you have to disconnect and 
reconnect, the more wet you’re going to get. You want to architect your system so that 
if you pull out a subsystem to use elsewhere, you won’t have many hoses to reconnect 
and those hoses will reconnect easily. 

With forethought, all of these issues can be addressed with little extra work. Allow 
communication between subsystems only on a “need to know” basis—and it had bet-
ter be a good reason. If in doubt, it’s easier to restrict communication early and relax it 
later than it is to relax it early and then try to tighten it up after you’ve coded several 
hundred intersubsystem calls. Figure 5-5 shows how a few communication guidelines 
could change the system depicted in Figure 5-4. 

Figure 5-5 With a few communication rules, you can simplify subsystem interactions sig-
nificantly. 

To keep the connections easy to understand and maintain, err on the side of simple 
intersubsystem relations. The simplest relationship is to have one subsystem call rou-
tines in another. A more involved relationship is to have one subsystem contain 
classes from another. The most involved relationship is to have classes in one sub-
system inherit from classes in another. 
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A good general rule is that a system-level diagram like Figure 5-5 should be an acyclic 
graph. In other words, a program shouldn’t contain any circular relationships in 
which Class A uses Class B, Class B uses Class C, and Class C uses Class A. 

On large programs and families of programs, design at the subsystem level makes a 
difference. If you believe that your program is small enough to skip subsystem-level 
design, at least make the decision to skip that level of design a conscious one.

Common Subsystems Some kinds of subsystems appear again and again in differ-
ent systems. Here are some of the usual suspects. 

Cross-Reference For more 
on simplifying business logic 
by expressing it in tables, see 
Chapter 18, "Table-Driven 
Methods."

Business rules Business rules are the laws, regulations, policies, and procedures 
that you encode into a computer system. If you’re writing a payroll system, you 
might encode rules from the IRS about the number of allowable withholdings and 
the estimated tax rate. Additional rules for a payroll system might come from a 
union contract specifying overtime rates, vacation and holiday pay, and so on. If 
you’re writing a program to quote automobile insurance rates, rules might come 
from government regulations on required liability coverages, actuarial rate tables, or 
underwriting restrictions

User interface Create a subsystem to isolate user-interface components so that the 
user interface can evolve without damaging the rest of the program. In most cases, a 
user-interface subsystem uses several subordinate subsystems or classes for the GUI 
interface, command line interface, menu operations, window management, help sys-
tem, and so forth.

Database access You can hide the implementation details of accessing a database so 
that most of the program doesn’t need to worry about the messy details of manipulat-
ing low-level structures and can deal with the data in terms of how it’s used at the 
business-problem level. Subsystems that hide implementation details provide a valu-
able level of abstraction that reduces a program’s complexity. They centralize data-
base operations in one place and reduce the chance of errors in working with the data. 
They make it easy to change the database design structure without changing most of 
the program.

System dependencies Package operating-system dependencies into a subsystem for 
the same reason you package hardware dependencies. If you’re developing a pro-
gram for Microsoft Windows, for example, why limit yourself to the Windows envi-
ronment? Isolate the Windows calls in a Windows-interface subsystem. If you later 
want to move your program to Mac OS or Linux, all you’ll have to change is the 
interface subsystem. An interface subsystem can be too extensive for you to imple-
ment on your own, but such subsystems are readily available in any of several com-
mercial code libraries. 
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Level 3: Division into Classes

Further Reading For a good 
discussion of database 
design, see Agile Database 
Techniques (Ambler 2003). 

Design at this level includes identifying all classes in the system. For example, a data-
base-interface subsystem might be further partitioned into data access classes and 
persistence framework classes as well as database metadata. Figure 5-2, Level 3, 
shows how one of Level 2’s subsystems might be divided into classes, and it implies 
that the other three subsystems shown at Level 2 are also decomposed into classes.

Details of the ways in which each class interacts with the rest of the system are also 
specified as the classes are specified. In particular, the class’s interface is defined. 
Overall, the major design activity at this level is making sure that all the subsystems 
have been decomposed to a level of detail fine enough that you can implement their 
parts as individual classes.

Cross-Reference For details 
on characteristics of high-
quality classes, see Chapter 
6, “Working Classes.”

The division of subsystems into classes is typically needed on any project that takes 
longer than a few days. If the project is large, the division is clearly distinct from the 
program partitioning of Level 2. If the project is very small, you might move directly 
from the whole-system view of Level 1 to the classes view of Level 3. 

Classes vs. Objects A key concept in object-oriented design is the differentiation 
between objects and classes. An object is any specific entity that exists in your pro-
gram at run time. A class is the static thing you look at in the program listing. An 
object is the dynamic thing with specific values and attributes you see when you run 
the program. For example, you could declare a class Person that had attributes of 
name, age, gender, and so on. At run time you would have the objects nancy, hank, 
diane, tony, and so on—that is, specific instances of the class. If you’re familiar with 
database terms, it’s the same as the distinction between “schema” and “instance.” You 
could think of the class as the cookie cutter and the object as the cookie. This book 
uses the terms informally and generally refers to classes and objects more or less inter-
changeably. 

Level 4: Division into Routines

Design at this level includes dividing each class into routines. The class interface 
defined at Level 3 will define some of the routines. Design at Level 4 will detail the 
class’s private routines. When you examine the details of the routines inside a class, 
you can see that many routines are simple boxes but a few are composed of hierarchi-
cally organized routines, which require still more design. 

The act of fully defining the class’s routines often results in a better understanding of 
the class’s interface, and that causes corresponding changes to the interface—that is, 
changes back at Level 3. 

This level of decomposition and design is often left up to the individual programmer, 
and it’s needed on any project that takes more than a few hours. It doesn’t need to be 
done formally, but it at least needs to be done mentally. 
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Level 5: Internal Routine Design

Cross-Reference For details 
on creating high-quality rou-
tines, see Chapter 7, “High-
Quality Routines,” and Chap-
ter 8, “Defensive Program-
ming.”

Design at the routine level consists of laying out the detailed functionality of the indi-
vidual routines. Internal routine design is typically left to the individual programmer 
working on an individual routine. The design consists of activities such as writing 
pseudocode, looking up algorithms in reference books, deciding how to organize the 
paragraphs of code in a routine, and writing programming-language code. This level 
of design is always done, though sometimes it’s done unconsciously and poorly 
rather than consciously and well. In Figure 5-2, design at this level is marked with a 5.

5.3 Design Building Blocks: Heuristics
Software developers tend to like our answers cut and dried: “Do A, B, and C, and X, Y, 
Z will follow every time.” We take pride in learning arcane sets of steps that produce 
desired effects, and we become annoyed when instructions don’t work as advertised. 
This desire for deterministic behavior is highly appropriate to detailed computer pro-
gramming, where that kind of strict attention to detail makes or breaks a program. But 
software design is a much different story. 

Because design is nondeterministic, skillful application of an effective set of heuristics 
is the core activity in good software design. The following subsections describe a num-
ber of heuristics—ways to think about a design that sometime produce good design 
insights. You might think of heuristics as the guides for the trials in “trial and error.” 
You undoubtedly have run across some of these before. Consequently, the following 
subsections describe each of the heuristics in terms of Software’s Primary Technical 
Imperative: managing complexity. 

Find Real-World Objects
Ask not first what the system 
does; ask WHAT it does it to! 
—Bertrand Meyer

The first and most popular approach to identifying design alternatives is the “by the 
book” object-oriented approach, which focuses on identifying real-world and syn-
thetic objects. 

The steps in designing with objects are

Cross-Reference For more 
details on designing using 
classes, see Chapter 6, 
“Working Classes.”

■ Identify the objects and their attributes (methods and data).

■ Determine what can be done to each object.

■ Determine what each object is allowed to do to other objects.

■ Determine the parts of each object that will be visible to other objects—which 
parts will be public and which will be private.

■ Define each object’s public interface.
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These steps aren’t necessarily performed in order, and they’re often repeated. Iteration 
is important. Each of these steps is summarized below.

Identify the objects and their attributes Computer programs are usually based on 
real-world entities. For example, you could base a time-billing system on real-world 
employees, clients, timecards, and bills. Figure 5-6 shows an object-oriented view of 
such a billing system.

Figure 5-6 This billing system is composed of four major objects. The objects have been 
simplified for this example. 

Identifying the objects’ attributes is no more complicated than identifying the objects 
themselves. Each object has characteristics that are relevant to the computer program. 
For example, in the time-billing system, an employee object has a name, a title, and a 
billing rate. A client object has a name, a billing address, and an account balance. A bill 
object has a billing amount, a client name, a billing date, and so on.

Objects in a graphical user interface system would include windows, dialog boxes, 
buttons, fonts, and drawing tools. Further examination of the problem domain might 
produce better choices for software objects than a one-to-one mapping to real-world 
objects, but the real-world objects are a good place to start.

Determine what can be done to each object A variety of operations can be per-
formed on each object. In the billing system shown in Figure 5-6, an employee object 
could have a change in title or billing rate, a client object could have its name or billing 
address changed, and so on.

Determine what each object is allowed to do to other objects This step is just what it 
sounds like. The two generic things objects can do to each other are containment and 
inheritance. Which objects can contain which other objects? Which objects can inherit 
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clientToBill
clientToBill
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GetHoursForMonth()
...

Client
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billingAddress
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EnterPayment()
...

Timecard

hours
date
projectCode

1 1 1

* *

* 0..1

*

...

Bill

billDate

BillForClient()
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from which other objects? In Figure 5-6, a timecard object can contain an employee 
object and a client object, and a bill can contain one or more timecards. In addition, a 
bill can indicate that a client has been billed, and a client can enter payments against 
a bill. A more complicated system would include additional interactions.

Cross-Reference For details 
on classes and information 
hiding, see “Hide Secrets 
(Information Hiding)” in 
Section 5.3.

Determine the parts of each object that will be visible to other objects One of the key 
design decisions is identifying the parts of an object that should be made public and those 
that should be kept private. This decision has to be made for both data and methods.

Define each object’s interfaces Define the formal, syntactic, programming-language-
level interfaces to each object. The data and methods the object exposes to every other 
object is called the object’s “public interface.” The parts of the object that it exposes to 
derived objects via inheritance is called the object’s “protected interface.” Think about 
both kinds of interfaces.

When you finish going through the steps to achieve a top-level object-oriented system 
organization, you’ll iterate in two ways. You’ll iterate on the top-level system organiza-
tion to get a better organization of classes. You’ll also iterate on each of the classes 
you’ve defined, driving the design of each class to a more detailed level.

Form Consistent Abstractions

Abstraction is the ability to engage with a concept while safely ignoring some of its 
details—handling different details at different levels. Any time you work with an aggre-
gate, you’re working with an abstraction. If you refer to an object as a “house” rather 
than a combination of glass, wood, and nails, you’re making an abstraction. If you 
refer to a collection of houses as a “town,” you’re making another abstraction.

Base classes are abstractions that allow you to focus on common attributes of a set of 
derived classes and ignore the details of the specific classes while you’re working on 
the base class. A good class interface is an abstraction that allows you to focus on the 
interface without needing to worry about the internal workings of the class. The inter-
face to a well-designed routine provides the same benefit at a lower level of detail, and 
the interface to a well-designed package or subsystem provides that benefit at a higher 
level of detail. 

From a complexity point of view, the principal benefit of abstraction is that it allows 
you to ignore irrelevant details. Most real-world objects are already abstractions of 
some kind. As just mentioned, a house is an abstraction of windows, doors, siding, 
wiring, plumbing, insulation, and a particular way of organizing them. A door is in 
turn an abstraction of a particular arrangement of a rectangular piece of material with 
hinges and a doorknob. And the doorknob is an abstraction of a particular formation 
of brass, nickel, iron, or steel. 
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People use abstraction continuously. If you had to deal with individual wood fibers, 
varnish molecules, and steel molecules every time you used your front door, you’d 
hardly make it in or out of your house each day. As Figure 5-7 suggests, abstraction is 
a big part of how we deal with complexity in the real world. 

Figure 5-7 Abstraction allows you to take a simpler view of a complex concept. 

Cross-Reference For more 
details on abstraction in 
class design, see “Good 
Abstraction” in Section 6.2.

Software developers sometimes build systems at the wood-fiber, varnish-molecule, 
and steel-molecule level. This makes the systems overly complex and intellectually 
hard to manage. When programmers fail to provide larger programming abstractions, 
the system itself sometimes fails to make it through the front door. 

Good programmers create abstractions at the routine-interface level, class-interface 
level, and package-interface level—in other words, the doorknob level, door level, and 
house level—and that supports faster and safer programming. 

Encapsulate Implementation Details

Encapsulation picks up where abstraction leaves off. Abstraction says, “You’re allowed 
to look at an object at a high level of detail.” Encapsulation says, “Furthermore, you 
aren’t allowed to look at an object at any other level of detail.” 

Continuing with the housing-materials analogy: encapsulation is a way of saying that 
you can look at the outside of the house but you can’t get close enough to make out 
the door’s details. You are allowed to know that there’s a door, and you’re allowed to 
know whether the door is open or closed, but you’re not allowed to know whether the 
door is made of wood, fiberglass, steel, or some other material, and you’re certainly 
not allowed to look at each individual wood fiber. 

As Figure 5-8 suggests, encapsulation helps to manage complexity by forbidding you 
to look at the complexity. The section titled “Good Encapsulation” in Section 6.2 pro-
vides more background on encapsulation as it applies to class design.
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Figure 5-8 Encapsulation says that, not only are you allowed to take a simpler view of a 
complex concept, you are not allowed to look at any of the details of the complex concept. 
What you see is what you get—it’s all you get!

Inherit—When Inheritance Simplifies the Design

In designing a software system, you’ll often find objects that are much like other 
objects, except for a few differences. In an accounting system, for instance, you might 
have both full-time and part-time employees. Most of the data associated with both 
kinds of employees is the same, but some is different. In object-oriented program-
ming, you can define a general type of employee and then define full-time employees 
as general employees, except for a few differences, and part-time employees also as 
general employees, except for a few differences. When an operation on an employee 
doesn’t depend on the type of employee, the operation is handled as if the employee 
were just a general employee. When the operation depends on whether the employee 
is full-time or part-time, the operation is handled differently.

Defining similarities and differences among such objects is called “inheritance” 
because the specific part-time and full-time employees inherit characteristics from the 
general-employee type.

The benefit of inheritance is that it works synergistically with the notion of abstrac-
tion. Abstraction deals with objects at different levels of detail. Recall the door that 
was a collection of certain kinds of molecules at one level, a collection of wood fibers 
at the next, and something that keeps burglars out of your house at the next level. 
Wood has certain properties—for example, you can cut it with a saw or glue it with 
wood glue—and two-by-fours or cedar shingles have the general properties of wood as 
well as some specific properties of their own.

Inheritance simplifies programming because you write a general routine to handle 
anything that depends on a door’s general properties and then write specific routines 
to handle specific operations on specific kinds of doors. Some operations, such as 
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Open() or Close(), might apply regardless of whether the door is a solid door, interior 
door, exterior door, screen door, French door, or sliding glass door. The ability of a 
language to support operations like Open() or Close() without knowing until run time 
what kind of door you’re dealing with is called “polymorphism.” Object-oriented lan-
guages such as C++, Java, and later versions of Microsoft Visual Basic support inherit-
ance and polymorphism.

Inheritance is one of object-oriented programming’s most powerful tools. It can pro-
vide great benefits when used well, and it can do great damage when used naively. For 
details, see “Inheritance (“is a” Relationships)” in Section 6.3.

Hide Secrets (Information Hiding)

Information hiding is part of the foundation of both structured design and object-ori-
ented design. In structured design, the notion of “black boxes” comes from informa-
tion hiding. In object-oriented design, it gives rise to the concepts of encapsulation 
and modularity and it is associated with the concept of abstraction. Information hid-
ing is one of the seminal ideas in software development, and so this subsection 
explores it in depth. 

Information hiding first came to public attention in a paper published by David Par-
nas in 1972 called “On the Criteria to Be Used in Decomposing Systems Into Mod-
ules.” Information hiding is characterized by the idea of “secrets,” design and 
implementation decisions that a software developer hides in one place from the rest of 
a program. 

In the 20th Anniversary edition of The Mythical Man Month, Fred Brooks concluded 
that his criticism of information hiding was one of the few ways in which the first edi-
tion of his book was wrong. “Parnas was right, and I was wrong about information 
hiding,” he proclaimed (Brooks 1995). Barry Boehm reported that information hiding 
was a powerful technique for eliminating rework, and he pointed out that it was par-
ticularly effective in incremental, high-change environments (Boehm 1987).

Information hiding is a particularly powerful heuristic for Software’s Primary Techni-
cal Imperative because, beginning with its name and throughout its details, it empha-
sizes hiding complexity.

Secrets and the Right to Privacy

In information hiding, each class (or package or routine) is characterized by the 
design or construction decisions that it hides from all other classes. The secret might 
be an area that’s likely to change, the format of a file, the way a data type is imple-
mented, or an area that needs to be walled off from the rest of the program so that 
errors in that area cause as little damage as possible. The class’s job is to keep this 
information hidden and to protect its own right to privacy. Minor changes to a system 
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might affect several routines within a class, but they should not ripple beyond the 
class interface.

Strive for class interfaces 
that are complete and mini-
mal.
—Scott Meyers

One key task in designing a class is deciding which features should be known outside 
the class and which should remain secret. A class might use 25 routines and expose 
only 5 of them, using the other 20 internally. A class might use several data types and 
expose no information about them. This aspect of class design is also known as “visi-
bility” since it has to do with which features of the class are “visible” or “exposed” out-
side the class.

The interface to a class should reveal as little as possible about its inner workings. As 
shown in Figure 5-9, a class is a lot like an iceberg: seven-eighths is under water, and 
you can see only the one-eighth that’s above the surface.

Figure 5-9 A good class interface is like the tip of an iceberg, leaving most of the class 
unexposed.

Designing the class interface is an iterative process just like any other aspect of design. 
If you don’t get the interface right the first time, try a few more times until it stabilizes. 
If it doesn’t stabilize, you need to try a different approach.

An Example of Information Hiding

Suppose you have a program in which each object is supposed to have a unique ID 
stored in a member variable called id. One design approach would be to use integers 
for the IDs and to store the highest ID assigned so far in a global variable called 
g_maxId. As each new object is allocated, perhaps in each object’s constructor, you 
could simply use the id = ++g_maxId statement, which would guarantee a unique id, 
and it would add the absolute minimum of code in each place an object is created. 
What could go wrong with that? 
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A lot of things could go wrong. What if you want to reserve ranges of IDs for special 
purposes? What if you want to use nonsequential IDs to improve security? What if you 
want to be able to reuse the IDs of objects that have been destroyed? What if you want 
to add an assertion that fires when you allocate more IDs than the maximum number 
you’ve anticipated? If you allocated IDs by spreading id = ++g_maxId statements 
throughout your program, you would have to change code associated with every one 
of those statements. And, if your program is multithreaded, this approach won’t be 
thread-safe.

The way that new IDs are created is a design decision that you should hide. If you use 
the phrase ++g_maxId throughout your program, you expose the way a new ID is cre-
ated, which is simply by incrementing g_maxId. If instead you put the id = NewId() 
statement throughout your program, you hide the information about how new IDs are 
created. Inside the NewId() routine you might still have just one line of code, return 
( ++g_maxId ) or its equivalent, but if you later decide to reserve certain ranges of IDs 
for special purposes or to reuse old IDs, you could make those changes within the 
NewId() routine itself—without touching dozens or hundreds of id = NewId() state-
ments. No matter how complicated the revisions inside NewId() might become, they 
wouldn’t affect any other part of the program.

Now suppose you discover you need to change the type of the ID from an integer to a 
string. If you’ve spread variable declarations like int id throughout your program, your 
use of the NewId() routine won’t help. You’ll still have to go through your program 
and make dozens or hundreds of changes.

An additional secret to hide is the ID’s type. By exposing the fact that IDs are inte-
gers, you encourage programmers to perform integer operations like >, <, = on them. 
In C++, you could use a simple typedef to declare your IDs to be of IdType—a user-
defined type that resolves to int—rather than directly declaring them to be of type 
int. Alternatively, in C++ and other languages you could create a simple IdType class. 
Once again, hiding a design decision makes a huge difference in the amount of code 
affected by a change. 

Information hiding is useful at all levels of design, from the use of named constants 
instead of literals, to creation of data types, to class design, routine design, and sub-
system design. 

Two Categories of Secrets

Secrets in information hiding fall into two general camps:

■ Hiding complexity so that your brain doesn’t have to deal with it unless you’re 
specifically concerned with it

■ Hiding sources of change so that when change occurs, the effects are localized

KEY POINT
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Sources of complexity include complicated data types, file structures, boolean tests, 
involved algorithms, and so on. A comprehensive list of sources of change is described 
later in this chapter. 

Barriers to Information Hiding

Further Reading Parts of 
this section are adapted 
from “Designing Software 
for Ease of Extension and 
Contraction” (Parnas 1979).

In a few instances, information hiding is truly impossible, but most of the barriers to 
information hiding are mental blocks built up from the habitual use of other techniques.

Excessive distribution of information One common barrier to information hiding is 
an excessive distribution of information throughout a system. You might have hard-
coded the literal 100 throughout a system. Using 100 as a literal decentralizes refer-
ences to it. It’s better to hide the information in one place, in a constant 
MAX_EMPLOYEES perhaps, whose value is changed in only one place.

Another example of excessive information distribution is interleaving interaction with 
human users throughout a system. If the mode of interaction changes—say, from a 
GUI interface to a command line interface—virtually all the code will have to be mod-
ified. It’s better to concentrate user interaction in a single class, package, or subsystem 
you can change without affecting the whole system.

Cross-Reference For more 
on accessing global data 
through class interfaces, see 
“Using Access Routines 
Instead of Global Data” in 
Section 13.3. 

Yet another example would be a global data element—perhaps an array of employee 
data with 1000 elements maximum that’s accessed throughout a program. If the pro-
gram uses the global data directly, information about the data item’s implementa-
tion—such as the fact that it’s an array and has a maximum of 1000 elements—will be 
spread throughout the program. If the program uses the data only through access rou-
tines, only the access routines will know the implementation details.

Circular dependencies A more subtle barrier to information hiding is circular depen-
dencies, as when a routine in class A calls a routine in class B, and a routine in class B 
calls a routine in class A. 

Avoid such dependency loops. They make it hard to test a system because you can’t 
test either class A or class B until at least part of the other is ready. 

Class data mistaken for global data If you’re a conscientious programmer, one of 
the barriers to effective information hiding might be thinking of class data as global 
data and avoiding it because you want to avoid the problems associated with global 
data. While the road to programming hell is paved with global variables, class data 
presents far fewer risks.

Global data is generally subject to two problems: routines operate on global data without 
knowing that other routines are operating on it, and routines are aware that other rou-
tines are operating on the global data but they don’t know exactly what they’re doing to 
it. Class data isn’t subject to either of these problems. Direct access to the data is 
restricted to a few routines organized into a single class. The routines are aware that other 
routines operate on the data, and they know exactly which other routines they are.
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Of course, this whole discussion assumes that your system makes use of well-
designed, small classes. If your program is designed to use huge classes that contain 
dozens of routines each, the distinction between class data and global data will begin 
to blur and class data will be subject to many of the same problems as global data. 

Cross-Reference Code-level 
performance optimizations 
are discussed in Chapter 25, 
“Code-Tuning Strategies” 
and Chapter 26, “Code-Tun-
ing Techniques.”

Perceived performance penalties A final barrier to information hiding can be an 
attempt to avoid performance penalties at both the architectural and the coding levels. 
You don’t need to worry at either level. At the architectural level, the worry is unnec-
essary because architecting a system for information hiding doesn’t conflict with 
architecting it for performance. If you keep both information hiding and performance 
in mind, you can achieve both objectives.

The more common worry is at the coding level. The concern is that accessing data 
items indirectly incurs run-time performance penalties for additional levels of object 
instantiations, routine calls, and so on. This concern is premature. Until you can mea-
sure the system’s performance and pinpoint the bottlenecks, the best way to prepare 
for code-level performance work is to create a highly modular design. When you 
detect hot spots later, you can optimize individual classes and routines without affect-
ing the rest of the system.

Value of Information Hiding

Information hiding is one of the few theoretical techniques that has indisputably proven 
its value in practice, which has been true for a long time (Boehm 1987a). Large pro-
grams that use information hiding were found years ago to be easier to modify—by a fac-
tor of 4—than programs that don’t (Korson and Vaishnavi 1986). Moreover, information 
hiding is part of the foundation of both structured design and object-oriented design.

Information hiding has unique heuristic power, a unique ability to inspire effective 
design solutions. Traditional object-oriented design provides the heuristic power of 
modeling the world in objects, but object thinking wouldn’t help you avoid declaring 
the ID as an int instead of an IdType. The object-oriented designer would ask, “Should 
an ID be treated as an object?” Depending on the project’s coding standards, a “Yes” 
answer might mean that the programmer has to write a constructor, destructor, copy 
operator, and assignment operator; comment it all; and place it under configuration 
control. Most programmers would decide, “No, it isn’t worth creating a whole class 
just for an ID. I’ll just use ints.” 

Note what just happened. A useful design alternative, that of simply hiding the ID’s 
data type, was not even considered. If, instead, the designer had asked, “What about 
the ID should be hidden?” he might well have decided to hide its type behind a simple 
type declaration that substitutes IdType for int. The difference between object-oriented 
design and information hiding in this example is more subtle than a clash of explicit 
rules and regulations. Object-oriented design would approve of this design decision 
as much as information hiding would. Rather, the difference is one of heuristics—

1
2
3

HARD DATA
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thinking about information hiding inspires and promotes design decisions that think-
ing about objects does not. 

Information hiding can also be useful in designing a class’s public interface. The gap 
between theory and practice in class design is wide, and among many class designers 
the decision about what to put into a class’s public interface amounts to deciding 
what interface would be the most convenient to use, which usually results in exposing 
as much of the class as possible. From what I’ve seen, some programmers would 
rather expose all of a class’s private data than write 10 extra lines of code to keep the 
class’s secrets intact. 

Asking “What does this class need to hide?” cuts to the heart of the interface-design 
issue. If you can put a function or data into the class’s public interface without com-
promising its secrets, do. Otherwise, don’t. 

Asking about what needs to be hidden supports good design decisions at all levels. It 
promotes the use of named constants instead of literals at the construction level. It 
helps in creating good routine and parameter names inside classes. It guides decisions 
about class and subsystem decompositions and interconnections at the system level. 

Get into the habit of asking “What should I hide?” You’ll be surprised at how many dif-
ficult design issues dissolve before your eyes.

Identify Areas Likely to Change
Further Reading The 
approach described in this 
section is adapted from 
“Designing Software for Ease 
of Extension and Contrac-
tion” (Parnas 1979).

A study of great designers found that one attribute they had in common was their abil-
ity to anticipate change (Glass 1995). Accommodating changes is one of the most 
challenging aspects of good program design. The goal is to isolate unstable areas so 
that the effect of a change will be limited to one routine, class, or package. Here are the 
steps you should follow in preparing for such perturbations.

1. Identify items that seem likely to change. If the requirements have been done 
well, they include a list of potential changes and the likelihood of each change. 
In such a case, identifying the likely changes is easy. If the requirements don’t 
cover potential changes, see the discussion that follows of areas that are likely to 
change on any project.

2. Separate items that are likely to change. Compartmentalize each volatile com-
ponent identified in step 1 into its own class or into a class with other volatile 
components that are likely to change at the same time.

3. Isolate items that seem likely to change. Design the interclass interfaces to be 
insensitive to the potential changes. Design the interfaces so that changes are 
limited to the inside of the class and the outside remains unaffected. Any other 
class using the changed class should be unaware that the change has occurred. 
The class’s interface should protect its secrets.

KEY POINT
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Here are a few areas that are likely to change:

Cross-Reference One of the 
most powerful techniques 
for anticipating change is to 
use table-driven methods. 
For details, see Chapter 18, 
“Table-Driven Methods.” 

Business rules Business rules tend to be the source of frequent software changes. 
Congress changes the tax structure, a union renegotiates its contract, or an insurance 
company changes its rate tables. If you follow the principle of information hiding, 
logic based on these rules won’t be strewn throughout your program. The logic will 
stay hidden in a single dark corner of the system until it needs to be changed.

Hardware dependencies Examples of hardware dependencies include interfaces to 
screens, printers, keyboards, mice, disk drives, sound facilities, and communications 
devices. Isolate hardware dependencies in their own subsystem or class. Isolating 
such dependencies helps when you move the program to a new hardware environ-
ment. It also helps initially when you’re developing a program for volatile hardware. 
You can write software that simulates interaction with specific hardware, have the 
hardware-interface subsystem use the simulator as long as the hardware is unstable or 
unavailable, and then unplug the hardware-interface subsystem from the simulator 
and plug the subsystem into the hardware when it’s ready to use.

Input and output At a slightly higher level of design than raw hardware interfaces, 
input/output is a volatile area. If your application creates its own data files, the file for-
mat will probably change as your application becomes more sophisticated. User-level 
input and output formats will also change—the positioning of fields on the page, the 
number of fields on each page, the sequence of fields, and so on. In general, it’s a good 
idea to examine all external interfaces for possible changes.

Nonstandard language features Most language implementations contain handy, 
nonstandard extensions. Using the extensions is a double-edged sword because they 
might not be available in a different environment, whether the different environment 
is different hardware, a different vendor’s implementation of the language, or a new 
version of the language from the same vendor. 

If you use nonstandard extensions to your programming language, hide those exten-
sions in a class of their own so that you can replace them with your own code when 
you move to a different environment. Likewise, if you use library routines that aren’t 
available in all environments, hide the actual library routines behind an interface that 
works just as well in another environment.

Difficult design and construction areas It’s a good idea to hide difficult design and 
construction areas because they might be done poorly and you might need to do them 
again. Compartmentalize them and minimize the impact their bad design or construc-
tion might have on the rest of the system.

Status variables Status variables indicate the state of a program and tend to be 
changed more frequently than most other data. In a typical scenario, you might origi-
nally define an error-status variable as a boolean variable and decide later that it 
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would be better implemented as an enumerated type with the values ErrorType_None, 
ErrorType_Warning, and ErrorType_Fatal.

You can add at least two levels of flexibility and readability to your use of status vari-
ables:

■ Don’t use a boolean variable as a status variable. Use an enumerated type 
instead. It’s common to add a new state to a status variable, and adding a new 
type to an enumerated type requires a mere recompilation rather than a major 
revision of every line of code that checks the variable.

■ Use access routines rather than checking the variable directly. By checking the 
access routine rather than the variable, you allow for the possibility of more 
sophisticated state detection. For example, if you wanted to check combinations 
of an error-state variable and a current-function-state variable, it would be easy 
to do if the test were hidden in a routine and hard to do if it were a complicated 
test hard-coded throughout the program.

Data-size constraints When you declare an array of size 100, you’re exposing infor-
mation to the world that the world doesn’t need to see. Defend your right to privacy! 
Information hiding isn’t always as complicated as a whole class. Sometimes it’s as sim-
ple as using a named constant such as MAX_EMPLOYEES to hide a 100.

Anticipating Different Degrees of Change

Cross-Reference This sec-
tion’s approach to anticipat-
ing change does not involve 
designing ahead or coding 
ahead. For a discussion of 
those practices, see “A pro-
gram contains code that 
seems like it might be needed 
someday” in Section 24.2.

When thinking about potential changes to a system, design the system so that the 
effect or scope of the change is proportional to the chance that the change will occur. 
If a change is likely, make sure that the system can accommodate it easily. Only 
extremely unlikely changes should be allowed to have drastic consequences for more 
than one class in a system. Good designers also factor in the cost of anticipating 
change. If a change is not terribly likely but easy to plan for, you should think harder 
about anticipating it than if it isn’t very likely and is difficult to plan for. 

Further Reading This dis-
cussion draws on the 
approach described in “On 
the design and development 
of program families” (Parnas 
1976). 

A good technique for identifying areas likely to change is first to identify the minimal 
subset of the program that might be of use to the user. The subset makes up the core 
of the system and is unlikely to change. Next, define minimal increments to the sys-
tem. They can be so small that they seem trivial. As you consider functional changes, 
be sure also to consider qualitative changes: making the program thread-safe, making 
it localizable, and so on. These areas of potential improvement constitute potential 
changes to the system; design these areas using the principles of information hiding. 
By identifying the core first, you can see which components are really add-ons and 
then extrapolate and hide improvements from there.
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Keep Coupling Loose

Coupling describes how tightly a class or routine is related to other classes or rou-
tines. The goal is to create classes and routines with small, direct, visible, and flexible 
relations to other classes and routines, which is known as “loose coupling.” The con-
cept of coupling applies equally to classes and routines, so for the rest of this discus-
sion I’ll use the word “module” to refer to both classes and routines. 

Good coupling between modules is loose enough that one module can easily be used 
by other modules. Model railroad cars are coupled by opposing hooks that latch 
when pushed together. Connecting two cars is easy—you just push the cars together. 
Imagine how much more difficult it would be if you had to screw things together, or 
connect a set of wires, or if you could connect only certain kinds of cars to certain 
other kinds of cars. The coupling of model railroad cars works because it’s as simple 
as possible. In software, make the connections among modules as simple as possible.

Try to create modules that depend little on other modules. Make them detached, as 
business associates are, rather than attached, as Siamese twins are. A routine like sin() 
is loosely coupled because everything it needs to know is passed in to it with one 
value representing an angle in degrees. A routine such as InitVars( var 1, var2, var3, ..., 
varN ) is more tightly coupled because, with all the variables it must pass, the calling 
module practically knows what is happening inside InitVars(). Two classes that 
depend on each other’s use of the same global data are even more tightly coupled.

Coupling Criteria

Here are several criteria to use in evaluating coupling between modules: 

Size Size refers to the number of connections between modules. With coupling, 
small is beautiful because it’s less work to connect other modules to a module that has 
a smaller interface. A routine that takes one parameter is more loosely coupled to 
modules that call it than a routine that takes six parameters. A class with four well-
defined public methods is more loosely coupled to modules that use it than a class 
that exposes 37 public methods. 

Visibility Visibility refers to the prominence of the connection between two mod-
ules. Programming is not like being in the CIA; you don’t get credit for being sneaky. 
It’s more like advertising; you get lots of credit for making your connections as blatant 
as possible. Passing data in a parameter list is making an obvious connection and is 
therefore good. Modifying global data so that another module can use that data is a 
sneaky connection and is therefore bad. Documenting the global-data connection 
makes it more obvious and is slightly better.

Flexibility Flexibility refers to how easily you can change the connections between 
modules. Ideally, you want something more like the USB connector on your computer 
than like bare wire and a soldering gun. Flexibility is partly a product of the other 
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coupling characteristics, but it’s a little different too. Suppose you have a routine that 
looks up the amount of vacation an employee receives each year, given a hiring date and 
a job classification. Name the routine LookupVacationBenefit(). Suppose in another 
module you have an employee object that contains the hiring date and the job classifica-
tion, among other things, and that module passes the object to LookupVacationBenefit().

From the point of view of the other criteria, the two modules would look loosely cou-
pled. The employee connection between the two modules is visible, and there’s only 
one connection. Now suppose that you need to use the LookupVacationBenefit() mod-
ule from a third module that doesn’t have an employee object but that does have a hir-
ing date and a job classification. Suddenly LookupVacationBenefit() looks less friendly, 
unwilling to associate with the new module.

For the third module to use LookupVacationBenefit(), it has to know about the 
Employee class. It could dummy up an employee object with only two fields, but that 
would require internal knowledge of LookupVacationBenefit(), namely that those are 
the only fields it uses. Such a solution would be a kludge, and an ugly one. The second 
option would be to modify LookupVacationBenefit() so that it would take hiring date 
and job classification instead of employee. In either case, the original module turns out 
to be a lot less flexible than it seemed to be at first.

The happy ending to the story is that an unfriendly module can make friends if it’s 
willing to be flexible—in this case, by changing to take hiring date and job classifica-
tion specifically instead of employee.

In short, the more easily other modules can call a module, the more loosely coupled 
it is, and that’s good because it’s more flexible and maintainable. In creating a system 
structure, break up the program along the lines of minimal interconnectedness. If a 
program were a piece of wood, you would try to split it with the grain.

Kinds of Coupling

Here are the most common kinds of coupling you’ll encounter. 

Simple-data-parameter coupling Two modules are simple-data-parameter coupled if 
all the data passed between them are of primitive data types and all the data is passed 
through parameter lists. This kind of coupling is normal and acceptable. 

Simple-object coupling A module is simple-object coupled to an object if it instanti-
ates that object. This kind of coupling is fine. 

Object-parameter coupling Two modules are object-parameter coupled to each 
other if Object1 requires Object2 to pass it an Object3. This kind of coupling is tighter 
than Object1 requiring Object2 to pass it only primitive data types because it requires 
Object2 to know about Object3.
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Semantic coupling The most insidious kind of coupling occurs when one module 
makes use not of some syntactic element of another module but of some semantic 
knowledge of another module’s inner workings. Here are some examples:

■ Module1 passes a control flag to Module2 that tells Module2 what to do. This 
approach requires Module1 to make assumptions about the internal workings of 
Module2, namely what Module2 is going to do with the control flag. If Module2 
defines a specific data type for the control flag (enumerated type or object), this 
usage is probably OK.

■ Module2 uses global data after the global data has been modified by Module1. 
This approach requires Module2 to assume that Module1 has modified the data 
in the ways Module2 needs it to be modified, and that Module1 has been called at 
the right time.

■ Module1’s interface states that its Module1.Initialize() routine should be called 
before its Module1.Routine() is called. Module2 knows that Module1.Routine() 
calls Module1.Initialize() anyway, so it just instantiates Module1 and calls 
Module1.Routine() without calling Module1.Initialize() first.

■ Module1 passes Object to Module2. Because Module1 knows that Module2 uses 
only three of Object’s seven methods, it initializes Object only partially—with the 
specific data those three methods need.

■ Module1 passes BaseObject to Module2. Because Module2 knows that Module1 is 
really passing it DerivedObject, it casts BaseObject to DerivedObject and calls 
methods that are specific to DerivedObject.

Semantic coupling is dangerous because changing code in the used module can break 
code in the using module in ways that are completely undetectable by the compiler. 
When code like this breaks, it breaks in subtle ways that seem unrelated to the change 
made in the used module, which turns debugging into a Sisyphean task. 

The point of loose coupling is that an effective module provides an additional level of 
abstraction—once you write it, you can take it for granted. It reduces overall program 
complexity and allows you to focus on one thing at a time. If using a module requires 
you to focus on more than one thing at once—knowledge of its internal workings, 
modification to global data, uncertain functionality—the abstractive power is lost and 
the module’s ability to help manage complexity is reduced or eliminated. 

Classes and routines are first and foremost intellectual tools for reducing complexity. 
If they’re not making your job simpler, they’re not doing their jobs. 

KEY POINT
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Look for Common Design Patterns
cc2e.com/0585 Design patterns provide the cores of ready-made solutions that can be used to solve 

many of software’s most common problems. Some software problems require solutions 
that are derived from first principles. But most problems are similar to past problems, 
and those can be solved using similar solutions, or patterns. Common patterns include 
Adapter, Bridge, Decorator, Facade, Factory Method, Observor, Singleton, Strategy, and 
Template Method. The book Design Patterns by Erich Gamma, Richard Helm, Ralph 
Johnson, and John Vlissides (1995) is the definitive description of design patterns. 

Patterns provide several benefits that fully custom design doesn’t: 

Patterns reduce complexity by providing ready-made abstractions If you say, “This 
code uses a Factory Method to create instances of derived classes,” other program-
mers on your project will understand that your code involves a fairly rich set of inter-
relationships and programming protocols, all of which are invoked when you refer to 
the design pattern of Factory Method.

The Factory Method is a pattern that allows you to instantiate any class derived  from 
a specific base class without needing to keep track of the individual derived classes 
anywhere but the Factory Method. For a good discussion of the Factory Method pat-
tern, see “Replace Constructor with Factory Method” in Refactoring (Fowler 1999). 

You don’t have to spell out every line of code for other programmers to understand 
the design approach found in your code. 

Patterns reduce errors by institutionalizing details of common solutions Software 
design problems contain nuances that emerge fully only after the problem has been 
solved once or twice (or three times, or four times, or...). Because patterns represent 
standardized ways of solving common problems, they embody the wisdom accumu-
lated from years of attempting to solve those problems, and they also embody the cor-
rections to the false attempts that people have made in solving those problems. 

Using a design pattern is thus conceptually similar to using library code instead of 
writing your own. Sure, everybody has written a custom Quicksort a few times, but 
what are the odds that your custom version will be fully correct on the first try? Simi-
larly, numerous design problems are similar enough to past problems that you’re bet-
ter off using a prebuilt design solution than creating a novel solution. 

Patterns provide heuristic value by suggesting design alternatives A designer who’s 
familiar with common patterns can easily run through a list of patterns and ask 
“Which of these patterns fits my design problem?” Cycling through a set of familiar 
alternatives is immeasurably easier than creating a custom design solution out of 
whole cloth. And the code arising from a familiar pattern will also be easier for readers 
of the code to understand than fully custom code would be. 
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Patterns streamline communication by moving the design dialog to a higher level In 
addition to their complexity-management benefit, design patterns can accelerate 
design discussions by allowing designers to think and discuss at a larger level of gran-
ularity. If you say “I can’t decide whether I should use a Creator or a Factory Method 
in this situation,” you’ve communicated a great deal with just a few words—as long as 
you and your listener are both familiar with those patterns. Imagine how much longer 
it would take you to dive into the details of the code for a Creator pattern and the code 
for a Factory Method pattern and then compare and contrast the two approaches. 

If you’re not already familiar with design patterns, Table 5-1 summarizes some of the 
most common patterns to stimulate your interest. 

If you haven’t seen design patterns before, your reaction to the descriptions in Table 5-
1 might be “Sure, I already know most of these ideas.” That reaction is a big part of 
why design patterns are valuable. Patterns are familiar to most experienced program-
mers, and assigning recognizable names to them supports efficient and effective com-
munication about them. 

Table 5-1 Popular Design Patterns

Pattern Description

Abstract Factory Supports creation of sets of related objects by specifying the kind 
of set but not the kinds of each specific object.

Adapter Converts the interface of a class to a different interface.

Bridge Builds an interface and an implementation in such a way that 
either can vary without the other varying.

Composite Consists of an object that contains additional objects of its own 
type so that client code can interact with the top-level object and 
not concern itself with all the detailed objects. 

Decorator Attaches responsibilities to an object dynamically, without creating 
specific subclasses for each possible configuration of responsibilities.

Facade Provides a consistent interface to code that wouldn’t otherwise 
offer a consistent interface.

Factory Method Instantiates classes derived  from a specific base class without 
needing to keep track of the individual derived classes anywhere 
but the Factory Method. 

Iterator A server object that provides access to each element in a set 
sequentially.

Observer Keeps multiple objects in synch with one another by making an 
object responsible for notifying the set of related objects about 
changes to any member of the set.

Singleton Provides global access to a class that has one and only one instance.

Strategy Defines a set of algorithms or behaviors that are dynamically 
interchangeable with each other.

Template Method Defines the structure of an algorithm but leaves some of the 
detailed implementation to subclasses. 
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One potential trap with patterns is force-fitting code to use a pattern. In some cases, shift-
ing code slightly to conform to a well-recognized pattern will improve understandability 
of the code. But if the code has to be shifted too far, forcing it to look like a standard pat-
tern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a pattern because of a desire 
to try out a pattern rather than because the pattern is an appropriate design solution. 

Overall, design patterns are a powerful tool for managing complexity. You can read more 
detailed descriptions in any of the good books that are listed at the end of this chapter. 

Other Heuristics

The preceding sections describe the major software design heuristics. Following are a few 
other heuristics that might not be useful quite as often but are still worth mentioning.

Aim for Strong Cohesion

Cohesion arose from structured design and is usually discussed in the same context 
as coupling. Cohesion refers to how closely all the routines in a class or all the code in 
a routine support a central purpose—how focused the class is. Classes that contain 
strongly related functionality are described as having strong cohesion, and the heuris-
tic goal is to make cohesion as strong as possible. Cohesion is a useful tool for manag-
ing complexity because the more that code in a class supports a central purpose, the 
more easily your brain can remember everything the code does. 

Thinking about cohesion at the routine level has been a useful heuristic for decades 
and is still useful today. At the class level, the heuristic of cohesion has largely been 
subsumed by the broader heuristic of well-defined abstractions, which was discussed 
earlier in this chapter and in Chapter 6. Abstractions are useful at the routine level, 
too, but on a more even footing with cohesion at that level of detail.

Build Hierarchies

A hierarchy is a tiered information structure in which the most general or abstract rep-
resentation of concepts is contained at the top of the hierarchy, with increasingly 
detailed, specialized representations at the hierarchy’s lower levels. In software, 
hierarchies are found in class hierarchies, and, as Level 4 in Figure 5-2 illustrated, in 
routine-calling hierarchies as well. 

Hierarchies have been an important tool for managing complex sets of information for 
at least 2000 years. Aristotle used a hierarchy to organize the animal kingdom. 
Humans frequently use outlines to organize complex information (like this book). 
Researchers have found that people generally find hierarchies to be a natural way to 
organize complex information. When they draw a complex object such as a house, 
they draw it hierarchically. First they draw the outline of the house, then the windows 
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and doors, and then more details. They don’t draw the house brick by brick, shingle 
by shingle, or nail by nail (Simon 1996). 

Hierarchies are a useful tool for achieving Software’s Primary Technical Imperative 
because they allow you to focus on only the level of detail you’re currently concerned 
with. The details don’t go away completely; they’re simply pushed to another level so 
that you can think about them when you want to rather than thinking about all the 
details all of the time.

Formalize Class Contracts

Cross-Reference For more 
on contracts, see “Use asser-
tions to document and verify 
preconditions and postcon-
ditions” in Section 8.2.

At a more detailed level, thinking of each class’s interface as a contract with the rest of 
the program can yield good insights. Typically, the contract is something like “If you 
promise to provide data x, y, and z and you promise they’ll have characteristics a, b, 
and c, I promise to perform operations 1, 2, and 3 within constraints 8, 9, and 10.” The 
promises the clients of the class make to the class are typically called “preconditions,” 
and the promises the object makes to its clients are called the “postconditions.” 

Contracts are useful for managing complexity because, at least in theory, the object can 
safely ignore any noncontractual behavior. In practice, this issue is much more difficult. 

Assign Responsibilities

Another heuristic is to think through how responsibilities should be assigned to 
objects. Asking what each object should be responsible for is similar to asking what 
information it should hide, but I think it can produce broader answers, which gives 
the heuristic unique value. 

Design for Test

A thought process that can yield interesting design insights is to ask what the system will 
look like if you design it to facilitate testing. Do you need to separate the user interface 
from the rest of the code so that you can exercise it independently? Do you need to orga-
nize each subsystem so that it minimizes dependencies on other subsystems? Designing 
for test tends to result in more formalized class interfaces, which is generally beneficial. 

Avoid Failure

Civil engineering professor Henry Petroski wrote an interesting book, Design Paradigms: 
Case Histories of Error and Judgment in Engineering (Petroski 1994), that chronicles the 
history of failures in bridge design. Petroski argues that many spectacular bridge failures 
have occurred because of focusing on previous successes and not adequately consider-
ing possible failure modes. He concludes that failures like the Tacoma Narrows bridge 
could have been avoided if the designers had carefully considered the ways the bridge 
might fail and not just copied the attributes of other successful designs. 
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The high-profile security lapses of various well-known systems the past few years 
make it hard to disagree that we should find ways to apply Petroski’s design-failure 
insights to software. 

Choose Binding Time Consciously

Cross-Reference For more 
on binding time, see Section 
10.6, “Binding Time.” 

Binding time refers to the time a specific value is bound to a variable. Code that binds 
early tends to be simpler, but it also tends to be less flexible. Sometimes you can get a 
good design insight from asking questions like these: What if I bound these values 
earlier? What if I bound these values later? What if I initialized this table right here in 
the code? What if I read the value of this variable from the user at run time?

Make Central Points of Control

P.J. Plauger says his major concern is “The Principle of One Right Place—there should 
be One Right Place to look for any nontrivial piece of code, and One Right Place to 
make a likely maintenance change” (Plauger 1993). Control can be centralized in 
classes, routines, preprocessor macros, #include files—even a named constant is an 
example of a central point of control.

The reduced-complexity benefit is that the fewer places you have to look for some-
thing, the easier and safer it will be to change. 

Consider Using Brute Force

When in doubt, use brute 
force. 
—Butler Lampson

One powerful heuristic tool is brute force. Don’t underestimate it. A brute-force solu-
tion that works is better than an elegant solution that doesn’t work. It can take a long 
time to get an elegant solution to work. In describing the history of searching algo-
rithms, for example, Donald Knuth pointed out that even though the first description 
of a binary search algorithm was published in 1946, it took another 16 years for some-
one to publish an algorithm that correctly searched lists of all sizes (Knuth 1998). A 
binary search is more elegant, but a brute-force, sequential search is often sufficient. 

Draw a Diagram

Diagrams are another powerful heuristic tool. A picture is worth 1000 words—kind of. 
You actually want to leave out most of the 1000 words because one point of using a 
picture is that a picture can represent the problem at a higher level of abstraction. 
Sometimes you want to deal with the problem in detail, but other times you want to be 
able to work with more generality.

Keep Your Design Modular

Modularity’s goal is to make each routine or class like a “black box”: You know what 
goes in, and you know what comes out, but you don’t know what happens inside. A 
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black box has such a simple interface and such well-defined functionality that for any 
specific input you can accurately predict the corresponding output. 

The concept of modularity is related to information hiding, encapsulation, and other 
design heuristics. But sometimes thinking about how to assemble a system from a set 
of black boxes provides insights that information hiding and encapsulation don’t, so 
the concept is worth having in your back pocket.

Summary of Design Heuristics
More alarming, the same 
programmer is quite capa-
ble of doing the same task 
himself in two or three 
ways, sometimes uncon-
sciously, but quite often 
simply for a change, or to 
provide elegant variation. 
—A. R. Brown and W. A. 
Sampson

Here’s a summary of major design heuristics:

■ Find Real-World Objects

■ Form Consistent Abstractions

■ Encapsulate Implementation Details

■ Inherit When Possible

■ Hide Secrets (Information Hiding)

■ Identify Areas Likely to Change

■ Keep Coupling Loose

■ Look for Common Design Patterns

The following heuristics are sometimes useful too: 

■ Aim for Strong Cohesion

■ Build Hierarchies

■ Formalize Class Contracts

■ Assign Responsibilities

■ Design for Test

■ Avoid Failure

■ Choose Binding Time Consciously

■ Make Central Points of Control

■ Consider Using Brute Force

■ Draw a Diagram

■ Keep Your Design Modular
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Guidelines for Using Heuristics

Approaches to design in software can learn from approaches to design in other fields. 
One of the original books on heuristics in problem solving was G. Polya’s How to Solve 
It (1957). Polya’s generalized problem-solving approach focuses on problem solving 
in mathematics. Figure 5-10 is a summary of his approach, adapted from a similar 
summary in his book (emphases his).

cc2e.com/0592

Figure 5-10 G. Polya developed an approach to problem solving in mathematics that’s also 
useful in solving problems in software design (Polya 1957). 

1. Understanding the Problem. You have to understand the problem.

 What is the unknown? What are the data? What is the condition? Is it possible to satisfy 
the condition? Is the condition sufficient to determine the unknown? Or is it 
insufficient? Or redundant? Or contradictory? 
 Draw a figure. Introduce suitable notation. Separate the various parts of the 
condition. Can you write them down?

2. Devising a Plan. Find the connection between the data and the unknown. You 
might be obliged to consider auxiliary problems if you can't find an intermediate 
connection. You should eventually come up with a plan of the solution.

 Have you seen the problem before? Or have you seen the same problem in a 
slightly different form? Do you know a related problem? Do you know a theorem that 
could be useful? 
 Look at the unknown! And try to think of a familiar problem having the same or a 
similar unknown. Here is a problem related to yours and solved before. Can you use it? 
Can you use its result? Can you use its method? Should you introduce some auxiliary 
element in order to make its use possible? 
 Can you restate the problem? Can you restate it still differently? Go back to 
definitions. 
 If you cannot solve the proposed problem, try to solve some related problem first. 
Can you imagine a more accessible related problem? A more general problem? A 
more special problem? An analogous problem? Can you solve a part of the problem? 
Keep only a part of the condition, drop the other part; how far is the unknown then 
determined, how can it vary? Can you derive something useful from the data? Can 
you think of other data appropriate for determining the unknown? Can you change 
the unknown or the data, or both if necessary, so that the new unknown and the new 
data are nearer to each other? 
 Did you use all the data? Did you use the whole condition? Have you taken into 
account all essential notions involved in the problem?

3. Carrying out the Plan. Carry out your plan.

 Carrying out your plan of the solution, check each step. Can you see clearly that the 
step is correct? Can you prove that it's correct?

4. Looking Back. Examine the solution.

 Can you check the result? Can you check the argument? Can you derive the result 
differently? Can you see it at a glance? 
 Can you use the result, or the method, for some other problem?
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One of the most effective guidelines is not to get stuck on a single approach. If dia-
gramming the design in UML isn’t working, write it in English. Write a short test pro-
gram. Try a completely different approach. Think of a brute-force solution. Keep 
outlining and sketching with your pencil, and your brain will follow. If all else fails, 
walk away from the problem. Literally go for a walk, or think about something else 
before returning to the problem. If you’ve given it your best and are getting nowhere, 
putting it out of your mind for a time often produces results more quickly than sheer 
persistence can.

You don’t have to solve the whole design problem at once. If you get stuck, remember 
that a point needs to be decided but recognize that you don’t yet have enough infor-
mation to resolve that specific issue. Why fight your way through the last 20 percent 
of the design when it will drop into place easily the next time through? Why make bad 
decisions based on limited experience with the design when you can make good deci-
sions based on more experience with it later? Some people are uncomfortable if they 
don’t come to closure after a design cycle, but after you have created a few designs 
without resolving issues prematurely, it will seem natural to leave issues unresolved 
until you have more information (Zahniser 1992, Beck 2000).

5.4 Design Practices
The preceding section focused on heuristics related to design attributes—what you 
want the completed design to look like. This section describes design practice heuris-
tics, steps you can take that often produce good results. 

Iterate

You might have had an experience in which you learned so much from writing a pro-
gram that you wished you could write it again, armed with the insights you gained 
from writing it the first time. The same phenomenon applies to design, but the design 
cycles are shorter and the effects downstream are bigger, so you can afford to whirl 
through the design loop a few times.

Design is an iterative process. You don’t usually go from point A only to point B; you 
go from point A to point B and back to point A. 

As you cycle through candidate designs and try different approaches, you’ll look at 
both high-level and low-level views. The big picture you get from working with high-
level issues will help you to put the low-level details in perspective. The details you 
get from working with low-level issues will provide a foundation in solid reality for 
the high-level decisions. The tug and pull between top-level and bottom-level 

KEY POINT
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considerations is a healthy dynamic; it creates a stressed structure that’s more stable 
than one built wholly from the top down or the bottom up.

Many programmers—many people, for that matter—have trouble ranging between high-
level and low-level considerations. Switching from one view of a system to another is 
mentally strenuous, but it’s essential to creating effective designs. For entertaining exer-
cises to enhance your mental flexibility, read Conceptual Blockbusting (Adams 2001), 
described in the “Additional Resources” section at the end of the chapter.

Cross-Reference Refactor-
ing is a safe way to try differ-
ent alternatives in code. For 
more on this, see Chapter 
24, "Refactoring."

When you come up with a first design attempt that seems good enough, don’t stop! 
The second attempt is nearly always better than the first, and you learn things on each 
attempt that can improve your overall design. After trying a thousand different mate-
rials for a light bulb filament with no success, Thomas Edison was reportedly asked if 
he felt his time had been wasted since he had discovered nothing. “Nonsense,” Edison 
is supposed to have replied. “I have discovered a thousand things that don’t work.” In 
many cases, solving the problem with one approach will produce insights that will 
enable you to solve the problem using another approach that’s even better.

Divide and Conquer

As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details 
of a complex program, and that applies just as well to design. Divide the program into 
different areas of concern, and then tackle each of those areas individually. If you run 
into a dead end in one of the areas, iterate! 

Incremental refinement is a powerful tool for managing complexity. As Polya recom-
mended in mathematical problem solving, understand the problem, devise a plan, 
carry out the plan, and then look back to see how you did (Polya 1957). 

Top-Down and Bottom-Up Design Approaches

“Top down” and “bottom up” might have an old-fashioned sound, but they provide 
valuable insight into the creation of object-oriented designs. Top-down design begins 
at a high level of abstraction. You define base classes or other nonspecific design ele-
ments. As you develop the design, you increase the level of detail, identifying derived 
classes, collaborating classes, and other detailed design elements. 

Bottom-up design starts with specifics and works toward generalities. It typically 
begins by identifying concrete objects and then generalizes aggregations of objects 
and base classes from those specifics. 

Some people argue vehemently that starting with generalities and working toward 
specifics is best, and some argue that you can’t really identify general design principles 
until you’ve worked out the significant details. Here are the arguments on both sides. 
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Argument for Top Down

The guiding principle behind the top-down approach is the idea that the human brain 
can concentrate on only a certain amount of detail at a time. If you start with general 
classes and decompose them into more specialized classes step by step, your brain 
isn’t forced to deal with too many details at once. 

The divide-and-conquer process is iterative in a couple of senses. First, it’s iterative 
because you usually don’t stop after one level of decomposition. You keep going for 
several levels. Second, it’s iterative because you don’t usually settle for your first 
attempt. You decompose a program one way. At various points in the decomposition, 
you’ll have choices about which way to partition the subsystems, lay out the inherit-
ance tree, and form compositions of objects. You make a choice and see what hap-
pens. Then you start over and decompose it another way and see whether that works 
better. After several attempts, you’ll have a good idea of what will work and why.

How far do you decompose a program? Continue decomposing until it seems as if it 
would be easier to code the next level than to decompose it. Work until you become 
somewhat impatient at how obvious and easy the design seems. At that point, you’re 
done. If it’s not clear, work some more. If the solution is even slightly tricky for you 
now, it’ll be a bear for anyone who works on it later.

Argument for Bottom Up

Sometimes the top-down approach is so abstract that it’s hard to get started. If you 
need to work with something more tangible, try the bottom-up design approach. Ask 
yourself, “What do I know this system needs to do?” Undoubtedly, you can answer 
that question. You might identify a few low-level responsibilities that you can assign to 
concrete classes. For example, you might know that a system needs to format a partic-
ular report, compute data for that report, center its headings, display the report on the 
screen, print the report on a printer, and so on. After you identify several low-level 
responsibilities, you’ll usually start to feel comfortable enough to look at the top again.

In some other cases, major attributes of the design problem are dictated from the bot-
tom. You might have to interface with hardware devices whose interface requirements 
dictate large chunks of your design. 

Here are some things to keep in mind as you do bottom-up composition:

■ Ask yourself what you know the system needs to do.

■ Identify concrete objects and responsibilities from that question.

■ Identify common objects, and group them using subsystem organization, pack-
ages, composition within objects, or inheritance, whichever is appropriate.

■ Continue with the next level up, or go back to the top and try again to work down.
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No Argument, Really

The key difference between top-down and bottom-up strategies is that one is a decom-
position strategy and the other is a composition strategy. One starts from the general 
problem and breaks it into manageable pieces; the other starts with manageable 
pieces and builds up a general solution. Both approaches have strengths and weak-
nesses that you’ll want to consider as you apply them to your design problems.

The strength of top-down design is that it’s easy. People are good at breaking some-
thing big into smaller components, and programmers are especially good at it. 

Another strength of top-down design is that you can defer construction details. Since 
systems are often perturbed by changes in construction details (for example, changes 
in a file structure or a report format), it’s useful to know early on that those details 
should be hidden in classes at the bottom of the hierarchy.

One strength of the bottom-up approach is that it typically results in early identifica-
tion of needed utility functionality, which results in a compact, well-factored design. If 
similar systems have already been built, the bottom-up approach allows you to start 
the design of the new system by looking at pieces of the old system and asking “What 
can I reuse?”

A weakness of the bottom-up composition approach is that it’s hard to use exclusively. 
Most people are better at taking one big concept and breaking it into smaller concepts 
than they are at taking small concepts and making one big one. It’s like the old assem-
ble-it-yourself problem: I thought I was done, so why does the box still have parts in it? 
Fortunately, you don’t have to use the bottom-up composition approach exclusively.

Another weakness of the bottom-up design strategy is that sometimes you find that 
you can’t build a program from the pieces you’ve started with. You can’t build an air-
plane from bricks, and you might have to work at the top before you know what kinds 
of pieces you need at the bottom.

To summarize, top down tends to start simple, but sometimes low-level complexity 
ripples back to the top, and those ripples can make things more complex than they 
really needed to be. Bottom up tends to start complex, but identifying that complexity 
early on leads to better design of the higher-level classes—if the complexity doesn’t tor-
pedo the whole system first!

In the final analysis, top-down and bottom-up design aren’t competing strategies—
they’re mutually beneficial. Design is a heuristic process, which means that no solu-
tion is guaranteed to work every time. Design contains elements of trial and error. Try 
a variety of approaches until you find one that works well. 
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Experimental Prototyping
cc2e.com/0599 Sometimes you can’t really know whether a design will work until you better under-

stand some implementation detail. You might not know if a particular database orga-
nization will work until you know whether it will meet your performance goals. You 
might not know whether a particular subsystem design will work until you select the 
specific GUI libraries you’ll be working with. These are examples of the essential 
“wickedness” of software design—you can’t fully define the design problem until 
you’ve at least partially solved it. 

A general technique for addressing these questions at low cost is experimental proto-
typing. The word “prototyping” means lots of different things to different people 
(McConnell 1996). In this context, prototyping means writing the absolute minimum 
amount of throwaway code that’s needed to answer a specific design question. 

Prototyping works poorly when developers aren’t disciplined about writing the abso-
lute minimum of code needed to answer a question. Suppose the design question is, 
“Can the database framework we’ve selected support the transaction volume we 
need?” You don’t need to write any production code to answer that question. You 
don’t even need to know the database specifics. You just need to know enough to 
approximate the problem space—number of tables, number of entries in the tables, 
and so on. You can then write very simple prototyping code that uses tables with 
names like Table1, Table2, and Column1, and Column2, populate the tables with junk 
data, and do your performance testing. 

Prototyping also works poorly when the design question is not specific enough. A 
design question like “Will this database framework work?” does not provide enough 
direction for prototyping. A design question like “Will this database framework sup-
port 1,000 transactions per second under assumptions X, Y, and Z?” provides a more 
solid basis for prototyping. 

A final risk of prototyping arises when developers do not treat the code as throwaway 
code. I have found that it is not possible for people to write the absolute minimum 
amount of code to answer a question if they believe that the code will eventually end 
up in the production system. They end up implementing the system instead of proto-
typing. By adopting the attitude that once the question is answered the code will be 
thrown away, you can minimize this risk. One way to avoid this problem is to create 
prototypes in a different technology than the production code. You could prototype a 
Java design in Python or mock up a user interface in Microsoft PowerPoint. If you do 
create prototypes using the production technology, a practical standard that can help 
is requiring that class names or package names for prototype code be prefixed with 
prototype. That at least makes a programmer think twice before trying to extend pro-
totype code (Stephens 2003). 
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Used with discipline, prototyping is the workhorse tool a designer has to combat design 
wickedness. Used without discipline, prototyping adds some wickedness of its own. 

Collaborative Design
Cross-Reference For more 
details on collaborative devel-
opment, see Chapter 21, 
“Collaborative Construction.”

In design, two heads are often better than one, whether those two heads are organized 
formally or informally. Collaboration can take any of several forms:

■ You informally walk over to a co-worker’s desk and ask to bounce some ideas 
around.

■ You and your co-worker sit together in a conference room and draw design alter-
natives on a whiteboard.

■ You and your co-worker sit together at the keyboard and do detailed design in 
the programming language you’re using—that is, you can use pair programming, 
described in Chapter 21, “Collaborative Construction.” 

■ You schedule a meeting to walk through your design ideas with one or more co-
workers.

■ You schedule a formal inspection with all the structure described in Chapter 21.

■ You don’t work with anyone who can review your work, so you do some initial 
work, put it into a drawer, and come back to it a week later. You will have forgot-
ten enough that you should be able to give yourself a fairly good review.

■ You ask someone outside your company for help: send questions to a special-
ized forum or newsgroup. 

If the goal is quality assurance, I tend to recommend the most structured review prac-
tice, formal inspections, for the reasons described in Chapter 21. But if the goal is to 
foster creativity and to increase the number of design alternatives generated, not just 
to find errors, less structured approaches work better. After you’ve settled on a specific 
design, switching to a more formal inspection might be appropriate, depending on 
the nature of your project. 

How Much Design Is Enough?
We try to solve the problem 
by rushing through the 
design process so that 
enough time is left at the 
end of the project to uncover 
the errors that were made 
because we rushed through 
the design process. 
—Glenford Myers

Sometimes only the barest sketch of an architecture is mapped out before coding 
begins. Other times, teams create designs at such a level of detail that coding 
becomes a mostly mechanical exercise. How much design should you do before you 
begin coding? 

A related question is how formal to make the design. Do you need formal, polished 
design diagrams, or would digital snapshots of a few drawings on a whiteboard be 
enough? 
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Deciding how much design to do before beginning full-scale coding and how much 
formality to use in documenting that design is hardly an exact science. The experience 
of the team, expected lifetime of the system, desired level of reliability, and size of 
project and team should all be considered. Table 5-2 summarizes how each of these 
factors influence the design approach. 

Two or more of these factors might come into play on any specific project, and in 
some cases the factors might provide contradictory advice. For example, you might 
have a highly experienced team working on safety critical software. In that case, you’d 
probably want to err on the side of the higher level of design detail and formality. In 
such cases, you’ll need to weigh the significance of each factor and make a judgment 
about what matters most. 

If the level of design is left to each individual, then, when the design descends to the 
level of a task that you’ve done before or to a simple modification or extension of such 
a task, you’re probably ready to stop designing and begin coding. 

Table 5-2 Design Formality and Level of Detail Needed

Factor

Level of Detail Needed 
in Design Before 
Construction

Documentation 
Formality

Design/construction team 
has deep experience in 
applications area.

Low Detail Low Formality

Design/construction team 
has deep experience but 
is inexperienced in the 
applications area.

Medium Detail Medium Formality

Design/construction team 
is inexperienced.

Medium to High Detail Low-Medium Formality

Design/construction team 
has moderate-to-high 
turnover.

Medium Detail —

Application is 
safety-critical.

High Detail High Formality

Application is 
mission-critical.

Medium Detail Medium-High Formality

Project is small. Low Detail Low Formality

Project is large. Medium Detail Medium Formality

Software is expected to 
have a short lifetime 
(weeks or months).

Low Detail Low Formality

Software is expected to 
have a long lifetime 
(months or years).

Medium Detail Medium Formality
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If I can’t decide how deeply to investigate a design before I begin coding, I tend to err 
on the side of going into more detail. The biggest design errors arise from cases in 
which I thought I went far enough, but it later turns out that I didn’t go far enough to 
realize there were additional design challenges. In other words, the biggest design 
problems tend to arise not from areas I knew were difficult and created bad designs 
for, but from areas I thought were easy and didn’t create any designs for at all. I rarely 
encounter projects that are suffering from having done too much design work. 

I've never met a human 
being who would want to 
read 17,000 pages of docu-
mentation, and if there was, 
I'd kill him to get him out of 
the gene pool. 
—Joseph Costello

On the other hand, occasionally I have seen projects that are suffering from too much 
design documentation. Gresham’s Law states that “programmed activity tends to drive 
out nonprogrammed activity” (Simon 1965). A premature rush to polish a design 
description is a good example of that law. I would rather see 80 percent of the design 
effort go into creating and exploring numerous design alternatives and 20 percent go 
into creating less polished documentation than to have 20 percent go into creating 
mediocre design alternatives and 80 percent go into polishing documentation of 
designs that are not very good. 

Capturing Your Design Work
cc2e.com/0506 The traditional approach to capturing design work is to write up the designs in a for-

mal design document. However, you can capture designs in numerous alternative 
ways that work well on small projects, informal projects, or projects that need a light-
weight way to record a design:

The bad news is that, in our 
opinion, we will never find the 
philosopher’s stone. We will 
never find a process that allows 
us to design software in a per-
fectly rational way. The good 
news is that we can fake it. 
—David Parnas and Paul 
Clements

Insert design documentation into the code itself Document key design decisions in 
code comments, typically in the file or class header. When you couple this approach 
with a documentation extractor like JavaDoc, this assures that design documentation 
will be readily available to a programmer working on a section of code, and it 
improves the chance that programmers will keep the design documentation reason-
ably up to date. 

Capture design discussions and decisions on a Wiki Have your design discussions 
in writing, on a project Wiki (that is, a collection of Web pages that can be edited eas-
ily by anyone on your project using a Web browser). This will capture your design dis-
cussions and decision automatically, albeit with the extra overhead of typing rather 
than talking. You can also use the Wiki to capture digital pictures to supplement the 
text discussion, links to websites that support the design decision, white papers, and 
other materials. This technique is especially useful if your development team is geo-
graphically distributed. 

Write e-mail summaries After a design discussion, adopt the practice of designating 
someone to write a summary of the discussion—especially what was decided—and send 
it to the project team. Archive a copy of the e-mail in the project’s public e-mail folder. 
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Use a digital camera One common barrier to documenting designs is the tedium of 
creating design drawings in some popular drawing tools. But the documentation 
choices are not limited to the two options of “capturing the design in a nicely format-
ted, formal notation” vs. “no design documentation at all.” 

Taking pictures of whiteboard drawings with a digital camera and then embedding 
those pictures into traditional documents can be a low-effort way to get 80 percent of 
the benefit of saving design drawings by doing about 1 percent of the work required 
if you use a drawing tool. 

Save design flip charts There’s no law that says your design documentation has to 
fit on standard letter-size paper. If you make your design drawings on large flip chart 
paper, you can simply archive the flip charts in a convenient location—or, better yet, 
post them on the walls around the project area so that people can easily refer to them 
and update them when needed. 

cc2e.com/0513 Use CRC (Class, Responsibility, Collaborator) cards Another low-tech alternative 
for documenting designs is to use index cards. On each card, designers write a class 
name, responsibilities of the class, and collaborators (other classes that cooperate 
with the class). A design group then works with the cards until they’re satisfied that 
they’ve created a good design. At that point, you can simply save the cards for future 
reference. Index cards are cheap, unintimidating, and portable, and they encourage 
group interaction (Beck 1991). 

Create UML diagrams at appropriate levels of detail One popular technique for 
diagramming designs is called Unified Modeling Language (UML), which is defined 
by the Object Management Group (Fowler 2004). Figure 5-6 earlier in this chapter 
was one example of a UML class diagram. UML provides a rich set of formalized rep-
resentations for design entities and relationships. You can use informal versions of 
UML to explore and discuss design approaches. Start with minimal sketches and add 
detail only after you’ve zeroed in on a final design solution. Because UML is standard-
ized, it supports common understanding in communicating design ideas and it can 
accelerate the process of considering design alternatives when working in a group. 

These techniques can work in various combinations, so feel free to mix and match these 
approaches on a project-by-project basis or even within different areas of a single project. 

5.5 Comments on Popular Methodologies
The history of design in software has been marked by fanatic advocates of wildly con-
flicting design approaches. When I published the first edition of Code Complete in the 
early 1990s, design zealots were advocating dotting every design i and crossing every 
design t before beginning coding. That recommendation didn’t make any sense. 
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People who preach software 
design as a disciplined activ-
ity spend considerable 
energy making us all feel 
guilty. We can never be 
structured enough or object-
oriented enough to achieve 
nirvana in this lifetime. We 
all truck around a kind of 
original sin from having 
learned Basic at an impres-
sionable age. But my bet is 
that most of us are better 
designers than the purists 
will ever acknowledge.
—P. J. Plauger

As I write this edition in the mid-2000s, some software swamis are arguing for not 
doing any design at all. “Big Design Up Front is BDUF,” they say. “BDUF is bad. You’re 
better off not doing any design before you begin coding!” 

In ten years the pendulum has swung from “design everything” to “design nothing.” 
But the alternative to BDUF isn’t no design up front, it’s a Little Design Up Front 
(LDUF) or Enough Design Up Front—ENUF. 

How do you tell how much is enough? That’s a judgment call, and no one can make 
that call perfectly. But while you can’t know the exact right amount of design with any 
confidence, two amounts of design are guaranteed to be wrong every time: designing 
every last detail and not designing anything at all. The two positions advocated by 
extremists on both ends of the scale turn out to be the only two positions that are 
always wrong!

As P.J. Plauger says, “The more dogmatic you are about applying a design method, the 
fewer real-life problems you are going to solve” (Plauger 1993). Treat design as a 
wicked, sloppy, heuristic process. Don’t settle for the first design that occurs to you. 
Collaborate. Strive for simplicity. Prototype when you need to. Iterate, iterate, and iter-
ate again. You’ll be happy with your designs. 

Additional Resources
cc2e.com/0520 Software design is a rich field with abundant resources. The challenge is identifying 

which resources will be most useful. Here are some suggestions.

Software Design, General

Weisfeld, Matt. The Object-Oriented Thought Process, 2d ed. SAMS, 2004. This is an 
accessible book that introduces object-oriented programming. If you’re already famil-
iar with object-oriented programming, you’ll probably want a more advanced book, 
but if you’re just getting your feet wet in object orientation, this book introduces fun-
damental object-oriented concepts, including objects, classes, interfaces, inheritance, 
polymorphism, overloading, abstract classes, aggregation and association, construc-
tors/destructors, exceptions, and others.

Riel, Arthur J. Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley, 1996. 
This book is easy to read and focuses on design at the class level. 

Plauger, P. J. Programming on Purpose: Essays on Software Design. Englewood Cliffs, NJ: 
PTR Prentice Hall, 1993. I picked up as many tips about good software design from 
reading this book as from any other book I’ve read. Plauger is well-versed in a wide-
variety of design approaches, he’s pragmatic, and he’s a great writer. 
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Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Pren-
tice Hall PTR, 1997. Meyer presents a forceful advocacy of hard-core object-oriented 
programming.

Raymond, Eric S. The Art of UNIX Programming. Boston, MA: Addison-Wesley, 2004. 
This is a well-researched look at software design through UNIX-colored glasses. Section 
1.6 is an especially concise 12-page explanation of 17 key UNIX design principles.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis 
and Design and the Unified Process, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 2001. 
This book is a popular introduction to object-oriented design in the context of the 
Unified Process. It also discusses object-oriented analysis.

Software Design Theory

Parnas, David L., and Paul C. Clements. “A Rational Design Process: How and Why to 
Fake It.” IEEE Transactions on Software Engineering SE-12, no. 2 (February 1986): 251–57. 
This classic article describes the gap between how programs are really designed and 
how you sometimes wish they were designed. The main point is that no one ever 
really goes through a rational, orderly design process but that aiming for it makes for 
better designs in the end.

I’m not aware of any comprehensive treatment of information hiding. Most software-
engineering textbooks discuss it briefly, frequently in the context of object-oriented 
techniques. The three Parnas papers listed below are the seminal presentations of the 
idea and are probably still the best resources on information hiding.

Parnas, David L. “On the Criteria to Be Used in Decomposing Systems into Modules.” 
Communications of the ACM 5, no. 12 (December 1972): 1053-58.

Parnas, David L. “Designing Software for Ease of Extension and Contraction.” IEEE 
Transactions on Software Engineering SE-5, no. 2 (March 1979): 128-38.

Parnas, David L., Paul C. Clements, and D. M. Weiss. “The Modular Structure of Com-
plex Systems.” IEEE Transactions on Software Engineering SE-11, no. 3 (March 1985): 
259-66.

Design Patterns

Gamma, Erich, et al. Design Patterns. Reading, MA: Addison-Wesley, 1995. This book 
by the “Gang of Four” is the seminal book on design patterns. 

Shalloway, Alan, and James R. Trott. Design Patterns Explained. Boston, MA: Addison-
Wesley, 2002.  This book contains an easy-to-read introduction to design patterns. 
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Design in General

Adams, James L. Conceptual Blockbusting: A Guide to Better Ideas, 4th ed. Cambridge, 
MA: Perseus Publishing, 2001. Although not specifically about software design, this 
book was written to teach design to engineering students at Stanford. Even if you 
never design anything, the book is a fascinating discussion of creative thought pro-
cesses. It includes many exercises in the kinds of thinking required for effective 
design. It also contains a well-annotated bibliography on design and creative thinking. 
If you like problem solving, you’ll like this book.

Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2d ed. Princeton, NJ: 
Princeton University Press, 1957. This discussion of heuristics and problem solving 
focuses on mathematics but is applicable to software development. Polya’s book was 
the first written about the use of heuristics in mathematical problem solving. It draws 
a clear distinction between the messy heuristics used to discover solutions and the 
tidier techniques used to present them once they’ve been discovered. It’s not easy 
reading, but if you’re interested in heuristics, you’ll eventually read it whether you 
want to or not. Polya’s book makes it clear that problem solving isn’t a deterministic 
activity and that adherence to any single methodology is like walking with your feet in 
chains. At one time, Microsoft gave this book to all its new programmers.

Michalewicz, Zbigniew, and David B. Fogel. How to Solve It: Modern Heuristics. Berlin: 
Springer-Verlag, 2000. This is an updated treatment of Polya’s book that’s quite a bit 
easier to read and that also contains some nonmathematical examples. 

Simon, Herbert. The Sciences of the Artificial, 3d ed. Cambridge, MA: MIT Press, 1996. 
This fascinating book draws a distinction between sciences that deal with the natural 
world (biology, geology, and so on) and sciences that deal with the artificial world cre-
ated by humans (business, architecture, and computer science). It then discusses the 
characteristics of the sciences of the artificial, emphasizing the science of design. It has 
an academic tone and is well worth reading for anyone intent on a career in software 
development or any other “artificial” field.

Glass, Robert L. Software Creativity. Englewood Cliffs, NJ: Prentice Hall PTR, 1995. Is 
software development controlled more by theory or by practice? Is it primarily cre-
ative or is it primarily deterministic? What intellectual qualities does a software devel-
oper need? This book contains an interesting discussion of the nature of software 
development with a special emphasis on design. 

Petroski, Henry. Design Paradigms: Case Histories of Error and Judgment in Engineering. 
Cambridge: Cambridge University Press, 1994. This book draws heavily from the field of 
civil engineering (especially bridge design) to explain its main argument that successful 
design depends at least as much upon learning from past failures as from past successes. 
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Standards

IEEE Std 1016-1998, Recommended Practice for Software Design Descriptions. This docu-
ment contains the IEEE-ANSI standard for software-design descriptions. It describes 
what should be included in a software-design document.

IEEE Std 1471-2000. Recommended Practice for Architectural Description of Software Inten-
sive Systems. Los Alamitos, CA: IEEE Computer Society Press. This document is the 
IEEE-ANSI guide for creating software architecture specifications. 

cc2e.com/0527 CHECKLIST: Design in Construction
Design Practices

❑ Have you iterated, selecting the best of several attempts rather than the 
first attempt?

❑ Have you tried decomposing the system in several different ways to see 
which way will work best?

❑ Have you approached the design problem both from the top down and 
from the bottom up? 

❑ Have you prototyped risky or unfamiliar parts of the system, creating the 
absolute minimum amount of throwaway code needed to answer specific 
questions? 

❑ Has your design been reviewed, formally or informally, by others? 

❑ Have you driven the design to the point that its implementation seems 
obvious?

❑ Have you captured your design work using an appropriate technique such 
as a Wiki, e-mail, flip charts, digital photography, UML, CRC cards, or 
comments in the code itself? 

Design Goals
❑ Does the design adequately address issues that were identified and 

deferred at the architectural level?

❑ Is the design stratified into layers?

❑ Are you satisfied with the way the program has been decomposed into 
subsystems, packages, and classes?

❑ Are you satisfied with the way the classes have been decomposed into 
routines?

❑ Are classes designed for minimal interaction with each other?
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❑ Are classes and subsystems designed so that you can use them in other 
systems?

❑ Will the program be easy to maintain?

❑ Is the design lean? Are all of its parts strictly necessary?

❑ Does the design use standard techniques and avoid exotic, hard-to-under-
stand elements?

❑ Overall, does the design help minimize both accidental and essential 
complexity? 

Key Points
■ Software’s Primary Technical Imperative is managing complexity. This is greatly 

aided by a design focus on simplicity. 

■ Simplicity is achieved in two general ways: minimizing the amount of essential 
complexity that anyone’s brain has to deal with at any one time, and keeping 
accidental complexity from proliferating needlessly. 

■ Design is heuristic. Dogmatic adherence to any single methodology hurts cre-
ativity and hurts your programs. 

■ Good design is iterative; the more design possibilities you try, the better your 
final design will be.

■ Information hiding is a particularly valuable concept. Asking “What should I 
hide?” settles many difficult design issues. 

■ Lots of useful, interesting information on design is available outside this book. 
The perspectives presented here are just the tip of the iceberg.
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Chapter 6

Working Classes
cc2e.com/0665 Contents

■ 6.1 Class Foundations: Abstract Data Types (ADTs): page 126

■ 6.2 Good Class Interfaces: page 133

■ 6.3 Design and Implementation Issues: page 143

■ 6.4 Reasons to Create a Class: page 152

■ 6.5 Language-Specific Issues: page 156

■ 6.6 Beyond Classes: Packages: page 156

Related Topics

■ Design in construction: Chapter 5

■ Software architecture: Section 3.5

■ High-quality routines: Chapter 7

■ The Pseudocode Programming Process: Chapter 9

■ Refactoring: Chapter 24

In the dawn of computing, programmers thought about programming in terms of 
statements. Throughout the 1970s and 1980s, programmers began thinking about 
programs in terms of routines. In the twenty-first century, programmers think about 
programming in terms of classes. 

A class is a collection of data and routines that share a cohesive, well-defined respon-
sibility. A class might also be a collection of routines that provides a cohesive set of ser-
vices even if no common data is involved. A key to being an effective programmer is 
maximizing the portion of a program that you can safely ignore while working on any 
one section of code. Classes are the primary tool for accomplishing that objective. 

This chapter contains a distillation of advice in creating high-quality classes. If you’re 
still warming up to object-oriented  concepts, this chapter might be too advanced. 
Make sure you’ve read Chapter 5, “Design in Construction.” Then start with Section 
6.1, “Class Foundations: Abstract Data Types (ADTs),” and ease your way into the 
remaining sections. If you’re already familiar with class basics, you might skim Section 
6.1 and then dive into the discussion of class interfaces in Section 6.2. The “Additional 
Resources” section at the end of this chapter contains pointers to introductory reading, 
advanced reading, and programming-language-specific resources.

KEY POINT
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6.1 Class Foundations: Abstract Data Types (ADTs)
An abstract data type is a collection of data and operations that work on that data. The 
operations both describe the data to the rest of the program and allow the rest of the 
program to change the data. The word “data” in “abstract data type” is used loosely. 
An ADT might be a graphics window with all the operations that affect it, a file and file 
operations, an insurance-rates table and the operations on it, or something else. 

Cross-Reference Thinking 
about ADTs first and classes 
second is an example of pro-
gramming into a language 
vs. programming in one. See 
Section 4.3, “Your Location 
on the Technology Wave,” 
and Section 34.4, “Program 
into Your Language, Not in It.”

Understanding ADTs is essential to understanding object-oriented programming. 
Without understanding ADTs, programmers create classes that are “classes” in name 
only—in reality, they are little more than convenient carrying cases for loosely related 
collections of data and routines. With an understanding of ADTs, programmers can 
create classes that are easier to implement initially and easier to modify over time. 

Traditionally, programming books wax mathematical when they arrive at the topic of 
abstract data types. They tend to make statements like “One can think of an abstract 
data type as a mathematical model with a collection of operations defined on it.” Such 
books make it seem as if you’d never actually use an abstract data type except as a 
sleep aid.

Such dry explanations of abstract data types completely miss the point. Abstract data 
types are exciting because you can use them to manipulate real-world entities rather 
than low-level, implementation entities. Instead of inserting a node into a linked list, 
you can add a cell to a spreadsheet, a new type of window to a list of window types, or 
another passenger car to a train simulation. Tap into the power of being able to work 
in the problem domain rather than at the low-level implementation domain! 

Example of the Need for an ADT

To get things started, here’s an example of a case in which an ADT would be useful. 
We’ll get to the details after we have an example to talk about. 

Suppose you’re writing a program to control text output to the screen using a variety 
of typefaces, point sizes, and font attributes (such as bold and italic). Part of the pro-
gram manipulates the text’s fonts. If you use an ADT, you’ll have a group of font rou-
tines bundled with the data—the typeface names, point sizes, and font attributes—they 
operate on. The collection of font routines and data is an ADT.

If you’re not using ADTs, you’ll take an ad hoc approach to manipulating fonts. For 
example, if you need to change to a 12-point font size, which happens to be 16 pixels 
high, you’ll have code like this:

currentFont.size = 16
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If you’ve built up a collection of library routines, the code might be slightly more 
readable:

currentFont.size = PointsToPixels( 12 )

Or you could provide a more specific name for the attribute, something like

currentFont.sizeInPixels = PointsToPixels( 12 )

But what you can’t do is have both currentFont.sizeInPixels and currentFont.sizeInPoints, 
because, if both the data members are in play, currentFont won’t have any way to know 
which of the two it should use. And if you change sizes in several places in the pro-
gram, you’ll have similar lines spread throughout your program.

If you need to set a font to bold, you might have code like this that uses a logical or and 
a hexidecimal constant 0x02: 

currentFont.attribute = currentFont.attribute or 0x02

If you’re lucky, you’ll have something cleaner than that, but the best you’ll get with an 
ad hoc approach is something like this:

currentFont.attribute = currentFont.attribute or BOLD

Or maybe something like this:

currentFont.bold = True

As with the font size, the limitation is that the client code is required to control the 
data members directly, which limits how currentFont can be used. 

If you program this way, you’re likely to have similar lines in many places in your 
program.

Benefits of Using ADTs

The problem isn’t that the ad hoc approach is bad programming practice. It’s that you 
can replace the approach with a better programming practice that produces these 
benefits:

You can hide implementation details Hiding information about the font data type 
means that if the data type changes, you can change it in one place without affecting 
the whole program. For example, unless you hid the implementation details in an 
ADT, changing the data type from the first representation of bold to the second would 
entail changing your program in every place in which bold was set rather than in just 
one place. Hiding the information also protects the rest of the program if you decide 
to store data in external storage rather than in memory or to rewrite all the font-
manipulation routines in another language.

Quratek
Typewritten Text
V413HAV
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Changes don’t affect the whole program If fonts need to become richer and support 
more operations (such as switching to small caps, superscripts, strikethrough, and so 
on), you can change the program in one place. The change won’t affect the rest of the 
program.

You can make the interface more informative Code like currentFont.size = 16 is 
ambiguous because 16 could be a size in either pixels or points. The context doesn’t 
tell you which is which. Collecting all similar operations into an ADT allows you to 
define the entire interface in terms of points, or in terms of pixels, or to clearly differ-
entiate between the two, which helps avoid confusing them. 

It’s easier to improve performance If you need to improve font performance, you can 
recode a few well-defined routines rather than wading through an entire program.

The program is more obviously correct You can replace the more tedious task of ver-
ifying that statements like currentFont.attribute = currentFont.attribute or 0x02 are cor-
rect with the easier task of verifying that calls to currentFont.SetBoldOn() are correct. 
With the first statement, you can have the wrong structure name, the wrong field 
name, the wrong operation (and instead of or), or the wrong value for the attribute 
(0x20 instead of 0x02). In the second case, the only thing that could possibly be 
wrong with the call to currentFont.SetBoldOn() is that it’s a call to the wrong routine 
name, so it’s easier to see whether it’s correct.

The program becomes more self-documenting You can improve statements like cur-
rentFont.attribute or 0x02 by replacing 0x02 with BOLD or whatever 0x02 represents, but 
that doesn’t compare to the readability of a routine call such as currentFont.SetBoldOn().

Woodfield, Dunsmore, and Shen conducted a study in which graduate and senior 
undergraduate computer-science students answered questions about two programs: 
one that was divided into eight routines along functional lines, and one that was 
divided into eight abstract-data-type routines (1981). Students using the abstract-data-
type program scored over 30 percent higher than students using the functional ver-
sion.

You don’t have to pass data all over your program In the examples just presented, 
you have to change currentFont directly or pass it to every routine that works with fonts. 
If. you use an abstract data type, you don’t have to pass currentFont all over the program 
and you don’t have to turn it into global data either. The ADT has a structure that con-
tains currentFont’s data. The data is directly accessed only by routines that are part of the 
ADT. Routines that aren’t part of the ADT don’t have to worry about the data.

You’re able to work with real-world entities rather than with low-level implementation 
structures You can define operations dealing with fonts so that most of the program 
operates solely in terms of fonts rather than in terms of array accesses, structure defi-
nitions, and True and False.

1
2
3

HARD DATA
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In this case, to define an abstract data type, you’d define a few routines to control 
fonts—perhaps like this:

currentFont.SetSizeInPoints( sizeInPoints )

currentFont.SetSizeInPixels( sizeInPixels )

currentFont.SetBoldOn()

currentFont.SetBoldOff()

currentFont.SetItalicOn()

currentFont.SetItalicOff()

currentFont.SetTypeFace( faceName )

The code inside these routines would probably be short—it would probably be similar 
to the code you saw in the ad hoc approach to the font problem earlier. The difference 
is that you’ve isolated font operations in a set of routines. That provides a better level 
of abstraction for the rest of your program to work with fonts, and it gives you a layer 
of protection against changes in font operations. 

More Examples of ADTs

Suppose you’re writing software that controls the cooling system for a nuclear reactor. 
You can treat the cooling system as an abstract data type by defining the following 
operations for it:

coolingSystem.GetTemperature()

coolingSystem.SetCirculationRate( rate )

coolingSystem.OpenValve( valveNumber )

coolingSystem.CloseValve( valveNumber )

The specific environment would determine the code written to implement each of 
these operations. The rest of the program could deal with the cooling system through 
these functions and wouldn’t have to worry about internal details of data-structure 
implementations, data-structure limitations, changes, and so on.

Here are more examples of abstract data types and likely operations on them:

KEY POINT

Cruise Control Blender Fuel Tank

Set speed Turn on Fill tank

Get current settings Turn off Drain tank

Resume former speed Set speed Get tank capacity

Deactivate Start “Insta-Pulverize” Get tank status

Stop “Insta-Pulverize”

List Stack

Initialize list Light Initialize stack 

Insert item in list Turn on Push item onto stack

Remove item from list Turn off Pop item from stack

Read next item from list Read top of stack
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Yon can derive several guidelines from a study of these examples; those guidelines are 
described in the following subsections: 

Build or use typical low-level data types as ADTs, not as low-level data types Most 
discussions of ADTs focus on representing typical low-level data types as ADTs. As you 
can see from the examples, you can represent a stack, a list, and a queue, as well as vir-
tually any other typical data type, as an ADT.

The question you need to ask is, “What does this stack, list, or queue represent?” If a 
stack represents a set of employees, treat the ADT as employees rather than as a stack. 
If a list represents a set of billing records, treat it as billing records rather than a list. If 
a queue represents cells in a spreadsheet, treat it as a collection of cells rather than a 
generic item in a queue. Treat yourself to the highest possible level of abstraction.

Treat common objects such as files as ADTs Most languages include a few abstract 
data types that you’re probably familiar with but might not think of as ADTs. File oper-
ations are a good example. While writing to disk, the operating system spares you the 
grief of positioning the read/write head at a specific physical address, allocating a new 
disk sector when you exhaust an old one, and interpreting cryptic error codes. The oper-
ating system provides a first level of abstraction and the ADTs for that level. High-level 
languages provide a second level of abstraction and ADTs for that higher level. A high-
level language protects you from the messy details of generating operating-system calls 
and manipulating data buffers. It allows you to treat a chunk of disk space as a “file.”

You can layer ADTs similarly. If you want to use an ADT at one level that offers data-
structure level operations (like pushing and popping a stack), that’s fine. You can cre-
ate another level on top of that one that works at the level of the real-world problem.

Set of Help Screens Menu File

Add help topic Start new menu Open file

Remove help topic Delete menu Read file

Set current help topic Add menu item Write file

Display help screen Remove menu item Set current file location

Remove help display Activate menu item Close file

Display help index Deactivate menu item

Back up to previous screen Display menu Elevator

Hide menu Move up one floor

Pointer Get menu choice Move down one floor

Get pointer to new memory Move to specific floor

Dispose of memory from 
existing pointer

Report current floor
Return to home floor

Change amount of memory 
allocated
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Treat even simple items as ADTs You don’t have to have a formidable data type to 
justify using an abstract data type. One of the ADTs in the example list is a light that 
supports only two operations—turning it on and turning it off. You might think that it 
would be a waste to isolate simple “on” and “off” operations in routines of their own, 
but even simple operations can benefit from the use of ADTs. Putting the light and its 
operations into an ADT makes the code more self-documenting and easier to change, 
confines the potential consequences of changes to the TurnLightOn() and TurnLight-
Off() routines, and reduces the number of data items you have to pass around.

Refer to an ADT independently of the medium it’s stored on Suppose you have an 
insurance-rates table that’s so big that it’s always stored on disk. You might be 
tempted to refer to it as a “rate file” and create access routines such as RateFile.Read(). 
When you refer to it as a file, however, you’re exposing more information about the 
data than you need to. If you ever change the program so that the table is in memory 
instead of on disk, the code that refers to it as a file will be incorrect, misleading, and 
confusing. Try to make the names of classes and access routines independent of how 
the data is stored, and refer to the abstract data type, like the insurance-rates table, 
instead. That would give your class and access routine names like rateTable.Read() or 
simply rates.Read(). 

Handling Multiple Instances of Data with ADTs in Non-Object-
Oriented Environments

Object-oriented languages provide automatic support for handling multiple instances 
of an ADT. If you’ve worked exclusively in object-oriented environments and you’ve 
never had to handle the implementation details of multiple instances yourself, count 
your blessings! (You can also move on to the next section, “ADTs and Classes.”)

If you’re working in a non-object-oriented environment such as C, you will have to 
build support for multiple instances manually. In general, that means including ser-
vices for the ADT to create and delete instances and designing the ADT’s other ser-
vices so that they can work with multiple instances.

The font ADT originally offered these services:

currentFont.SetSize( sizeInPoints )

currentFont.SetBoldOn()

currentFont.SetBoldOff()

currentFont.SetItalicOn()

currentFont.SetItalicOff()

currentFont.SetTypeFace( faceName )
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In a non-object-oriented environment, these functions would not be attached to a 
class and would look more like this:

SetCurrentFontSize( sizeInPoints )

SetCurrentFontBoldOn()

SetCurrentFontBoldOff()

SetCurrentFontItalicOn()

SetCurrentFontItalicOff()

SetCurrentFontTypeFace( faceName )

If you want to work with more than one font at a time, you’ll need to add services to 
create and delete font instances—maybe these:

CreateFont( fontId )

DeleteFont( fontId )

SetCurrentFont( fontId )

The notion of a fontId has been added as a way to keep track of multiple fonts as 
they’re created and used. For other operations, you can choose from among three 
ways to handle the ADT interface:

■ Option 1: Explicitly identify instances each time you use ADT services. In this 
case, you don’t have the notion of a “current font.” You pass fontId to each rou-
tine that manipulates fonts. The Font functions keep track of any underlying 
data, and the client code needs to keep track only of the fontId. This requires 
adding fontId as a parameter to each font routine.

■ Option 2: Explicitly provide the data used by the ADT services. In this approach, 
you declare the data that the ADT uses within each routine that uses an ADT ser-
vice. In other words, you create a Font data type that you pass to each of the ADT 
service routines. You must design the ADT service routines so that they use the 
Font data that’s passed to them each time they’re called. The client code doesn’t 
need a font ID if you use this approach because it keeps track of the font data 
itself. (Even though the data is available directly from the Font data type, you 
should access it only with the ADT service routines. This is called keeping the 
structure “closed.”) 

The advantage of this approach is that the ADT service routines don’t have to 
look up font information based on a font ID. The disadvantage is that it exposes 
font data to the rest of the program, which increases the likelihood that client 
code will make use of the ADT’s implementation details that should have 
remained hidden within the ADT.

■ Option 3: Use implicit instances (with great care). Design a new service to call to 
make a specific font instance the current one—something like SetCurrentFont
( fontId ). Setting the current font makes all other services use the current font 
when they’re called. If you use this approach, you don’t need fontId as a param-
eter to the other services. For simple applications, this can streamline use of 
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multiple instances. For complex applications, this systemwide dependence on 
state means that you must keep track of the current font instance throughout 
code that uses the Font functions. Complexity tends to proliferate, and for appli-
cations of any size, better alternatives exist. 

Inside the abstract data type, you’ll have a wealth of options for handling multiple 
instances, but outside, this sums up the choices if you’re working in a non-object-ori-
ented language. 

ADTs and Classes

Abstract data types form the foundation for the concept of classes. In languages that 
support classes, you can implement each abstract data type as its own class. Classes 
usually involve the additional concepts of inheritance and polymorphism. One way of 
thinking of a class is as an abstract data type plus inheritance and polymorphism.

6.2 Good Class Interfaces
The first and probably most important step in creating a high-quality class is creating 
a good interface. This consists of creating a good abstraction for the interface to repre-
sent and ensuring that the details remain hidden behind the abstraction. 

Good Abstraction

As “Form Consistent Abstractions” in Section 5.3 described, abstraction is the ability 
to view a complex operation in a simplified form. A class interface provides an abstrac-
tion of the implementation that’s hidden behind the interface. The class’s interface 
should offer a group of routines that clearly belong together. 

You might have a class that implements an employee. It would contain data describing 
the employee’s name, address, phone number, and so on. It would offer services to ini-
tialize and use an employee. Here’s how that might look. 

C++ Example of a Class Interface That Presents a Good Abstraction
Cross-Reference Code sam-
ples in this book are format-
ted using a coding 
convention that emphasizes 
similarity of styles across 
multiple languages. For 
details on the convention 
(and discussions about mul-
tiple coding styles), see 
“Mixed-Language Program-
ming Considerations” in 
Section 11.4.

class Employee {

public:

   // public constructors and destructors

   Employee();

   Employee( 

      FullName name, 

      String address, 

      String workPhone, 

      String homePhone,

      TaxId taxIdNumber, 

      JobClassification jobClass 

   );

   virtual ~Employee();
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   // public routines

   FullName GetName() const; 

   String GetAddress() const; 

   String GetWorkPhone() const; 

   String GetHomePhone() const; 

   TaxId GetTaxIdNumber() const; 

   JobClassification GetJobClassification() const; 

   ...

private:

   ...

};

Internally, this class might have additional routines and data to support these ser-
vices, but users of the class don’t need to know anything about them. The class inter-
face abstraction is great because every routine in the interface is working toward a 
consistent end. 

A class that presents a poor abstraction would be one that contained a collection of 
miscellaneous functions. Here’s an example:

C++ Example of a Class Interface That Presents a Poor Abstraction
class Program {

public:

   ...

   // public routines

   void InitializeCommandStack();

   void PushCommand( Command command );

   Command PopCommand(); 

   void ShutdownCommandStack();

   void InitializeReportFormatting(); 

   void FormatReport( Report report );

   void PrintReport( Report report );

   void InitializeGlobalData(); 

   void ShutdownGlobalData(); 

   ...

private:

   ...

};

Suppose that a class contains routines to work with a command stack, to format 
reports, to print reports, and to initialize global data. It’s hard to see any connection 
among the command stack and report routines or the global data. The class interface 
doesn’t present a consistent abstraction, so the class has poor cohesion. The routines 
should be reorganized into more-focused classes, each of which provides a better 
abstraction in its interface. 

If these routines were part of a Program class, they could be revised to present a con-
sistent abstraction, like so: 

CODING 
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C++ Example of a Class Interface That Presents a Better Abstraction
class Program {

public:

   ...

   // public routines

   void InitializeUserInterface(); 

   void ShutDownUserInterface(); 

   void InitializeReports(); 

   void ShutDownReports(); 

   ...

private:

   ...

};

The cleanup of this interface assumes that some of the original routines were moved 
to other, more appropriate classes and some were converted to private routines used 
by InitializeUserInterface() and the other routines. 

This evaluation of class abstraction is based on the class’s collection of public rou-
tines—that is, on the class’s interface. The routines inside the class don’t necessarily 
present good individual abstractions just because the overall class does, but they need 
to be designed to present good abstractions too. For guidelines on that, see Section 
7.2, “Design at the Routine Level.”

The pursuit of good, abstract interfaces gives rise to several guidelines for creating 
class interfaces. 

Present a consistent level of abstraction in the class interface A good way to think 
about a class is as the mechanism for implementing the abstract data types described 
in Section 6.1. Each class should implement one and only one ADT. If you find a class 
implementing more than one ADT, or if you can’t determine what ADT the class 
implements, it’s time to reorganize the class into one or more well-defined ADTs. 

Here’s an example of a class that presents an interface that’s inconsistent because its 
level of abstraction is not uniform: 

C++ Example of a Class Interface with Mixed Levels of Abstraction
class EmployeeCensus: public ListContainer {

public:

   ...

   // public routines

The abstraction of these 
routines is at the “employee” 
level.

   void AddEmployee( Employee employee ); 

   void RemoveEmployee( Employee employee ); 

The abstraction of these 
routines is at the “list” level.

   Employee NextItemInList();

   Employee FirstItem();

   Employee LastItem();

   ...

private:

   ...

};

CODING 
HORROR



136 Chapter 6: Working Classes

This class is presenting two ADTs: an Employee and a ListContainer. This sort of mixed 
abstraction commonly arises when a programmer uses a container class or other 
library classes for implementation and doesn’t hide the fact that a library class is used. 
Ask yourself whether the fact that a container class is used should be part of the 
abstraction. Usually that’s an implementation detail that should be hidden from the 
rest of the program, like this:

C++ Example of a Class Interface with Consistent Levels of Abstraction
class EmployeeCensus {

public:

   ...

   // public routines

The abstraction of all these 
routines is now at the 
“employee” level. 

   void AddEmployee( Employee employee ); 

   void RemoveEmployee( Employee employee ); 

   Employee NextEmployee();

   Employee FirstEmployee();

   Employee LastEmployee();

   ...

private:

That the class uses the 
ListContainer library is now 
hidden.

   ListContainer m_EmployeeList; 

   ...

};

Programmers might argue that inheriting from ListContainer is convenient because it 
supports polymorphism, allowing an external search or sort function that takes a List-
Container object. That argument fails the main test for inheritance, which is, “Is inher-
itance used only for “is a” relationships?” To inherit from ListContainer would mean 
that EmployeeCensus “is a” ListContainer, which obviously isn’t true. If the abstraction 
of the EmployeeCensus object is that it can be searched or sorted, that should be incor-
porated as an explicit, consistent part of the class interface. 

If you think of the class’s public routines as an air lock that keeps water from getting 
into a submarine, inconsistent public routines are leaky panels in the class. The leaky 
panels might not let water in as quickly as an open air lock, but if you give them 
enough time, they’ll still sink the boat. In practice, this is what happens when you mix 
levels of abstraction. As the program is modified, the mixed levels of abstraction make 
the program harder and harder to understand, and it gradually degrades until it 
becomes unmaintainable.

Be sure you understand what abstraction the class is implementing Some classes are 
similar enough that you must be careful to understand which abstraction the class 
interface should capture. I once worked on a program that needed to allow informa-
tion to be edited in a table format. We wanted to use a simple grid control, but the grid 
controls that were available didn’t allow us to color the data-entry cells, so we decided 
to use a spreadsheet control that did provide that capability. 

KEY POINT
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The spreadsheet control was far more complicated than the grid control, providing 
about 150 routines to the grid control’s 15. Since our goal was to use a grid control, 
not a spreadsheet control, we assigned a programmer to write a wrapper class to hide 
the fact that we were using a spreadsheet control as a grid control. The programmer 
grumbled quite a bit about unnecessary overhead and bureaucracy, went away, and 
came back a couple days later with a wrapper class that faithfully exposed all 150 rou-
tines of the spreadsheet control. 

This was not what was needed. We wanted a grid-control interface that encapsulated 
the fact that, behind the scenes, we were using a much more complicated spreadsheet 
control. The programmer should have exposed just the 15 grid-control routines plus 
a 16th routine that supported cell coloring. By exposing all 150 routines, the program-
mer created the possibility that, if we ever wanted to change the underlying imple-
mentation, we could find ourselves supporting 150 public routines. The programmer 
failed to achieve the encapsulation we were looking for, as well as creating a lot more 
work for himself than necessary. 

Depending on specific circumstances, the right abstraction might be either a spread-
sheet control or a grid control. When you have to choose between two similar abstrac-
tions, make sure you choose the right one. 

Provide services in pairs with their opposites Most operations have corresponding, 
equal, and opposite operations. If you have an operation that turns a light on, you’ll 
probably need one to turn it off. If you have an operation to add an item to a list, you’ll 
probably need one to delete an item from the list. If you have an operation to activate 
a menu item, you’ll probably need one to deactivate an item. When you design a class, 
check each public routine to determine whether you need its complement. Don’t cre-
ate an opposite gratuitously, but do check to see whether you need one.

Move unrelated information to another class In some cases, you’ll find that half a 
class’s routines work with half the class’s data and half the routines work with the 
other half of the data. In such a case, you really have two classes masquerading as one. 
Break them up!

Make interfaces programmatic rather than semantic when possible Each interface 
consists of a programmatic part and a semantic part. The programmatic part consists of 
the data types and other attributes of the interface that can be enforced by the compiler. 
The semantic part of the interface consists of the assumptions about how the interface 
will be used, which cannot be enforced by the compiler. The semantic interface includes 
considerations such as “RoutineA must be called before RoutineB” or “RoutineA will crash 
if dataMember1 isn’t initialized before it’s passed to RoutineA.” The semantic interface 
should be documented in comments, but try to keep interfaces minimally dependent 
on documentation. Any aspect of an interface that can’t be enforced by the compiler is 
an aspect that’s likely to be misused. Look for ways to convert semantic interface ele-
ments to programmatic interface elements by using Asserts or other techniques. 
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Cross-Reference For more 
suggestions about how to 
preserve code quality as 
code is modified, see Chap-
ter 24, “Refactoring.” 

Beware of erosion of the interface’s abstraction under modification As a class is 
modified and extended, you often discover additional functionality that’s needed, that 
doesn’t quite fit with the original class interface, but that seems too hard to implement 
any other way. For example, in the Employee class, you might find that the class 
evolves to look like this:

C++ Example of a Class Interface That’s Eroding Under Maintenance
class Employee {

public:

   ...

   // public routines

   FullName GetName() const; 

   Address GetAddress() const; 

   PhoneNumber GetWorkPhone() const; 

   ...

   bool IsJobClassificationValid( JobClassification jobClass ); 

   bool IsZipCodeValid( Address address ); 

   bool IsPhoneNumberValid( PhoneNumber phoneNumber ); 

   SqlQuery GetQueryToCreateNewEmployee() const; 

   SqlQuery GetQueryToModifyEmployee() const; 

   SqlQuery GetQueryToRetrieveEmployee() const; 

   ...

private:

   ...

};

What started out as a clean abstraction in an earlier code sample has evolved into a 
hodgepodge of functions that are only loosely related. There’s no logical connection 
between employees and routines that check ZIP Codes, phone numbers, or job classi-
fications. The routines that expose SQL query details are at a much lower level of 
abstraction than the Employee class, and they break the Employee abstraction.

Don’t add public members that are inconsistent with the interface abstraction Each 
time you add a routine to a class interface, ask “Is this routine consistent with the 
abstraction provided by the existing interface?” If not, find a different way to make the 
modification and preserve the integrity of the abstraction. 

Consider abstraction and cohesion together The ideas of abstraction and cohesion 
are closely related—a class interface that presents a good abstraction usually has 
strong cohesion. Classes with strong cohesion tend to present good abstractions, 
although that relationship is not as strong. 

I have found that focusing on the abstraction presented by the class interface tends to 
provide more insight into class design than focusing on class cohesion. If you see that 
a class has weak cohesion and aren’t sure how to correct it, ask yourself whether the 
class presents a consistent abstraction instead. 
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Good Encapsulation
Cross-Reference For more 
on encapsulation, see 
“Encapsulate Implementa-
tion Details” in Section 5.3. 

As Section 5.3 discussed, encapsulation is a stronger concept than abstraction. 
Abstraction helps to manage complexity by providing models that allow you to ignore 
implementation details. Encapsulation is the enforcer that prevents you from looking 
at the details even if you want to. 

The two concepts are related because, without encapsulation, abstraction tends to 
break down. In my experience, either you have both abstraction and encapsulation or 
you have neither. There is no middle ground. 

The single most important 
factor that distinguishes a 
well-designed module from 
a poorly designed one is the 
degree to which the module 
hides its internal data and 
other implementation details 
from other modules.
—Joshua Bloch

Minimize accessibility of classes and members Minimizing accessibility is one of 
several rules that are designed to encourage encapsulation. If you’re wondering 
whether a specific routine should be public, private, or protected, one school of 
thought is that you should favor the strictest level of privacy that’s workable (Meyers 
1998, Bloch 2001). I think that’s a fine guideline, but I think the more important 
guideline is, “What best preserves the integrity of the interface abstraction?” If expos-
ing the routine is consistent with the abstraction, it’s probably fine to expose it. If 
you’re not sure, hiding more is generally better than hiding less. 

Don’t expose member data in public Exposing member data is a violation of encap-
sulation and limits your control over the abstraction. As Arthur Riel points out, a Point 
class that exposes 

float x;

float y;

float z;

is violating encapsulation because client code is free to monkey around with Point’s 
data and Point won’t necessarily even know when its values have been changed (Riel 
1996). However, a Point class that exposes 

float GetX();

float GetY();

float GetZ();

void SetX( float x );

void SetY( float y );

void SetZ( float z );

is maintaining perfect encapsulation. You have no idea whether the underlying imple-
mentation is in terms of floats x, y, and z, whether Point is storing those items as dou-
bles and converting them to floats, or whether Point is storing them on the moon and 
retrieving them from a satellite in outer space. 

Avoid putting private implementation details into a class’s interface With true 
encapsulation, programmers would not be able to see implementation details at all. 
They would be hidden both figuratively and literally. In popular languages, including 
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C++, however, the structure of the language requires programmers to disclose imple-
mentation details in the class interface. Here’s an example:

C++ Example of Exposing a Class’s Implementation Details
class Employee {

public:

   ...

   Employee( 

      FullName name,

      String address,

      String workPhone,

      String homePhone,

      TaxId taxIdNumber,

      JobClassification jobClass 

   );

   ...

   FullName GetName() const; 

   String GetAddress() const; 

   ...

private:

Here are the exposed 
implementation details. 

   String m_Name;

   String m_Address;

   int m_jobClass;

   ...

};

Including private declarations in the class header file might seem like a small trans-
gression, but it encourages other programmers to examine the implementation 
details. In this case, the client code is intended to use the Address type for addresses 
but the header file exposes the implementation detail that addresses are stored as 
Strings. 

Scott Meyers describes a common way to address this issue in Item 34 of Effective C++, 
2d ed. (Meyers 1998). You separate the class interface from the class implementation. 
Within the class declaration, include a pointer to the class’s implementation but don’t 
include any other implementation details. 

C++ Example of Hiding a Class’s Implementation Details
class Employee {

public:

   ...

   Employee( ... );

   ...

   FullName GetName() const; 

   String GetAddress() const; 

   ...

private:

Here the implementation 
details are hidden behind 
the pointer. 

   EmployeeImplementation *m_implementation;

};
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Now you can put implementation details inside the EmployeeImplementation class, 
which should be visible only to the Employee class and not to the code that uses the 
Employee class. 

If you’ve already written lots of code that doesn’t use this approach for your project, 
you might decide it isn’t worth the effort to convert a mountain of existing code to use 
this approach. But when you read code that exposes its implementation details, you 
can resist the urge to comb through the private section of the class interface looking 
for implementation clues. 

Don’t make assumptions about the class’s users A class should be designed and 
implemented to adhere to the contract implied by the class interface. It shouldn’t 
make any assumptions about how that interface will or won’t be used, other than 
what’s documented in the interface. Comments like the following one are an indica-
tion that a class is more aware of its users than it should be:

-- initialize x, y, and z to 1.0 because DerivedClass blows 

-- up if they're initialized to 0.0

Avoid friend classes In a few circumstances such as the State pattern, friend classes 
can be used in a disciplined way that contributes to managing complexity (Gamma et al. 
1995). But, in general, friend classes violate encapsulation. They expand the amount of 
code you have to think about at any one time, thereby increasing complexity.

Don’t put a routine into the public interface just because it uses only public routines
The fact that a routine uses only public routines is not a significant consideration. 
Instead, ask whether exposing the routine would be consistent with the abstraction 
presented by the interface.

Favor read-time convenience to write-time convenience Code is read far more times 
than it’s written, even during initial development. Favoring a technique that speeds 
write-time convenience at the expense of read-time convenience is a false economy. 
This is especially applicable to creation of class interfaces. Even if a routine doesn’t 
quite fit the interface’s abstraction, sometimes it’s tempting to add a routine to an 
interface that would be convenient for the particular client of a class that you’re work-
ing on at the time. But adding that routine is the first step down a slippery slope, and 
it’s better not to take even the first step. 

It ain’t abstract if you have to 
look at the underlying imple-
mentation to understand 
what’s going on.
—P. J. Plauger

Be very, very wary of semantic violations of encapsulation At one time I thought 
that when I learned how to avoid syntax errors I would be home free. I soon discov-
ered that learning how to avoid syntax errors had merely bought me a ticket to a 
whole new theater of coding errors, most of which were more difficult to diagnose and 
correct than the syntax errors. 

The difficulty of semantic encapsulation compared to syntactic encapsulation is similar. 
Syntactically, it’s relatively easy to avoid poking your nose into the internal workings of 
another class just by declaring the class’s internal routines and data private. Achieving 
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semantic encapsulation is another matter entirely. Here are some examples of the ways 
that a user of a class can break encapsulation semantically:

■ Not calling Class A’s InitializeOperations() routine because you know that Class 
A’s PerformFirstOperation() routine calls it automatically.

■ Not calling the database.Connect() routine before you call employee.Retrieve( 
database ) because you know that the employee.Retrieve() function will connect 
to the database if there isn’t already a connection. 

■ Not calling Class A’s Terminate() routine because you know that Class A’s Per-
formFinalOperation() routine has already called it. 

■ Using a pointer or reference to ObjectB created by ObjectA even after ObjectA has 
gone out of scope, because you know that ObjectA keeps ObjectB in static storage 
and ObjectB will still be valid. 

■ Using Class B’s MAXIMUM_ELEMENTS constant instead of using 
ClassA.MAXIMUM_ELEMENTS, because you know that they’re both equal to 
the same value. 

The problem with each of these examples is that they make the client code dependent 
not on the class’s public interface, but on its private implementation. Anytime you 
find yourself looking at a class’s implementation to figure out how to use the class, 
you’re not programming to the interface; you’re programming through the interface to 
the implementation. If you’re programming through the interface, encapsulation is 
broken, and once encapsulation starts to break down, abstraction won’t be far behind. 

If you can’t figure out how to use a class based solely on its interface documentation, 
the right response is not to pull up the source code and look at the implementation. 
That’s good initiative but bad judgment. The right response is to contact the author of 
the class and say “I can’t figure out how to use this class.” The right response on the 
class-author’s part is not to answer your question face to face. The right response for 
the class author is to check out the class-interface file, modify the class-interface doc-
umentation, check the file back in, and then say “See if you can understand how it 
works now.” You want this dialog to occur in the interface code itself so that it will be 
preserved for future programmers. You don’t want the dialog to occur solely in your 
own mind, which will bake subtle semantic dependencies into the client code that 
uses the class. And you don’t want the dialog to occur interpersonally so that it bene-
fits only your code but no one else’s. 

Watch for coupling that’s too tight “Coupling” refers to how tight the connection is 
between two classes. In general, the looser the connection, the better. Several general 
guidelines flow from this concept: 

■ Minimize accessibility of classes and members.

■ Avoid friend classes, because they’re tightly coupled.

KEY POINT
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■ Make data private rather than protected in a base class to make derived classes 
less tightly coupled to the base class.

■ Avoid exposing member data in a class’s public interface.

■ Be wary of semantic violations of encapsulation.

■ Observe the “Law of Demeter” (discussed in Section 6.3 of this chapter).

Coupling goes hand in glove with abstraction and encapsulation. Tight coupling 
occurs when an abstraction is leaky, or when encapsulation is broken. If a class offers 
an incomplete set of services, other routines might find they need to read or write its 
internal data directly. That opens up the class, making it a glass box instead of a black 
box, and it virtually eliminates the class’s encapsulation. 

6.3 Design and Implementation Issues
Defining good class interfaces goes a long way toward creating a high-quality pro-
gram. The internal class design and implementation are also important. This section 
discusses issues related to containment, inheritance, member functions and data, 
class coupling, constructors, and value-vs.-reference objects. 

Containment (“has a” Relationships)

Containment is the simple idea that a class contains a primitive data element or 
object. A lot more is written about inheritance than about containment, but that’s 
because inheritance is more tricky and error-prone, not because it’s better. Contain-
ment is the work-horse technique in object-oriented programming. 

Implement “has a” through containment One way of thinking of containment is as a 
“has a” relationship. For example, an employee “has a” name, “has a” phone number, 
“has a” tax ID, and so on. You can usually accomplish this by making the name, phone 
number, and tax ID member data of the Employee class. 

Implement “has a” through private inheritance as a last resort In some instances 
you might find that you can’t achieve containment through making one object a mem-
ber of another. In that case, some experts suggest privately inheriting from the con-
tained object (Meyers 1998, Sutter 2000). The main reason you would do that is to set 
up the containing class to access protected member functions or protected member 
data of the class that’s contained. In practice, this approach creates an overly cozy rela-
tionship with the ancestor class and violates encapsulation. It tends to point to design 
errors that should be resolved some way other than through private inheritance. 

Be critical of classes that contain more than about seven data members The number 
“7±2” has been found to be a number of discrete items a person can remember while 
performing other tasks (Miller 1956). If a class contains more than about seven data 

KEY POINT
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members, consider whether the class should be decomposed into multiple smaller 
classes (Riel 1996). You might err more toward the high end of 7±2 if the data mem-
bers are primitive data types like integers and strings, more toward the lower end of 
7±2 if the data members are complex objects. 

Inheritance (“is a” Relationships) 

Inheritance is the idea that one class is a specialization of another class. The purpose of 
inheritance is to create simpler code by defining a base class that specifies common ele-
ments of two or more derived classes. The common elements can be routine interfaces, 
implementations, data members, or data types. Inheritance helps avoid the need to 
repeat code and data in multiple locations by centralizing it within a base class.

When you decide to use inheritance, you have to make several decisions:

■ For each member routine, will the routine be visible to derived classes? Will it 
have a default implementation? Will the default implementation be overridable? 

■ For each data member (including variables, named constants, enumerations, 
and so on), will the data member be visible to derived classes? 

The following subsections explain the ins and outs of making these decisions:

The single most important 
rule in object-oriented pro-
gramming with C++ is this: 
public inheritance means 
“is a.” Commit this rule to 
memory. 
—Scott Meyers

Implement “is a” through public inheritance When a programmer decides to create 
a new class by inheriting from an existing class, that programmer is saying that the 
new class “is a” more specialized version of the older class. The base class sets expec-
tations about how the derived class will operate and imposes constraints on how the 
derived class can operate (Meyers 1998). 

If the derived class isn’t going to adhere completely to the same interface contract 
defined by the base class, inheritance is not the right implementation technique. Con-
sider containment or making a change further up the inheritance hierarchy. 

Design and document for inheritance or prohibit it Inheritance adds complexity to a 
program, and, as such, it’s a dangerous technique. As Java guru Joshua Bloch says, 
“Design and document for inheritance, or prohibit it.” If a class isn’t designed to be 
inherited from, make its members non-virtual in C++, final in Java, or non-overridable 
in Microsoft Visual Basic so that you can’t inherit from it. 

Adhere to the Liskov Substitution Principle (LSP) In one of object-oriented pro-
gramming’s seminal papers, Barbara Liskov argued that you shouldn’t inherit from a 
base class unless the derived class truly “is a” more specific version of the base class 
(Liskov 1988). Andy Hunt and Dave Thomas summarize LSP like this: “Subclasses 
must be usable through the base class interface without the need for the user to know 
the difference” (Hunt and Thomas 2000).
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In other words, all the routines defined in the base class should mean the same thing 
when they’re used in each of the derived classes. 

If you have a base class of Account and derived classes of CheckingAccount, SavingsAc-
count, and AutoLoanAccount, a programmer should be able to invoke any of the rou-
tines derived from Account on any of Account’s subtypes without caring about which 
subtype a specific account object is. 

If a program has been written so that the Liskov Substitution Principle is true, inher-
itance is a powerful tool for reducing complexity because a programmer can focus on 
the generic attributes of an object without worrying about the details. If a programmer 
must be constantly thinking about semantic differences in subclass implementations, 
then inheritance is increasing complexity rather than reducing it. Suppose a program-
mer has to think this: “If I call the InterestRate() routine on CheckingAccount or Sav-
ingsAccount, it returns the interest the bank pays, but if I call InterestRate() on 
AutoLoanAccount I have to change the sign because it returns the interest the con-
sumer pays to the bank.” According to LSP, AutoLoanAccount should not inherit from 
the Account base class in this example because the semantics of the InterestRate() rou-
tine are not the same as the semantics of the base class’s InterestRate() routine.

Be sure to inherit only what you want to inherit A derived class can inherit member 
routine interfaces, implementations, or both. Table 6-1 shows the variations of how 
routines can be implemented and overridden. 

As the table suggests, inherited routines come in three basic flavors:

■ An abstract overridable routine means that the derived class inherits the routine’s 
interface but not its implementation. 

■ An overridable routine means that the derived class inherits the routine’s inter-
face and a default implementation and it is allowed to override the default 
implementation.

■ A non-overridable routine means that the derived class inherits the routine’s inter-
face and its default implementation and it is not allowed to override the rou-
tine’s implementation.

Table 6-1 Variations on Inherited Routines 

Overridable Not Overridable

Implementation: Default 
Provided

Overridable Routine Non-Overridable Routine

Implementation: No Default 
Provided

Abstract Overridable 
Routine

Not used (doesn’t make sense to 
leave a routine undefined and 
not allow it to be overridden)
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When you choose to implement a new class through inheritance, think through the 
kind of inheritance you want for each member routine. Beware of inheriting imple-
mentation just because you’re inheriting an interface, and beware of inheriting an 
interface just because you want to inherit an implementation. If you want to use a 
class’s implementation but not its interface, use containment rather than inheritance. 

Don’t “override” a non-overridable member function Both C++ and Java allow a pro-
grammer to override a non-overridable member routine—kind of. If a function is pri-
vate in the base class, a derived class can create a function with the same name. To the 
programmer reading the code in the derived class, such a function can create confu-
sion because it looks like it should be polymorphic, but it isn’t; it just has the same 
name. Another way to state this guideline is, “Don’t reuse names of non-overridable 
base-class routines in derived classes.”

Move common interfaces, data, and behavior as high as possible in the inheritance 
tree The higher you move interfaces, data, and behavior, the more easily derived 
classes can use them. How high is too high? Let abstraction be your guide. If you find 
that moving a routine higher would break the higher object’s abstraction, don’t do it. 

Be suspicious of classes of which there is only one instance A single instance might 
indicate that the design confuses objects with classes. Consider whether you could 
just create an object instead of a new class. Can the variation of the derived class be 
represented in data rather than as a distinct class? The Singleton pattern is one nota-
ble exception to this guideline. 

Be suspicious of base classes of which there is only one derived class When I see a 
base class that has only one derived class, I suspect that some programmer has been 
“designing ahead”—trying to anticipate future needs, usually without fully under-
standing what those future needs are. The best way to prepare for future work is not to 
design extra layers of base classes that “might be needed someday”; it’s to make cur-
rent work as clear, straightforward, and simple as possible. That means not creating 
any more inheritance structure than is absolutely necessary. 

Be suspicious of classes that override a routine and do nothing inside the derived 
routine This typically indicates an error in the design of the base class. For instance, 
suppose you have a class Cat and a routine Scratch() and suppose that you eventually 
find out that some cats are declawed and can’t scratch. You might be tempted to create 
a class derived from Cat named ScratchlessCat and override the Scratch() routine to do 
nothing. This approach presents several problems:

■ It violates the abstraction (interface contract) presented in the Cat class by 
changing the semantics of its interface. 

■ This approach quickly gets out of control when you extend it to other derived 
classes. What happens when you find a cat without a tail? Or a cat that doesn’t 
catch mice? Or a cat that doesn’t drink milk? Eventually you’ll end up with 
derived classes like ScratchlessTaillessMicelessMilklessCat. 
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■ Over time, this approach gives rise to code that’s confusing to maintain because 
the interfaces and behavior of the ancestor classes imply little or nothing about 
the behavior of their descendants. 

The place to fix this problem is not in the base class, but in the original Cat class. Cre-
ate a Claws class and contain that within the Cats class. The root problem was the 
assumption that all cats scratch, so fix that problem at the source, rather than just 
bandaging it at the destination. 

Avoid deep inheritance trees Object-oriented programming provides a large number 
of techniques for managing complexity. But every powerful tool has its hazards, and 
some object-oriented techniques have a tendency to increase complexity rather than 
reduce it. 

In his excellent book Object-Oriented Design Heuristics (1996), Arthur Riel suggests 
limiting inheritance hierarchies to a maximum of six levels. Riel bases his recommen-
dation on the “magic number 7±2,” but I think that’s grossly optimistic. In my experi-
ence most people have trouble juggling more than two or three levels of inheritance in 
their brains at once. The “magic number 7±2” is probably better applied as a limit to 
the total number of subclasses of a base class rather than the number of levels in an 
inheritance tree.

Deep inheritance trees have been found to be significantly associated with increased 
fault rates (Basili, Briand, and Melo 1996). Anyone who has ever tried to debug a com-
plex inheritance hierarchy knows why. Deep inheritance trees increase complexity, 
which is exactly the opposite of what inheritance should be used to accomplish. Keep 
the primary technical mission in mind. Make sure you’re using inheritance to avoid 
duplicating code and to minimize complexity. 

Prefer polymorphism to extensive type checking Frequently repeated case statements 
sometimes suggest that inheritance might be a better design choice, although this is 
not always true. Here is a classic example of code that cries out for a more object-ori-
ented approach: 

C++ Example of a Case Statement That Probably Should Be Replaced 
by Polymorphism
switch ( shape.type ) {

   case Shape_Circle:

      shape.DrawCircle();

      break;

   case Shape_Square:

      shape.DrawSquare();

      break;

   ...

}
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In this example, the calls to shape.DrawCircle() and shape.DrawSquare() should be 
replaced by a single routine named shape.Draw(), which can be called regardless of 
whether the shape is a circle or a square. 

On the other hand, sometimes case statements are used to separate truly different 
kinds of objects or behavior. Here is an example of a case statement that is appropriate 
in an object-oriented program:

C++ Example of a Case Statement That Probably Should Not Be Replaced 
by Polymorphism
switch ( ui.Command() ) {

   case Command_OpenFile:

      OpenFile();

      break;

   case Command_Print:

      Print(); 

      break;

   case Command_Save:

      Save(); 

      break;

   case Command_Exit:

      ShutDown();

      break;

   ...

}

In this case, it would be possible to create a base class with derived classes and a poly-
morphic DoCommand() routine for each command (as in the Command pattern). But 
in a simple case like this one, the meaning of DoCommand() would be so diluted as to 
be meaningless, and the case statement is the more understandable solution. 

Make all data private, not protected As Joshua Bloch says, “Inheritance breaks 
encapsulation” (2001). When you inherit from an object, you obtain privileged access 
to that object’s protected routines and data. If the derived class really needs access to 
the base class’s attributes, provide protected accessor functions instead. 

Multiple Inheritance

The one indisputable fact 
about multiple inheritance in 
C++ is that it opens up a 
Pandora’s box of complexi-
ties that simply do not exist 
under single inheritance.
—Scott Meyers

Inheritance is a power tool. It’s like using a chain saw to cut down a tree instead of a 
manual crosscut saw. It can be incredibly useful when used with care, but it’s danger-
ous in the hands of someone who doesn’t observe proper precautions. 
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If inheritance is a chain saw, multiple inheritance is a 1950s-era chain saw with no 
blade guard, no automatic shutoff, and a finicky engine. There are times when such a 
tool is valuable; mostly, however, you’re better off leaving the tool in the garage where 
it can’t do any damage. 

Although some experts recommend broad use of multiple inheritance (Meyer 1997), 
in my experience multiple inheritance is useful primarily for defining “mixins,” simple 
classes that are used to add a set of properties to an object. Mixins are called mixins 
because they allow properties to be “mixed in” to derived classes. Mixins might be 
classes like Displayable, Persistant, Serializable, or Sortable. Mixins are nearly always 
abstract and aren’t meant to be instantiated independently of other objects. 

Mixins require the use of multiple inheritance, but they aren’t subject to the classic 
diamond-inheritance problem associated with multiple inheritance as long as all mix-
ins are truly independent of each other. They also make the design more comprehen-
sible by “chunking” attributes together. A programmer will have an easier time 
understanding that an object uses the mixins Displayable and Persistent than under-
standing that an object uses the 11 more-specific routines that would otherwise be 
needed to implement those two properties. 

Java and Visual Basic recognize the value of mixins by allowing multiple inheritance 
of interfaces but only single-class inheritance. C++ supports multiple inheritance of 
both interface and implementation. Programmers should use multiple inheritance 
only after carefully considering the alternatives and weighing the impact on system 
complexity and comprehensibility. 

Why Are There So Many Rules for Inheritance?

This section has presented numerous rules for staying out of trouble with inheritance. 
The underlying message of all these rules is that inheritance tends to work against the pri-
mary technical imperative you have as a programmer, which is to manage complexity. For the 
sake of controlling complexity, you should maintain a heavy bias against inheritance. 
Here’s a summary of when to use inheritance and when to use containment: 

Cross-Reference For more 
on complexity, see “Soft-
ware’s Primary Technical 
Imperative: Managing Com-
plexity” in Section 5.2.

■ If multiple classes share common data but not behavior, create a common object 
that those classes can contain. 

■ If multiple classes share common behavior but not data, derive them from a 
common base class that defines the common routines. 

■ If multiple classes share common data and behavior, inherit from a common 
base class that defines the common data and routines. 

■ Inherit when you want the base class to control your interface; contain when 
you want to control your interface.

KEY POINT
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Member Functions and Data
Cross-Reference For more 
discussion of routines in 
general, see Chapter 7, 
“High-Quality Routines.”

Here are a few guidelines for implementing member functions and member data 
effectively.

Keep the number of routines in a class as small as possible A study of C++ programs 
found that higher numbers of routines per class were associated with higher fault 
rates (Basili, Briand, and Melo 1996). However, other competing factors were found to 
be more significant, including deep inheritance trees, large number of routines called 
within a class, and strong coupling between classes. Evaluate the tradeoff between 
minimizing the number of routines and these other factors. 

Disallow implicitly generated member functions and operators you don’t want
Sometimes you’ll find that you want to disallow certain functions—perhaps you want 
to disallow assignment, or you don’t want to allow an object to be constructed. You 
might think that, since the compiler generates operators automatically, you’re stuck 
allowing access. But in such cases you can disallow those uses by declaring the con-
structor, assignment operator, or other function or operator private, which will pre-
vent clients from accessing it. (Making the constructor private is a standard technique 
for defining a singleton class, which is discussed later in this chapter.)

Minimize the number of different routines called by a class One study found that 
the number of faults in a class was statistically correlated with the total number of rou-
tines that were called from within a class (Basili, Briand, and Melo 1996). The same 
study found that the more classes a class used, the higher its fault rate tended to be. 
These concepts are sometimes called “fan out.”

Further Reading Good 
accounts of the Law of 
Demeter can be found in 
Pragmatic Programmer 
(Hunt and Thomas 2000), 
Applying UML and Patterns 
(Larman 2001), and Funda-
mentals of Object-Oriented 
Design in UML (Page-Jones 
2000).

Minimize indirect routine calls to other classes Direct connections are hazardous 
enough. Indirect connections—such as account.ContactPerson().DaytimeContact-
Info().PhoneNumber()—tend to be even more hazardous. Researchers have formulated 
a rule called the “Law of Demeter” (Lieberherr and Holland 1989), which essentially 
states that Object A can call any of its own routines. If Object A instantiates an Object 
B, it can call any of Object B’s routines. But it should avoid calling routines on objects 
provided by Object B. In the account example above, that means account.ContactPer-
son() is OK but account.ContactPerson().DaytimeContactInfo() is not. 

This is a simplified explanation. See the additional resources at the end of this chapter 
for more details. 

In general, minimize the extent to which a class collaborates with other classes Try 
to minimize all of the following:

■ Number of kinds of objects instantiated

■ Number of different direct routine calls on instantiated objects 

■ Number of routine calls on objects returned by other instantiated objects
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Constructors

Following are some guidelines that apply specifically to constructors. Guidelines for 
constructors are pretty similar across languages (C++, Java, and Visual Basic, anyway). 
Destructors vary more, so you should check out the materials listed in this chapter’s 
“Additional Resources” section for information on destructors.

Initialize all member data in all constructors, if possible Initializing all data mem-
bers in all constructors is an inexpensive defensive programming practice. 

Further Reading The code 
to do this in C++ would be 
similar. For details, see More 
Effective C++, Item 26 (Mey-
ers 1998).

Enforce the singleton property by using a private constructor If you want to define a 
class that allows only one object to be instantiated, you can enforce this by hiding all 
the constructors of the class and then providing a static GetInstance() routine to access 
the class’s single instance. Here’s an example of how that would work: 

Java Example of Enforcing a Singleton with a Private Constructor
public class MaxId {

   // constructors and destructors

Here is the private 
constructor.

   private MaxId() {

      ...

   }

   ...

   // public routines

Here is the public routine 
that provides access to the 
single instance. 

   public static MaxId GetInstance() {

      return m_instance;

   }

   ...

   // private members

Here is the single instance.    private static final MaxId m_instance = new MaxId();

   ...

}

The private constructor is called only when the static object m_instance is initialized. 
In this approach, if you want to reference the MaxId singleton, you would simply refer 
to MaxId.GetInstance(). 

Prefer deep copies to shallow copies until proven otherwise One of the major deci-
sions you’ll make about complex objects is whether to implement deep copies or shal-
low copies of the object. A deep copy of an object is a member-wise copy of the 
object’s member data; a shallow copy typically just points to or refers to a single refer-
ence copy, although the specific meanings of “deep” and “shallow” vary. 

The motivation for creating shallow copies is typically to improve performance. 
Although creating multiple copies of large objects might be aesthetically offensive, it 
rarely causes any measurable performance impact. A small number of objects might 
cause performance issues, but programmers are notoriously poor at guessing which 
code really causes problems. (For details, see Chapter 25, “Code-Tuning Strategies.”) 
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Because it’s a poor tradeoff to add complexity for dubious performance gains, a good 
approach to deep vs. shallow copies is to prefer deep copies until proven otherwise. 

Deep copies are simpler to code and maintain than shallow copies. In addition to the 
code either kind of object would contain, shallow copies add code to count references, 
ensure safe object copies, safe comparisons, safe deletes, and so on. This code can be 
error-prone, and you should avoid it unless there’s a compelling reason to create it. 

If you find that you do need to use a shallow-copy approach, Scott Meyers’s More 
Effective C++, Item 29 (1996) contains an excellent discussion of the issues in C++. 
Martin Fowler’s Refactoring (1999) describes the specific steps needed to convert 
from shallow copies to deep copies and from deep copies to shallow copies. (Fowler 
calls them reference objects and value objects.)

6.4 Reasons to Create a Class
Cross-Reference Reasons 
for creating classes and 
routines overlap. See 
Section 7.1.

If you believe everything you read, you might get the idea that the only reason to cre-
ate a class is to model real-world objects. In practice, classes get created for many more 
reasons than that. Here’s a list of good reasons to create a class. 

Cross-Reference For more 
on identifying real-world 
objects, see “Find Real-
World Objects” in Section 
5.3.

Model real-world objects Modeling real-world objects might not be the only reason 
to create a class, but it’s still a good reason! Create a class for each real-world object 
type that your program models. Put the data needed for the object into the class, and 
then build service routines that model the behavior of the object. See the discussion of 
ADTs in Section 6.1 for examples. 

Model abstract objects Another good reason to create a class is to model an abstract 
object—an object that isn’t a concrete, real-world object but that provides an abstrac-
tion of other concrete objects. A good example is the classic Shape object. Circle and 
Square really exist, but Shape is an abstraction of other specific shapes. 

On programming projects, the abstractions are not ready-made the way Shape is, so 
we have to work harder to come up with clean abstractions. The process of distilling 
abstract concepts from real-world entities is non-deterministic, and different designers 
will abstract out different generalities. If we didn’t know about geometric shapes like 
circles, squares and triangles, for example, we might come up with more unusual 
shapes like squash shape, rutabaga shape, and Pontiac Aztek shape. Coming up with 
appropriate abstract objects is one of the major challenges in object-oriented design.

Reduce complexity The single most important reason to create a class is to reduce a 
program’s complexity. Create a class to hide information so that you won’t need to 
think about it. Sure, you’ll need to think about it when you write the class. But after it’s 
written, you should be able to forget the details and use the class without any knowl-
edge of its internal workings. Other reasons to create classes—minimizing code size, 

KEY POINT
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improving maintainability, and improving correctness—are also good reasons, but 
without the abstractive power of classes, complex programs would be impossible to 
manage intellectually.

Isolate complexity Complexity in all forms—complicated algorithms, large data sets, 
intricate communications protocols, and so on—is prone to errors. If an error does 
occur, it will be easier to find if it isn’t spread through the code but is localized within 
a class. Changes arising from fixing the error won’t affect other code because only one 
class will have to be fixed—other code won’t be touched. If you find a better, simpler, 
or more reliable algorithm, it will be easier to replace the old algorithm if it has been 
isolated into a class. During development, it will be easier to try several designs and 
keep the one that works best.

Hide implementation details The desire to hide implementation details is a wonder-
ful reason to create a class whether the details are as complicated as a convoluted data-
base access or as mundane as whether a specific data member is stored as a number 
or a string. 

Limit effects of changes Isolate areas that are likely to change so that the effects of 
changes are limited to the scope of a single class or a few classes. Design so that areas 
that are most likely to change are the easiest to change. Areas likely to change include 
hardware dependencies, input/output, complex data types, and business rules. The 
subsection titled “Hide Secrets (Information Hiding)” in Section 5.3 described several 
common sources of change. 

Cross-Reference For a dis-
cussion of problems associ-
ated with using global data, 
see Section 13.3, “Global 
Data.” 

Hide global data If you need to use global data, you can hide its implementation 
details behind a class interface. Working with global data through access routines pro-
vides several benefits compared to working with global data directly. You can change 
the structure of the data without changing your program. You can monitor accesses to 
the data. The discipline of using access routines also encourages you to think about 
whether the data is really global; it often becomes apparent that the “global data” is 
really just object data.

Streamline parameter passing If you’re passing a parameter among several routines, 
that might indicate a need to factor those routines into a class that share the parameter 
as object data. Streamlining parameter passing isn’t a goal, per se, but passing lots of 
data around suggests that a different class organization might work better. 

Cross-Reference For details 
on information hiding, see 
“Hide Secrets (Information 
Hiding)” in Section 5.3. 

Make central points of control It’s a good idea to control each task in one place. 
Control assumes many forms. Knowledge of the number of entries in a table is one 
form. Control of devices—files, database connections, printers, and so on—is another. 
Using one class to read from and write to a database is a form of centralized control. 
If the database needs to be converted to a flat file or to in-memory data, the changes 
will affect only one class. 
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The idea of centralized control is similar to information hiding, but it has unique heu-
ristic power that makes it worth adding to your programming toolbox.

Facilitate reusable code Code put into well-factored classes can be reused in other 
programs more easily than the same code embedded in one larger class. Even if a sec-
tion of code is called from only one place in the program and is understandable as 
part of a larger class, it makes sense to put it into its own class if that piece of code 
might be used in another program.

NASA’s Software Engineering Laboratory studied ten projects that pursued reuse 
aggressively (McGarry, Waligora, and McDermott 1989). In both the object-oriented 
and the functionally oriented approaches, the initial projects weren’t able to take 
much of their code from previous projects because previous projects hadn’t estab-
lished a sufficient code base. Subsequently, the projects that used functional design 
were able to take about 35 percent of their code from previous projects. Projects that 
used an object-oriented approach were able to take more than 70 percent of their code 
from previous projects. If you can avoid writing 70 percent of your code by planning 
ahead, do it!

Cross-Reference For more 
on implementing the mini-
mum amount of functional-
ity required, see “A program 
contains code that seems 
like it might be needed 
someday” in Section 24.2.

Notably, the core of NASA’s approach to creating reusable classes does not involve 
“designing for reuse.” NASA identifies reuse candidates at the ends of their projects. 
They then perform the work needed to make the classes reusable as a special project 
at the end of the main project or as the first step in a new project. This approach helps 
prevent “gold-plating”—creation of functionality that isn’t required and that unneces-
sarily adds complexity. 

Plan for a family of programs If you expect a program to be modified, it’s a good 
idea to isolate the parts that you expect to change by putting them into their own 
classes. You can then modify the classes without affecting the rest of the program, or 
you can put in completely new classes instead. Thinking through not just what one 
program will look like but what the whole family of programs might look like is a 
powerful heuristic for anticipating entire categories of changes (Parnas 1976). 

Several years ago I managed a team that wrote a series of programs used by our clients 
to sell insurance. We had to tailor each program to the specific client’s insurance rates, 
quote-report format, and so on. But many parts of the programs were similar: the 
classes that input information about potential customers, that stored information in a 
customer database, that looked up rates, that computed total rates for a group, and so 
on. The team factored the program so that each part that varied from client to client 
was in its own class. The initial programming might have taken three months or so, 
but when we got a new client, we merely wrote a handful of new classes for the new 
client and dropped them into the rest of the code. A few days’ work and—voila!—cus-
tom software! 

1
2
3

HARD DATA
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Package related operations In cases in which you can’t hide information, share data, 
or plan for flexibility, you can still package sets of operations into sensible groups, 
such as trig functions, statistical functions, string-manipulation routines, bit-manipu-
lation routines, graphics routines, and so on. Classes are one means of combining 
related operations. You could also use packages, namespaces, or header files, depend-
ing on the language you’re working in. 

Accomplish a specific refactoring Many of the specific refactorings described in 
Chapter 24, “Refactoring,” result in new classes—including converting one class to 
two, hiding a delegate, removing a middle man, and introducing an extension class. 
These new classes could be motivated by a desire to better accomplish any of the 
objectives described throughout this section.

Classes to Avoid

While classes in general are good, you can run into a few gotchas. Here are some 
classes to avoid. 

Avoid creating god classes Avoid creating omniscient classes that are all-knowing 
and all-powerful. If a class spends its time retrieving data from other classes using 
Get() and Set() routines (that is, digging into their business and telling them what to 
do), ask whether that functionality might better be organized into those other classes 
rather than into the god class (Riel 1996). 

Cross-Reference This kind of 
class is usually called a struc-
ture. For more on structures, 
see Section 13.1, “Struc-
tures.”

Eliminate irrelevant classes If a class consists only of data but no behavior, ask your-
self whether it’s really a class and consider demoting it so that its member data just 
becomes attributes of one or more other classes. 

Avoid classes named after verbs A class that has only behavior but no data is gener-
ally not really a class. Consider turning a class like DatabaseInitialization() or String-
Builder() into a routine on some other class. 

Summary of Reasons to Create a Class

Here’s a summary list of the valid reasons to create a class: 

■ Model real-world objects

■ Model abstract objects

■ Reduce complexity 

■ Isolate complexity

■ Hide implementation details

■ Limit effects of changes

■ Hide global data
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■ Streamline parameter passing

■ Make central points of control

■ Facilitate reusable code

■ Plan for a family of programs

■ Package related operations

■ Accomplish a specific refactoring 

6.5 Language-Specific Issues
Approaches to classes in different programming languages vary in interesting ways. 
Consider how you override a member routine to achieve polymorphism in a derived 
class. In Java, all routines are overridable by default and a routine must be declared 
final to prevent a derived class from overriding it. In C++, routines are not overridable 
by default. A routine must be declared virtual in the base class to be overridable. In 
Visual Basic, a routine must be declared overridable in the base class and the derived 
class should use the overrides keyword. 

Here are some of the class-related areas that vary significantly depending on the 
language:

■ Behavior of overridden constructors and destructors in an inheritance tree

■ Behavior of constructors and destructors under exception-handling conditions

■ Importance of default constructors (constructors with no arguments) 

■ Time at which a destructor or finalizer is called

■ Wisdom of overriding the language’s built-in operators, including assignment 
and equality 

■ How memory is handled as objects are created and destroyed or as they are 
declared and go out of scope

Detailed discussions of these issues are beyond the scope of this book, but the “Addi-
tional Resources” section points to good language-specific resources. 

6.6 Beyond Classes: Packages
Cross-Reference For more 
on the distinction between 
classes and packages, see 
“Levels of Design” in 
Section 5.2.

Classes are currently the best way for programmers to achieve modularity. But modular-
ity is a big topic, and it extends beyond classes. Over the past several decades, software 
development has advanced in large part by increasing the granularity of the aggrega-
tions that we have to work with. The first aggregation we had was the statement, which 
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at the time seemed like a big step up from machine instructions. Then came subrou-
tines, and later came classes.

It’s evident that we could better support the goals of abstraction and encapsulation if 
we had good tools for aggregating groups of objects. Ada supported the notion of 
packages more than a decade ago, and Java supports packages today. If you’re pro-
gramming in a language that doesn’t support packages directly, you can create your 
own poor-programmer’s version of a package and enforce it through programming 
standards that include the following:

■ Naming conventions that differentiate which classes are public and which are 
for the package’s private use

■ Naming conventions, code-organization conventions (project structure), or 
both that identify which package each class belongs to

■ Rules that define which packages are allowed to use which other packages, 
including whether the usage can be inheritance, containment, or both

These workarounds are good examples of the distinction between programming in a 
language vs. programming into a language. For more on this distinction, see Section 
34.4, “Program into Your Language, Not in It.”

cc2e.com/0672

Cross-Reference This is a 
checklist of considerations 
about the quality of the 
class. For a list of the steps 
used to build a class, see the 
checklist “The Pseudocode 
Programming Process” in 
Chapter 9, page 233.

CHECKLIST: Class Quality
Abstract Data Types

❑ Have you thought of the classes in your program as abstract data types 
and evaluated their interfaces from that point of view? 

Abstraction
❑ Does the class have a central purpose?

❑ Is the class well named, and does its name describe its central purpose? 

❑ Does the class’s interface present a consistent abstraction? 

❑ Does the class’s interface make obvious how you should use the class? 

❑ Is the class’s interface abstract enough that you don’t have to think about 
how its services are implemented? Can you treat the class as a black box?

❑ Are the class’s services complete enough that other classes don’t have to 
meddle with its internal data?

❑ Has unrelated information been moved out of the class? 

❑ Have you thought about subdividing the class into component classes, 
and have you subdivided it as much as you can?

❑ Are you preserving the integrity of the class’s interface as you modify the 
class? 
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Encapsulation
❑ Does the class minimize accessibility to its members?

❑ Does the class avoid exposing member data?

❑ Does the class hide its implementation details from other classes as much 
as the programming language permits?

❑ Does the class avoid making assumptions about its users, including its 
derived classes? 

❑ Is the class independent of other classes? Is it loosely coupled?

Inheritance
❑ Is inheritance used only to model “is a” relationships—that is, do derived 

classes adhere to the Liskov Substitution Principle?

❑ Does the class documentation describe the inheritance strategy?

❑ Do derived classes avoid “overriding” non-overridable routines? 

❑ Are common interfaces, data, and behavior as high as possible in the 
inheritance tree? 

❑ Are inheritance trees fairly shallow? 

❑ Are all data members in the base class private rather than protected? 

Other Implementation Issues
❑ Does the class contain about seven data members or fewer?

❑ Does the class minimize direct and indirect routine calls to other classes? 

❑ Does the class collaborate with other classes only to the extent absolutely 
necessary? 

❑ Is all member data initialized in the constructor? 

❑ Is the class designed to be used as deep copies rather than shallow copies 
unless there’s a measured reason to create shallow copies? 

Language-Specific Issues
❑ Have you investigated the language-specific issues for classes in your spe-

cific programming language? 
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Additional Resources

Classes in General

cc2e.com/0679 Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Prentice 
Hall PTR, 1997. This book contains an in-depth discussion of abstract data types and 
explains how they form the basis for classes. Chapters 14–16 discuss inheritance in 
depth. Meyer provides an argument in favor of multiple inheritance in Chapter 15. 

Riel, Arthur J. Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley, 1996. 
This book contains numerous suggestions for improving program design, mostly at the 
class level. I avoided the book for several years because it appeared to be too big—talk 
about people in glass houses! However, the body of the book is only about 200 pages 
long. Riel’s writing is accessible and enjoyable. The content is focused and practical. 

C++

cc2e.com/0686 Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs, 2d 
ed. Reading, MA: Addison-Wesley, 1998. 

Meyers, Scott, 1996, More Effective C++: 35 New Ways to Improve Your Programs and 
Designs. Reading, MA: Addison-Wesley, 1996. Both of Meyers’ books are canonical ref-
erences for C++ programmers. The books are entertaining and help to instill a lan-
guage-lawyer’s appreciation for the nuances of C++. 

Java

cc2e.com/0693 Bloch, Joshua. Effective Java Programming Language Guide. Boston, MA: Addison-
Wesley, 2001. Bloch’s book provides much good Java-specific advice as well as intro-
ducing more general, good object-oriented practices. 

Visual Basic

cc2e.com/0600 The following books are good references on classes in Visual Basic:

Foxall, James. Practical Standards for Microsoft Visual Basic .NET. Redmond, WA: 
Microsoft Press, 2003. 

Cornell, Gary, and Jonathan Morrison. Programming VB .NET: A Guide for Experienced 
Programmers. Berkeley, CA: Apress, 2002. 

Barwell, Fred, et al. Professional VB.NET, 2d ed. Wrox, 2002. 
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Key Points
■ Class interfaces should provide a consistent abstraction. Many problems arise 

from violating this single principle. 

■ A class interface should hide something—a system interface, a design decision, 
or an implementation detail. 

■ Containment is usually preferable to inheritance unless you’re modeling an “is 
a” relationship. 

■ Inheritance is a useful tool, but it adds complexity, which is counter to Soft-
ware’s Primary Technical Imperative of managing complexity. 

■ Classes are your primary tool for managing complexity. Give their design as 
much attention as needed to accomplish that objective.
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Chapter 7

High-Quality Routines
cc2e.com/0778 Contents

■ 7.1 Valid Reasons to Create a Routine: page 164

■ 7.2 Design at the Routine Level: page 168

■ 7.3 Good Routine Names: page 171

■ 7.4 How Long Can a Routine Be?: page 173

■ 7.5 How to Use Routine Parameters: page 174

■ 7.6 Special Considerations in the Use of Functions: page 181

■ 7.7 Macro Routines and Inline Routines: page 182

Related Topics

■ Steps in routine construction: Section 9.3

■ Working classes: Chapter 6 

■ General design techniques: Chapter 5

■ Software architecture: Section 3.5

Chapter 6 described the details of creating classes. This chapter zooms in on routines, 
on the characteristics that make the difference between a good routine and a bad one. 
If you’d rather read about issues that affect the design of routines before wading into 
the nitty-gritty details, be sure to read Chapter 5, “Design in Construction,” first and 
come back to this chapter later. Some important attributes of high-quality routines are 
also discussed in Chapter 8, “Defensive Programming.” If you’re more interested in 
reading about steps to create routines and classes, Chapter 9, “The Pseudocode Pro-
gramming Process,” might be a better place to start. 

Before jumping into the details of high-quality routines, it will be useful to nail down 
two basic terms. What is a “routine”? A routine is an individual method or procedure 
invocable for a single purpose. Examples include a function in C++, a method in Java, 
a function or sub procedure in Microsoft Visual Basic. For some uses, macros in C and 
C++ can also be thought of as routines. You can apply many of the techniques for cre-
ating a high-quality routine to these variants.

What is a high-quality routine? That’s a harder question. Perhaps the easiest answer is 
to show what a high-quality routine is not. Here’s an example of a low-quality routine:
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C++ Example of a Low-Quality Routine
void HandleStuff( CORP_DATA & inputRec, int crntQtr, EMP_DATA empRec, 

   double & estimRevenue, double ytdRevenue, int screenX, int screenY,

   COLOR_TYPE & newColor, COLOR_TYPE & prevColor, StatusType & status, 

   int expenseType )

{

int i;

for ( i = 0; i < 100; i++ ) {

   inputRec.revenue[i] = 0;

   inputRec.expense[i] = corpExpense[ crntQtr ][ i ];

   }

UpdateCorpDatabase( empRec );

estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;

newColor = prevColor;

status = SUCCESS;

if ( expenseType == 1 ) {

     for ( i = 0; i < 12; i++ )

           profit[i] = revenue[i] - expense.type1[i];

     }

else if ( expenseType == 2 )  {

          profit[i] = revenue[i] - expense.type2[i];

          }

else if ( expenseType == 3 )

          profit[i] = revenue[i] - expense.type3[i];

          }

What’s wrong with this routine? Here’s a hint: you should be able to find at least 10 
different problems with it. Once you’ve come up with your own list, look at the fol-
lowing list:

■ The routine has a bad name. HandleStuff() tells you nothing about what the rou-
tine does.

■ The routine isn’t documented. (The subject of documentation extends beyond 
the boundaries of individual routines and is discussed in Chapter 32, “Self-Doc-
umenting Code.”)

■ The routine has a bad layout. The physical organization of the code on the page 
gives few hints about its logical organization. Layout strategies are used haphaz-
ardly, with different styles in different parts of the routine. Compare the styles 
where expenseType == 2 and expenseType == 3. (Layout is discussed in Chapter 31, 
“Layout and Style.”)

■ The routine’s input variable, inputRec, is changed. If it’s an input variable, its 
value should not be modified (and in C++ it should be declared const). If the 
value of the variable is supposed to be modified, the variable should not be 
called inputRec.

■ The routine reads and writes global variables—it reads from corpExpense and 
writes to profit. It should communicate with other routines more directly than 
by reading and writing global variables.

CODING 
HORROR
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■ The routine doesn’t have a single purpose. It initializes some variables, writes to 
a database, does some calculations—none of which seem to be related to each 
other in any way. A routine should have a single, clearly defined purpose.

■ The routine doesn’t defend itself against bad data. If crntQtr equals 0, the expres-
sion ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero error.

■ The routine uses several magic numbers: 100, 4.0, 12, 2, and 3. Magic numbers 
are discussed in Section 12.1, “Numbers in General.”

■ Some of the routine’s parameters are unused: screenX and screenY are not refer-
enced within the routine.

■ One of the routine’s parameters is passed incorrectly: prevColor is labeled as a 
reference parameter (&) even though it isn’t assigned a value within the routine. 

■ The routine has too many parameters. The upper limit for an understandable 
number of parameters is about 7; this routine has 11. The parameters are laid 
out in such an unreadable way that most people wouldn’t try to examine them 
closely or even count them.

■ The routine’s parameters are poorly ordered and are not documented. (Parameter 
ordering is discussed in this chapter. Documentation is discussed in Chapter 32.)

cc2e.com/0799

Cross-Reference The class is 
also a good contender for 
the single greatest invention 
in computer science. For 
details on how to use classes 
effectively, see Chapter 6, 
“Working Classes.”

Aside from the computer itself, the routine is the single greatest invention in computer 
science. The routine makes programs easier to read and easier to understand than any 
other feature of any programming language, and it’s a crime to abuse this senior 
statesman of computer science with code like that in the example just shown.

The routine is also the greatest technique ever invented for saving space and improv-
ing performance. Imagine how much larger your code would be if you had to repeat 
the code for every call to a routine instead of branching to the routine. Imagine how 
hard it would be to make performance improvements in the same code used in a 
dozen places instead of making them all in one routine. The routine makes modern 
programming possible.

“OK,” you say, “I already know that routines are great, and I program with them all the 
time. This discussion seems kind of remedial, so what do you want me to do about it?”

I want you to understand that many valid reasons to create a routine exist and that 
there are right ways and wrong ways to go about it. As an undergraduate computer-sci-
ence student, I thought that the main reason to create a routine was to avoid duplicate 
code. The introductory textbook I used said that routines were good because the 
avoidance of duplication made a program easier to develop, debug, document, and 
maintain. Period. Aside from syntactic details about how to use parameters and local 
variables, that was the extent of the textbook’s coverage. It was not a good or complete 
explanation of the theory and practice of routines. The following sections contain a 
much better explanation.
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7.1 Valid Reasons to Create a Routine
Here’s a list of valid reasons to create a routine. The reasons overlap somewhat, and 
they’re not intended to make an orthogonal set.

Reduce complexity The single most important reason to create a routine is to reduce 
a program’s complexity. Create a routine to hide information so that you won’t need 
to think about it. Sure, you’ll need to think about it when you write the routine. But 
after it’s written, you should be able to forget the details and use the routine without 
any knowledge of its internal workings. Other reasons to create routines—minimizing 
code size, improving maintainability, and improving correctness—are also good rea-
sons, but without the abstractive power of routines, complex programs would be 
impossible to manage intellectually.

One indication that a routine needs to be broken out of another routine is deep nest-
ing of an inner loop or a conditional. Reduce the containing routine’s complexity by 
pulling the nested part out and putting it into its own routine.

Introduce an intermediate, understandable abstraction Putting a section of code 
into a well-named routine is one of the best ways to document its purpose. Instead of 
reading a series of statements like

if ( node <> NULL ) then

while ( node.next <> NULL ) do

node = node.next

leafName = node.name

end while

else

leafName = ""

end if

you can read a statement like this: 

leafName = GetLeafName( node )

The new routine is so short that nearly all it needs for documentation is a good name. 
The name introduces a higher level of abstraction than the original eight lines of code, 
which makes the code more readable and easier to understand, and it reduces com-
plexity within the routine that originally contained the code.

Avoid duplicate code Undoubtedly the most popular reason for creating a routine is 
to avoid duplicate code. Indeed, creation of similar code in two routines implies an 
error in decomposition. Pull the duplicate code from both routines, put a generic ver-
sion of the common code into a base class, and then move the two specialized rou-
tines into subclasses. Alternatively, you could migrate the common code into its own 
routine, and then let both call the part that was put into the new routine. With code in 
one place, you save the space that would have been used by duplicated code. Modifi-
cations will be easier because you’ll need to modify the code in only one location. The 

KEY POINT
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code will be more reliable because you’ll have to check only one place to ensure that 
the code is right. Modifications will be more reliable because you’ll avoid making suc-
cessive and slightly different modifications under the mistaken assumption that 
you’ve made identical ones.

Support subclassing You need less new code to override a short, well-factored rou-
tine than a long, poorly factored routine. You’ll also reduce the chance of error in sub-
class implementations if you keep overrideable routines simple. 

Hide sequences It’s a good idea to hide the order in which events happen to be pro-
cessed. For example, if the program typically gets data from the user and then gets 
auxiliary data from a file, neither the routine that gets the user data nor the routine 
that gets the file data should depend on the other routine’s being performed first. 
Another example of a sequence might be found when you have two lines of code that 
read the top of a stack and decrement a stackTop variable. Put those two lines of code 
into a PopStack() routine to hide the assumption about the order in which the two 
operations must be performed. Hiding that assumption will be better than baking it 
into code from one end of the system to the other. 

Hide pointer operations Pointer operations tend to be hard to read and error prone. 
By isolating them in routines, you can concentrate on the intent of the operation 
rather than on the mechanics of pointer manipulation. Also, if the operations are done 
in only one place, you can be more certain that the code is correct. If you find a better 
data type than pointers, you can change the program without traumatizing the code 
that would have used the pointers.

Improve portability Use of routines isolates nonportable capabilities, explicitly identi-
fying and isolating future portability work. Nonportable capabilities include nonstandard 
language features, hardware dependencies, operating-system dependencies, and so on.

Simplify complicated boolean tests Understanding complicated boolean tests in 
detail is rarely necessary for understanding program flow. Putting such a test into a 
function makes the code more readable because (1) the details of the test are out of 
the way and (2) a descriptive function name summarizes the purpose of the test. 

Giving the test a function of its own emphasizes its significance. It encourages extra 
effort to make the details of the test readable inside its function. The result is that both 
the main flow of the code and the test itself become clearer. Simplifying a boolean test 
is an example of reducing complexity, which was discussed earlier. 

Improve performance You can optimize the code in one place instead of in several 
places. Having code in one place will make it easier to profile to find inefficiencies. 
Centralizing code into a routine means that a single optimization benefits all the code 
that uses that routine, whether it uses it directly or indirectly. Having code in one 
place makes it practical to recode the routine with a more efficient algorithm or in a 
faster, more efficient language.
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Cross-Reference For details 
on information hiding, see 
“Hide Secrets (Information 
Hiding)” in Section 5.3.

To ensure all routines are small? No. With so many good reasons for putting code 
into a routine, this one is unnecessary. In fact, some jobs are performed better in a sin-
gle large routine. (The best length for a routine is discussed in Section 7.4, “How Long 
Can a Routine Be?”)

Operations That Seem Too Simple to Put Into Routines 

One of the strongest mental blocks to creating effective routines is a reluctance to cre-
ate a simple routine for a simple purpose. Constructing a whole routine to contain two 
or three lines of code might seem like overkill, but experience shows how helpful a 
good small routine can be.

Small routines offer several advantages. One is that they improve readability. I once 
had the following single line of code in about a dozen places in a program:

Pseudocode Example of a Calculation
points = deviceUnits * ( POINTS_PER_INCH / DeviceUnitsPerInch() )

This is not the most complicated line of code you’ll ever read. Most people would 
eventually figure out that it converts a measurement in device units to a measurement 
in points. They would see that each of the dozen lines did the same thing. It could 
have been clearer, however, so I created a well-named routine to do the conversion in 
one place:

Pseudocode Example of a Calculation Converted to a Function
Function DeviceUnitsToPoints ( deviceUnits Integer ): Integer

DeviceUnitsToPoints = deviceUnits *

( POINTS_PER_INCH / DeviceUnitsPerInch() )

End Function

When the routine was substituted for the inline code, the dozen lines of code all 
looked more or less like this one:

Pseudocode Example of a Function Call to a Calculation Function
points = DeviceUnitsToPoints( deviceUnits )

This line is more readable—even approaching self-documenting.

This example hints at another reason to put small operations into functions: small 
operations tend to turn into larger operations. I didn’t know it when I wrote the rou-
tine, but under certain conditions and when certain devices were active, Device-
UnitsPerlnch() returned 0. That meant I had to account for division by zero, which 
took three more lines of code:

KEY POINT
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Pseudocode Example of a Calculation That Expands Under Maintenance
Function DeviceUnitsToPoints( deviceUnits: Integer ) Integer;

if ( DeviceUnitsPerInch() <> 0 )

DeviceUnitsToPoints = deviceUnits *

( POINTS_PER_INCH / DeviceUnitsPerInch() )

else

DeviceUnitsToPoints = 0

end if

End Function

If that original line of code had still been in a dozen places, the test would have been 
repeated a dozen times, for a total of 36 new lines of code. A simple routine reduced 
the 36 new lines to 3.

Summary of Reasons to Create a Routine

Here’s a summary list of the valid reasons for creating a routine: 

■ Reduce complexity

■ Introduce an intermediate, understandable abstraction

■ Avoid duplicate code

■ Support subclassing

■ Hide sequences

■ Hide pointer operations

■ Improve portability

■ Simplify complicated boolean tests

■ Improve performance

In addition, many of the reasons to create a class are also good reasons to create a rou-
tine: 

■ Isolate complexity

■ Hide implementation details

■ Limit effects of changes

■ Hide global data

■ Make central points of control

■ Facilitate reusable code

■ Accomplish a specific refactoring 
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7.2 Design at the Routine Level
The idea of cohesion was introduced in a paper by Wayne Stevens, Glenford Myers, 
and Larry Constantine (1974). Other more modern concepts, including abstraction 
and encapsulation, tend to yield more insight at the class level (and have, in fact, 
largely superceded cohesion at the class level), but cohesion is still alive and well as 
the workhorse design heuristic at the individual-routine level. 

Cross-Reference For a dis-
cussion of cohesion in gen-
eral, see “Aim for Strong 
Cohesion” in Section 5.3. 

For routines, cohesion refers to how closely the operations in a routine are related. 
Some programmers prefer the term “strength”: how strongly related are the opera-
tions in a routine? A function like Cosine() is perfectly cohesive because the whole rou-
tine is dedicated to performing one function. A function like CosineAndTan() has lower 
cohesion because it tries to do more than one thing. The goal is to have each routine 
do one thing well and not do anything else.

The payoff is higher reliability. One study of 450 routines found that 50 percent of the 
highly cohesive routines were fault free, whereas only 18 percent of routines with low 
cohesion were fault free (Card, Church, and Agresti 1986). Another study of a differ-
ent 450 routines (which is just an unusual coincidence) found that routines with the 
highest coupling-to-cohesion ratios had 7 times as many errors as those with the low-
est coupling-to-cohesion ratios and were 20 times as costly to fix (Selby and Basili 
1991).

Discussions about cohesion typically refer to several levels of cohesion. Understand-
ing the concepts is more important than remembering specific terms. Use the con-
cepts as aids in thinking about how to make routines as cohesive as possible.

Functional cohesion is the strongest and best kind of cohesion, occurring when a rou-
tine performs one and only one operation. Examples of highly cohesive routines 
include sin(), GetCustomerName(), EraseFile(), CalculateLoanPayment(), and AgeFrom-
Birthdate(). Of course, this evaluation of their cohesion assumes that the routines do 
what their names say they do—if they do anything else, they are less cohesive and 
poorly named.

Several other kinds of cohesion are normally considered to be less than ideal:

■ Sequential cohesion exists when a routine contains operations that must be per-
formed in a specific order, that share data from step to step, and that don’t make 
up a complete function when done together. 

An example of sequential cohesion is a routine that, given a birth date, calculates 
an employee’s age and time to retirement. If the routine calculates the age and 
then uses that result to calculate the employee’s time to retirement, it has 
sequential cohesion. If the routine calculates the age and then calculates the 
time to retirement in a completely separate computation that happens to use the 
same birth-date data, it has only communicational cohesion.
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How would you make the routine functionally cohesive? You’d create separate 
routines to compute an employee’s age given a birth date and compute time to 
retirement given a birth date. The time-to-retirement routine could call the age 
routine. They’d both have functional cohesion. Other routines could call either 
routine or both routines.

■ Communicational cohesion occurs when operations in a routine make use of the 
same data and aren’t related in any other way. If a routine prints a summary 
report and then reinitializes the summary data passed into it, the routine has 
communicational cohesion: the two operations are related only by the fact that 
they use the same data.

To give this routine better cohesion, the summary data should be reinitialized 
close to where it’s created, which shouldn’t be in the report-printing routine. 
Split the operations into individual routines. The first prints the report. The sec-
ond reinitializes the data, close to the code that creates or modifies the data. Call 
both routines from the higher-level routine that originally called the communi-
cationally cohesive routine.

■ Temporal cohesion occurs when operations are combined into a routine because 
they are all done at the same time. Typical examples would be Startup(), Com-
pleteNewEmployee(), and Shutdown(). Some programmers consider temporal 
cohesion to be unacceptable because it’s sometimes associated with bad pro-
gramming practices such as having a hodgepodge of code in a Startup() routine.

To avoid this problem, think of temporal routines as organizers of other events. 
The Startup() routine, for example, might read a configuration file, initialize a 
scratch file, set up a memory manager, and show an initial screen. To make it 
most effective, have the temporally cohesive routine call other routines to per-
form specific activities rather than performing the operations directly itself. That 
way, it will be clear that the point of the routine is to orchestrate activities rather 
than to do them directly.

This example raises the issue of choosing a name that describes the routine at 
the right level of abstraction. You could decide to name the routine ReadConfig-
FileInitScratchFileEtc(), which would imply that the routine had only coinciden-
tal cohesion. If you name it Startup(), however, it would be clear that it had a 
single purpose and clear that it had functional cohesion.

The remaining kinds of cohesion are generally unacceptable. They result in code 
that’s poorly organized, hard to debug, and hard to modify. If a routine has bad cohe-
sion, it’s better to put effort into a rewrite to have better cohesion than investing in a 
pinpoint diagnosis of the problem. Knowing what to avoid can be useful, however, so 
here are the unacceptable kinds of cohesion:



170 Chapter 7: High-Quality Routines

■ Procedural cohesion occurs when operations in a routine are done in a specified 
order. An example is a routine that gets an employee name, then an address, and 
then a phone number. The order of these operations is important only because 
it matches the order in which the user is asked for the data on the input screen. 
Another routine gets the rest of the employee data. The routine has procedural 
cohesion because it puts a set of operations in a specified order and the opera-
tions don’t need to be combined for any other reason.

To achieve better cohesion, put the separate operations into their own routines. 
Make sure that the calling routine has a single, complete job: GetEmployee() 
rather than GetFirstPartOfEmployeeData(). You’ll probably need to modify the 
routines that get the rest of the data too. It’s common to modify two or more 
original routines before you achieve functional cohesion in any of them. 

■ Logical cohesion occurs when several operations are stuffed into the same routine 
and one of the operations is selected by a control flag that’s passed in. It’s called 
logical cohesion because the control flow or “logic” of the routine is the only 
thing that ties the operations together—they’re all in a big if statement or case 
statement together. It isn’t because the operations are logically related in any 
other sense. Considering that the defining attribute of logical cohesion is that 
the operations are unrelated, a better name might “illogical cohesion.” 

One example would be an InputAll() routine that inputs customer names, 
employee timecard information, or inventory data depending on a flag passed to 
the routine. Other examples would be ComputeAll(), EditAll(), PrintAll(), and 
SaveAll(). The main problem with such routines is that you shouldn’t need to 
pass in a flag to control another routine’s processing. Instead of having a routine 
that does one of three distinct operations, depending on a flag passed to it, it’s 
cleaner to have three routines, each of which does one distinct operation. If the 
operations use some of the same code or share data, the code should be moved 
into a lower-level routine and the routines should be packaged into a class.

Cross-Reference Although 
the routine might have bet-
ter cohesion, a higher-level 
design issue is whether the 
system should be using a 
case statement instead of 
polymorphism. For more on 
this issue, see “Replace con-
ditionals with polymorphism 
(especially repeated case 
statements)” in Section 24.3

It’s usually all right, however, to create a logically cohesive routine if its code con-
sists solely of a series of if or case statements and calls to other routines. In such 
a case, if the routine’s only function is to dispatch commands and it doesn’t do 
any of the processing itself, that’s usually a good design. The technical term for 
this kind of routine is “event handler.” An event handler is often used in interac-
tive environments such as the Apple Macintosh, Microsoft Windows, and other 
GUI environments.

■ Coincidental cohesion occurs when the operations in a routine have no discernible 
relationship to each other. Other good names are “no cohesion” or “chaotic cohe-
sion.” The low-quality C++ routine at the beginning of this chapter had coinciden-
tal cohesion. It’s hard to convert coincidental cohesion to any better kind of 
cohesion—you usually need to do a deeper redesign and reimplementation.
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None of these terms are magical or sacred. Learn the ideas rather than the terminol-
ogy. It’s nearly always possible to write routines with functional cohesion, so focus 
your attention on functional cohesion for maximum benefit. 

7.3 Good Routine Names
Cross-Reference For details 
on naming variables, see 
Chapter 11, “The Power of 
Variable Names.”

A good name for a routine clearly describes everything the routine does. Here are 
guidelines for creating effective routine names:

Describe everything the routine does In the routine’s name, describe all the outputs 
and side effects. If a routine computes report totals and opens an output file, Compute-
ReportTotals() is not an adequate name for the routine. ComputeReportTotalsAndOpen-
OutputFile() is an adequate name but is too long and silly. If you have routines with 
side effects, you’ll have many long, silly names. The cure is not to use less-descriptive 
routine names; the cure is to program so that you cause things to happen directly 
rather than with side effects.

Avoid meaningless, vague, or wishy-washy verbs Some verbs are elastic, stretched to 
cover just about any meaning. Routine names like HandleCalculation(), PerformSer-
vices(), OutputUser(), ProcessInput(), and DealWithOutput() don’t tell you what the rou-
tines do. At the most, these names tell you that the routines have something to do 
with calculations, services, users, input, and output. The exception would be when 
the verb “handle” was used in the specific technical sense of handling an event.

Sometimes the only problem with a routine is that its name is wishy-washy; the rou-
tine itself might actually be well designed. If HandleOutput() is replaced with For-
matAndPrintOutput(), you have a pretty good idea of what the routine does.

In other cases, the verb is vague because the operations performed by the routine are 
vague. The routine suffers from a weakness of purpose, and the weak name is a symp-
tom. If that’s the case, the best solution is to restructure the routine and any related 
routines so that they all have stronger purposes and stronger names that accurately 
describe them.

Don’t differentiate routine names solely by number One developer wrote all his 
code in one big function. Then he took every 15 lines and created functions named 
Part1, Part2, and so on. After that, he created one high-level function that called each 
part. This method of creating and naming routines is especially egregious (and rare, I 
hope). But programmers sometimes use numbers to differentiate routines with names 
like OutputUser, OutputUser1, and OutputUser2. The numerals at the ends of these 
names provide no indication of the different abstractions the routines represent, and 
the routines are thus poorly named. 

Make names of routines as long as necessary Research shows that the optimum 
average length for a variable name is 9 to 15 characters. Routines tend to be more com-

KEY POINT

KEY POINT
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plicated than variables, and good names for them tend to be longer. On the other 
hand, routine names are often attached to object names, which essentially provides 
part of the name for free. Overall, the emphasis when creating a routine name should 
be to make the name as clear as possible, which means you should make its name as 
long or short as needed to make it understandable.

Cross-Reference For the 
distinction between proce-
dures and functions, see 
Section 7.6, “Special Consid-
erations in the Use of Func-
tions,” later in this chapter.

To name a function, use a description of the return value A function returns a value, 
and the function should be named for the value it returns. For example, cos(), 
customerId.Next(), printer.IsReady(), and pen.CurrentColor() are all good function 
names that indicate precisely what the functions return.

To name a procedure, use a strong verb followed by an object A procedure with 
functional cohesion usually performs an operation on an object. The name should 
reflect what the procedure does, and an operation on an object implies a verb-plus-
object name. PrintDocument(), CalcMonthlyRevenues(), CheckOrderlnfo(), and Repagi-
nateDocument() are samples of good procedure names.

In object-oriented languages, you don’t need to include the name of the object in the 
procedure name because the object itself is included in the call. You invoke routines 
with statements like document.Print(), orderInfo.Check(), and monthlyRevenues.Calc(). 
Names like document.PrintDocument() are redundant and can become inaccurate 
when they’re carried through to derived classes. If Check is a class derived from Docu-
ment, check.Print() seems clearly to be printing a check, whereas check.PrintDocument() 
sounds like it might be printing a checkbook register or monthly statement, but it 
doesn’t sound like it’s printing a check. 

Cross-Reference For a simi-
lar list of opposites in vari-
able names, see “Common 
Opposites in Variable 
Names” in Section 11.1.

Use opposites precisely Using naming conventions for opposites helps consistency, 
which helps readability. Opposite-pairs like first/last are commonly understood. 
Opposite-pairs like FileOpen() and _lclose() are not symmetrical and are confusing. 
Here are some common opposites:

Establish conventions for common operations In some systems, it’s important to dis-
tinguish among different kinds of operations. A naming convention is often the easiest 
and most reliable way of indicating these distinctions. 

The code on one of my projects assigned each object a unique identifier. We neglected 
to establish a convention for naming the routines that would return the object identi-
fier, so we had routine names like these:

add/remove increment/decrement open/close

begin/end insert/delete show/hide

create/destroy lock/unlock source/target

first/last min/max start/stop

get/put next/previous up/down

get/set old/new



7.4 How Long Can a Routine Be? 173

employee.id.Get()

dependent.GetId()

supervisor()

candidate.id()

The Employee class exposed its id object, which in turn exposed its Get() routine. The 
Dependent class exposed a GetId() routine. The Supervisor class made the id its default 
return value. The Candidate class made use of the fact that the id object’s default 
return value was the id, and exposed the id object. By the middle of the project, no one 
could remember which of these routines was supposed to be used on which object, 
but by that time too much code had been written to go back and make everything con-
sistent. Consequently, every person on the team had to devote an unnecessary 
amount of gray matter to remembering the inconsequential detail of which syntax 
was used on which class to retrieve the id. A naming convention for retrieving ids 
would have eliminated this annoyance. 

7.4 How Long Can a Routine Be?
On their way to America, the Pilgrims argued about the best maximum length for a 
routine. After arguing about it for the entire trip, they arrived at Plymouth Rock and 
started to draft the Mayflower Compact. They still hadn’t settled the maximum-length 
question, and since they couldn’t disembark until they’d signed the compact, they 
gave up and didn’t include it. The result has been an interminable debate ever since 
about how long a routine can be.

The theoretical best maximum length is often described as one screen or one or two 
pages of program listing, approximately 50 to 150 lines. In this spirit, IBM once lim-
ited routines to 50 lines, and TRW limited them to two pages (McCabe 1976). Modern 
programs tend to have volumes of extremely short routines mixed in with a few longer 
routines. Long routines are far from extinct, however. Shortly before finishing this 
book, I visited two client sites within a month. Programmers at one site were wrestling 
with a routine that was about 4,000 lines of code long, and programmers at the other 
site were trying to tame a routine that was more than 12,000 lines long!

A mountain of research on routine length has accumulated over the years, some of 
which is applicable to modern programs, and some of which isn’t: 

■ A study by Basili and Perricone found that routine size was inversely correlated 
with errors: as the size of routines increased (up to 200 lines of code), the num-
ber of errors per line of code decreased (Basili and Perricone 1984).

■ Another study found that routine size was not correlated with errors, even 
though structural complexity and amount of data were correlated with errors 
(Shen et al. 1985).
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■ A 1986 study found that small routines (32 lines of code or fewer) were not cor-
related with lower cost or fault rate (Card, Church, and Agresti 1986; Card and 
Glass 1990). The evidence suggested that larger routines (65 lines of code or 
more) were cheaper to develop per line of code.

■ An empirical study of 450 routines found that small routines (those with fewer 
than 143 source statements, including comments) had 23 percent more errors 
per line of code than larger routines but were 2.4 times less expensive to fix than 
larger routines (Selby and Basili 1991).

■ Another study found that code needed to be changed least when routines aver-
aged 100 to 150 lines of code (Lind and Vairavan 1989).

■ A study at IBM found that the most error-prone routines were those that were 
larger than 500 lines of code. Beyond 500 lines, the error rate tended to be pro-
portional to the size of the routine (Jones 1986a).

Where does all this leave the question of routine length in object-oriented programs? 
A large percentage of routines in object-oriented programs will be  accessor routines, 
which will be very short. From time to time, a complex algorithm will lead to a longer 
routine, and in those circumstances, the routine should be allowed to grow organi-
cally up to 100–200 lines. (A line is a noncomment, nonblank line of source code.) 
Decades of evidence say that routines of such length are no more error prone than 
shorter routines. Let issues such as the routine’s cohesion, depth of nesting, number 
of variables, number of decision points, number of comments needed to explain the 
routine, and other complexity-related considerations dictate the length of the routine 
rather than imposing a length restriction per se. 

That said, if you want to write routines longer than about 200 lines, be careful. None 
of the studies that reported decreased cost, decreased error rates, or both with larger 
routines distinguished among sizes larger than 200 lines, and you’re bound to run 
into an upper limit of understandability as you pass 200 lines of code.

7.5 How to Use Routine Parameters
Interfaces between routines are some of the most error-prone areas of a program. One 
often-cited study by Basili and Perricone (1984) found that 39 percent of all errors 
were internal interface errors—errors in communication between routines. Here are a 
few guidelines for minimizing interface problems:

Cross-Reference For details 
on documenting routine 
parameters, see “Comment-
ing Routines” in Section 32.5. 
For details on formatting 
parameters, see Section 
31.7, “Laying Out Routines.”

Put parameters in input-modify-output order Instead of ordering parameters ran-
domly or alphabetically, list the parameters that are input-only first, input-and-output 
second, and output-only third. This ordering implies the sequence of operations hap-
pening within the routine-inputting data, changing it, and sending back a result. Here 
are examples of parameter lists in Ada:
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Ada Example of Parameters in Input-Modify-Output Order
procedure InvertMatrix(

Ada uses in and out key-
words to make input and 
output parameters clear.

originalMatrix: in Matrix;

resultMatrix: out Matrix

);

...

procedure ChangeSentenceCase(

desiredCase: in StringCase;

sentence: in out Sentence

);

...

procedure PrintPageNumber(

pageNumber: in Integer;

status: out StatusType

);

This ordering convention conflicts with the C-library convention of putting the mod-
ified parameter first. The input-modify-output convention makes more sense to me, 
but if you consistently order parameters in some way, you will still do the readers of 
your code a service.

Consider creating your own in and out keywords Other modern languages don’t 
support the in and out keywords like Ada does. In those languages, you might still be 
able to use the preprocessor to create your own in and out keywords:

C++ Example of Defining Your Own In and Out Keywords
#define IN

#define OUT

void InvertMatrix(

IN Matrix originalMatrix,

OUT Matrix *resultMatrix

);

...

void ChangeSentenceCase(

IN StringCase desiredCase,

IN OUT Sentence *sentenceToEdit

);

...

void PrintPageNumber(

IN int pageNumber,

OUT StatusType &status

);

In this case, the IN and OUT macro-keywords are used for documentation purposes. 
To make the value of a parameter changeable by the called routine, the parameter still 
needs to be passed as a pointer or as a reference parameter. 
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Before adopting this technique, be sure to consider a pair of significant drawbacks. Defin-
ing your own IN and OUT keywords extends the C++ language in a way that will be unfa-
miliar to most people reading your code. If you extend the language this way, be sure to 
do it consistently, preferably projectwide. A second limitation is that the IN and OUT key-
words won’t be enforceable by the compiler, which means that you could potentially 
label a parameter as IN and then modify it inside the routine anyway. That could lull a 
reader of your code into assuming code is correct when it isn’t. Using C++’s const key-
word will normally be the preferable means of identifying input-only parameters. 

If several routines use similar parameters, put the similar parameters in a consistent 
order The order of routine parameters can be a mnemonic, and inconsistent order 
can make parameters hard to remember. For example, in C, the fprintf() routine is the 
same as the printf() routine except that it adds a file as the first argument. A similar 
routine, fputs(), is the same as puts() except that it adds a file as the last argument. This 
is an aggravating, pointless difference that makes the parameters of these routines 
harder to remember than they need to be.

On the other hand, the routine strncpy() in C takes the arguments target string, source 
string, and maximum number of bytes, in that order, and the routine memcpy() takes 
the same arguments in the same order. The similarity between the two routines helps 
in remembering the parameters in either routine.

Use all the parameters If you pass a parameter to a routine, use it. If you aren’t using 
it, remove the parameter from the routine interface. Unused parameters are correlated 
with an increased error rate. In one study, 46 percent of routines with no unused vari-
ables had no errors, and only 17 to 29 percent of routines with more than one unref-
erenced variable had no errors (Card, Church, and Agresti 1986).

This rule to remove unused parameters has one exception. If you’re compiling part of 
your program conditionally, you might compile out parts of a routine that use a cer-
tain parameter. Be nervous about this practice, but if you’re convinced it works, that’s 
OK too. In general, if you have a good reason not to use a parameter, go ahead and 
leave it in place. If you don’t have a good reason, make the effort to clean up the code.

Put status or error variables last By convention, status variables and variables that 
indicate an error has occurred go last in the parameter list. They are incidental to the 
main purpose of the routine, and they are output-only parameters, so it’s a sensible 
convention.

Don’t use routine parameters as working variables It’s dangerous to use the param-
eters passed to a routine as working variables. Use local variables instead. For exam-
ple, in the following Java fragment, the variable inputVal is improperly used to store 
intermediate results of a computation:
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Java Example of Improper Use of Input Parameters
int Sample( int inputVal ) {

inputVal = inputVal * CurrentMultiplier( inputVal );

inputVal = inputVal + CurrentAdder( inputVal );

...

At this point, inputVal no 
longer contains the value 
that was input.

return inputVal;

}

In this code fragment, inputVal is misleading because by the time execution reaches the 
last line, inputVal no longer contains the input value; it contains a computed value based 
in part on the input value, and it is therefore misnamed. If you later need to modify the 
routine to use the original input value in some other place, you’ll probably use inputVal 
and assume that it contains the original input value when it actually doesn’t.

How do you solve the problem? Can you solve it by renaming inputVal? Probably not. 
You could name it something like workingVal, but that’s an incomplete solution because 
the name fails to indicate that the variable’s original value comes from outside the rou-
tine. You could name it something ridiculous like inputValThatBecomesWorkingVal or 
give up completely and name it x or val, but all these approaches are weak.

A better approach is to avoid current and future problems by using working variables 
explicitly. The following code fragment demonstrates the technique: 

Java Example of Good Use of Input Parameters
int Sample( int inputVal ) {

int workingVal = inputVal;

workingVal = workingVal * CurrentMultiplier( workingVal );

workingVal = workingVal + CurrentAdder( workingVal );

...

If you need to use the origi-
nal value of inputVal here 
or somewhere else, it’s still 
available.

...

return workingVal;

}

Introducing the new variable workingVal clarifies the role of inputVal and eliminates 
the chance of erroneously using inputVal at the wrong time. (Don’t take this reasoning 
as a justification for literally naming a variable inputVal or workingVal. In general, 
inputVal and workingVal are terrible names for variables, and these names are used in 
this example only to make the variables’ roles clear.)

Assigning the input value to a working variable emphasizes where the value comes 
from. It eliminates the possibility that a variable from the parameter list will be modi-
fied accidentally. In C++, this practice can be enforced by the compiler using the key-
word const. If you designate a parameter as const, you’re not allowed to modify its value 
within a routine. 
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Cross-Reference For details 
on interface assumptions, 
see the introduction to 
Chapter 8, “Defensive Pro-
gramming.” For details on 
documentation, see Chapter 
32, “Self-Documenting 
Code.”

Document interface assumptions about parameters If you assume the data being 
passed to your routine has certain characteristics, document the assumptions as you 
make them. It’s not a waste of effort to document your assumptions both in the rou-
tine itself and in the place where the routine is called. Don’t wait until you’ve written 
the routine to go back and write the comments—you won’t remember all your assump-
tions. Even better than commenting your assumptions, use assertions to put them 
into code.

What kinds of interface assumptions about parameters should you document? 

■ Whether parameters are input-only, modified, or output-only

■ Units of numeric parameters (inches, feet, meters, and so on)

■ Meanings of status codes and error values if enumerated types aren’t used 

■ Ranges of expected values

■ Specific values that should never appear

Limit the number of a routine’s parameters to about seven Seven is a magic number 
for people’s comprehension. Psychological research has found that people generally 
cannot keep track of more than about seven chunks of information at once (Miller 
1956). This discovery has been applied to an enormous number of disciplines, and it 
seems safe to conjecture that most people can’t keep track of more than about seven 
routine parameters at once.

In practice, how much you can limit the number of parameters depends on how your 
language handles complex data types. If you program in a modern language that sup-
ports structured data, you can pass a composite data type containing 13 fields and 
think of it as one mental “chunk” of data. If you program in a more primitive language, 
you might need to pass all 13 fields individually.

Cross-Reference For details 
on how to think about inter-
faces, see “Good Abstrac-
tion” in Section 6.2.

If you find yourself consistently passing more than a few arguments, the coupling 
among your routines is too tight. Design the routine or group of routines to reduce the 
coupling. If you are passing the same data to many different routines, group the rou-
tines into a class and treat the frequently used data as class data.

Consider an input, modify, and output naming convention for parameters If you 
find that it’s important to distinguish among input, modify, and output parameters, 
establish a naming convention that identifies them. You could prefix them with i_, 
m_, and o_. If you’re feeling verbose, you could prefix them with Input_, Modify_, and 
Output_.

1
2
3

HARD DATA
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Pass the variables or objects that the routine needs to maintain its interface 
abstraction There are two competing schools of thought about how to pass members 
of an object to a routine. Suppose you have an object that exposes data through 10 
access routines and the called routine needs three of those data elements to do its job. 

Proponents of the first school of thought argue that only the three specific elements 
needed by the routine should be passed. They argue that doing this will keep the con-
nections between routines to a minimum; reduce coupling; and make them easier to 
understand, reuse, and so on. They say that passing the whole object to a routine vio-
lates the principle of encapsulation by potentially exposing all 10 access routines to 
the routine that’s called. 

Proponents of the second school argue that the whole object should be passed. They 
argue that the interface can remain more stable if the called routine has the flexibility 
to use additional members of the object without changing the routine’s interface. 
They argue that passing three specific elements violates encapsulation by exposing 
which specific data elements the routine is using. 

I think both these rules are simplistic and miss the most important consideration: 
what abstraction is presented by the routine’s interface? If the abstraction is that the rou-
tine expects you to have three specific data elements, and it is only a coincidence that 
those three elements happen to be provided by the same object, then you should pass 
the three specific data elements individually. However, if the abstraction is that you 
will always have that particular object in hand and the routine will do something or 
other with that object, then you truly do break the abstraction when you expose the 
three specific data elements.

If you’re passing the whole object and you find yourself creating the object, populat-
ing it with the three elements needed by the called routine, and then pulling those ele-
ments out of the object after the routine is called, that’s an indication that you should 
be passing the three specific elements rather than the whole object. (In general, code 
that “sets up” for a call to a routine or “takes down” after a call to a routine is an indi-
cation that the routine is not well designed.)

If you find yourself frequently changing the parameter list to the routine, with the 
parameters coming from the same object each time, that’s an indication that you 
should be passing the whole object rather than specific elements. 
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Use named parameters In some languages, you can explicitly associate formal param-
eters with actual parameters. This makes parameter usage more self-documenting and 
helps avoid errors from mismatching parameters. Here’s an example in Visual Basic:

Visual Basic Example of Explicitly Identifying Parameters
Private Function Distance3d( _

Here’s where the formal 
parameters are declared. 

ByVal xDistance As Coordinate, _

ByVal yDistance As Coordinate, _

ByVal zDistance As Coordinate _

)

...

End Function

...

Private Function Velocity( _

ByVal latitude as Coordinate, _

ByVal longitude as Coordinate, _

ByVal elevation as Coordinate _

)

...

Here’s where the actual 
parameters are mapped to 
the formal parameters. 

Distance = Distance3d( xDistance := latitude, yDistance := longitude, _

zDistance := elevation )

...

End Function

This technique is especially useful when you have longer-than-average lists of identi-
cally typed arguments, which increases the chances that you can insert a parameter 
mismatch without the compiler detecting it. Explicitly associating parameters may be 
overkill in many environments, but in safety-critical or other high-reliability environ-
ments the extra assurance that parameters match up the way you expect can be 
worthwhile. 

Make sure actual parameters match formal parameters Formal parameters, also 
known as “dummy parameters,” are the variables declared in a routine definition. 
Actual parameters are the variables, constants, or expressions used in the actual rou-
tine calls.

A common mistake is to put the wrong type of variable in a routine call—for example, 
using an integer when a floating point is needed. (This is a problem only in weakly 
typed languages like C when you’re not using full compiler warnings. Strongly typed 
languages such as C++ and Java don’t have this problem.) When arguments are input 
only, this is seldom a problem; usually the compiler converts the actual type to the for-
mal type before passing it to the routine. If it is a problem, usually your compiler gives 
you a warning. But in some cases, particularly when the argument is used for both 
input and output, you can get stung by passing the wrong type of argument.

Develop the habit of checking types of arguments in parameter lists and heeding com-
piler warnings about mismatched parameter types. 
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7.6 Special Considerations in the Use of Functions
Modern languages such as C++, Java, and Visual Basic support both functions and proce-
dures. A function is a routine that returns a value; a procedure is a routine that does not. 
In C++, all routines are typically called “functions”; however, a function with a void return 
type is semantically a procedure. The distinction between functions and procedures is as 
much a semantic distinction as a syntactic one, and semantics should be your guide. 

When to Use a Function and When to Use a Procedure 

Purists argue that a function should return only one value, just as a mathematical func-
tion does. This means that a function would take only input parameters and return its 
only value through the function itself. The function would always be named for the value 
it returned, as sin(), CustomerID(), and ScreenHeight() are. A procedure, on the other 
hand, could take input, modify, and output parameters—as many of each as it wanted to.

A common programming practice is to have a function that operates as a procedure and 
returns a status value. Logically, it works as a procedure, but because it returns a value, 
it’s officially a function. For example, you might have a routine called FormatOutput() 
used with a report object in statements like this one:

if ( report.FormatOutput( formattedReport ) = Success ) then ...

In this example, report.FormatOutput() operates as a procedure in that it has an output 
parameter, formattedReport, but it is technically a function because the routine itself 
returns a value. Is this a valid way to use a function? In defense of this approach, you 
could maintain that the function return value has nothing to do with the main purpose 
of the routine, formatting output, or with the routine name, report.FormatOutput(). In 
that sense it operates more as a procedure does even if it is technically a function. The 
use of the return value to indicate the success or failure of the procedure is not con-
fusing if the technique is used consistently.

The alternative is to create a procedure that has a status variable as an explicit param-
eter, which promotes code like this fragment:

report.FormatOutput( formattedReport, outputStatus )

if ( outputStatus = Success ) then ...

I prefer the second style of coding, not because I’m hard-nosed about the difference 
between functions and procedures but because it makes a clear separation between 
the routine call and the test of the status value. To combine the call and the test into 
one line of code increases the density of the statement and, correspondingly, its com-
plexity. The following use of a function is fine too:

outputStatus = report.FormatOutput( formattedReport )

if ( outputStatus = Success ) then ...
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In short, use a function if the primary purpose of the routine is to return the value 
indicated by the function name. Otherwise, use a procedure. 

Setting the Function’s Return Value

Using a function creates the risk that the function will return an incorrect return 
value. This usually happens when the function has several possible paths and one of 
the paths doesn’t set a return value. To reduce this risk, do the following: 

Check all possible return paths When creating a function, mentally execute each 
path to be sure that the function returns a value under all possible circumstances. It’s 
good practice to initialize the return value at the beginning of the function to a default 
value—this provides a safety net in the event that the correct return value is not set. 

Don’t return references or pointers to local data As soon as the routine ends and the 
local data goes out of scope, the reference or pointer to the local data will be invalid. If 
an object needs to return information about its internal data, it should save the informa-
tion as class member data. It should then provide accessor functions that return the val-
ues of the member data items rather than references or pointers to local data.

7.7 Macro Routines and Inline Routines
Cross-Reference Even if 
your language doesn’t have 
a macro preprocessor, you 
can build your own. For 
details, see Section 30.5, 
“Building Your Own Pro-
gramming Tools.”

Routines created with preprocessor macros call for a few unique considerations. The 
following rules and examples pertain to using the preprocessor in C++. If you’re using 
a different language or preprocessor, adapt the rules to your situation.

Fully parenthesize macro expressions Because macros and their arguments are 
expanded into code, be careful that they expand the way you want them to. One com-
mon problem lies in creating a macro like this one:

C++ Example of a Macro That Doesn’t Expand Properly
#define Cube( a ) a*a*a

If you pass this macro nonatomic values for a, it won’t do the multiplication properly. 
If you use the expression Cube( x+1 ), it expands to x+1 * x + 1 * x + 1, which, because 
of the precedence of the multiplication and addition operators, is not what you want. 
A better, but still not perfect, version of the macro looks like this:

C++ Example of a Macro That Still Doesn’t Expand Properly 
#define Cube( a ) (a)*(a)*(a)

KEY POINT
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This is close, but still no cigar. If you use Cube() in an expression that has operators 
with higher precedence than multiplication, the (a)*(a)*(a) will be torn apart. To pre-
vent that, enclose the whole expression in parentheses:

C++ Example of a Macro That Works 
#define Cube( a ) ((a)*(a)*(a))

Surround multiple-statement macros with curly braces A macro can have multiple 
statements, which is a problem if you treat it as if it were a single statement. Here’s an 
example of a macro that’s headed for trouble:

C++ Example of a Nonworking Macro with Multiple Statements
#define LookupEntry( key, index ) \

index = (key - 10) / 5; \

index = min( index, MAX_INDEX ); \

index = max( index, MIN_INDEX );

...

for ( entryCount = 0; entryCount < numEntries; entryCount++ )

LookupEntry( entryCount, tableIndex[ entryCount ] );

This macro is headed for trouble because it doesn’t work as a regular function would. 
As it’s shown, the only part of the macro that’s executed in the for loop is the first line 
of the macro:

index = (key - 10) / 5;

To avoid this problem, surround the macro with curly braces: 

C++ Example of a Macro with Multiple Statements That Works
#define LookupEntry( key, index ) { \

index = (key - 10) / 5; \

index = min( index, MAX_INDEX ); \

index = max( index, MIN_INDEX ); \

}

The practice of using macros as substitutes for function calls is generally considered 
risky and hard to understand—bad programming practice—so use this technique only 
if your specific circumstances require it. 

Name macros that expand to code like routines so that they can be replaced by routines 
if necessary The convention in C++ for naming macros is to use all capital letters. If 
the macro can be replaced by a routine, however, name it using the naming conven-
tion for routines instead. That way you can replace macros with routines and vice 
versa without changing anything but the routine involved.

CODING 
HORROR



184 Chapter 7: High-Quality Routines

Following this recommendation entails some risk. If you commonly use ++ and -- as 
side effects (as part of other statements), you’ll get burned when you use macros that 
you think are routines. Considering the other problems with side effects, this is yet 
another reason to avoid using side effects.

Limitations on the Use of Macro Routines

Modern languages like C++ provide numerous alternatives to the use of macros:

■ const for declaring constant values

■ inline for defining functions that will be compiled as inline code

■ template for defining standard operations like min, max, and so on in a type-safe 
way

■ enum for defining enumerated types

■ typedef for defining simple type substitutions

As Bjarne Stroustrup, designer of C++ points out, “Almost every macro demonstrates 
a flaw in the programming language, in the program, or in the programmer.... When 
you use macros, you should expect inferior service from tools such as debuggers, 
cross-reference tools, and profilers” (Stroustrup 1997). Macros are useful for support-
ing conditional compilation—see Section 8.6, “Debugging Aids”—but careful program-
mers generally use a macro as an alternative to a routine only as a last resort. 

Inline Routines

C++ supports an inline keyword. An inline routine allows the programmer to treat the 
code as a routine at code-writing time, but the compiler will generally convert each 
instance of the routine into inline code at compile time. The theory is that inline can 
help produce highly efficient code that avoids routine-call overhead.

Use inline routines sparingly Inline routines violate encapsulation because C++ 
requires the programmer to put the code for the implementation of the inline routine 
in the header file, which exposes it to every programmer who uses the header file.

Inline routines require a routine’s full code to be generated every time the routine is 
invoked, which for an inline routine of any size will increase code size. That can create 
problems of its own. 

KEY POINT
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The bottom line on inlining for performance reasons is the same as the bottom line on 
any other coding technique that’s motivated by performance: profile the code and 
measure the improvement. If the anticipated performance gain doesn’t justify the 
bother of profiling the code to verify the improvement, it doesn’t justify the erosion in 
code quality either.  

cc2e.com/0792

Cross-Reference This is a 
checklist of considerations 
about the quality of the rou-
tine. For a list of the steps 
used to build a routine, see 
the checklist “The Pseudo-
code Programming Process” 
in Chapter 9, page 215.

CHECKLIST: High-Quality Routines
Big-Picture Issues

❑ Is the reason for creating the routine sufficient?

❑ Have all parts of the routine that would benefit from being put into rou-
tines of their own been put into routines of their own?

❑ Is the routine’s name a strong, clear verb-plus-object name for a procedure 
or a description of the return value for a function?

❑ Does the routine’s name describe everything the routine does?

❑ Have you established naming conventions for common operations? 

❑ Does the routine have strong, functional cohesion—doing one and only 
one thing and doing it well?

❑ Do the routines have loose coupling—are the routine’s connections to 
other routines small, intimate, visible, and flexible?

❑ Is the length of the routine determined naturally by its function and logic, 
rather than by an artificial coding standard?

Parameter-Passing Issues
❑ Does the routine’s parameter list, taken as a whole, present a consistent 

interface abstraction? 

❑ Are the routine’s parameters in a sensible order, including matching the 
order of parameters in similar routines?

❑ Are interface assumptions documented?

❑ Does the routine have seven or fewer parameters?

❑ Is each input parameter used? 

❑ Is each output parameter used? 

❑ Does the routine avoid using input parameters as working variables? 

❑ If the routine is a function, does it return a valid value under all possible 
circumstances?
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Key Points
■ The most important reason for creating a routine is to improve the intellectual 

manageability of a program, and you can create a routine for many other good 
reasons. Saving space is a minor reason; improved readability, reliability, and 
modifiability are better reasons.

■ Sometimes the operation that most benefits from being put into a routine of its 
own is a simple one.

■ You can classify routines into various kinds of cohesion, but you can make most 
routines functionally cohesive, which is best. 

■ The name of a routine is an indication of its quality. If the name is bad and it’s 
accurate, the routine might be poorly designed. If the name is bad and it’s inac-
curate, it’s not telling you what the program does. Either way, a bad name means 
that the program needs to be changed.

■ Functions should be used only when the primary purpose of the function is to 
return the specific value described by the function’s name. 

■ Careful programmers use macro routines with care and only as a last resort. 
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Chapter 8

Defensive Programming
cc2e.com/0861 Contents

■ 8.1 Protecting Your Program from Invalid Inputs: page 188

■ 8.2 Assertions: page 189

■ 8.3 Error-Handling Techniques: page 194

■ 8.4 Exceptions: page 198

■ 8.5 Barricade Your Program to Contain the Damage Caused by Errors: page 203

■ 8.6 Debugging Aids: page 205

■ 8.7 Determining How Much Defensive Programming to Leave in Production 
Code: page 209

■ 8.8 Being Defensive About Defensive Programming: page 210

Related Topics

■ Information hiding: "Hide Secrets (Information Hiding)" in Section 5.3

■ Design for change: "Identify Areas Likely to Change" in Section 5.3

■ Software architecture: Section 3.5

■ Design in Construction: Chapter 5

■ Debugging: Chapter 23

Defensive programming doesn’t mean being defensive about your programming—“It 
does so work!” The idea is based on defensive driving. In defensive driving, you adopt 
the mind-set that you’re never sure what the other drivers are going to do. That way, 
you make sure that if they do something dangerous you won’t be hurt. You take 
responsibility for protecting yourself even when it might be the other driver’s fault. In 
defensive programming, the main idea is that if a routine is passed bad data, it won’t 
be hurt, even if the bad data is another routine’s fault. More generally, it’s the recogni-
tion that programs will have problems and modifications, and that a smart program-
mer will develop code accordingly.

This chapter describes how to protect yourself from the cold, cruel world of invalid 
data, events that can “never” happen, and other programmers’ mistakes. If you’re an 
experienced programmer, you might skip the next section on handling input data and 
begin with Section 8.2, which reviews the use of assertions. 

KEY POINT
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8.1 Protecting Your Program from Invalid Inputs
In school you might have heard the expression, “Garbage in, garbage out.” That expres-
sion is essentially software development’s version of caveat emptor: let the user beware.

For production software, garbage in, garbage out isn’t good enough. A good program 
never puts out garbage, regardless of what it takes in. A good program uses “garbage in, 
nothing out,” “garbage in, error message out,” or “no garbage allowed in” instead. By 
today’s standards, “garbage in, garbage out” is the mark of a sloppy, nonsecure program.

There are three general ways to handle garbage in: 

Check the values of all data from external sources When getting data from a file, a 
user, the network, or some other external interface, check to be sure that the data falls 
within the allowable range. Make sure that numeric values are within tolerances and 
that strings are short enough to handle. If a string is intended to represent a restricted 
range of values (such as a financial transaction ID or something similar), be sure that 
the string is valid for its intended purpose; otherwise reject it. If you’re working on a 
secure application, be especially leery of data that might attack your system: 
attempted buffer overflows, injected SQL commands, injected HTML or XML code, 
integer overflows, data passed to system calls, and so on. 

Check the values of all routine input parameters Checking the values of routine 
input parameters is essentially the same as checking data that comes from an external 
source, except that the data comes from another routine instead of from an external 
interface. The discussion in Section 8.5, “Barricade Your Program to Contain the Dam-
age Caused by Errors,” provides a practical way to determine which routines need to 
check their inputs. 

Decide how to handle bad inputs Once you’ve detected an invalid parameter, what 
do you do with it? Depending on the situation, you might choose any of a dozen dif-
ferent approaches, which are described in detail in Section 8.3, “Error-Handling Tech-
niques,” later in this chapter. 

Defensive programming is useful as an adjunct to the other quality-improvement tech-
niques described in this book. The best form of defensive coding is not inserting 
errors in the first place. Using iterative design, writing pseudocode before code, writ-
ing test cases before writing the code, and having low-level design inspections are all 
activities that help to prevent inserting defects. They should thus be given a higher pri-
ority than defensive programming. Fortunately, you can use defensive programming 
in combination with the other techniques.

As Figure 8-1 suggests, protecting yourself from seemingly small problems can make 
more of a difference than you might think. The rest of this chapter describes specific 
options for checking data from external sources, checking input parameters, and han-
dling bad inputs.

KEY POINT



8.2 Assertions 189

Figure 8-1 Part of the Interstate-90 floating bridge in Seattle sank during a storm because 
the flotation tanks were left uncovered, they filled with water, and the bridge became too 
heavy to float. During construction, protecting yourself against the small stuff matters more 
than you might think.

8.2 Assertions
An assertion is code that’s used during development—usually a routine or macro—that 
allows a program to check itself as it runs. When an assertion is true, that means 
everything is operating as expected. When it’s false, that means it has detected an 
unexpected error in the code. For example, if the system assumes that a customer-
information file will never have more than 50,000 records, the program might contain 
an assertion that the number of records is less than or equal to 50,000. As long as the 
number of records is less than or equal to 50,000, the assertion will be silent. If it 
encounters more than 50,000 records, however, it will loudly “assert” that an error is 
in the program.

Assertions are especially useful in large, complicated programs and in high-reliability 
programs. They enable programmers to more quickly flush out mismatched interface 
assumptions, errors that creep in when code is modified, and so on. 

An assertion usually takes two arguments: a boolean expression that describes the 
assumption that’s supposed to be true, and a message to display if it isn’t. Here’s what a 
Java assertion would look like if the variable denominator were expected to be nonzero:
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Java Example of an Assertion
assert denominator != 0 : "denominator is unexpectedly equal to 0.";

This assertion asserts that denominator is not equal to 0. The first argument, denomi-
nator != 0, is a boolean expression that evaluates to true or false. The second argument 
is a message to print if the first argument is false—that is, if the assertion is false.

Use assertions to document assumptions made in the code and to flush out unex-
pected conditions. Assertions can be used to check assumptions like these:

■ That an input parameter’s value falls within its expected range (or an output 
parameter’s value does)

■ That a file or stream is open (or closed) when a routine begins executing (or 
when it ends executing)

■ That a file or stream is at the beginning (or end) when a routine begins execut-
ing (or when it ends executing)

■ That a file or stream is open for read-only, write-only, or both read and write

■ That the value of an input-only variable is not changed by a routine 

■ That a pointer is non-null 

■ That an array or other container passed into a routine can contain at least X 
number of data elements

■ That a table has been initialized to contain real values

■ That a container is empty (or full) when a routine begins executing (or when it 
finishes)

■ That the results from a highly optimized, complicated routine match the results 
from a slower but clearly written routine

Of course, these are just the basics, and your own routines will contain many more 
specific assumptions that you can document using assertions. 

Normally, you don’t want users to see assertion messages in production code; assertions 
are primarily for use during development and maintenance. Assertions are normally 
compiled into the code at development time and compiled out of the code for produc-
tion. During development, assertions flush out contradictory assumptions, unexpected 
conditions, bad values passed to routines, and so on. During production, they can be 
compiled out of the code so that the assertions don’t degrade system performance. 
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Building Your Own Assertion Mechanism
Cross-Reference Building 
your own assertion routine is 
a good example of program-
ming “into” a language 
rather than just program-
ming “in” a language. For 
more details on this distinc-
tion, see Section 34.4, "Pro-
gram into Your Language, 
Not in It."

Many languages have built-in support for assertions, including C++, Java, and 
Microsoft Visual Basic. If your language doesn’t directly support assertion routines, 
they are easy to write. The standard C++ assert macro doesn’t provide for text mes-
sages. Here’s an example of an improved ASSERT implemented as a C++ macro:

C++ Example of an Assertion Macro
#define ASSERT( condition, message ) { \

if ( !(condition) ) { \

LogError( "Assertion failed: ", \

#condition, message ); \

exit( EXIT_FAILURE ); \

} \

}

Guidelines for Using Assertions

Here are some guidelines for using assertions:

Use error-handling code for conditions you expect to occur; use assertions for 
conditions that should never occur Assertions check for conditions that should 
never occur. Error-handling code checks for off-nominal circumstances that might not 
occur very often, but that have been anticipated by the programmer who wrote the 
code and that need to be handled by the production code. Error handling typically 
checks for bad input data; assertions check for bugs in the code. 

If error-handling code is used to address an anomalous condition, the error handling 
will enable the program to respond to the error gracefully. If an assertion is fired for an 
anomalous condition, the corrective action is not merely to handle an error grace-
fully—the corrective action is to change the program’s source code, recompile, and 
release a new version of the software. 

A good way to think of assertions is as executable documentation—you can’t rely on 
them to make the code work, but they can document assumptions more actively than 
program-language comments can.

Avoid putting executable code into assertions Putting code into an assertion raises 
the possibility that the compiler will eliminate the code when you turn off the asser-
tions. Suppose you have an assertion like this:
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Cross-Reference You could 
view this as one of many 
problems associated with 
putting multiple statements 
on one line. For more exam-
ples, see "Using Only One 
Statement per Line" in 
Section 31.5.

Visual Basic Example of a Dangerous Use of an Assertion
Debug.Assert( PerformAction() ) ' Couldn't perform action

The problem with this code is that, if you don’t compile the assertions, you don’t com-
pile the code that performs the action. Put executable statements on their own lines, 
assign the results to status variables, and test the status variables instead. Here’s an 
example of a safe use of an assertion:

Visual Basic Example of a Safe Use of an Assertion
actionPerformed = PerformAction()

Debug.Assert( actionPerformed ) ' Couldn't perform action

Further Reading For much 
more on preconditions and 
postconditions, see Object-
Oriented Software Construc-
tion (Meyer 1997).  

Use assertions to document and verify preconditions and postconditions Precondi-
tions and postconditions are part of an approach to program design and development 
known as “design by contract” (Meyer 1997). When preconditions and postcondi-
tions are used, each routine or class forms a contract with the rest of the program. 

Preconditions are the properties that the client code of a routine or class promises will 
be true before it calls the routine or instantiates the object. Preconditions are the client 
code’s obligations to the code it calls.

Postconditions are the properties that the routine or class promises will be true when it 
concludes executing. Postconditions are the routine’s or class’s obligations to the 
code that uses it.

Assertions are a useful tool for documenting preconditions and postconditions. Com-
ments could be used to document preconditions and postconditions, but, unlike com-
ments, assertions can check dynamically whether the preconditions and 
postconditions are true.

In the following example, assertions are used to document the preconditions and 
postcondition of the Velocity routine.

Visual Basic Example of Using Assertions to Document Preconditions and 
Postconditions
Private Function Velocity ( _

ByVal latitude As Single, _

ByVal longitude As Single, _

ByVal elevation As Single _

) As Single

' Preconditions

Debug.Assert ( -90 <= latitude And latitude <= 90 )

Debug.Assert ( 0 <= longitude And longitude < 360 )

Debug.Assert ( -500 <= elevation And elevation <= 75000 )
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...

' Postconditions

Debug.Assert ( 0 <= returnVelocity And returnVelocity <= 600 )

' return value

Velocity = returnVelocity

End Function

If the variables latitude, longitude, and elevation were coming from an external source, 
invalid values should be checked and handled by error-handling code rather than by 
assertions. If the variables are coming from a trusted, internal source, however, and 
the routine’s design is based on the assumption that these values will be within their 
valid ranges, then assertions are appropriate. 

Cross-Reference For more 
on robustness, see "Robust-
ness vs. Correctness" in Sec-
tion 8.3, later in this chapter. 

For highly robust code, assert and then handle the error anyway For any given 
error condition, a routine will generally use either an assertion or error-handling code, 
but not both. Some experts argue that only one kind is needed (Meyer 1997). 

But real-world programs and projects tend to be too messy to rely solely on assertions. 
On a large, long-lasting system, different parts might be designed by different design-
ers over a period of 5–10 years or more. The designers will be separated in time, across 
numerous versions. Their designs will focus on different technologies at different 
points in the system’s development. The designers will be separated geographically, 
especially if parts of the system are acquired from external sources. Programmers will 
have worked to different coding standards at different points in the system’s lifetime. 
On a large development team, some programmers will inevitably be more conscien-
tious than others and some parts of the code will be reviewed more rigorously than 
other parts of the code. Some programmers will unit test their code more thoroughly 
than others. With test teams working across different geographic regions and subject 
to business pressures that result in test coverage that varies with each release, you 
can’t count on comprehensive, system-level regression testing, either. 

In such circumstances, both assertions and error-handling code might be used to 
address the same error. In the source code for Microsoft Word, for example, condi-
tions that should always be true are asserted, but such errors are also handled by 
error-handling code in case the assertion fails. For extremely large, complex, long-
lived applications like Word, assertions are valuable because they help to flush out as 
many development-time errors as possible. But the application is so complex (mil-
lions of lines of code) and has gone through so many generations of modification that 
it isn’t realistic to assume that every conceivable error will be detected and corrected 
before the software ships, and so errors must be handled in the production version of 
the system as well. 
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Here’s an example of how that might work in the Velocity example: 

Visual Basic Example of Using Assertions to Document Preconditions and 
Postconditions
Private Function Velocity ( _

ByRef latitude As Single, _

ByRef longitude As Single, _

ByRef elevation As Single _

) As Single

' Preconditions

Here is the assertion code. Debug.Assert ( -90 <= latitude And latitude <= 90 )

Debug.Assert ( 0 <= longitude And longitude < 360 )

Debug.Assert ( -500 <= elevation And elevation <= 75000 )

...

' Sanitize input data. Values should be within the ranges asserted above,

' but if a value is not within its valid range, it will be changed to the

' closest legal value

Here is the code that handles 
bad input data at run time. 

If ( latitude < -90 ) Then

latitude = -90

ElseIf ( latitude > 90 ) Then

latitude = 90

End If

If ( longitude < 0 ) Then

longitude = 0

ElseIf ( longitude > 360 ) Then

...

8.3 Error-Handling Techniques
Assertions are used to handle errors that should never occur in the code. How do 
you handle errors that you do expect to occur? Depending on the specific circum-
stances, you might want to return a neutral value, substitute the next piece of valid 
data, return the same answer as the previous time, substitute the closest legal value, 
log a warning message to a file, return an error code, call an error-processing routine 
or object, display an error message, or shut down—or you might want to use a com-
bination of these responses.

Here are some more details on these options:

Return a neutral value Sometimes the best response to bad data is to continue oper-
ating and simply return a value that’s known to be harmless. A numeric computation 
might return 0. A string operation might return an empty string, or a pointer opera-
tion might return an empty pointer. A drawing routine that gets a bad input value for 
color in a video game might use the default background or foreground color. A draw-
ing routine that displays x-ray data for cancer patients, however, would not want to 
display a “neutral value.” In that case, you’d be better off shutting down the program 
than displaying incorrect patient data.
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Substitute the next piece of valid data When processing a stream of data, some cir-
cumstances call for simply returning the next valid data. If you’re reading records 
from a database and encounter a corrupted record, you might simply continue read-
ing until you find a valid record. If you’re taking readings from a thermometer 100 
times per second and you don’t get a valid reading one time, you might simply wait 
another 1/100th of a second and take the next reading. 

Return the same answer as the previous time If the thermometer-reading software 
doesn’t get a reading one time, it might simply return the same value as last time. 
Depending on the application, temperatures might not be very likely to change much in 
1/100th of a second. In a video game, if you detect a request to paint part of the screen 
an invalid color, you might simply return the same color used previously. But if you’re 
authorizing transactions at a cash machine, you probably wouldn’t want to use the 
“same answer as last time”—that would be the previous user’s bank account number!

Substitute the closest legal value In some cases, you might choose to return the clos-
est legal value, as in the Velocity example earlier. This is often a reasonable approach 
when taking readings from a calibrated instrument. The thermometer might be cali-
brated between 0 and 100 degrees Celsius, for example. If you detect a reading less 
than 0, you can substitute 0, which is the closest legal value. If you detect a value 
greater than 100, you can substitute 100. For a string operation, if a string length is 
reported to be less than 0, you could substitute 0. My car uses this approach to error 
handling whenever I back up. Since my speedometer doesn’t show negative speeds, 
when I back up it simply shows a speed of 0—the closest legal value. 

Log a warning message to a file When bad data is detected, you might choose to log 
a warning message to a file and then continue on. This approach can be used in con-
junction with other techniques like substituting the closest legal value or substituting 
the next piece of valid data. If you use a log, consider whether you can safely make it 
publicly available or whether you need to encrypt it or protect it some other way. 

Return an error code You could decide that only certain parts of a system will han-
dle errors. Other parts will not handle errors locally; they will simply report that an 
error has been detected and trust that some other routine higher up in the calling hier-
archy will handle the error. The specific mechanism for notifying the rest of the sys-
tem that an error has occurred could be any of the following:

■ Set the value of a status variable 

■ Return status as the function’s return value

■ Throw an exception by using the language’s built-in exception mechanism

In this case, the specific error-reporting mechanism is less important than the deci-
sion about which parts of the system will handle errors directly and which will just 
report that they’ve occurred. If security is an issue, be sure that calling routines always 
check return codes. 
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Call an error-processing routine/object Another approach is to centralize error han-
dling in a global error-handling routine or error-handling object. The advantage of this 
approach is that error-processing responsibility can be centralized, which can make 
debugging easier. The tradeoff is that the whole program will know about this central 
capability and will be coupled to it. If you ever want to reuse any of the code from the 
system in another system, you’ll have to drag the error-handling machinery along 
with the code you reuse. 

This approach has an important security implication. If your code has encountered a 
buffer overrun, it’s possible that an attacker has compromised the address of the han-
dler routine or object. Thus, once a buffer overrun has occurred while an application 
is running, it is no longer safe to use this approach. 

Display an error message wherever the error is encountered This approach mini-
mizes error-handling overhead; however, it does have the potential to spread user 
interface messages through the entire application, which can create challenges when 
you need to create a consistent user interface, when you try to clearly separate the UI 
from the rest of the system, or when you try to localize the software into a different 
language. Also, beware of telling a potential attacker of the system too much. Attackers 
sometimes use error messages to discover how to attack a system. 

Handle the error in whatever way works best locally Some designs call for handling 
all errors locally—the decision of which specific error-handling method to use is left 
up to the programmer designing and implementing the part of the system that 
encounters the error. 

This approach provides individual developers with great flexibility, but it creates a sig-
nificant risk that the overall performance of the system will not satisfy its require-
ments for correctness or robustness (more on this in a moment). Depending on how 
developers end up handling specific errors, this approach also has the potential to 
spread user interface code throughout the system, which exposes the program to all 
the problems associated with displaying error messages.

Shut down Some systems shut down whenever they detect an error. This approach 
is useful in safety-critical applications. For example, if the software that controls radi-
ation equipment for treating cancer patients receives bad input data for the radiation 
dosage, what is its best error-handling response? Should it use the same value as last 
time? Should it use the closest legal value? Should it use a neutral value? In this case, 
shutting down is the best option. We’d much prefer to reboot the machine than to run 
the risk of delivering the wrong dosage. 

A similar approach can be used to improve the security of Microsoft Windows. By 
default, Windows continues to operate even when its security log is full. But you can 
configure Windows to halt the server if the security log becomes full, which can be 
appropriate in a security-critical environment. 
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Robustness vs. Correctness

As the video game and x-ray examples show us, the style of error processing that is 
most appropriate depends on the kind of software the error occurs in. These exam-
ples also illustrate that error processing generally favors more correctness or more 
robustness. Developers tend to use these terms informally, but, strictly speaking, 
these terms are at opposite ends of the scale from each other. Correctness means never 
returning an inaccurate result; returning no result is better than returning an inaccu-
rate result. Robustness means always trying to do something that will allow the soft-
ware to keep operating, even if that leads to results that are inaccurate sometimes. 

Safety-critical applications tend to favor correctness to robustness. It is better to return 
no result than to return a wrong result. The radiation machine is a good example of 
this principle. 

Consumer applications tend to favor robustness to correctness. Any result whatsoever is 
usually better than the software shutting down. The word processor I’m using occasion-
ally displays a fraction of a line of text at the bottom of the screen. If it detects that con-
dition, do I want the word processor to shut down? No. I know that the next time I hit 
Page Up or Page Down, the screen will refresh and the display will be back to normal.

High-Level Design Implications of Error Processing 

With so many options, you need to be careful to handle invalid parameters in consistent 
ways throughout the program. The way in which errors are handled affects the software’s 
ability to meet requirements related to correctness, robustness, and other nonfunctional 
attributes. Deciding on a general approach to bad parameters is an architectural or high-
level design decision and should be addressed at one of those levels.

Once you decide on the approach, make sure you follow it consistently. If you decide 
to have high-level code handle errors and low-level code merely report errors, make 
sure the high-level code actually handles the errors! Some languages give you the 
option of ignoring the fact that a function is returning an error code—in C++, you’re 
not required to do anything with a function’s return value—but don’t ignore error 
information! Test the function return value. If you don’t expect the function ever to 
produce an error, check it anyway. The whole point of defensive programming is 
guarding against errors you don’t expect.

This guideline holds true for system functions as well as for your own functions. 
Unless you’ve set an architectural guideline of not checking system calls for errors, 
check for error codes after each call. If you detect an error, include the error number 
and the description of the error.

KEY POINT
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8.4 Exceptions
Exceptions are a specific means by which code can pass along errors or exceptional 
events to the code that called it. If code in one routine encounters an unexpected con-
dition that it doesn’t know how to handle, it throws an exception, essentially throwing 
up its hands and yelling, “I don’t know what to do about this—I sure hope somebody 
else knows how to handle it!” Code that has no sense of the context of an error can 
return control to other parts of the system that might have a better ability to interpret 
the error and do something useful about it. 

Exceptions can also be used to straighten out tangled logic within a single stretch of 
code, such as the “Rewrite with try-finally” example in Section 17.3. The basic structure 
of an exception is that a routine uses throw to throw an exception object. Code in some 
other routine up the calling hierarchy will catch the exception within a try-catch block. 

Popular languages vary in how they implement exceptions. Table 8-1 summarizes the 
major differences in three of them:

Table 8-1 Popular-Language Support for Exceptions 

Exception 
Attribute C++ Java Visual Basic

Try-catch support yes yes yes

Try-catch-finally 
support

no yes yes

What can be 
thrown

Exception object or 
object derived from 
Exception class; object 
pointer; object refer-
ence; data type like 
string or int

Exception object or 
object derived from 
Exception class

Exception object or 
object derived from 
Exception class

Effect of uncaught 
exception

Invokes std::unex-
pected(), which by 
default invokes 
std::terminate(), 
which by default 
invokes abort()

Terminates thread 
of execution if 
exception is a 
“checked excep-
tion”; no effect if 
exception is a 
“runtime 
exception”

Terminates 
program

Exceptions thrown 
must be defined 
in class interface

No Yes No

Exceptions caught 
must be defined 
in class interface

No Yes No
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Programs that use excep-
tions as part of their normal 
processing suffer from all 
the readability and maintain-
ability problems of classic 
spaghetti code.
—Andy Hunt and Dave 
Thomas

Exceptions have an attribute in common with inheritance: used judiciously, they can 
reduce complexity. Used imprudently, they can make code almost impossible to fol-
low. This section contains suggestions for realizing the benefits of exceptions and 
avoiding the difficulties often associated with them. 

Use exceptions to notify other parts of the program about errors that should not be 
ignored The overriding benefit of exceptions is their ability to signal error condi-
tions in such a way that they cannot be ignored (Meyers 1996). Other approaches to 
handling errors create the possibility that an error condition can propagate through a 
code base undetected. Exceptions eliminate that possibility. 

Throw an exception only for conditions that are truly exceptional Exceptions 
should be reserved for conditions that are truly exceptional—in other words, for con-
ditions that cannot be addressed by other coding practices. Exceptions are used in 
similar circumstances to assertions—for events that are not just infrequent but for 
events that should never occur.

Exceptions represent a tradeoff between a powerful way to handle unexpected condi-
tions on the one hand and increased complexity on the other. Exceptions weaken 
encapsulation by requiring the code that calls a routine to know which exceptions 
might be thrown inside the code that’s called. That increases code complexity, which 
works against what Chapter 5, “Design in Construction,” refers to as Software’s Pri-
mary Technical Imperative: Managing Complexity. 

Don’t use an exception to pass the buck If an error condition can be handled locally, 
handle it locally. Don’t throw an uncaught exception in a section of code if you can 
handle the error locally. 

Avoid throwing exceptions in constructors and destructors unless you catch them in the 
same place The rules for how exceptions are processed become very complicated 
very quickly when exceptions are thrown in constructors and destructors. In C++, for 
example, destructors aren’t called unless an object is fully constructed, which means 
if code within a constructor throws an exception, the destructor won’t be called, 
thereby setting up a possible resource leak (Meyers 1996, Stroustrup 1997). Similarly 
complicated rules apply to exceptions within destructors.  

Language lawyers might say that remembering rules like these is “trivial,” but pro-
grammers who are mere mortals will have trouble remembering them. It’s better pro-
gramming practice simply to avoid the extra complexity such code creates by not 
writing that kind of code in the first place. 

Cross-Reference For more 
on maintaining consistent 
interface abstractions, see 
"Good Abstraction" in 
Section 6.2.

Throw exceptions at the right level of abstraction A routine should present a consis-
tent abstraction in its interface, and so should a class. The exceptions thrown are part 
of the routine interface, just like specific data types are.
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When you choose to pass an exception to the caller, make sure the exception’s level of 
abstraction is consistent with the routine interface’s abstraction. Here’s an example of 
what not to do:

Bad Java Example of a Class that Throws an Exception at an Inconsistent Level 
of Abstraction
class Employee {

...

Here is the declaration of the 
exception that’s at an incon-
sistent level of abstraction. 

public TaxId GetTaxId() throws EOFException {

...

}

...

}

The GetTaxId() code passes the lower-level EOFException exception back to its caller. It 
doesn’t take ownership of the exception itself; it exposes some details about how it’s 
implemented by passing the lower-level exception to its caller. This effectively couples 
the routine’s client’s code not to the Employee class’s code but to the code below the 
Employee class that throws the EOFException exception. Encapsulation is broken, and 
intellectual manageability starts to decline. 

Instead, the GetTaxId() code should pass back an exception that’s consistent with the 
class interface of which it’s a part, like this:

Good Java Example of a Class that Throws an Exception at a Consistent Level 
of Abstraction
class Employee {

...

Here is the declaration of 
the exception that contrib-
utes to a consistent level 
of abstraction.

public TaxId GetTaxId() throws EmployeeDataNotAvailable {

...

}

...

}

The exception-handling code inside GetTaxId() will probably just map the 
io_disk_not_ready exception onto the EmployeeDataNotAvailable exception, which is 
fine because that’s sufficient to preserve the interface abstraction. 

Include in the exception message all information that led to the exception Every 
exception occurs in specific circumstances that are detected at the time the code 
throws the exception. This information is invaluable to the person who reads the 
exception message. Be sure the message contains the information needed to under-
stand why the exception was thrown. If the exception was thrown because of an array 

CODING 
HORROR
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index error, be sure the exception message includes the upper and lower array limits 
and the value of the illegal index. 

Avoid empty catch blocks Sometimes it’s tempting to pass off an exception that you 
don’t know what to do with, like this:

Bad Java Example of Ignoring an Exception
try {

...

// lots of code

...

} catch ( AnException exception ) {

}

Such an approach says that either the code within the try block is wrong because it 
raises an exception for no reason, or the code within the catch block is wrong because 
it doesn’t handle a valid exception. Determine which is the root cause of the problem, 
and then fix either the try block or the catch block. 

You might occasionally find rare circumstances in which an exception at a lower level 
really doesn’t represent an exception at the level of abstraction of the calling routine. If 
that’s the case, at least document why an empty catch block is appropriate. You could 
“document” that case with comments or by logging a message to a file, as follows:

Good Java Example of Ignoring an Exception
try {

...

// lots of code

...

} catch ( AnException exception ) {

LogError( "Unexpected exception" );

}

Know the exceptions your library code throws If you’re working in a language that 
doesn’t require a routine or class to define the exceptions it throws, be sure you know 
what exceptions are thrown by any library code you use. Failing to catch an exception 
generated by library code will crash your program just as fast as failing to catch an 
exception you generated yourself. If the library code doesn’t document the exceptions it 
throws, create prototyping code to exercise the libraries and flush out the exceptions. 

Consider building a centralized exception reporter One approach to ensuring con-
sistency in exception handling is to use a centralized exception reporter. The central-
ized exception reporter provides a central repository for knowledge about what kinds 
of exceptions there are, how each exception should be handled, formatting of excep-
tion messages, and so on. 

CODING 
HORROR
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Here is an example of a simple exception handler that simply prints a diagnostic 
message: 

Visual Basic Example of a Centralized Exception Reporter, Part 1
Further Reading For a more 
detailed explanation of this 
technique, see Practical 
Standards for Microsoft 
Visual Basic .NET (Foxall 
2003). 

Sub ReportException( _

ByVal className, _

ByVal thisException As Exception _

)

Dim message As String

Dim caption As String

message = "Exception: " & thisException.Message & "." & ControlChars.CrLf & _

"Class: " & className & ControlChars.CrLf & _

"Routine: " & thisException.TargetSite.Name & ControlChars.CrLf

caption = "Exception"

MessageBox.Show( message, caption, MessageBoxButtons.OK, _

MessageBoxIcon.Exclamation )

End Sub

You would use this generic exception handler with code like this: 

Visual Basic Example of a Centralized Exception Reporter, Part 2
Try

...

Catch exceptionObject As Exception

ReportException( CLASS_NAME, exceptionObject )

End Try

The code in this version of ReportException() is simple. In a real application, you 
could make the code as simple or as elaborate as needed to meet your exception-
handling needs. 

If you do decide to build a centralized exception reporter, be sure to consider the gen-
eral issues involved in centralized error handling, which are discussed in "Call an 
error-processing routine/object" in Section 8.3.

Standardize your project’s use of exceptions To keep exception handling as intel-
lectually manageable as possible, you can standardize your use of exceptions in sev-
eral ways:

■ If you’re working in a language like C++ that allows you to throw a variety of 
kinds of objects, data, and pointers, standardize on what specifically you will 
throw. For compatibility with other languages, consider throwing only objects 
derived from the Exception base class. 
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■ Consider creating your own project-specific exception class, which can serve as 
the base class for all exceptions thrown on your project. This supports centraliz-
ing and standardizing logging, error reporting, and so on. 

■ Define the specific circumstances under which code is allowed to use throw-
catch syntax to perform error processing locally. 

■ Define the specific circumstances under which code is allowed to throw an 
exception that won’t be handled locally. 

■ Determine whether a centralized exception reporter will be used. 

■ Define whether exceptions are allowed in constructors and destructors. 

Cross-Reference For numer-
ous alternative error-han-
dling approaches, see 
Section 8.3, "Error-Handling 
Techniques,” earlier in this 
chapter. 

Consider alternatives to exceptions Several programming languages have sup-
ported exceptions for 5–10 years or more, but little conventional wisdom has emerged 
about how to use them safely. 

Some programmers use exceptions to handle errors just because their language pro-
vides that particular error-handling mechanism. You should always consider the full 
set of error-handling alternatives: handling the error locally, propagating the error by 
using an error code, logging debug information to a file, shutting down the system, or 
using some other approach. Handling errors with exceptions just because your lan-
guage provides exception handling is a classic example of programming in a language 
rather than programming into a language. (For details on that distinction, see Section 
4.3, “Your Location on the Technology Wave,” and Section 34.4, "Program into Your 
Language, Not in It."

Finally, consider whether your program really needs to handle exceptions, period. As 
Bjarne Stroustrup points out, sometimes the best response to a serious run-time error 
is to release all acquired resources and abort. Let the user rerun the program with 
proper input (Stroustrup 1997).  

8.5 Barricade Your Program to Contain the Damage Caused 
by Errors 

Barricades are a damage-containment strategy. The reason is similar to that for having 
isolated compartments in the hull of a ship. If the ship runs into an iceberg and pops 
open the hull, that compartment is shut off and the rest of the ship isn’t affected. They 
are also similar to firewalls in a building. A building’s firewalls prevent fire from spread-
ing from one part of a building to another part. (Barricades used to be called “firewalls,” 
but the term “firewall” now commonly refers to blocking hostile network traffic.)

One way to barricade for defensive programming purposes is to designate certain 
interfaces as boundaries to “safe” areas. Check data crossing the boundaries of a safe 
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area for validity, and respond sensibly if the data isn’t valid. Figure 8-2 illustrates 
this concept.

Figure 8-2 Defining some parts of the software that work with dirty data and some that 
work with clean data can be an effective way to relieve the majority of the code of the 
responsibility for checking for bad data. 

This same approach can be used at the class level. The class’s public methods assume 
the data is unsafe, and they are responsible for checking the data and sanitizing it. 
Once the data has been accepted by the class’s public methods, the class’s private 
methods can assume the data is safe. 

Another way of thinking about this approach is as an operating-room technique. Data 
is sterilized before it’s allowed to enter the operating room. Anything that’s in the 
operating room is assumed to be safe. The key design decision is deciding what to put 
in the operating room, what to keep out, and where to put the doors—which routines 
are considered to be inside the safety zone, which are outside, and which sanitize the 
data. The easiest way to do this is usually by sanitizing external data as it arrives, but 
data often needs to be sanitized at more than one level, so multiple levels of steriliza-
tion are sometimes required.

Convert input data to the proper type at input time Input typically arrives in the 
form of a string or number. Sometimes the value will map onto a boolean type like 
“yes” or “no.” Sometimes the value will map onto an enumerated type like Color_Red, 
Color_Green, and Color_Blue. Carrying data of questionable type for any length of time 
in a program increases complexity and increases the chance that someone can crash 
your program by inputting a color like “Yes.” Convert input data to the proper form as 
soon as possible after it’s input. 
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Relationship Between Barricades and Assertions

The use of barricades makes the distinction between assertions and error handling 
clean-cut. Routines that are outside the barricade should use error handling because it 
isn’t safe to make any assumptions about the data. Routines inside the barricade 
should use assertions, because the data passed to them is supposed to be sanitized 
before it’s passed across the barricade. If one of the routines inside the barricade 
detects bad data, that’s an error in the program rather than an error in the data. 

The use of barricades also illustrates the value of deciding at the architectural level 
how to handle errors. Deciding which code is inside and which is outside the barri-
cade is an architecture-level decision. 

8.6 Debugging Aids
Another key aspect of defensive programming is the use of debugging aids, which can 
be a powerful ally in quickly detecting errors. 

Don’t Automatically Apply Production Constraints to the 
Development Version
Further Reading For more 
on using debug code to sup-
port defensive program-
ming, see Writing Solid Code 
(Maguire 1993). 

A common programmer blind spot is the assumption that limitations of the produc-
tion software apply to the development version. The production version has to run 
fast. The development version might be able to run slow. The production version has 
to be stingy with resources. The development version might be allowed to use 
resources extravagantly. The production version shouldn’t expose dangerous opera-
tions to the user. The development version can have extra operations that you can use 
without a safety net. 

One program I worked on made extensive use of a quadruply linked list. The linked-
list code was error prone, and the linked list tended to get corrupted. I added a menu 
option to check the integrity of the linked list. 

In debug mode, Microsoft Word contains code in the idle loop that checks the integ-
rity of the Document object every few seconds. This helps to detect data corruption 
quickly, and it makes for easier error diagnosis. 

Be willing to trade speed and resource usage during development in exchange for 
built-in tools that can make development go more smoothly. 

KEY POINT
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Introduce Debugging Aids Early

The earlier you introduce debugging aids, the more they’ll help. Typically, you won’t 
go to the effort of writing a debugging aid until after you’ve been bitten by a problem 
several times. If you write the aid after the first time, however, or use one from a previ-
ous project, it will help throughout the project.

Use Offensive Programming
Cross-Reference For more 
details on handling unantici-
pated cases, see "Tips for 
Using case Statements" in 
Section 15.2.

Exceptional cases should be handled in a way that makes them obvious during 
development and recoverable when production code is running. Michael Howard 
and David LeBlanc refer to this approach as “offensive programming” (Howard and 
LeBlanc 2003).

Suppose you have a case statement that you expect to handle only five kinds of 
events. During development, the default case should be used to generate a warning 
that says “Hey! There’s another case here! Fix the program!” During production, 
however, the default case should do something more graceful, like writing a mes-
sage to an error-log file.

A dead program normally 
does a lot less damage than 
a crippled one.
—Andy Hunt and 
Dave Thomas

Here are some ways you can program offensively:

■ Make sure asserts abort the program. Don’t allow programmers to get into the 
habit of just hitting the Enter key to bypass a known problem. Make the prob-
lem painful enough that it will be fixed. 

■ Completely fill any memory allocated so that you can detect memory allocation 
errors. 

■ Completely fill any files or streams allocated to flush out any file-format errors. 

■ Be sure the code in each case statement’s default or else clause fails hard (aborts 
the program) or is otherwise impossible to overlook. 

■ Fill an object with junk data just before it’s deleted.

■ Set up the program to e-mail error log files to yourself so that you can see the 
kinds of errors that are occurring in the released software, if that’s appropriate 
for the kind of software you’re developing. 

Sometimes the best defense is a good offense. Fail hard during development so that 
you can fail softer during production.

Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debugging code 
in the program. If you’re writing code for commercial use, the performance penalty in 
size and speed can be prohibitive. Plan to avoid shuffling debugging code in and out 
of a program. Here are several ways to do that:
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Cross-Reference For details 
on version control, see Sec-
tion 28.2, "Configuration 
Management."

Use version-control tools and build tools like ant and make Version-control tools 
can build different versions of a program from the same source files. In development 
mode, you can set the build tool to include all the debug code. In production mode, 
you can set it to exclude any debug code you don’t want in the commercial version. 

Use a built-in preprocessor If your programming environment has a preprocessor—
as C++ does, for example—you can include or exclude debug code at the flick of a com-
piler switch. You can use the preprocessor directly or by writing a macro that works 
with preprocessor definitions. Here’s an example of writing code using the preproces-
sor directly:

C++ Example of Using the Preprocessor Directly to Control Debug Code
To include the debugging 
code, use #define to define 
the symbol DEBUG. To 
exclude the debugging code, 
don’t define DEBUG.

#define DEBUG

...

#if defined( DEBUG )

// debugging code

...

#endif

This theme has several variations. Rather than just defining DEBUG, you can assign it 
a value and then test for the value rather than testing whether it’s defined. That way 
you can differentiate between different levels of debug code. You might have some 
debug code that you want in your program all the time, so you surround that by a 
statement like #if DEBUG > 0. Other debug code might be for specific purposes only, 
so you can surround it by a statement like #if DEBUG == POINTER_ERROR. In other 
places, you might want to set debug levels, so you could have statements like #if 
DEBUG > LEVEL_A. 

If you don’t like having #if defined()s spread throughout your code, you can write a 
preprocessor macro to accomplish the same task. Here’s an example:

C++ Example of Using a Preprocessor Macro to Control Debug Code 
#define DEBUG

#if defined( DEBUG )

#define DebugCode( code_fragment ) { code_fragment }

#else

#define DebugCode( code_fragment )

#endif

...

DebugCode(

This code is included or 
excluded, depending on 
whether DEBUG has been 
defined.

statement 1;

statement 2;

...

statement n;

);

...
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As in the first example of using the preprocessor, this technique can be altered in a 
variety of ways that make it more sophisticated than completely including all debug 
code or completely excluding all of it.

Cross-Reference For more 
information on preproces-
sors and for direction to 
sources of information on 
writing one of your own, see 
“Macro Preprocessors”  in 
Section 30.3.

Write your own preprocessor If a language doesn’t include a preprocessor, it’s fairly 
easy to write one for including and excluding debug code. Establish a convention for 
designating debug code, and write your precompiler to follow that convention. For 
example, in Java you could write a precompiler to respond to the keywords //#BEGIN 
DEBUG and //#END DEBUG. Write a script to call the preprocessor, and then com-
pile the processed code. You’ll save time in the long run, and you won’t mistakenly 
compile the unpreprocessed code.

Cross-Reference For details 
on stubs, see “Building Scaf-
folding to Test Individual 
Routines” in Section 22.5.

Use debugging stubs In many instances, you can call a routine to do debugging 
checks. During development, the routine might perform several operations before con-
trol returns to the caller. For production code, you can replace the complicated routine 
with a stub routine that merely returns control immediately to the caller or that per-
forms a couple of quick operations before returning control. This approach incurs only 
a small performance penalty, and it’s a quicker solution than writing your own prepro-
cessor. Keep both the development and production versions of the routines so that you 
can switch back and forth during future development and production.

You might start with a routine designed to check pointers that are passed to it: 

C++ Example of a Routine That Uses a Debugging Stub
void DoSomething(

SOME_TYPE *pointer;

...

) {

// check parameters passed in

This line calls the routine to 
check the pointer.

CheckPointer( pointer );

...

}

During development, the CheckPointer() routine would perform full checking on the 
pointer. It would be slow but effective, and it could look like this: 

C++ Example of a Routine for Checking Pointers During Development
This routine checks any 
pointer that’s passed to it. It 
can be used during develop-
ment to perform as many 
checks as you can bear. 

void CheckPointer( void *pointer ) {

// perform check 1--maybe check that it's not NULL

// perform check 2--maybe check that its dogtag is legitimate

// perform check 3--maybe check that what it points to isn't corrupted

...

// perform check n--...

}
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When the code is ready for production, you might not want all the overhead associ-
ated with this pointer checking. You could swap out the preceding routine and swap 
in this routine:

C++ Example of a Routine for Checking Pointers During Production
This routine just returns 
immediately to the caller.

void CheckPointer( void *pointer ) {

// no code; just return to caller

}

This is not an exhaustive survey of all the ways you can plan to remove debugging 
aids, but it should be enough to give you an idea for some things that will work in your 
environment.

8.7 Determining How Much Defensive Programming to 
Leave in Production Code 

One of the paradoxes of defensive programming is that during development, you’d like 
an error to be noticeable—you’d rather have it be obnoxious than risk overlooking it. But 
during production, you’d rather have the error be as unobtrusive as possible, to have the 
program recover or fail gracefully. Here are some guidelines for deciding which defen-
sive programming tools to leave in your production code and which to leave out:

Leave in code that checks for important errors Decide which areas of the program 
can afford to have undetected errors and which areas cannot. For example, if you were 
writing a spreadsheet program, you could afford to have undetected errors in the 
screen-update area of the program because the main penalty for an error is only a 
messy screen. You could not afford to have undetected errors in the calculation engine 
because such errors might result in subtly incorrect results in someone’s spreadsheet. 
Most users would rather suffer a messy screen than incorrect tax calculations and an 
audit by the IRS. 

Remove code that checks for trivial errors If an error has truly trivial consequences, 
remove code that checks for it. In the previous example, you might remove the code 
that checks the spreadsheet screen update. “Remove” doesn’t mean physically remove 
the code. It means use version control, precompiler switches, or some other technique 
to compile the program without that particular code. If space isn’t a problem, you 
could leave in the error-checking code but have it log messages to an error-log file 
unobtrusively.

Remove code that results in hard crashes As I mentioned, during development, 
when your program detects an error, you’d like the error to be as noticeable as possi-
ble so that you can fix it. Often, the best way to accomplish that goal is to have the pro-
gram print a debugging message and crash when it detects an error. This is useful 
even for minor errors.
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During production, your users need a chance to save their work before the program 
crashes and they are probably willing to tolerate a few anomalies in exchange for keep-
ing the program going long enough for them to do that. Users don’t appreciate any-
thing that results in the loss of their work, regardless of how much it helps debugging 
and ultimately improves the quality of the program. If your program contains debug-
ging code that could cause a loss of data, take it out of the production version.

Leave in code that helps the program crash gracefully If your program contains 
debugging code that detects potentially fatal errors, leave the code in that allows the 
program to crash gracefully. In the Mars Pathfinder, for example, engineers left some 
of the debug code in by design. An error occurred after the Pathfinder had landed. By 
using the debug aids that had been left in, engineers at JPL were able to diagnose the 
problem and upload revised code to the Pathfinder, and the Pathfinder completed its 
mission perfectly (March 1999).

Log errors for your technical support personnel Consider leaving debugging aids in 
the production code but changing their behavior so that it’s appropriate for the pro-
duction version. If you’ve loaded your code with assertions that halt the program dur-
ing development, you might consider changing the assertion routine to log messages 
to a file during production rather than eliminating them altogether. 

Make sure that the error messages you leave in are friendly If you leave internal 
error messages in the program, verify that they’re in language that’s friendly to the 
user. In one of my early programs, I got a call from a user who reported that she’d got-
ten a message that read “You’ve got a bad pointer allocation, Dog Breath!” Fortunately 
for me, she had a sense of humor. A common and effective approach is to notify the 
user of an “internal error” and list an e-mail address or phone number the user can 
use to report it.

8.8 Being Defensive About Defensive Programming
Too much of anything is bad, 
but too much whiskey is just 
enough. 
—Mark Twain

Too much defensive programming creates problems of its own. If you check data 
passed as parameters in every conceivable way in every conceivable place, your pro-
gram will be fat and slow. What’s worse, the additional code needed for defensive pro-
gramming adds complexity to the software. Code installed for defensive 
programming is not immune to defects, and you’re just as likely to find a defect in 
defensive-programming code as in any other code—more likely, if you write the code 
casually. Think about where you need to be defensive, and set your defensive-pro-
gramming priorities accordingly.
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cc2e.com/0868 CHECKLIST: Defensive Programming
General

❑ Does the routine protect itself from bad input data? 

❑ Have you used assertions to document assumptions, including precondi-
tions and postconditions?

❑ Have assertions been used only to document conditions that should never 
occur? 

❑ Does the architecture or high-level design specify a specific set of error-
handling techniques? 

❑ Does the architecture or high-level design specify whether error handling 
should favor robustness or correctness? 

❑ Have barricades been created to contain the damaging effect of errors and 
reduce the amount of code that has to be concerned about error process-
ing?

❑ Have debugging aids been used in the code?

❑ Have debugging aids been installed in such a way that they can be acti-
vated or deactivated without a great deal of fuss?

❑ Is the amount of defensive programming code appropriate—neither too 
much nor too little? 

❑ Have you used offensive-programming techniques to make errors difficult 
to overlook during development? 

Exceptions
❑ Has your project defined a standardized approach to exception handling?

❑ Have you considered alternatives to using an exception?

❑ Is the error handled locally rather than throwing a nonlocal exception, if 
possible? 

❑ Does the code avoid throwing exceptions in constructors and destructors?

❑ Are all exceptions at the appropriate levels of abstraction for the routines 
that throw them? 

❑ Does each exception include all relevant exception background informa-
tion?

❑ Is the code free of empty catch blocks? (Or if an empty catch block truly is 
appropriate, is it documented?)
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Security Issues
❑ Does the code that checks for bad input data check for attempted buffer 

overflows, SQL injection, HTML injection, integer overflows, and other 
malicious inputs? 

❑ Are all error-return codes checked? 

❑ Are all exceptions caught? 

❑ Do error messages avoid providing information that would help an 
attacker break into the system? 

Additional Resources
cc2e.com/0875 Take a look at the following defensive-programming resources:

Security

Howard, Michael, and David LeBlanc. Writing Secure Code, 2d ed. Redmond, WA: 
Microsoft Press, 2003. Howard and LeBlanc cover the security implications of trusting 
input. The book is eye-opening in that it illustrates just how many ways a program can 
be breached—some of which have to do with construction practices and many of which 
don’t. The book spans a full range of requirements, design, code, and test issues.

Assertions

Maguire, Steve. Writing Solid Code. Redmond, WA: Microsoft Press, 1993. Chapter 2 
contains an excellent discussion on the use of assertions, including several interesting 
examples of assertions in well-known Microsoft products.

Stroustrup, Bjarne. The C++ Programming Language, 3d ed. Reading, MA: Addison-
Wesley, 1997. Section 24.3.7.2 describes several variations on the theme of imple-
menting assertions in C++, including the relationship between assertions and precon-
ditions and postconditions. 

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Prentice 
Hall PTR, 1997. This book contains the definitive discussion of preconditions and 
postconditions. 

Exceptions

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Prentice 
Hall PTR, 1997. Chapter 12 contains a detailed discussion of exception handling. 
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Stroustrup, Bjarne. The C++ Programming Language, 3d ed. Reading, MA: Addison-
Wesley, 1997. Chapter 14 contains a detailed discussion of exception handling in C++. 
Section 14.11 contains an excellent summary of 21 tips for handling C++ exceptions. 

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and Designs. 
Reading, MA: Addison-Wesley, 1996. Items 9–15 describe numerous nuances of 
exception handling in C++. 

Arnold, Ken, James Gosling, and David Holmes. The Java Programming Language, 3d 
ed. Boston, MA: Addison-Wesley, 2000. Chapter 8 contains a discussion of exception 
handling in Java. 

Bloch, Joshua. Effective Java Programming Language Guide. Boston, MA: Addison-Wes-
ley, 2001. Items 39–47 describe nuances of exception handling in Java. 

Foxall, James. Practical Standards for Microsoft Visual Basic .NET. Redmond, WA: 
Microsoft Press, 2003. Chapter 10 describes exception handling in Visual Basic. 

Key Points
■ Production code should handle errors in a more sophisticated way than “gar-

bage in, garbage out.”

■ Defensive-programming techniques make errors easier to find, easier to fix, and 
less damaging to production code.

■ Assertions can help detect errors early, especially in large systems, high-reliabil-
ity systems, and fast-changing code bases. 

■ The decision about how to handle bad inputs is a key error-handling decision 
and a key high-level design decision.

■ Exceptions provide a means of handling errors that operates in a different 
dimension from the normal flow of the code. They are a valuable addition to the 
programmer’s intellectual toolbox when used with care, and they should be 
weighed against other error-processing techniques. 

■ Constraints that apply to the production system do not necessarily apply to the 
development version. You can use that to your advantage, adding code to the 
development version that helps to flush out errors quickly.
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Chapter 9

The Pseudocode 
Programming Process

cc2e.com/0936 Contents

■ 9.1 Summary of Steps in Building Classes and Routines: page 216

■ 9.2 Pseudocode for Pros: page 218

■ 9.3 Constructing Routines by Using the PPP: page 220

■ 9.4 Alternatives to the PPP: page 232

Related Topics

■ Creating high-quality classes: Chapter 6

■ Characteristics of high-quality routines: Chapter 7

■ Design in Construction: Chapter 5

■ Commenting style: Chapter 32

Although you could view this whole book as an extended description of the program-
ming process for creating classes and routines, this chapter puts the steps in context. 
This chapter focuses on programming in the small—on the specific steps for building 
an individual class and its routines, the steps that are critical on projects of all sizes. 
The chapter also describes the Pseudocode Programming Process (PPP), which 
reduces the work required during design and documentation and improves the qual-
ity of both.

If you’re an expert programmer, you might just skim this chapter, but look at the sum-
mary of steps and review the tips for constructing routines using the Pseudocode Pro-
gramming Process in Section 9.3. Few programmers exploit the full power of the 
process, and it offers many benefits.

The PPP is not the only procedure for creating classes and routines. Section 9.4, at the 
end of this chapter, describes the most popular alternatives, including test-first devel-
opment and design by contract. 
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9.1 Summary of Steps in Building Classes and Routines
Class construction can be approached from numerous directions, but usually it’s an 
iterative process of creating a general design for the class, enumerating specific rou-
tines within the class, constructing specific routines, and checking class construction 
as a whole. As Figure 9-1 suggests, class creation can be a messy process for all the rea-
sons that design is a messy process (reasons that are described in Section 5.1, “Design 
Challenges”).

Figure 9-1 Details of class construction vary, but the activities generally occur in the order 
shown here. 

Steps in Creating a Class

The key steps in constructing a class are:

Create a general design for the class Class design includes numerous specific issues. 
Define the class’s specific responsibilities, define what “secrets” the class will hide, and 
define exactly what abstraction the class interface will capture. Determine whether the 
class will be derived from another class and whether other classes will be allowed to 
derive from it. Identify the class’s key public methods, and identify and design any non-
trivial data members used by the class. Iterate through these topics as many times as 
needed to create a straightforward design for the routine. These considerations and 
many others are discussed in more detail in Chapter 6, “Working Classes.” 

Begin

Done

Create a 
general design 

for the class

Review and 
test the class as 

a whole

Construct the 
routines within 

the class
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Construct each routine within the class Once you’ve identified the class’s major rou-
tines in the first step, you must construct each specific routine. Construction of each 
routine typically unearths the need for additional routines, both minor and major, and 
issues arising from creating those additional routines often ripple back to the overall 
class design. 

Review and test the class as a whole Normally, each routine is tested as it’s created. 
After the class as a whole becomes operational, the class as a whole should be 
reviewed and tested for any issues that can’t be tested at the individual-routine level.

Steps in Building a Routine

Many of a class’s routines will be simple and straightforward to implement: accessor 
routines, pass-throughs to other objects’ routines, and the like. Implementation of 
other routines will be more complicated, and creation of those routines benefits from 
a systematic approach. The major activities involved in creating a routine—designing 
the routine, checking the design, coding the routine, and checking the code—are typi-
cally performed in the order shown in Figure 9-2.

Figure 9-2 These are the major activities that go into constructing a routine. They’re usu-
ally performed in the order shown.

Experts have developed numerous approaches to creating routines, and my favorite 
approach is the Pseudocode Programming Process, described in the next section. 

Begin

Repeat if 
necessary

Done

Design the 
routine

Check the 
design

Review and 
test the code

Code the 
routine
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9.2 Pseudocode for Pros
The term “pseudocode” refers to an informal, English-like notation for describing how 
an algorithm, a routine, a class, or a program will work. The Pseudocode Program-
ming Process defines a specific approach to using pseudocode to streamline the cre-
ation of code within routines. 

Because pseudocode resembles English, it’s natural to assume that any English-like 
description that collects your thoughts will have roughly the same effect as any other. 
In practice, you’ll find that some styles of pseudocode are more useful than others. 
Here are guidelines for using pseudocode effectively:

■ Use English-like statements that precisely describe specific operations. 

■ Avoid syntactic elements from the target programming language. Pseudocode 
allows you to design at a slightly higher level than the code itself. When you use 
programming-language constructs, you sink to a lower level, eliminating the 
main benefit of design at a higher level, and you saddle yourself with unneces-
sary syntactic restrictions.

Cross-Reference For details 
on commenting at the level 
of intent, see “Kinds of Com-
ments” in Section 32.4.

■ Write pseudocode at the level of intent. Describe the meaning of the approach 
rather than how the approach will be implemented in the target language.

■ Write pseudocode at a low enough level that generating code from it will be 
nearly automatic. If the pseudocode is at too high a level, it can gloss over prob-
lematic details in the code. Refine the pseudocode in more and more detail until 
it seems as if it would be easier to simply write the code.

Once the pseudocode is written, you build the code around it and the pseudocode 
turns into programming-language comments. This eliminates most commenting 
effort. If the pseudocode follows the guidelines, the comments will be complete and 
meaningful.

Here’s an example of a design in pseudocode that violates virtually all the principles 
just described:

Example of Bad Pseudocode 
increment resource number by 1

allocate a dlg struct using malloc

if malloc() returns NULL then return 1

invoke OSrsrc_init to initialize a resource for the operating system

*hRsrcPtr = resource number

return 0

What is the intent of this block of pseudocode? Because it’s poorly written, it’s hard to 
tell. This so-called pseudocode is bad because it includes target language coding 
details, such as *hRsrcPtr (in specific C-language pointer notation) and malloc() (a spe-

CODING 
HORROR
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cific C-language function). This pseudocode block focuses on how the code will be 
written rather than on the meaning of the design. It gets into coding details—whether 
the routine returns a 1 or a 0. If you think about this pseudocode from the standpoint 
of whether it will turn into good comments, you’ll begin to understand that it isn’t 
much help.

Here’s a design for the same operation in a much-improved pseudocode: 

Example of Good Pseudocode
Keep track of current number of resources in use

If another resource is available

   Allocate a dialog box structure

   If a dialog box structure could be allocated

      Note that one more resource is in use

      Initialize the resource

      Store the resource number at the location provided by the caller

   Endif

Endif

Return true if a new resource was created; else return false

This pseudocode is better than the first because it’s written entirely in English; it 
doesn’t use any syntactic elements of the target language. In the first example, the 
pseudocode could have been implemented only in C. In the second example, the 
pseudocode doesn’t restrict the choice of languages. The second block of pseudocode 
is also written at the level of intent. What does the second block of pseudocode mean? 
It is probably easier for you to understand than the first block.

Even though it’s written in clear English, the second block of pseudocode is precise 
and detailed enough that it can easily be used as a basis for programming-language 
code. When the pseudocode statements are converted to comments, they’ll be a good 
explanation of the code’s intent.

Here are the benefits you can expect from using this style of pseudocode:

■ Pseudocode makes reviews easier. You can review detailed designs without 
examining source code. Pseudocode makes low-level design reviews easier and 
reduces the need to review the code itself.

■ Pseudocode supports the idea of iterative refinement. You start with a high-level 
design, refine the design to pseudocode, and then refine the pseudocode to 
source code. This successive refinement in small steps allows you to check your 
design as you drive it to lower levels of detail. The result is that you catch high-
level errors at the highest level, mid-level errors at the middle level, and low-level 
errors at the lowest level—before any of them becomes a problem or contami-
nates work at more detailed levels.
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Further Reading For more 
information on the advan-
tages of making changes at 
the least-value stage, see 
Andy Grove’s High Output 
Management (Grove 1983).

■ Pseudocode makes changes easier. A few lines of pseudocode are easier to change 
than a page of code. Would you rather change a line on a blueprint or rip out a 
wall and nail in the two-by-fours somewhere else? The effects aren’t as physically 
dramatic in software, but the principle of changing the product when it’s most 
malleable is the same. One of the keys to the success of a project is to catch errors 
at the “least-value stage,” the stage at which the least effort has been invested. 
Much less has been invested at the pseudocode stage than after full coding, test-
ing, and debugging, so it makes economic sense to catch the errors early.

■ Pseudocode minimizes commenting effort. In the typical coding scenario, you 
write the code and add comments afterward. In the PPP, the pseudocode state-
ments become the comments, so it actually takes more work to remove the com-
ments than to leave them in.

■ Pseudocode is easier to maintain than other forms of design documentation. 
With other approaches, design is separated from the code, and when one 
changes, the two fall out of agreement. With the PPP, the pseudocode state-
ments become comments in the code. As long as the inline comments are main-
tained, the pseudocode’s documentation of the design will be accurate.

As a tool for detailed design, pseudocode is hard to beat. One survey found that pro-
grammers prefer pseudocode for the way it eases construction in a programming lan-
guage, for its ability to help them detect insufficiently detailed designs, and for the 
ease of documentation and ease of modification it provides (Ramsey, Atwood, and 
Van Doren 1983). Pseudocode isn’t the only tool for detailed design, but pseudocode 
and the PPP are useful tools to have in your programmer’s toolbox. Try them. The 
next section shows you how.

9.3 Constructing Routines by Using the PPP
This section describes the activities involved in constructing a routine, namely these:

■ Design the routine.

■ Code the routine.

■ Check the code.

■ Clean up loose ends.

■ Repeat as needed.

Design the Routine
Cross-Reference For details 
on other aspects of design, 
see Chapters 5 through 8.

Once you’ve identified a class’s routines, the first step in constructing any of the class’s 
more complicated routines is to design it. Suppose that you want to write a routine to 

KEY POINT
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output an error message depending on an error code, and suppose that you call the rou-
tine ReportErrorMessage(). Here’s an informal spec for ReportErrorMessage():

ReportErrorMessage() takes an error code as an input argument and outputs 
an error message corresponding to the code. It’s responsible for handling 
invalid codes. If the program is operating interactively, ReportErrorMessage() 
displays the message to the user. If it’s operating in command-line mode, 
ReportErrorMessage() logs the message to a message file. After outputting the 
message, ReportErrorMessage() returns a status value, indicating whether it 
succeeded or failed.

The rest of the chapter uses this routine as a running example. The rest of this section 
describes how to design the routine. 

Cross-Reference For details 
on checking prerequisites, 
see Chapter 3, “Measure 
Twice, Cut Once: Upstream 
Prerequisites,” and Chapter 4, 
“Key Construction Decisions.”

Check the prerequisites Before doing any work on the routine itself, check to see that 
the job of the routine is well defined and fits cleanly into the overall design. Check to 
be sure that the routine is actually called for, at the very least indirectly, by the 
project’s requirements.

Define the problem the routine will solve State the problem the routine will solve in 
enough detail to allow creation of the routine. If the high-level design is sufficiently 
detailed, the job might already be done. The high-level design should at least indicate 
the following:

■ The information the routine will hide 

■ Inputs to the routine

■ Outputs from the routine

Cross-Reference For details 
on preconditions and post-
conditions, see “Use asser-
tions to document and verify 
preconditions and postcon-
ditions” in Section 8.2. 

■ Preconditions that are guaranteed to be true before the routine is called (input 
values within certain ranges, streams initialized, files opened or closed, buffers 
filled or flushed, etc.)

■ Postconditions that the routine guarantees will be true before it passes control 
back to the caller (output values within specified ranges, streams initialized, files 
opened or closed, buffers filled or flushed, etc.)

Here’s how these concerns are addressed in the ReportErrorMessage() example:

■ The routine hides two facts: the error message text and the current processing 
method (interactive or command line). 

■ There are no preconditions guaranteed to the routine. 

■ The input to the routine is an error code. 

■ Two kinds of output are called for: the first is the error message, and the second 
is the status that ReportErrorMessage() returns to the calling routine. 

■ The routine guarantees that the status value will have a value of either Success or 
Failure. 
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Cross-Reference For details 
on naming routines, see Sec-
tion 7.3, “Good Routine 
Names.”

Name the routine Naming the routine might seem trivial, but good routine names 
are one sign of a superior program and they’re not easy to come up with. In general, a 
routine should have a clear, unambiguous name. If you have trouble creating a good 
name, that usually indicates that the purpose of the routine isn’t clear. A vague, wishy-
washy name is like a politician on the campaign trail. It sounds as if it’s saying some-
thing, but when you take a hard look, you can’t figure out what it means. If you can 
make the name clearer, do so. If the wishy-washy name results from a wishy-washy 
design, pay attention to the warning sign. Back up and improve the design.

In the example, ReportErrorMessage() is unambiguous. It is a good name.

Further Reading For a dif-
ferent approach to construc-
tion that focuses on writing 
test cases first, see Test-
Driven Development: By 
Example (Beck 2003).

Decide how to test the routine As you’re writing the routine, think about how you 
can test it. This is useful for you when you do unit testing and for the tester who tests 
your routine independently.

In the example, the input is simple, so you might plan to test ReportErrorMessage() 
with all valid error codes and a variety of invalid codes.

Research functionality available in the standard libraries The single biggest way to 
improve both the quality of your code and your productivity is to reuse good code. If 
you find yourself grappling to design a routine that seems overly complicated, ask 
whether some or all of the routine’s functionality might already be available in the 
library code of the language, platform, or tools you’re using. Ask whether the code 
might be available in library code maintained by your company. Many algorithms 
have already been invented, tested, discussed in the trade literature, reviewed, and 
improved. Rather than spending your time inventing something when someone has 
already written a Ph.D. dissertation on it, take a few minutes to look through the code 
that’s already been written and make sure you’re not doing more work than necessary. 

Think about error handling Think about all the things that could possibly go wrong 
in the routine. Think about bad input values, invalid values returned from other rou-
tines, and so on. 

Routines can handle errors numerous ways, and you should choose consciously how 
to handle errors. If the program’s architecture defines the program’s error-handling 
strategy, you can simply plan to follow that strategy. In other cases, you have to decide 
what approach will work best for the specific routine. 

Think about efficiency Depending on your situation, you can address efficiency in 
one of two ways. In the first situation, in the vast majority of systems, efficiency isn’t 
critical. In such a case, see that the routine’s interface is well abstracted and its code is 
readable so that you can improve it later if you need to. If you have good encapsula-
tion, you can replace a slow, resource-hogging, high-level language implementation 
with a better algorithm or a fast, lean, low-level language implementation, and you 
won’t affect any other routines.
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Cross-Reference For details 
on efficiency, see Chapter 25, 
“Code-Tuning Strategies,” 
and Chapter 26, “Code-
Tuning Techniques.”

In the second situation—in the minority of systems—performance is critical. The per-
formance issue might be related to scarce database connections, limited memory, few 
available handles, ambitious timing constraints, or some other scarce resource. The 
architecture should indicate how many resources each routine (or class) is allowed to 
use and how fast it should perform its operations.

Design your routine so that it will meet its resource and speed goals. If either 
resources or speed seems more critical, design so that you trade resources for speed or 
vice versa. It’s acceptable during initial construction of the routine to tune it enough to 
meet its resource and speed budgets.

Aside from taking the approaches suggested for these two general situations, it’s usu-
ally a waste of effort to work on efficiency at the level of individual routines. The big 
optimizations come from refining the high-level design, not the individual routines. 
You generally use micro-optimizations only when the high-level design turns out not 
to support the system’s performance goals, and you won’t know that until the whole 
program is done. Don’t waste time scraping for incremental improvements until you 
know they’re needed.

Research the algorithms and data types If functionality isn’t available in the avail-
able libraries, it might still be described in an algorithms book. Before you launch into 
writing complicated code from scratch, check an algorithms book to see what’s 
already available. If you use a predefined algorithm, be sure to adapt it correctly to 
your programming language.

Write the pseudocode You might not have much in writing after you finish the pre-
ceding steps. The main purpose of the steps is to establish a mental orientation that’s 
useful when you actually write the routine.

Cross-Reference This discus-
sion assumes that good 
design techniques are used to 
create the pseudocode ver-
sion of the routine. For details 
on design, see Chapter 5, 
“Design in Construction.”

With the preliminary steps completed, you can begin to write the routine as high-level 
pseudocode. Go ahead and use your programming editor or your integrated environ-
ment to write the pseudocode—the pseudocode will be used shortly as the basis for 
programming-language code.

Start with the general and work toward something more specific. The most general 
part of a routine is a header comment describing what the routine is supposed to do, 
so first write a concise statement of the purpose of the routine. Writing the statement 
will help you clarify your understanding of the routine. Trouble in writing the general 
comment is a warning that you need to understand the routine’s role in the program 
better. In general, if it’s hard to summarize the routine’s role, you should probably 
assume that something is wrong. Here’s an example of a concise header comment 
describing a routine:

Quratek
Typewritten Text
V413HAV
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Example of a Header Comment for a Routine
This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

After you’ve written the general comment, fill in high-level pseudocode for the routine. 
Here’s the pseudocode for this example:

Example of Pseudocode for a Routine
This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

set the default status to "fail"

look up the message based on the error code 

if the error code is valid

   if doing interactive processing, display the error message 

   interactively and declare success

   if doing command line processing, log the error message to the 

   command line and declare success

if the error code isn't valid, notify the user that an internal error 

has been detected

return status information

Again, note that the pseudocode is written at a fairly high level. It certainly isn’t writ-
ten in a programming language. Instead, it expresses in precise English what the 
routine needs to do.

Cross-Reference For details 
on effective use of variables, 
see Chapters 10 through 13.

Think about the data You can design the routine’s data at several different points in 
the process. In this example, the data is simple and data manipulation isn’t a prominent 
part of the routine. If data manipulation is a prominent part of the routine, it’s worth-
while to think about the major pieces of data before you think about the routine’s logic. 
Definitions of key data types are useful to have when you design the logic of a routine.

Cross-Reference For details 
on review techniques, see 
Chapter 21, “Collaborative 
Construction.”

Check the pseudocode Once you’ve written the pseudocode and designed the data, 
take a minute to review the pseudocode you’ve written. Back away from it, and think 
about how you would explain it to someone else.

Ask someone else to look at it or listen to you explain it. You might think that it’s silly 
to have someone look at 11 lines of pseudocode, but you’ll be surprised. Pseudocode 
can make your assumptions and high-level mistakes more obvious than program-
ming-language code does. People are also more willing to review a few lines of 
pseudocode than they are to review 35 lines of C++ or Java.
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Make sure you have an easy and comfortable understanding of what the routine does 
and how it does it. If you don’t understand it conceptually, at the pseudocode level, 
what chance do you have of understanding it at the programming-language level? And 
if you don’t understand it, who else will?

Cross-Reference For more 
on iteration, see Section 
34.8, “Iterate, Repeatedly, 
Again and Again.”

Try a few ideas in pseudocode, and keep the best (iterate) Try as many ideas as you 
can in pseudocode before you start coding. Once you start coding, you get emotionally 
involved with your code and it becomes harder to throw away a bad design and start over.

The general idea is to iterate the routine in pseudocode until the pseudocode state-
ments become simple enough that you can fill in code below each statement and leave 
the original pseudocode as documentation. Some of the pseudocode from your first 
attempt might be high-level enough that you need to decompose it further. Be sure 
you do decompose it further. If you’re not sure how to code something, keep working 
with the pseudocode until you are sure. Keep refining and decomposing the 
pseudocode until it seems like a waste of time to write it instead of the actual code.

Code the Routine

Once you’ve designed the routine, construct it. You can perform construction steps in 
a nearly standard order, but feel free to vary them as you need to. Figure 9-3 shows the 
steps in constructing a routine.

Figure 9-3 You’ll perform all of these steps as you design a routine but not necessarily in 
any particular order.

Start with pseudocode

Write the routine declaration

Write the first and last statements, and turn 
the pseudocode into high-level comments

Fill in the code below each comment

Repeat as needed

Clean up leftovers

Done

Check the code
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Write the routine declaration Write the routine interface statement—the function 
declaration in C++, method declaration in Java, function or sub procedure declaration 
in Microsoft Visual Basic, or whatever your language calls for. Turn the original header 
comment into a programming-language comment. Leave it in position above the 
pseudocode you’ve already written. Here are the example routine’s interface state-
ment and header in C++:

C++ Example of a Routine Interface and Header Added to Pseudocode
Here’s the header comment 
that’s been turned into a 
C++-style comment.

/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves 

on its own. It returns a value indicating success or failure. 

*/

Here’s the interface 
statement.

Status ReportErrorMessage(

   ErrorCode errorToReport

   )

set the default status to "fail"

look up the message based on the error code 

if the error code is valid

   if doing interactive processing, display the error message 

   interactively and declare success

   if doing command line processing, log the error message to the 

   command line and declare success

if the error code isn't valid, notify the user that an 

internal error has been detected

return status information

This is a good time to make notes about any interface assumptions. In this case, the 
interface variable errorToReport is straightforward and typed for its specific purpose, 
so it doesn’t need to be documented.

Turn the pseudocode into high-level comments Keep the ball rolling by writing the 
first and last statements: { and } in C++. Then turn the pseudocode into comments. 
Here’s how it would look in the example:

C++ Example of Writing the First and Last Statements Around Pseudocode 
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage(

   ErrorCode errorToReport

   ) {
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The pseudocode statements 
from here down have been 
turned into C++ comments.

   // set the default status to "fail"

   // look up the message based on the error code

   // if the error code is valid

      // if doing interactive processing, display the error message 

      // interactively and declare success

      // if doing command line processing, log the error message to the 

      // command line and declare success

   // if the error code isn't valid, notify the user that an 

   // internal error has been detected

   // return status information

}

At this point, the character of the routine is evident. The design work is complete, and 
you can sense how the routine works even without seeing any code. You should feel that 
converting the pseudocode to programming-language code will be mechanical, natural, 
and easy. If you don’t, continue designing in pseudocode until the design feels solid.

Cross-Reference This is a 
case where the writing meta-
phor works well—in the 
small. For criticism of apply-
ing the writing metaphor in 
the large, see “Software Pen-
manship: Writing Code” in 
Section 2.3.

Fill in the code below each comment Fill in the code below each line of pseudocode 
comment. The process is a lot like writing a term paper. First you write an outline, and 
then you write a paragraph for each point in the outline. Each pseudocode comment 
describes a block or paragraph of code. Like the lengths of literary paragraphs, the 
lengths of code paragraphs vary according to the thought being expressed, and the 
quality of the paragraphs depends on the vividness and focus of the thoughts in them.

In this example, the first two pseudocode comments give rise to two lines of code: 

C++ Example of Expressing Pseudocode Comments as Code
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage(

   ErrorCode errorToReport

   ) {

   // set the default status to "fail"

Here’s the code that’s been 
filled in.

Status errorMessageStatus = Status_Failure;

   

   // look up the message based on the error code

Here’s the new variable 
errorMessage.

   Message errorMessage = LookupErrorMessage( errorToReport );

   // if the error code is valid

      // if doing interactive processing, display the error message 

      // interactively and declare success

      // if doing command line processing, log the error message to the 

      // command line and declare success
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   // if the error code isn't valid, notify the user that an 

   // internal error has been detected

   // return status information

}

This is a start on the code. The variable errorMessage is used, so it needs to be declared. 
If you were commenting after the fact, two lines of comments for two lines of code 
would nearly always be overkill. In this approach, however, it’s the semantic content 
of the comments that’s important, not how many lines of code they comment. The 
comments are already there, and they explain the intent of the code, so leave them in.

The code below each of the remaining comments needs to be filled in:

C++ Example of a Complete Routine Created with the Pseudocode 
Programming Process
/* This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message

depends on the current processing state, which it retrieves

on its own. It returns a value indicating success or failure. 

*/

Status ReportErrorMessage(

   ErrorCode errorToReport

   ) {

   // set the default status to "fail"

   Status errorMessageStatus = Status_Failure;

   // look up the message based on the error code

   Message errorMessage = LookupErrorMessage( errorToReport );

   // if the error code is valid

The code for each comment 
has been filled in from here 
down.

if ( errorMessage.ValidCode() ) {

      // determine the processing method

      ProcessingMethod errorProcessingMethod = CurrentProcessingMethod();

      // if doing interactive processing, display the error message 

      // interactively and declare success

      if ( errorProcessingMethod == ProcessingMethod_Interactive ) {

         DisplayInteractiveMessage( errorMessage.Text() );

         errorMessageStatus = Status_Success;

      }

      // if doing command line processing, log the error message to the 

      // command line and declare success

This code is a good candidate 
for being further decom-
posed into a new routine: 
DisplayCommandLine-
Message(). 

      else if ( errorProcessingMethod == ProcessingMethod_CommandLine ) {

         CommandLine messageLog;

         if ( messageLog.Status() == CommandLineStatus_Ok ) { 

            messageLog.AddToMessageQueue( errorMessage.Text() );

            messageLog.FlushMessageQueue();

            errorMessageStatus = Status_Success;

          } 
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This code and comment are 
new and are the result of 
fleshing out the if test. 

         else {

            // can't do anything because the routine is already error processing

         }

This code and comment are 
also new. 

      else {

         // can't do anything because the routine is already error processing

      }

   }

   // if the error code isn't valid, notify the user that an 

   // internal error has been detected

   else {

      DisplayInteractiveMessage( 

         "Internal Error: Invalid error code in ReportErrorMessage()" 

      );

   }

   // return status information

   return errorMessageStatus;

}

Each comment has given rise to one or more lines of code. Each block of code forms a 
complete thought based on the comment. The comments have been retained to provide 
a higher-level explanation of the code. All variables have been declared and defined 
close to the point they’re first used. Each comment should normally expand to about 2 
to 10 lines of code. (Because this example is just for purposes of illustration, the code 
expansion is on the low side of what you should usually experience in practice.)

Now look again at the spec on page 221 and the initial pseudocode on page 224. The 
original five-sentence spec expanded to 15 lines of pseudocode (depending on how 
you count the lines), which in turn expanded into a page-long routine. Even though 
the spec was detailed, creation of the routine required substantial design work in 
pseudocode and code. That low-level design is one reason why “coding” is a nontrivial 
task and why the subject of this book is important.

Check whether code should be further factored In some cases, you’ll see an explo-
sion of code below one of the initial lines of pseudocode. In this case, you should con-
sider taking one of two courses of action:

Cross-Reference For more 
on refactoring, see Chapter 
24, “Refactoring.”

� Factor the code below the comment into a new routine. If you find one line of 
pseudocode expanding into more code that than you expected, factor the code 
into its own routine. Write the code to call the routine, including the routine name. 
If you’ve used the PPP well, the name of the new routine should drop out easily 
from the pseudocode. Once you’ve completed the routine you were originally cre-
ating, you can dive into the new routine and apply the PPP again to that routine. 

� Apply the PPP recursively. Rather than writing a couple dozen lines of code 
below one line of pseudocode, take the time to decompose the original line of 
pseudocode into several more lines of pseudocode. Then continue filling in the 
code below each of the new lines of pseudocode. 
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Check the Code 

After designing and implementing the routine, the third big step in constructing it is 
checking to be sure that what you’ve constructed is correct. Any errors you miss at this 
stage won’t be found until later testing. They’re more expensive to find and correct 
then, so you should find all that you can at this stage.

Cross-Reference For details 
on checking for errors in 
architecture and require-
ments, see Chapter 3, 
“Measure Twice, Cut Once: 
Upstream Prerequisites.”

A problem might not appear until the routine is fully coded for several reasons. An 
error in the pseudocode might become more apparent in the detailed implementation 
logic. A design that looks elegant in pseudocode might become clumsy in the imple-
mentation language. Working with the detailed implementation might disclose an 
error in the architecture, high-level design, or requirements. Finally, the code might 
have an old-fashioned, mongrel coding error—nobody’s perfect! For all these reasons, 
review the code before you move on.

Mentally check the routine for errors The first formal check of a routine is mental. 
The cleanup and informal checking steps mentioned earlier are two kinds of mental 
checks. Another is executing each path mentally. Mentally executing a routine is diffi-
cult, and that difficulty is one reason to keep your routines small. Make sure that you 
check nominal paths and endpoints and all exception conditions. Do this both by 
yourself, which is called “desk checking,” and with one or more peers, which is called 
a “peer review,” a “walk-through,” or an “inspection,” depending on how you do it.

One of the biggest differences between hobbyists and professional programmers is 
the difference that grows out of moving from superstition into understanding. The 
word “superstition” in this context doesn’t refer to a program that gives you the creeps 
or generates extra errors when the moon is full. It means substituting feelings about 
the code for understanding. If you often find yourself suspecting that the compiler or 
the hardware made an error, you’re still in the realm of superstition. A study con-
ducted many years ago found that only about five percent of all errors are hardware, 
compiler, or operating-system errors (Ostrand and Weyuker 1984). Today, that per-
centage would probably be even lower. Programmers who have moved into the realm 
of understanding always suspect their own work first because they know that they 
cause 95 percent of errors. Understand the role of each line of code and why it’s 
needed. Nothing is ever right just because it seems to work. If you don’t know why it 
works, it probably doesn’t—you just don’t know it yet.

Bottom line: A working routine isn’t enough. If you don’t know why it works, study it, 
discuss it, and experiment with alternative designs until you do. 

Compile the routine After reviewing the routine, compile it. It might seem inefficient 
to wait this long to compile since the code was completed several pages ago. Admit-
tedly, you might have saved some work by compiling the routine earlier and letting 
the computer check for undeclared variables, naming conflicts, and so on.

1
2
3

HARD DATA

KEY POINT
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You’ll benefit in several ways, however, by not compiling until late in the process. The 
main reason is that when you compile new code, an internal stopwatch starts ticking. 
After the first compile, you step up the pressure: “I’ll get it right with just one more 
compile.” The “Just One More Compile” syndrome leads to hasty, error-prone changes 
that take more time in the long run. Avoid the rush to completion by not compiling 
until you’ve convinced yourself that the routine is right.

The point of this book is to show how to rise above the cycle of hacking something 
together and running it to see if it works. Compiling before you’re sure your pro-
gram works is often a symptom of the hacker mindset. If you’re not caught in the 
hacking-and-compiling cycle, compile when you feel it’s appropriate. But be con-
scious of the tug most people feel toward “hacking, compiling, and fixing” their way 
to a working program.

Here are some guidelines for getting the most out of compiling your routine:

■ Set the compiler’s warning level to the pickiest level possible. You can catch an 
amazing number of subtle errors simply by allowing the compiler to detect them.

■ Use validators. The compiler checking performed by languages like C can be 
supplemented by use of tools like lint. Even code that isn’t compiled, such as 
HTML and JavaScript, can be checked by validation tools. 

■ Eliminate the causes of all error messages and warnings. Pay attention to what 
the messages tell you about your code. A large number of warnings often indi-
cates low-quality code, and you should try to understand each warning you get. 
In practice, warnings you’ve seen again and again have one of two possible 
effects: you ignore them and they camouflage other, more important, warnings, 
or they simply become annoying. It’s usually safer and less painful to rewrite the 
code to solve the underlying problem and eliminate the warnings.

Step through the code in the debugger Once the routine compiles, put it into the 
debugger and step through each line of code. Make sure each line executes as you 
expect it to. You can find many errors by following this simple practice.

Cross-Reference For details, 
see Chapter 22, “Developer 
Testing.” Also see “Building 
Scaffolding to Test Individual 
Classes” in Section 22.5.

Test the code Test the code using the test cases you planned or created while you 
were developing the routine. You might have to develop scaffolding to support your 
test cases—that is, code that’s used to support routines while they’re tested and that 
isn’t included in the final product. Scaffolding can be a test-harness routine that calls 
your routine with test data, or it can be stubs called by your routine.

Cross-Reference For details, 
see Chapter 23, “Debugging.”

Remove errors from the routine Once an error has been detected, it has to be 
removed. If the routine you’re developing is buggy at this point, chances are good that 
it will stay buggy. If you find that a routine is unusually buggy, start over. Don’t hack 
around it—rewrite it. Hacks usually indicate incomplete understanding and guarantee 
errors both now and later. Creating an entirely new design for a buggy routine pays 
off. Few things are more satisfying than rewriting a problematic routine and never 
finding another error in it.
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Clean Up Leftovers

When you’ve finished checking your code for problems, check it for the general char-
acteristics described throughout this book. You can take several cleanup steps to 
make sure that the routine’s quality is up to your standards:

■ Check the routine’s interface. Make sure that all input and output data is 
accounted for and that all parameters are used. For more details, see Section 7.5, 
“How to Use Routine Parameters.”

■ Check for general design quality. Make sure the routine does one thing and does 
it well, that it’s loosely coupled to other routines, and that it’s designed defen-
sively. For details, see Chapter 7, “High-Quality Routines.”

■ Check the routine’s variables. Check for inaccurate variable names, unused 
objects, undeclared variables, improperly initialized objects, and so on. For 
details, see the chapters on using variables, Chapters 10 through 13.

■ Check the routine’s statements and logic. Check for off-by-one errors, infinite 
loops, improper nesting, and resource leaks. For details, see the chapters on 
statements, Chapters 14 through 19.

■ Check the routine’s layout. Make sure you’ve used white space to clarify the log-
ical structure of the routine, expressions, and parameter lists. For details, see 
Chapter 31, “Layout and Style.”

■ Check the routine’s documentation. Make sure the pseudocode that was trans-
lated into comments is still accurate. Check for algorithm descriptions, for doc-
umentation on interface assumptions and nonobvious dependencies, for 
justification of unclear coding practices, and so on. For details, see Chapter 32, 
“Self-Documenting Code.”

■ Remove redundant comments. Sometimes a pseudocode comment turns out to be 
redundant with the code the comment describes, especially when the PPP has been 
applied recursively and the comment just precedes a call to a well-named routine. 

Repeat Steps as Needed

If the quality of the routine is poor, back up to the pseudocode. High-quality pro-
gramming is an iterative process, so don’t hesitate to loop through the construction 
activities again.

9.4 Alternatives to the PPP
For my money, the PPP is the best method for creating classes and routines. Here are 
some different approaches recommended by other experts. You can use these 
approaches as alternatives or as supplements to the PPP.
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Test-first development Test-first is a popular development style in which test cases 
are written prior to writing any code. This approach is described in more detail in 
“Test First or Test Last?” in Section 22.2. A good book on test-first programming is 
Kent Beck’s Test-Driven Development: By Example (Beck 2003). 

Refactoring Refactoring is a development approach in which you improve code 
through a series of semantic preserving transformations. Programmers use patterns of 
bad code or “smells” to identify sections of code that need to be improved. Chapter 
24, “Refactoring,” describes this approach in detail, and a good book on the topic is 
Martin Fowler’s Refactoring: Improving the Design of Existing Code (Fowler 1999).

Design by contract Design by contract is a development approach in which each 
routine is considered to have preconditions and postconditions. This approach is 
described in “Use assertions to document and verify preconditions and postcondi-
tions” in Section 8.2. The best source of information on design by contract is Bertrand 
Meyers’s Object-Oriented Software Construction (Meyer 1997). 

Hacking? Some programmers try to hack their way toward working code rather 
than using a systematic approach like the PPP. If you’ve ever found that you’ve coded 
yourself into a corner in a routine and have to start over, that’s an indication that the 
PPP might work better. If you find yourself losing your train of thought in the middle 
of coding a routine, that’s another indication that the PPP would be beneficial. Have 
you ever simply forgotten to write part of a class or part of routine? That hardly ever 
happens if you’re using the PPP. If you find yourself staring at the computer screen not 
knowing where to start, that’s a surefire sign that the PPP would make your program-
ming life easier. 

cc2e.com/0943 CHECKLIST: The Pseudocode Programming Process
Cross-Reference The point 
of this list is to check 
whether you followed a 
good set of steps to create a 
routine. For a checklist that 
focuses on the quality of the 
routine itself, see the “High-
Quality Routines” checklist in 
Chapter 7, page 185.

❑ Have you checked that the prerequisites have been satisfied?

❑ Have you defined the problem that the class will solve?

❑ Is the high-level design clear enough to give the class and each of its rou-
tines a good name?

❑ Have you thought about how to test the class and each of its routines?

❑ Have you thought about efficiency mainly in terms of stable interfaces and 
readable implementations or mainly in terms of meeting resource and 
speed budgets?

❑ Have you checked the standard libraries and other code libraries for appli-
cable routines or components? 

❑ Have you checked reference books for helpful algorithms? 
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❑ Have you designed each routine by using detailed pseudocode?

❑ Have you mentally checked the pseudocode? Is it easy to understand? 

❑ Have you paid attention to warnings that would send you back to design 
(use of global data, operations that seem better suited to another class or 
another routine, and so on)?

❑ Did you translate the pseudocode to code accurately?

❑ Did you apply the PPP recursively, breaking routines into smaller routines 
when needed? 

❑ Did you document assumptions as you made them?

❑ Did you remove comments that turned out to be redundant? 

❑ Have you chosen the best of several iterations, rather than merely stop-
ping after your first iteration?

❑ Do you thoroughly understand your code? Is it easy to understand? 

Key Points
■ Constructing classes and constructing routines tends to be an iterative process. 

Insights gained while constructing specific routines tend to ripple back through 
the class’s design. 

■ Writing good pseudocode calls for using understandable English, avoiding fea-
tures specific to a single programming language, and writing at the level of 
intent (describing what the design does rather than how it will do it).

■ The Pseudocode Programming Process is a useful tool for detailed design and 
makes coding easy. Pseudocode translates directly into comments, ensuring 
that the comments are accurate and useful.

■ Don’t settle for the first design you think of. Iterate through multiple approaches 
in pseudocode and pick the best approach before you begin writing code. 

■ Check your work at each step, and encourage others to check it too. That way, 
you’ll catch mistakes at the least expensive level, when you’ve invested the least 
amount of effort.
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Chapter 10

General Issues in Using 
Variables
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■ 10.1 Data Literacy: page 238
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■ 10.3 Guidelines for Initializing Variables: page 240

■ 10.4 Scope: page 244

■ 10.5 Persistence: page 251
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Related Topics

■ Naming variables: Chapter 11

■ Fundamental data types: Chapter 12 

■ Unusual data types: Chapter 13

■ Formatting data declarations: “Laying Out Data Declarations” in Section 31.5

■ Documenting variables: “Commenting Data Declarations” in Section 32.5

It’s normal and desirable for construction to fill in small gaps in the requirements and 
architecture. It would be inefficient to draw blueprints to such a microscopic level that 
every detail was completely specified. This chapter describes a nuts-and-bolts con-
struction issue: the ins and outs of using variables.

The information in this chapter should be particularly valuable to you if you’re an expe-
rienced programmer. It’s easy to start using hazardous practices before you’re fully aware 
of your alternatives and then to continue to use them out of habit even after you’ve 
learned ways to avoid them. An experienced programmer might find the discussions on 
binding time in Section 10.6 and on using each variable for one purpose in Section 10.8 
particularly interesting. If you’re not sure whether you qualify as an “experienced pro-
grammer,” take the “Data Literacy Test” in the next section and find out. 
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Throughout this chapter I use the word “variable” to refer to objects as well as to built-
in data types like integers and arrays. The phrase “data type” generally refers to built-
in data types, while the word “data” refers to either objects or built-in types. 

10.1 Data Literacy
The first step in creating effective data is knowing which kind of data to create. A good 
repertoire of data types is a key part of a programmer’s toolbox. A tutorial in data 
types is beyond the scope of this book, but the “Data Literacy Test” will help you 
determine how much more you might need to learn about them.

The Data Literacy Test

Put a 1 next to each term that looks familiar. If you think you know what a term means 
but aren’t sure, give yourself a 0.5. Add the points when you’re done, and interpret 
your score according to the scoring table below.

KEY POINT

______ abstract data type ______ literal

______ array ______ local variable

______ bitmap ______ lookup table

______ boolean variable ______ member data

______ B-tree ______ pointer

______ character variable ______ private

______ container class ______ retroactive synapse

______ double precision ______ referential integrity

______ elongated stream ______ stack

______ enumerated type ______ string

______ floating point ______ structured variable

______ heap ______ tree

______ index ______ typedef

______ integer ______ union

______ linked list ______ value chain

______ named constant ______ variant

______ Total Score
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Here is how you can interpret the scores (loosely):

Additional Resources on Data Types

These books are good sources of information about data types:

Cormen, H. Thomas, Charles E. Leiserson, Ronald L. Rivest. Introduction to Algorithms. 
New York, NY: McGraw Hill. 1990. 

Sedgewick, Robert. Algorithms in C++, Parts 1-4, 3d ed. Boston, MA: Addison-Wesley, 
1998. 

Sedgewick, Robert. Algorithms in C++, Part 5, 3d ed. Boston, MA: Addison-Wesley, 
2002. 

10.2 Making Variable Declarations Easy
Cross-Reference For details 
on layout of variable decla-
rations, see “Laying Out Data 
Declarations” in Section 
31.5. For details on docu-
menting them, see “Com-
menting Data Declarations” 
in Section 32.5.

This section describes what you can do to streamline the task of declaring variables. 
To be sure, this is a small task, and you might think it’s too small to deserve its own 
section in this book. Nevertheless, you spend a lot of time creating variables, and 
developing the right habits can save time and frustration over the life of a project.

Implicit Declarations

Some languages have implicit variable declarations. For example, if you use a variable 
in Microsoft Visual Basic without declaring it, the compiler declares it for you automat-
ically (depending on your compiler settings).

0–14 You are a beginning programmer, probably in your first year of computer sci-
ence in school or teaching yourself your first programming language. You can 
learn a lot by reading one of the books listed in the next subsection. Many of 
the descriptions of techniques in this part of the book are addressed to 
advanced programmers, and you’ll get more out of them after you’ve read 
one of these books.

15–19 You are an intermediate programmer or an experienced programmer who has 
forgotten a lot. Although many of the concepts will be familiar to you, you 
too can benefit from reading one of the books listed below.

20–24 You are an expert programmer. You probably already have the books listed 
below on your shelf.

25–29 You know more about data types than I do. Consider writing your own com-
puter book. (Send me a copy!)

30–32 You are a pompous fraud. The terms “elongated stream,” “retroactive syn-
apse,” and “value chain” don’t refer to data types—I made them up. Please 
read the “Intellectual Honesty” section in Chapter 33, “Personal Character”!
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Implicit declaration is one of the most hazardous features available in any language. If 
you program in Visual Basic, you know how frustrating it is to try to figure out why 
acctNo doesn’t have the right value and then notice that acctNum is the variable that’s 
reinitialized to 0. This kind of mistake is an easy one to make if your language doesn’t 
require you to declare variables.

If you’re programming in a language that requires you to declare variables, you have to 
make two mistakes before your program will bite you. First you have to put both acct-
Num and acctNo into the body of the routine. Then you have to declare both variables 
in the routine. This is a harder mistake to make, and it virtually eliminates the synon-
ymous-variables problem. Languages that require you to declare data explicitly are, in 
essence, requiring you to use data more carefully, which is one of their primary advan-
tages. What do you do if you program in a language with implicit declarations? Here 
are some suggestions:

Turn off implicit declarations Some compilers allow you to disable implicit declara-
tions. For example, in Visual Basic you would use an Option Explicit statement, which 
forces you to declare all variables before you use them.

Declare all variables As you type in a new variable, declare it, even though the com-
piler doesn’t require you to. This won’t catch all the errors, but it will catch some of them.

Cross-Reference For details 
on the standardization of 
abbreviations, see “General 
Abbreviation Guidelines” in 
Section 11.6.

Use naming conventions Establish a naming convention for common suffixes such as 
Num and No so that you don’t use two variables when you mean to use one.

Check variable names Use the cross-reference list generated by your compiler or 
another utility program. Many compilers list all the variables in a routine, allowing 
you to spot both acctNum and acctNo. They also point out variables that you’ve 
declared and not used.

10.3 Guidelines for Initializing Variables
Improper data initialization is one of the most fertile sources of error in computer pro-
gramming. Developing effective techniques for avoiding initialization problems can 
save a lot of debugging time.

The problems with improper initialization stem from a variable’s containing an initial 
value that you do not expect it to contain. This can happen for any of several reasons:

Cross-Reference For a test-
ing approach based on data 
initialization and use pat-
terns, see “Data-Flow Test-
ing” in Section 22.3.

� The variable has never been assigned a value. Its value is whatever bits hap-
pened to be in its area of memory when the program started.

� The value in the variable is outdated. The variable was assigned a value at some 
point, but the value is no longer valid.

� Part of the variable has been assigned a value and part has not. 

KEY POINT

KEY POINT
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This last theme has several variations. You can initialize some of the members of an 
object but not all of them. You can forget to allocate memory and then initialize the 
“variable” the uninitialized pointer points to. This means that you are really selecting 
a random portion of computer memory and assigning it some value. It might be mem-
ory that contains data. It might be memory that contains code. It might be the operat-
ing system. The symptom of the pointer problem can manifest itself in completely 
surprising ways that are different each time—that’s what makes debugging pointer 
errors harder than debugging other errors.

Following are guidelines for avoiding initialization problems:

Initialize each variable as it’s declared Initializing variables as they’re declared is an 
inexpensive form of defensive programming. It’s a good insurance policy against ini-
tialization errors. The example below ensures that studentGrades will be reinitialized 
each time you call the routine that contains it.

C++ Example of Initialization at Declaration Time
float studentGrades[ MAX_STUDENTS ] = { 0.0 };   

Cross-Reference Checking 
input parameters is a form of 
defensive programming. For 
details on defensive pro-
gramming, see Chapter 8, 
“Defensive Programming.”

Initialize each variable close to where it’s first used Some languages, including 
Visual Basic, don’t support initializing variables as they’re declared. That can lead to 
coding styles like the following one, in which declarations are grouped together and 
then initializations are grouped together—all far from the first actual use of the variables. 

Visual Basic Example of Bad Initialization
' declare all variables

Dim accountIndex As Integer

Dim total As Double

Dim done As Boolean

' initialize all variables

accountIndex = 0

total = 0.0

done = False

...

' code using accountIndex

...

' code using total

...

' code using done

While Not done

   ...

CODING 
HORROR
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A better practice is to initialize variables as close as possible to where they’re first used:

Visual Basic Example of Good Initialization
Dim accountIndex As Integer

accountIndex = 0

' code using accountIndex

...

Dim total As Double

total is declared and initial-
ized close to where it’s used.

total = 0.0

' code using total

...

Dim done As Boolean

done is also declared and 
initialized close to where it’s 
used.

done = False

' code using done

While Not done

   ...

The second example is superior to the first for several reasons. By the time execution 
of the first example gets to the code that uses done, done could have been modified. If 
that’s not the case when you first write the program, later modifications might make 
it so. Another problem with the first approach is that throwing all the initializations 
together creates the impression that all the variables are used throughout the whole 
routine—when in fact done is used only at the end. Finally, as the program is modified 
(as it will be, if only by debugging), loops might be built around the code that uses 
done, and done will need to be reinitialized. The code in the second example will 
require little modification in such a case. The code in the first example is more prone 
to producing an annoying initialization error.

Cross-Reference For more 
details on keeping related 
actions together, see Section 
10.4, “Scope.”

This is an example of the Principle of Proximity: keep related actions together. The 
same principle applies to keeping comments close to the code they describe, keeping 
loop setup code close to the loop, grouping statements in straight-line code, and to 
many other areas.

Ideally, declare and define each variable close to where it’s first used A declaration 
establishes a variable’s type. A definition assigns the variable a specific value. In lan-
guages that support it, such as C++ and Java, variables should be declared and defined 
close to where they are first used.  Ideally, each variable should be defined at the same 
time it’s declared, as shown next: 

Java Example of Good Initialization
int accountIndex = 0;

// code using accountIndex

...
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total is initialized close to 
where it’s used.

double total = 0.0;

// code using total

...

done is also initialized close 
to where it’s used.

boolean done = false;

// code using done

while ( ! done ) {

   ...

Cross-Reference For more 
details on keeping related 
actions together, see Section 
14.2, “Statements Whose 
Order Doesn’t Matter.”

Use final or const when possible By declaring a variable to be final in Java or const 
in C++, you can prevent the variable from being assigned a value after it’s initialized. 
The final and const keywords are useful for defining class constants, input-only 
parameters, and any local variables whose values are intended to remain unchanged 
after initialization. 

Pay special attention to counters and accumulators The variables i, j, k, sum, and 
total are often counters or accumulators. A common error is forgetting to reset a 
counter or an accumulator before the next time it’s used.

Initialize a class’s member data in its constructor Just as a routine’s variables should 
be initialized within each routine, a class’s data should be initialized within its construc-
tor. If memory is allocated in the constructor, it should be freed in the destructor. 

Check the need for reinitialization Ask yourself whether the variable will ever need 
to be reinitialized, either because a loop in the routine uses the variable many times or 
because the variable retains its value between calls to the routine and needs to be reset 
between calls. If it needs to be reinitialized, make sure that the initialization statement 
is inside the part of the code that’s repeated.

Initialize named constants once; initialize variables with executable code If you’re 
using variables to emulate named constants, it’s OK to write code that initializes them 
once, at the beginning of the program. To do this, initialize them in a Startup() routine. 
Initialize true variables in executable code close to where they’re used. One of the 
most common program modifications is to change a routine that was originally called 
once so that you call it multiple times. Variables that are initialized in a program-level 
Startup() routine aren’t reinitialized the second time through the routine.

Use the compiler setting that automatically initializes all variables If your compiler 
supports such an option, having the compiler set to automatically initialize all variables 
is an easy variation on the theme of relying on your compiler. Relying on specific com-
piler settings, however, can cause problems when you move the code to another 
machine and another compiler. Make sure you document your use of the compiler set-
ting; assumptions that rely on specific compiler settings are hard to uncover otherwise.

Take advantage of your compiler’s warning messages Many compilers warn you that 
you’re using an uninitialized variable.
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Cross-Reference For more 
on checking input parame-
ters, see Section 8.1, “Pro-
tecting Your Program from 
Invalid Inputs,” and the rest 
of Chapter 8, “Defensive Pro-
gramming.” 

Check input parameters for validity Another valuable form of initialization is check-
ing input parameters for validity. Before you assign input values to anything, make 
sure the values are reasonable.

Use a memory-access checker to check for bad pointers In some operating systems, 
the operating-system code checks for invalid pointer references. In others, you’re on 
your own. You don’t have to stay on your own, however, because you can buy mem-
ory-access checkers that check your program’s pointer operations.

Initialize working memory at the beginning of your program Initializing working 
memory to a known value helps to expose initialization problems. You can take any of 
several approaches:

■ You can use a preprogram memory filler to fill the memory with a predictable 
value. The value 0 is good for some purposes because it ensures that uninitial-
ized pointers point to low memory, making it relatively easy to detect them 
when they’re used. On the Intel processors, 0xCC is a good value to use because 
it’s the machine code for a breakpoint interrupt; if you are running code in a 
debugger and try to execute your data rather than your code, you’ll be awash in 
breakpoints. Another virtue of the value 0xCC is that it’s easy to recognize in 
memory dumps—and it’s rarely used for legitimate reasons. Alternatively, Brian 
Kernighan and Rob Pike suggest using the constant 0xDEADBEEF as memory 
filler that’s easy to recognize in a debugger (1999). 

■ If you’re using a memory filler, you can change the value you use to fill the mem-
ory once in awhile. Shaking up the program sometimes uncovers problems that 
stay hidden if the environmental background never changes.

■ You can have your program initialize its working memory at startup time. 
Whereas the purpose of using a preprogram memory filler is to expose defects, 
the purpose of this technique is to hide them. By filling working memory with 
the same value every time, you guarantee that your program won’t be affected by 
random variations in the startup memory.

10.4 Scope
“Scope” is a way of thinking about a variable’s celebrity status: how famous is it? 
Scope, or visibility, refers to the extent to which your variables are known and can be 
referenced throughout a program. A variable with limited or small scope is known in 
only a small area of a program—a loop index used in only one small loop, for instance. 
A variable with large scope is known in many places in a program—a table of employee 
information that’s used throughout a program, for instance.

Different languages handle scope in different ways. In some primitive languages, all 
variables are global. You therefore don’t have any control over the scope of a variable, 
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and that can create a lot of problems. In C++ and similar languages, a variable can be 
visible to a block (a section of code enclosed in curly brackets), a routine, a class (and 
possibly its derived classes), or the whole program. In Java and C#, a variable can also 
be visible to a package or namespace (a collection of classes). 

The following sections provide guidelines that apply to scope. 

Localize References to Variables

The code between references to a variable is a “window of vulnerability.” In the win-
dow, new code might be added, inadvertently altering the variable, or someone read-
ing the code might forget the value the variable is supposed to contain. It’s always a 
good idea to localize references to variables by keeping them close together.

The idea of localizing references to a variable is pretty self-evident, but it’s an idea that 
lends itself to formal measurement. One method of measuring how close together the 
references to a variable are is to compute the “span” of a variable. Here’s an example:

Java Example of Variable Span
a = 0;

b = 0;

c = 0;

a = b + c;

In this case, two lines come between the first reference to a and the second, so a has a 
span of two. One line comes between the two references to b, so b has a span of one, 
and c has a span of zero. Here’s another example:

Java Example of Spans of One and Zero
a = 0;

b = 0;

c = 0;

b = a + 1;

b = b / c;

Further Reading For more 
information on variable 
span, see Software Engineer-
ing Metrics and Models 
(Conte, Dunsmore, and Shen 
1986).

In this case, there is one line between the first reference to b and the second, for a span 
of one. There are no lines between the second reference to b and the third, for a span 
of zero.

The average span is computed by averaging the individual spans. In the second exam-
ple, for b, (1+0)/2 equals an average span of 0.5. When you keep references to vari-
ables close together, you enable the person reading your code to focus on one section 
at a time. If the references are far apart, you force the reader to jump around in the pro-
gram. Thus the main advantage of keeping references to variables together is that it 
improves program readability.
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Keep Variables “Live” for as Short a Time as Possible

A concept that’s related to variable span is variable “live time,” the total number of 
statements over which a variable is live. A variable’s life begins at the first statement in 
which it’s referenced; its life ends at the last statement in which it’s referenced.

Unlike span, live time isn’t affected by how many times the variable is used between 
the first and last times it’s referenced. If the variable is first referenced on line 1 and 
last referenced on line 25, it has a live time of 25 statements. If those are the only two 
lines in which it’s used, it has an average span of 23 statements. If the variable were 
used on every line from line 1 through line 25, it would have an average span of 0 
statements, but it would still have a live time of 25 statements. Figure 10-1 illustrates 
both span and live time.

Figure 10-1 “Long live time” means that a variable is live over the course of many state-
ments. “Short live time” means it’s live for only a few statements. “Span” refers to how close 
together the references to a variable are.

As with span, the goal with respect to live time is to keep the number low, to keep a 
variable live for as short a time as possible. And as with span, the basic advantage of 
maintaining a low number is that it reduces the window of vulnerability. You reduce 

Long live 
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Short 
spans

Long live
time

Long 
spans

Short live 
time

Short spans
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the chance of incorrectly or inadvertently altering a variable between the places in 
which you intend to alter it.

A second advantage of keeping the live time short is that it gives you an accurate pic-
ture of your code. If a variable is assigned a value in line 10 and not used again until 
line 45, the very space between the two references implies that the variable is used 
between lines 10 and 45. If the variable is assigned a value in line 44 and used in line 
45, no other uses of the variable are implied, and you can concentrate on a smaller sec-
tion of code when you’re thinking about that variable.

A short live time also reduces the chance of initialization errors. As you modify a pro-
gram, straight-line code tends to turn into loops and you tend to forget initializations 
that were made far away from the loop. By keeping the initialization code and the loop 
code closer together, you reduce the chance that modifications will introduce initial-
ization errors.

A short live time makes your code more readable. The fewer lines of code a reader has 
to keep in mind at once, the easier your code is to understand. Likewise, the shorter 
the live time, the less code you have to keep on your screen when you want to see all 
the references to a variable during editing and debugging.

Finally, short live times are useful when splitting a large routine into smaller routines. 
If references to variables are kept close together, it’s easier to refactor related sections 
of code into routines of their own. 

Measuring the Live Time of a Variable

You can formalize the concept of live time by counting the number of lines between 
the first and last references to a variable (including both the first and last lines). Here’s 
an example with live times that are too long:

Java Example of Variables with Excessively Long Live Times
1   // initialize all variables

2   recordIndex = 0;

3   total = 0;

4   done = false;

    ...

26  while ( recordIndex < recordCount ) {

27  ...

Last reference to recordIndex. 28     recordIndex = recordIndex + 1;

       ...

64  while ( !done ) {

       ...

Last reference to total.

Last reference to done.

69     if ( total > projectedTotal ) {

70        done = true;
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Here are the live times for the variables in this example:

The example has been rewritten below so that the variable references are closer 
together:

Java Example of Variables with Good, Short Live Times
    ...

Initialization of recordIndex 
is moved down from line 3.

25  recordIndex = 0;

26  while ( recordIndex < recordCount ) {

27  ...

28     recordIndex = recordIndex + 1;

       ...

Initialization of total and 
done are moved down from 
lines 4 and 5.

62  total = 0;

63  done = false;

64  while ( !done ) {

       ...

69     if ( total > projectedTotal ) {

70        done = true;

Here are the live times for the variables in this example:

Further Reading For more 
information on “live” vari-
ables, see Software Engi-
neering Metrics and Models 
(Conte, Dunsmore, and Shen 
1986).

Intuitively, the second example seems better than the first because the initializations 
for the variables are performed closer to where the variables are used. The measured 
difference in average live time between the two examples is significant: An average of 
54 vs. an average of 7 provides good quantitative support for the intuitive preference 
for the second piece of code.

Does a hard number separate a good live time from a bad one? A good span from a 
bad one? Researchers haven’t yet produced that quantitative data, but it’s safe to 
assume that minimizing both span and live time is a good idea. 

If you try to apply the ideas of span and live time to global variables, you’ll find that 
global variables have enormous spans and live times—one of many good reasons to 
avoid global variables.

recordIndex ( line 28 - line 2 + 1 ) = 27

total ( line 69 - line 3 + 1 ) = 67

done ( line 70 - line 4 + 1 ) = 67

Average Live Time ( 27 + 67 + 67 ) / 3 ≈54

recordIndex ( line 28 - line 25 + 1 ) = 4

total ( line 69 - line 62 + 1 ) = 8

done ( line 70 - line 63 + 1 ) = 8

Average Live Time ( 4 + 8 + 8 ) / 3 ≈7
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General Guidelines for Minimizing Scope

Here are some specific guidelines you can use to minimize scope: 

Cross-Reference For details 
on initializing variables close 
to where they’re used, see 
Section 10.3, “Guidelines for 
Initializing Variables,” earlier 
in this chapter. 

Initialize variables used in a loop immediately before the loop rather than back at the 
beginning of the routine containing the loop Doing this improves the chance that 
when you modify the loop, you’ll remember to make corresponding modifications to 
the loop initialization. Later, when you modify the program and put another loop 
around the initial loop, the initialization will work on each pass through the new loop 
rather than on only the first pass.

Cross-Reference For more 
on this style of variable dec-
laration and definition, see 
“Ideally, declare and define 
each variable close to where 
it’s first used” in Section 10.3. 

Don’t assign a value to a variable until just before the value is used You might have 
experienced the frustration of trying to figure out where a variable was assigned its 
value. The more you can do to clarify where a variable receives its value, the better. 
Languages like C++ and Java support variable initializations like these:

C++ Example of Good Variable Declarations and Initializations
int receiptIndex = 0; 

float dailyReceipts = TodaysReceipts();

double totalReceipts = TotalReceipts( dailyReceipts ); 

Cross-Reference For more 
details on keeping related 
statements together, see Sec-
tion 14.2, “Statements Whose 
Order Doesn’t Matter.”

Group related statements The following examples show a routine for summarizing 
daily receipts and illustrate how to put references to variables together so that they’re 
easier to locate. The first example illustrates the violation of this principle:

C++ Example of Using Two Sets of Variables in a Confusing Way 
void SummarizeData(...) {

   ...

Statements using two sets 
of variables.

   GetOldData( oldData, &numOldData );

   GetNewData( newData, &numNewData );

   totalOldData = Sum( oldData, numOldData );

   totalNewData = Sum( newData, numNewData );

   PrintOldDataSummary( oldData, totalOldData, numOldData );

   PrintNewDataSummary( newData, totalNewData, numNewData );

   SaveOldDataSummary( totalOldData, numOldData );

   SaveNewDataSummary( totalNewData, numNewData );

   ...

}

Note that, in this example, you have to keep track of oldData, newData, numOldData, 
numNewData, totalOldData, and totalNewData all at once—six variables for just this 
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short fragment. The next example shows how to reduce that number to only three ele-
ments within each block of code:

C++ Example of Using Two Sets of Variables More Understandably
void SummarizeData( ... ) {

Statements using oldData.    GetOldData( oldData, &numOldData );

   totalOldData = Sum( oldData, numOldData );

   PrintOldDataSummary( oldData, totalOldData, numOldData );

   SaveOldDataSummary( totalOldData, numOldData );

   ...

Statements using newData.    GetNewData( newData, &numNewData );

   totalNewData = Sum( newData, numNewData );

   PrintNewDataSummary( newData, totalNewData, numNewData );

   SaveNewDataSummary( totalNewData, numNewData );

   ...

}

When the code is broken up, the two blocks are each shorter than the original block 
and individually contain fewer variables. They’re easier to understand, and if you need 
to break this code out into separate routines, the shorter blocks with fewer variables 
will promote better-defined routines.

Break groups of related statements into separate routines All other things being 
equal, a variable in a shorter routine will tend to have smaller span and live time than 
a variable in a longer routine. By breaking related statements into separate, smaller 
routines, you reduce the scope that the variable can have. 

Cross-Reference For more 
on global variables, see 
Section 13.3, “Global Data.”

Begin with most restricted visibility, and expand the variable’s scope only if 
necessary Part of minimizing the scope of a variable is keeping it as local as possi-
ble. It is much more difficult to reduce the scope of a variable that has had a large 
scope than to expand the scope of a variable that has had a small scope—in other 
words, it’s harder to turn a global variable into a class variable than it is to turn a class 
variable into a global variable. It’s harder to turn a protected data member into a pri-
vate data member than vice versa. For that reason, when in doubt, favor the smallest 
possible scope for a variable: local to a specific loop, local to an individual routine, 
then private to a class, then protected, then package (if your programming language 
supports that), and global only as a last resort. 

Comments on Minimizing Scope

Many programmers’ approach to minimizing variables’ scope depends on their views 
of the issues of “convenience” and “intellectual manageability.” Some programmers 
make many of their variables global because global scope makes variables convenient 
to access and the programmers don’t have to fool around with parameter lists and 
class-scoping rules. In their minds, the convenience of being able to access variables at 
any time outweighs the risks involved. 
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Cross-Reference The idea of 
minimizing scope is related 
to the idea of information 
hiding. For details, see “Hide 
Secrets (Information Hid-
ing)” in Section 5.3.

Other programmers prefer to keep their variables as local as possible because local 
scope helps intellectual manageability. The more information you can hide, the less 
you have to keep in mind at any one time. The less you have to keep in mind, the 
smaller the chance that you’ll make an error because you forgot one of the many 
details you needed to remember.

The difference between the “convenience” philosophy and the “intellectual manage-
ability” philosophy boils down to a difference in emphasis between writing programs 
and reading them. Maximizing scope might indeed make programs easy to write, but 
a program in which any routine can use any variable at any time is harder to under-
stand than a program that uses well-factored routines. In such a program, you can’t 
understand only one routine; you have to understand all the other routines with 
which that routine shares global data. Such programs are hard to read, hard to debug, 
and hard to modify. 

Cross-Reference For details 
on using access routines, see 
“Using Access Routines 
Instead of Global Data” in 
Section 13.3.

Consequently, you should declare each variable to be visible to the smallest segment 
of code that needs to see it. If you can confine the variable’s scope to a single loop or 
to a single routine, great. If you can’t confine the scope to one routine, restrict the vis-
ibility to the routines in a single class. If you can’t restrict the variable’s scope to the 
class that’s most responsible for the variable, create access routines to share the vari-
able’s data with other classes. You’ll find that you rarely, if ever, need to use naked glo-
bal data.

10.5 Persistence
“Persistence” is another word for the life span of a piece of data. Persistence takes sev-
eral forms. Some variables persist

■ for the life of a particular block of code or routine. Variables declared inside a for 
loop in C++ or Java are examples of this kind of persistence.

■ as long as you allow them to. In Java, variables created with new persist until 
they are garbage collected. In C++, variables created with new persist until you 
delete them.

■ for the life of a program. Global variables in most languages fit this description, 
as do static variables in C++ and Java. 

■ forever. These variables might include values that you store in a database 
between executions of a program. For example, if you have an interactive pro-
gram in which users can customize the color of the screen, you can store their 
colors in a file and then read them back each time the program is loaded. 

The main problem with persistence arises when you assume that a variable has a 
longer persistence than it really does. The variable is like that jug of milk in your refrig-
erator. It’s supposed to last a week. Sometimes it lasts a month, and sometimes it 
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turns sour after five days. A variable can be just as unpredictable. If you try to use the 
value of a variable after its normal life span is over, will it have retained its value? 
Sometimes the value in the variable is sour, and you know that you’ve got an error. 
Other times, the computer leaves the old value in the variable, letting you imagine that 
you have used it correctly.

Here are a few steps you can take to avoid this kind of problem:

Cross-Reference Debug 
code is easy to include in 
access routines and is dis-
cussed more in “Advantages 
of Access Routines” in 
Section 13.3.

■ Use debug code or assertions in your program to check critical variables for rea-
sonable values. If the values aren’t reasonable, display a warning that tells you to 
look for improper initialization.

■ Set variables to “unreasonable values” when you’re through with them. For 
example, you could set a pointer to null after you delete it. 

■ Write code that assumes data isn’t persistent. For example, if a variable has a cer-
tain value when you exit a routine, don’t assume it has the same value the next 
time you enter the routine. This doesn’t apply if you’re using language-specific 
features that guarantee the value will remain the same, such as static in C++ and 
Java.

■ Develop the habit of declaring and initializing all data right before it’s used. If 
you see data that’s used without a nearby initialization, be suspicious!

10.6 Binding Time
An initialization topic with far-reaching implications for program maintenance and 
modifiability is “binding time”: the time at which the variable and its value are bound 
together (Thimbleby 1988). Are they bound together when the code is written? When 
it is compiled? When it is loaded? When the program is run? Some other time?

It can be to your advantage to use the latest binding time possible. In general, the later 
you make the binding time, the more flexibility you build into your code. The next 
example shows binding at the earliest possible time, when the code is written:

Java Example of a Variable That’s Bound at Code-Writing Time 
titleBar.color = 0xFF; // 0xFF is hex value for color blue

The value 0xFF is bound to the variable titleBar.color at the time the code is written 
because 0xFF is a literal value hard-coded into the program. Hard-coding like this is 
nearly always a bad idea because if this 0xFF changes, it can get out of synch with 0xFFs 
used elsewhere in the code that must be the same value as this one.

Here’s an example of binding at a slightly later time, when the code is compiled:
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Java Example of a Variable That’s Bound at Compile Time 
private static final int COLOR_BLUE = 0xFF; 

private static final int TITLE_BAR_COLOR = COLOR_BLUE; 

...

titleBar.color = TITLE_BAR_COLOR;

TITLE_BAR_COLOR is a named constant, an expression for which the compiler sub-
stitutes a value at compile time. This is nearly always better than hard-coding, if your 
language supports it. It increases readability because TITLE_BAR_COLOR tells you 
more about what is being represented than 0xFF  does. It makes changing the title bar 
color easier because one change accounts for all occurrences. And it doesn’t incur a 
run-time performance penalty.

Here’s an example of binding later, at run time: 

Java Example of a Variable That’s Bound at Run Time
titleBar.color = ReadTitleBarColor();

ReadTitleBarColor() is a routine that reads a value while a program is executing, per-
haps from the Microsoft Windows registry file or a Java properties file. 

The code is more readable and flexible than it would be if a value were hard-coded. You 
don’t need to change the program to change titleBar.color; you simply change the con-
tents of the source that’s read by ReadTitleBarColor(). This approach is commonly used 
for interactive applications in which a user can customize the application environment. 

There is still another variation in binding time, which has to do with when the Read-
TitleBarColor() routine is called. That routine could be called once at program load 
time, each time the window is created, or each time the window is drawn—each alter-
native represents successively later binding times. 

To summarize, following are the times a variable can be bound to a value in this exam-
ple. (The details could vary somewhat in other cases.)

■ Coding time (use of magic numbers)

■ Compile time (use of a named constant)

■ Load time (reading a value from an external source such as the Windows regis-
try file or a Java properties file)

■ Object instantiation time (such as reading the value each time a window is cre-
ated)

■ Just in time (such as reading the value each time the window is drawn)
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In general, the earlier the binding time, the lower the flexibility and the lower the com-
plexity. For the first two options, using named constants is preferable to using magic 
numbers for many reasons, so you can get the flexibility that named constants provide 
just by using good programming practices. Beyond that, the greater the flexibility 
desired, the higher the complexity of the code needed to support that flexibility and 
the more error-prone the code will be. Because successful programming depends on 
minimizing complexity, a skilled programmer will build in as much flexibility as 
needed to meet the software’s requirements but will not add flexibility—and related 
complexity—beyond what’s required.  

10.7 Relationship Between Data Types and Control 
Structures

Data types and control structures relate to each other in well-defined ways that were 
originally described by the British computer scientist Michael Jackson (Jackson 
1975). This section sketches the regular relationship between data and control flow. 

Jackson draws connections between three types of data and corresponding control 
structures:

Cross-Reference For details 
on sequences, see Chapter 
14, “Organizing Straight-
Line Code.”

Sequential data translates to sequential statements in a program Sequences con-
sist of clusters of data used together in a certain order, as suggested by Figure 10-2. If 
you have five statements in a row that handle five different values, they are sequential 
statements. If you read an employee’s name, Social Security Number, address, phone 
number, and age from a file, you’d have sequential statements in your program to read 
sequential data from the file.

Figure 10-2 Sequential data is data that’s handled in a defined order.

Cross-Reference For details 
on conditionals, see Chapter 
15, “Using Conditionals.”

Selective data translates to if and case statements in a program In general, selective 
data is a collection in which one of several pieces of data is used at any particular time, but 
only one, as shown in Figure 10-3. The corresponding program statements must do the 
actual selection, and they consist of if-then-else or case statements. If you had an employee 
payroll program, you might process employees differently depending on whether they 
were paid hourly or salaried. Again, patterns in the code match patterns in the data.
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Figure 10-3 Selective data allows you to use one piece or the other, but not both.

Cross-Reference For details 
on loops, see Chapter 16, 
“Controlling Loops.”

Iterative data translates to for, repeat, and while looping structures in a program 
Iterative data is the same type of data repeated several times, as suggested by Fig-
ure 10-4. Typically, iterative data is stored as elements in a container, records in a 
file, or elements in an array. You might have a list of Social Security Numbers that 
you read from a file. The iterative data would match the iterative code loop used to 
read the data.

Figure 10-4 Iterative data is repeated.

Your real data can be combinations of the sequential, selective, and iterative types of 
data. You can combine the simple building blocks to describe more complicated data 
types.

10.8 Using Each Variable for Exactly One Purpose
It’s possible to use variables for more than one purpose in several subtle ways. You’re 
better off without this kind of subtlety.

Use each variable for one purpose only It’s sometimes tempting to use one variable 
in two different places for two different activities. Usually, the variable is named inap-
propriately for one of its uses or a “temporary” variable is used in both cases (with the 
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usual unhelpful name x or temp). Here’s an example that shows a temporary variable 
that’s used for two purposes:

C++ Example of Using One Variable for Two Purposes—Bad Practice
// Compute roots of a quadratic equation.

// This code assumes that (b*b-4*a*c) is positive.

temp = Sqrt( b*b - 4*a*c );

root[O] = ( -b + temp ) / ( 2 * a );

root[1] = ( -b - temp ) / ( 2 * a );

...

// swap the roots

temp = root[0];

root[0] = root[1];

root[1] = temp;

Cross-Reference Routine 
parameters should also be 
used for one purpose only. 
For details on using routine 
parameters, see Section 7.5, 
“How to Use Routine 
Parameters.”

Question: What is the relationship between temp in the first few lines and temp in the 
last few? Answer: The two temps have no relationship. Using the same variable in both 
instances makes it seem as though they’re related when they’re not. Creating unique 
variables for each purpose makes your code more readable. Here’s an improvement:

C++ Example of Using Two Variables for Two Purposes—Good Practice
// Compute roots of a quadratic equation.

// This code assumes that (b*b-4*a*c) is positive.

discriminant = Sqrt( b*b - 4*a*c );

root[0] = ( -b + discriminant ) / ( 2 * a );

root[1] = ( -b - discriminant ) / ( 2 * a );

...

// swap the roots

oldRoot = root[0];

root[0] = root[1];

root[1] = oldRoot;

Avoid variables with hidden meanings Another way in which a variable can be used 
for more than one purpose is to have different values for the variable mean different 
things. For example:

■ The value in the variable pageCount might represent the number of pages 
printed, unless it equals -1, in which case it indicates that an error has occurred. 

■ The variable customerId might represent a customer number, unless its value is 
greater than 500,000, in which case you subtract 500,000 to get the number of a 
delinquent account. 

■ The variable bytesWritten might be the number of bytes written to an output file, 
unless its value is negative, in which case it indicates the number of the disk 
drive used for the output.

CODING 
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Avoid variables with these kinds of hidden meanings. The technical name for this 
kind of abuse is “hybrid coupling” (Page-Jones 1988). The variable is stretched over 
two jobs, meaning that the variable is the wrong type for one of the jobs. In the page-
Count example, pageCount normally indicates the number of pages; it’s an integer. 
When pageCount is -1, however, it indicates that an error has occurred; the integer is 
moonlighting as a boolean!

Even if the double use is clear to you, it won’t be to someone else. The extra clarity 
you’ll achieve by using two variables to hold two kinds of information will amaze you. 
And no one will begrudge you the extra storage.

Make sure that all declared variables are used The opposite of using a variable for 
more than one purpose is not using it at all. A study by Card, Church, and Agresti 
found that unreferenced variables were correlated with higher fault rates (1986). Get 
in the habit of checking to be sure that all variables that are declared are used. Some 
compilers and utilities (such as lint) report unused variables as a warning.

cc2e.com/1092 CHECKLIST: General Considerations In Using Data 
Cross-Reference For a 
checklist that applies to 
specific types of data rather 
than general issues, see the 
checklist in Chapter 12, 
“Fundamental Data Types,” 
on page 316. For issues in 
naming variables, see the 
checklist in Chapter 11, “The 
Power of Variable Names,” 
on page 288.

Initializing Variables
❑ Does each routine check input parameters for validity?

❑ Does the code declare variables close to where they’re first used?

❑ Does the code initialize variables as they’re declared, if possible?

❑ Does the code initialize variables close to where they’re first used, if it isn’t 
possible to declare and initialize them at the same time?

❑ Are counters and accumulators initialized properly and, if necessary, rein-
itialized each time they are used?

❑ Are variables reinitialized properly in code that’s executed repeatedly?

❑ Does the code compile with no warnings from the compiler? (And have 
you turned on all the available warnings?)

❑ If your language uses implicit declarations, have you compensated for the 
problems they cause?

Other General Issues in Using Data
❑ Do all variables have the smallest scope possible?

❑ Are references to variables as close together as possible, both from each 
reference to a variable to the next reference and in total live time?

❑ Do control structures correspond to the data types?

1
2
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❑ Are all the declared variables being used?

❑ Are all variables bound at appropriate times—that is, are you striking a con-
scious balance between the flexibility of late binding and the increased 
complexity associated with late binding? 

❑ Does each variable have one and only one purpose?

❑ Is each variable’s meaning explicit, with no hidden meanings?

Key Points
■ Data initialization is prone to errors, so use the initialization techniques described 

in this chapter to avoid the problems caused by unexpected initial values.

■ Minimize the scope of each variable. Keep references to a variable close together. 
Keep it local to a routine or class. Avoid global data.

■ Keep statements that work with the same variables as close together as possible.

■ Early binding tends to limit flexibility but minimize complexity. Late binding 
tends to increase flexibility but at the price of increased complexity. 

■ Use each variable for one and only one purpose.
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Chapter 11

The Power of Variable Names
cc2e.com/1184 Contents

■ 11.1 Considerations in Choosing Good Names: page 259

■ 11.2 Naming Specific Types of Data: page 264

■ 11.3 The Power of Naming Conventions: page 270

■ 11.4 Informal Naming Conventions: page 272

■ 11.5 Standardized Prefixes: page 279

■ 11.6 Creating Short Names That Are Readable: page 282

■ 11.7 Kinds of Names to Avoid: page 285

Related Topics

■ Routine names: Section 7.3

■ Class names: Section 6.2

■ General issues in using variables: Chapter 10

■ Formatting data declarations: “Laying Out Data Declarations” in Section 31.5

■ Documenting variables: “Commenting Data Declarations” in Section 32.5

As important as the topic of good names is to effective programming, I have never read 
a discussion that covered more than a handful of the dozens of considerations that go 
into creating good names. Many programming texts devote a few paragraphs to 
choosing abbreviations, spout a few platitudes, and expect you to fend for yourself. I 
intend to be guilty of the opposite: to inundate you with more information about good 
names than you will ever be able to use!

This chapter’s guidelines apply primarily to naming variables—objects and primitive 
data. But they also apply to naming classes, packages, files, and other programming 
entities. For details on naming routines, see Section 7.3, “Good Routine Names.”

11.1 Considerations in Choosing Good Names
You can’t give a variable a name the way you give a dog a name—because it’s cute or it has 
a good sound. Unlike the dog and its name, which are different entities, a variable and a 
variable’s name are essentially the same thing. Consequently, the goodness or badness 
of a variable is largely determined by its name. Choose variable names with care.
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Here’s an example of code that uses bad variable names:

Java Example of Poor Variable Names
x = x - xx;

xxx = fido + SalesTax( fido );

x = x + LateFee( x1, x ) + xxx;

x = x + Interest( x1, x );

What’s happening in this piece of code? What do x1, xx, and xxx mean? What does 
fido mean? Suppose someone told you that the code computed a total customer bill 
based on an outstanding balance and a new set of purchases. Which variable would 
you use to print the customer’s bill for just the new set of purchases?

Here’s a version of the same code that makes these questions easier to answer:

Java Example of Good Variable Names
balance = balance - lastPayment;

monthlyTotal = newPurchases + SalesTax( newPurchases );

balance = balance + LateFee( customerID, balance ) + monthlyTotal;

balance = balance + Interest( customerID, balance );

In view of the contrast between these two pieces of code, a good variable name is read-
able, memorable, and appropriate. You can use several general rules of thumb to 
achieve these goals.

The Most Important Naming Consideration

The most important consideration in naming a variable is that the name fully and 
accurately describe the entity the variable represents. An effective technique for com-
ing up with a good name is to state in words what the variable represents. Often that 
statement itself is the best variable name. It’s easy to read because it doesn’t contain 
cryptic abbreviations, and it’s unambiguous. Because it’s a full description of the 
entity, it won’t be confused with something else. And it’s easy to remember because 
the name is similar to the concept.

For a variable that represents the number of people on the U.S. Olympic team, you 
would create the name numberOfPeopleOnTheUsOlympicTeam. A variable that repre-
sents the number of seats in a stadium would be numberOfSeatsInTheStadium. A vari-
able that represents the maximum number of points scored by a country’s team in any 
modern Olympics would be maximumNumberOfPointsInModernOlympics. A variable 
that contains the current interest rate is better named rate or interestRate than r or x. 
You get the idea.

CODING 
HORROR

KEY POINT

 



11.1 Considerations in Choosing Good Names 261

Note two characteristics of these names. First, they’re easy to decipher. In fact, they 
don’t need to be deciphered at all because you can simply read them. But second, 
some of the names are long—too long to be practical. I’ll get to the question of variable-
name length shortly.

Table 11-1 shows several examples of variable names, good and bad:

The names currentDate and todaysDate are good names because they fully and accu-
rately describe the idea of “current date.” In fact, they use the obvious words. Program-
mers sometimes overlook using the ordinary words, which is often the easiest solution. 
Because they’re too short and not at all descriptive, cd and c are poor names. current is 
poor because it doesn’t tell you what is current. date is almost a good name, but it’s a 
poor name in the final analysis because the date involved isn’t just any date, but the cur-
rent date; date by itself gives no such indication. x, x1, and x2 are poor names because 
they’re always poor names—x traditionally represents an unknown quantity; if you don’t 
want your variables to be unknown quantities, think of better names.

Names should be as specific as possible. Names like x, temp, and i that are general 
enough to be used for more than one purpose are not as informative as they could be 
and are usually bad names.

Problem Orientation

A good mnemonic name generally speaks to the problem rather than the solution. A 
good name tends to express the what more than the how. In general, if a name refers 
to some aspect of computing rather than to the problem, it’s a how rather than a what. 
Avoid such a name in favor of a name that refers to the problem itself.

A record of employee data could be called inputRec or employeeData. inputRec is a com-
puter term that refers to computing ideas—input and record. employeeData refers to 
the problem domain rather than the computing universe. Similarly, for a bit field indi-
cating printer status, bitFlag is a more computerish name than printerReady. In an 
accounting application, calcVal is more computerish than sum.

Table 11-1 Examples of Good and Bad Variable Names

Purpose of Variable
Good Names, 
Good Descriptors

Bad Names, 
Poor Descriptors

Running total of 
checks written to date

runningTotal, checkTotal written, ct, checks, CHKTTL, x, 
x1, x2

Velocity of a bullet 
train

velocity, trainVelocity, 
velocityInMph

velt, v, tv, x, x1, x2, train

Current date currentDate, todaysDate cd, current, c, x, x1, x2, date

Lines per page linesPerPage lpp, lines, l, x, x1, x2

KEY POINT
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Optimum Name Length

The optimum length for a name seems to be somewhere between the lengths of x and 
maximumNumberOfPointsInModernOlympics. Names that are too short don’t convey 
enough meaning. The problem with names like x1 and x2 is that even if you can discover 
what x is, you won’t know anything about the relationship between x1 and x2. Names 
that are too long are hard to type and can obscure the visual structure of a program.

Gorla, Benander, and Benander found that the effort required to debug a program was 
minimized when variables had names that averaged 10 to 16 characters (1990). Pro-
grams with names averaging 8 to 20 characters were almost as easy to debug. The 
guideline doesn’t mean that you should try to make all of your variable names 9 to 15 
or 10 to 16 characters long. It does mean that if you look over your code and see many 
names that are shorter, you should check to be sure that the names are as clear as they 
need to be.

You’ll probably come out ahead by taking the Goldilocks-and-the-Three-Bears 
approach to naming variables, as Table 11-2 illustrates.

The Effect of Scope on Variable Names
Cross-Reference Scope is 
discussed in more detail in 
Section 10.4, “Scope.”

Are short variable names always bad? No, not always. When you give a variable a short 
name like i, the length itself says something about the variable—namely, that the vari-
able is a scratch value with a limited scope of operation.

A programmer reading such a variable should be able to assume that its value isn’t 
used outside a few lines of code. When you name a variable i, you’re saying, “This vari-
able is a run-of-the-mill loop counter or array index and doesn’t have any significance 
outside these few lines of code.”

A study by W. J. Hansen found that longer names are better for rarely used variables or 
global variables and shorter names are better for local variables or loop variables 

Table 11-2 Variable Names That Are Too Long, Too Short, or Just Right

Too long: numberOfPeopleOnTheUsOlympicTeam

numberOfSeatsInTheStadium

maximumNumberOfPointsInModernOlympics

Too short: n, np, ntm

n, ns, nsisd

m, mp, max, points

Just right: numTeamMembers, teamMemberCount

numSeatsInStadium, seatCount

teamPointsMax, pointsRecord
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(Shneiderman 1980). Short names are subject to many problems, however, and some 
careful programmers avoid them altogether as a matter of defensive-programming policy.

Use qualifiers on names that are in the global namespace If you have variables that 
are in the global namespace (named constants, class names, and so on), consider 
whether you need to adopt a convention for partitioning the global namespace and 
avoiding naming conflicts. In C++ and C#, you can use the namespace keyword to par-
tition the global namespace. 

C++ Example of Using the namespace Keyword to Partition the Global Namespace
namespace UserInterfaceSubsystem {

   ...

   // lots of declarations

   ...

}

namespace DatabaseSubsystem { 

   ...

   // lots of declarations

   ...

}

If you declare an Employee class in both the UserInterfaceSubsystem and the Database-
Subsystem, you can identify which you wanted to refer to by writing UserInterfaceSub-
system::Employee or DatabaseSubsystem::Employee. In Java, you can accomplish the 
same thing by using packages. 

In languages that don’t support namespaces or packages, you can still use naming 
conventions to partition the global namespace. One convention is to require that glo-
bally visible classes be prefixed with subsystem mnemonic. The user interface 
employee class might become uiEmployee, and the database employee class might 
become dbEmployee. This minimizes the risk of global-namespace collisions. 

Computed-Value Qualifiers in Variable Names

Many programs have variables that contain computed values: totals, averages, maxi-
mums, and so on. If you modify a name with a qualifier like Total, Sum, Average, Max, 
Min, Record, String, or Pointer, put the modifier at the end of the name.

This practice offers several advantages. First, the most significant part of the variable 
name, the part that gives the variable most of its meaning, is at the front, so it’s most 
prominent and gets read first. Second, by establishing this convention, you avoid the 
confusion you might create if you were to use both totalRevenue and revenueTotal in the 
same program. The names are semantically equivalent, and the convention would pre-
vent their being used as if they were different. Third, a set of names like revenueTotal, 
expenseTotal, revenueAverage, and expenseAverage has a pleasing symmetry. A set of names 
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like totalRevenue, expenseTotal, revenueAverage, and averageExpense doesn’t appeal to a 
sense of order. Finally, the consistency improves readability and eases maintenance.

An exception to the rule that computed values go at the end of the name is the cus-
tomary position of the Num qualifier. Placed at the beginning of a variable name, Num 
refers to a total: numCustomers is the total number of customers. Placed at the end of 
the variable name, Num refers to an index: customerNum is the number of the current 
customer. The s at the end of numCustomers is another tip-off about the difference in 
meaning. But, because using Num so often creates confusion, it’s probably best to side-
step the whole issue by using Count or Total to refer to a total number of customers 
and Index to refer to a specific customer. Thus, customerCount is the total number of 
customers and customerIndex refers to a specific customer.

Common Opposites in Variable Names
Cross-Reference For a simi-
lar list of opposites in routine 
names, see “Use opposites 
precisely” in Section 7.3.

Use opposites precisely. Using naming conventions for opposites helps consistency, 
which helps readability. Pairs like begin/end are easy to understand and remember. 
Pairs that depart from common-language opposites tend to be hard to remember and 
are therefore confusing. Here are some common opposites:

■ begin/end

■ first/last

■ locked/unlocked

■ min/max

■ next/previous

■ old/new

■ opened/closed

■ visible/invisible

■ source/target

■ source/destination 

■ up/down

11.2 Naming Specific Types of Data
In addition to the general considerations in naming data, special considerations come 
up in the naming of specific kinds of data. This section describes considerations spe-
cifically for loop variables, status variables, temporary variables, boolean variables, 
enumerated types, and named constants.
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Naming Loop Indexes
Cross-Reference For details 
on loops, see Chapter 16, 
“Controlling Loops.”

Guidelines for naming variables in loops have arisen because loops are such a com-
mon feature of computer programming. The names i, j, and k are customary:

Java Example of a Simple Loop Variable Name
for ( i = firstItem; i < lastItem; i++ ) {

   data[ i ] = 0;

}

If a variable is to be used outside the loop, it should be given a name more meaningful 
than i, j, or k. For example, if you are reading records from a file and need to remember 
how many records you’ve read, a name like recordCount would be appropriate:

Java Example of a Good Descriptive Loop Variable Name
recordCount = 0;

while ( moreScores() ) {

   score[ recordCount ] = GetNextScore();

   recordCount++;

}

// lines using recordCount

...

If the loop is longer than a few lines, it’s easy to forget what i is supposed to stand for 
and you’re better off giving the loop index a more meaningful name. Because code is 
so often changed, expanded, and copied into other programs, many experienced pro-
grammers avoid names like i altogether.

One common reason loops grow longer is that they’re nested. If you have several 
nested loops, assign longer names to the loop variables to improve readability.

Java Example of Good Loop Names in a Nested Loop
for ( teamIndex = 0; teamIndex < teamCount; teamIndex++ ) {

   for ( eventIndex = 0; eventIndex < eventCount[ teamIndex ]; eventIndex++ ) {

      score[ teamIndex ][ eventIndex ] = 0;

   }

}

Carefully chosen names for loop-index variables avoid the common problem of index 
cross-talk: saying i when you mean j and j when you mean i. They also make array 
accesses clearer: score[ teamIndex ][ eventIndex ] is more informative than score[ i ][ j ]. 

If you have to use i, j, and k, don’t use them for anything other than loop indexes for 
simple loops—the convention is too well established, and breaking it to use them in 
other ways is confusing. The simplest way to avoid such problems is simply to think 
of more descriptive names than i, j, and k.
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Naming Status Variables
Status variables describe the state of your program. Here’s a naming guideline:

Think of a better name than flag for status variables It’s better to think of flags as 
status variables. A flag should never have flag in its name because that doesn’t give you 
any clue about what the flag does. For clarity, flags should be assigned values and 
their values should be tested with enumerated types, named constants, or global vari-
ables that act as named constants. Here are some examples of flags with bad names:

C++ Examples of Cryptic Flags
if ( flag ) ...

if ( statusFlag & 0x0F ) ...

if ( printFlag == 16 ) ...

if ( computeFlag == 0 ) ...

flag = 0x1;

statusFlag = 0x80;

printFlag = 16;

computeFlag = 0;

Statements like statusFlag = 0x80 give you no clue about what the code does unless 
you wrote the code or have documentation that tells you both what statusFlag is and 
what 0x80 represents. Here are equivalent code examples that are clearer:

C++ Examples of Better Use of Status Variables
if ( dataReady ) ...

if ( characterType & PRINTABLE_CHAR ) ...

if ( reportType == ReportType_Annual ) ...

if ( recalcNeeded = false ) ...

dataReady = true;

characterType = CONTROL_CHARACTER;

reportType = ReportType_Annual;

recalcNeeded = false;

Clearly, characterType = CONTROL_CHARACTER is more meaningful than statusFlag = 
0x80. Likewise, the conditional if ( reportType == ReportType_Annual ) is clearer than if 
( printFlag == 16 ). The second example shows that you can use this approach with 
enumerated types as well as predefined named constants. Here’s how you could use 
named constants and enumerated types to set up the values used in the example:

Declaring Status Variables in C++
// values for CharacterType

const int LETTER = 0x01;

const int DIGIT = 0x02;

const int PUNCTUATION = 0x04;

const int LINE_DRAW = 0x08;
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const int PRINTABLE_CHAR = ( LETTER | DIGIT | PUNCTUATION | LINE_DRAW );

const int CONTROL_CHARACTER = 0x80;

// values for ReportType

enum ReportType { 

   ReportType_Daily, 

   ReportType_Monthly, 

   ReportType_Quarterly, 

   ReportType_Annual,

   ReportType_All 

};

When you find yourself “figuring out” a section of code, consider renaming the vari-
ables. It’s OK to figure out murder mysteries, but you shouldn’t need to figure out 
code. You should be able to read it.

Naming Temporary Variables
Temporary variables are used to hold intermediate results of calculations, as tempo-
rary placeholders, and to hold housekeeping values. They’re usually called temp, x, or 
some other vague and nondescriptive name. In general, temporary variables are a sign 
that the programmer does not yet fully understand the problem. Moreover, because 
the variables are officially given a “temporary” status, programmers tend to treat them 
more casually than other variables, increasing the chance of errors.

Be leery of “temporary” variables It’s often necessary to preserve values tempo-
rarily. But in one way or another, most of the variables in your program are temporary. 
Calling a few of them temporary may indicate that you aren’t sure of their real pur-
poses. Consider the following example:

C++ Example of an Uninformative “Temporary” Variable Name
// Compute solutions of a quadratic equation. 

// This assumes that (b^2-4*a*c) is positive.

temp = sqrt( b^2 - 4*a*c );

solution[0] = ( -b + temp ) / ( 2 * a );

solution[1] = ( -b - temp ) / ( 2 * a );

It’s fine to store the value of the expression sqrt( b^2 - 4 * a * c ) in a variable, especially 
since it’s used in two places later. But the name temp doesn’t tell you anything about 
what the variable does. A better approach is shown in this example:

C++ Example with a “Temporary” Variable Name Replaced with a Real Variable
// Compute solutions of a quadratic equation. 

// This assumes that (b^2-4*a*c) is positive.

discriminant = sqrt( b^2 - 4*a*c );

solution[0] = ( -b + discriminant ) / ( 2 * a );

solution[1] = ( -b - discriminant ) / ( 2 * a );
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This is essentially the same code, but it’s improved with the use of an accurate, 
descriptive variable name.

Naming Boolean Variables

Following are a few guidelines to use in naming boolean variables:

Keep typical boolean names in mind Here are some particularly useful boolean vari-
able names:

■ done Use done to indicate whether something is done. The variable can indi-
cate whether a loop is done or some other operation is done. Set done to false 
before something is done, and set it to true when something is completed.

■ error Use error to indicate that an error has occurred. Set the variable to false 
when no error has occurred and to true when an error has occurred.

■ found Use found to indicate whether a value has been found. Set found to false 
when the value has not been found and to true once the value has been found. 
Use found when searching an array for a value, a file for an employee ID, a list of 
paychecks for a certain paycheck amount, and so on.

■ success  or ok Use success or ok to indicate whether an operation has been suc-
cessful. Set the variable to false when an operation has failed and to true when an 
operation has succeeded. If you can, replace success with a more specific name 
that describes precisely what it means to be successful. If the program is success-
ful when processing is complete, you might use processingComplete instead. If 
the program is successful when a value is found, you might use found instead.

Give boolean variables names that imply true or false Names like done and success 
are good boolean names because the state is either true or false; something is done or 
it isn’t; it’s a success or it isn’t. Names like status and sourceFile, on the other hand, are 
poor boolean names because they’re not obviously true or false. What does it mean if 
status is true? Does it mean that something has a status? Everything has a status. Does 
true mean that the status of something is OK? Or does false mean that nothing has 
gone wrong? With a name like status, you can’t tell.

For better results, replace status with a name like error or statusOK, and replace source-
File with sourceFileAvailable or sourceFileFound, or whatever the variable represents.

Some programmers like to put Is in front of their boolean names. Then the variable 
name becomes a question: isdone? isError? isFound? isProcessingComplete? Answering 
the question with true or false provides the value of the variable. A benefit of this 
approach is that it won’t work with vague names: isStatus? makes no sense at all. A 
drawback is that it makes simple logical expressions less readable: if ( isFound ) is 
slightly less readable than if ( found ).
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Use positive boolean variable names Negative names like notFound, notdone, and 
notSuccessful are difficult to read when they are negated—for example,

if not notFound

Such a name should be replaced by found, done, or processingComplete and then 
negated with an operator as appropriate. If what you’re looking for is found, you have 
found instead of not notFound.

Naming Enumerated Types
Cross-Reference For details 
on using enumerated types, 
see Section 12.6, “Enumer-
ated Types.”

When you use an enumerated type, you can ensure that it’s clear that members of the type 
all belong to the same group by using a group prefix, such as Color_, Planet_, or Month_. 
Here are some examples of identifying elements of enumerated types using prefixes: 

Visual Basic Example of Using a Prefix Naming Convention for Enumerated Types
Public Enum Color

   Color_Red

   Color_Green

   Color_Blue

End Enum

Public Enum Planet

   Planet_Earth

   Planet_Mars

   Planet_Venus

End Enum

Public Enum Month

   Month_January

   Month_February

   ...

   Month_December

End Enum

In addition, the enum type itself (Color, Planet, or Month) can be identified in various 
ways, including all caps or prefixes (e_Color, e_Planet, or e_Month). A person could 
argue that an enum is essentially a user-defined type and so the name of the enum 
should be formatted the same as other user-defined types like classes. A different argu-
ment would be that enums are types, but they are also constants, so the enum type 
name should be formatted as constants. This book uses the convention of mixed case 
for enumerated type names. 

In some languages, enumerated types are treated more like classes, and the members 
of the enumeration are always prefixed with the enum name, like Color.Color_Red or 
Planet.Planet_Earth. If you’re working in that kind of language, it makes little sense to 
repeat the prefix, so you can treat the name of the enum type itself as the prefix and 
simplify the names to Color.Red and Planet.Earth. 
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Naming Constants
Cross-Reference For details 
on using named constants, 
see Section 12.7, “Named 
Constants.”

When naming constants, name the abstract entity the constant represents rather 
than the number the constant refers to. FIVE is a bad name for a constant (regard-
less of whether the value it represents is 5.0). CYCLES_NEEDED is a good name. 
CYCLES_NEEDED can equal 5.0 or 6.0. FIVE = 6.0 would be ridiculous. By the same 
token, BAKERS_DOZEN is a poor constant name; DONUTS_MAX is a good con-
stant name.

11.3 The Power of Naming Conventions
Some programmers resist standards and conventions—and with good reason. Some 
standards and conventions are rigid and ineffective—destructive to creativity and pro-
gram quality. This is unfortunate since effective standards are some of the most pow-
erful tools at your disposal. This section discusses why, when, and how you should 
create your own standards for naming variables.

Why Have Conventions?

Conventions offer several specific benefits:

■ They let you take more for granted. By making one global decision rather than 
many local ones, you can concentrate on the more important characteristics of 
the code.

■ They help you transfer knowledge across projects. Similarities in names give you 
an easier and more confident understanding of what unfamiliar variables are 
supposed to do.

■ They help you learn code more quickly on a new project. Rather than learning 
that Anita’s code looks like this, Julia’s like that, and Kristin’s like something 
else, you can work with a more consistent set of code.

■ They reduce name proliferation. Without naming conventions, you can easily 
call the same thing by two different names. For example, you might call total 
points both pointTotal and totalPoints. This might not be confusing to you when 
you write the code, but it can be enormously confusing to a new programmer 
who reads it later.

■ They compensate for language weaknesses. You can use conventions to emulate 
named constants and enumerated types. The conventions can differentiate 
among local, class, and global data and can incorporate type information for 
types that aren’t supported by the compiler.
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■ They emphasize relationships among related items. If you use object data, the 
compiler takes care of this automatically. If your language doesn’t support 
objects, you can supplement it with a naming convention. Names like address, 
phone, and name don’t indicate that the variables are related. But suppose you 
decide that all employee-data variables should begin with an Employee prefix. 
employeeAddress, employeePhone, and employeeName leave no doubt that the vari-
ables are related. Programming conventions can make up for the weakness of 
the language you’re using.

The key is that any convention at all is often better than no convention. The conven-
tion may be arbitrary. The power of naming conventions doesn’t come from the spe-
cific convention chosen but from the fact that a convention exists, adding structure to 
the code and giving you fewer things to worry about.

When You Should Have a Naming Convention

There are no hard-and-fast rules for when you should establish a naming convention, 
but here are a few cases in which conventions are worthwhile:

■ When multiple programmers are working on a project

■ When you plan to turn a program over to another programmer for modifica-
tions and maintenance (which is nearly always)

■ When your programs are reviewed by other programmers in your organization

■ When your program is so large that you can’t hold the whole thing in your brain 
at once and must think about it in pieces

■ When the program will be long-lived enough that you might put it aside for a 
few weeks or months before working on it again

■ When you have a lot of unusual terms that are common on a project and want to 
have standard terms or abbreviations to use in coding

You always benefit from having some kind of naming convention. The consider-
ations above should help you determine the extent of the convention to use on a 
particular project.

Degrees of Formality
Cross-Reference For details 
on the differences in for-
mality in small and large 
projects, see Chapter 27, 
“How Program Size Affects 
Construction.”

Different conventions have different degrees of formality. An informal convention 
might be as simple as “Use meaningful names.” Other informal conventions are 
described in the next section. In general, the degree of formality you need is depen-
dent on the number of people working on a program, the size of the program, and the 
program’s expected life span. On tiny, throwaway projects, a strict convention might 
be unnecessary overhead. On larger projects in which several people are involved, 
either initially or over the program’s life span, formal conventions are an indispens-
able aid to readability.

KEY POINT
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11.4 Informal Naming Conventions
Most projects use relatively informal naming conventions such as the ones laid out in 
this section.

Guidelines for a Language-Independent Convention

Here are some guidelines for creating a language-independent convention:

Differentiate between variable names and routine names The convention this book 
uses is to begin variable and object names with lower case and routine names with 
upper case: variableName vs. RoutineName().

Differentiate between classes and objects The correspondence between class names 
and object names—or between types and variables of those types—can get tricky. Sev-
eral standard options exist, as shown in the following examples:

Option 1: Differentiating Types and Variables via Initial Capitalization
Widget widget;

LongerWidget longerWidget;

Option 2: Differentiating Types and Variables via All Caps
WIDGET widget;

LONGERWIDGET longerWidget

Option 3: Differentiating Types and Variables via the “t_” Prefix for Types
t_Widget Widget;

t_LongerWidget LongerWidget;

Option 4: Differentiating Types and Variables via the “a” Prefix for Variables
Widget aWidget;

LongerWidget aLongerWidget;

Option 5: Differentiating Types and Variables via Using More Specific Names for the 
Variables
Widget employeeWidget;

LongerWidget fullEmployeeWidget;

Each of these options has strengths and weaknesses. Option 1 is a common conven-
tion in case-sensitive languages including C++ and Java, but some programmers are 
uncomfortable differentiating names solely on the basis of capitalization. Indeed, cre-
ating names that differ only in the capitalization of the first letter in the name seems to 
provide too little “psychological distance” and too small a visual distinction between 
the two names. 
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The Option 1 approach can’t be applied consistently in mixed-language environments 
if any of the languages are case-insensitive. In Microsoft Visual Basic, for example, Dim 
widget as Widget will generate a syntax error because widget and Widget are treated as 
the same token. 

Option 2 creates a more obvious distinction between the type name and the variable 
name. For historical reasons, all caps are used to indicate constants in C++ and Java, 
however, and the approach is subject to the same problems in mixed-language envi-
ronments that Option 1 is subject to.

Option 3 works adequately in all languages, but some programmers dislike the idea of 
prefixes for aesthetic reasons. 

Option 4 is sometimes used as an alternative to Option 3, but it has the drawback of 
altering the name of every instance of a class instead of just the one class name.

Option 5 requires more thought on a variable-by-variable basis. In most instances, 
being forced to think of a specific name for a variable results in more readable code. 
But sometimes a widget truly is just a generic widget, and in those instances you’ll find 
yourself coming up with less-than-obvious names, like genericWidget, which are argu-
ably less readable. 

In short, each of the available options involves tradeoffs. The code in this book uses 
Option 5 because it’s the most understandable in situations in which the person read-
ing the code isn’t necessarily familiar with a less intuitive naming convention. 

Identify global variables One common programming problem is misuse of global 
variables. If you give all global variable names a g_ prefix, for example, a programmer 
seeing the variable g_RunningTotal will know it’s a global variable and treat it as such.

Identify member variables Identify a class’s member data. Make it clear that the vari-
able isn’t a local variable and that it isn’t a global variable either. For example, you can 
identify class member variables with an m_ prefix to indicate that it is member data. 

Identify type definitions Naming conventions for types serve two purposes: they 
explicitly identify a name as a type name, and they avoid naming clashes with vari-
ables. To meet those considerations, a prefix or suffix is a good approach. In C++, the 
customary approach is to use all uppercase letters for a type name—for example, 
COLOR and MENU. (This convention applies to typedefs and structs, not class names.) 
But this creates the possibility of confusion with named preprocessor constants. To 
avoid confusion, you can prefix the type names with t_, such as t_Color and t_Menu.

Identify named constants Named constants need to be identified so that you can tell 
whether you’re assigning a variable a value from another variable (whose value might 
change) or from a named constant. In Visual Basic, you have the additional possibility 
that the value might be from a function. Visual Basic doesn’t require function names to 
use parentheses, whereas in C++ even a function with no parameters uses parentheses.
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One approach to naming constants is to use a prefix like c_ for constant names. That 
would give you names like c_RecsMax or c_LinesPerPageMax. In C++ and Java, the con-
vention is to use all uppercase letters, possibly with underscores to separate words, 
RECSMAX or RECS_ MAX and LINESPERPAGEMAX or LINES_PER_PAGE_ MAX.

Identify elements of enumerated types Elements of enumerated types need to be 
identified for the same reasons that named constants do—to make it easy to tell that 
the name is for an enumerated type as opposed to a variable, named constant, or func-
tion. The standard approach applies: you can use all caps or an e_ or E_ prefix for the 
name of the type itself and use a prefix based on the specific type like Color_ or Planet_ 
for the members of the type. 

Identify input-only parameters in languages that don’t enforce them Sometimes 
input parameters are accidentally modified. In languages such as C++ and Visual 
Basic, you must indicate explicitly whether you want a value that’s been modified to 
be returned to the calling routine. This is indicated with the *, &, and const qualifiers 
in C++ or ByRef and ByVal in Visual Basic. 

In other languages, if you modify an input variable, it is returned whether you like it or 
not. This is especially true when passing objects. In Java, for example, all objects are 
passed “by value,” so when you pass an object to a routine, the contents of the object 
can be changed within the called routine (Arnold, Gosling, Holmes 2000). 

Cross-Reference Augment-
ing a language with a nam-
ing convention to make up 
for limitations in the lan-
guage itself is an example of 
programming into a lan-
guage instead of just pro-
gramming in it. For more 
details on programming into 
a language, see Section 34.4, 
“Program into Your Lan-
guage, Not in It.” 

In those languages, if you establish a naming convention in which input-only param-
eters are given a const prefix (or final, nonmodifiable, or something comparable) , you’ll 
know that an error has occurred when you see anything with a const prefix on the left 
side of an equal sign. If you see constMax.SetNewMax( ... ), you’ll know it’s a goof 
because the const prefix indicates that the variable isn’t supposed to be modified.

Format names to enhance readability Two common techniques for increasing read-
ability are using capitalization and spacing characters to separate words. For example, 
GYMNASTICSPOINTTOTAL is less readable than gymnasticsPointTotal or 
gymnastics_point_total. C++, Java, Visual Basic, and other languages allow for mixed 
uppercase and lowercase characters. C++, Java, Visual Basic, and other languages also 
allow the use of the underscore (_) separator.

Try not to mix these techniques; that makes code hard to read. If you make an honest 
attempt to use any of these readability techniques consistently, however, it will 
improve your code. People have managed to have zealous, blistering debates over fine 
points such as whether the first character in a name should be capitalized (TotalPoints 
vs. totalPoints), but as long as you and your team are consistent, it won’t make much 
difference. This book uses initial lowercase because of the strength of the Java practice 
and to facilitate similarity in style across several languages.
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Guidelines for Language-Specific Conventions

Follow the naming conventions of the language you’re using. You can find books for 
most languages that describe style guidelines. Guidelines for C, C++, Java, and Visual 
Basic are provided in the following sections.

C Conventions

Further Reading The classic 
book on C programming 
style is C Programming 
Guidelines (Plum 1984).

Several naming conventions apply specifically to the C programming language:

■ c and ch are character variables.

■ i and j are integer indexes.

■ n is a number of something.

■ p is a pointer.

■ s is a string.

■ Preprocessor macros are in ALL_CAPS. This is usually extended to include type-
defs as well.

■ Variable and routine names are in all_lowercase.

■ The underscore (_) character is used as a separator: letters_in_lowercase is more 
readable than lettersinlowercase.

These are the conventions for generic, UNIX-style and Linux-style C programming, 
but C conventions are different in different environments. In Microsoft Windows, C 
programmers tend to use a form of the Hungarian naming convention and mixed 
uppercase and lowercase letters for variable names. On the Macintosh, C program-
mers tend to use mixed-case names for routines because the Macintosh toolbox and 
operating-system routines were originally designed for a Pascal interface.

C++ Conventions

Further Reading For more 
on C++ programming style, 
see The Elements of C++ 
Style (Misfeldt, Bumgardner, 
and Gray 2004). 

Here are the conventions that have grown up around C++ programming: 

■ i and j are integer indexes.

■ p is a pointer.

■ Constants, typedefs, and preprocessor macros are in ALL_CAPS. 

■ Class and other type names are in MixedUpperAndLowerCase(). 

■ Variable and function names use lowercase for the first word, with the first letter 
of each following word capitalized—for example, variableOrRoutineName.

■ The underscore is not used as a separator within names, except for names in all 
caps and certain kinds of prefixes (such as those used to identify global variables). 
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As with C programming, this convention is far from standard and different environ-
ments have standardized on different convention details. 

Java Conventions

Further Reading For more 
on Java programming style, 
see The Elements of Java 
Style, 2d ed. (Vermeulen et 
al. 2000).

In contrast with C and C++, Java style conventions have been well established since 
the language’s beginning:

■ i and j are integer indexes.

■ Constants are in ALL_CAPS separated by underscores. 

■ Class and interface names capitalize the first letter of each word, including the 
first word—for example, ClassOrInterfaceName.

■ Variable and method names use lowercase for the first word, with the first letter 
of each following word capitalized—for example, variableOrRoutineName.

■ The underscore is not used as a separator within names except for names in all 
caps.

■ The get and set prefixes are used for accessor methods. 

Visual Basic Conventions

Visual Basic has not really established firm conventions. The next section recom-
mends a convention for Visual Basic. 

Mixed-Language Programming Considerations

When programming in a mixed-language environment, the naming conventions (as 
well as formatting conventions, documentation conventions, and other conventions) 
can be optimized for overall consistency and readability—even if that means going 
against convention for one of the languages that’s part of the mix. 

In this book, for example, variable names all begin with lowercase, which is consistent 
with conventional Java programming practice and some but not all C++ conventions. 
This book formats all routine names with an initial capital letter, which follows the 
C++ convention. The Java convention would be to begin method names with lower-
case, but this book uses routine names that begin in uppercase across all languages for 
the sake of overall readability. 

Sample Naming Conventions

The standard conventions above tend to ignore several important aspects of naming 
that were discussed over the past few pages—including variable scoping (private, class, 
or global), differentiating between class, object, routine, and variable names, and 
other issues. 
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The naming-convention guidelines can look complicated when they’re strung across 
several pages. They don’t need to be terribly complex, however, and you can adapt 
them to your needs. Variable names include three kinds of information:

■ The contents of the variable (what it represents)

■ The kind of data (named constant, primitive variable, user-defined type, or 
class)

■ The scope of the variable (private, class, package, or global)

Tables 11-3, 11-4, and 11-5 provide naming conventions for C, C++, Java, and Visual 
Basic that have been adapted from the guidelines presented earlier. These specific con-
ventions aren’t necessarily recommended, but they give you an idea of what an infor-
mal naming convention includes.

Table 11-3 Sample Naming Conventions for C++ and Java

Entity Description

ClassName Class names are in mixed uppercase and lowercase with 
an initial capital letter. 

TypeName Type definitions, including enumerated types and type-
defs, use mixed uppercase and lowercase with an initial 
capital letter.

EnumeratedTypes In addition to the rule above, enumerated types are 
always stated in the plural form. 

localVariable Local variables are in mixed uppercase and lowercase 
with an initial lowercase letter. The name should be inde-
pendent of the underlying data type and should refer to 
whatever the variable represents.

routineParameter Routine parameters are formatted the same as local vari-
ables. 

RoutineName() Routines are in mixed uppercase and lowercase. (Good 
routine names are discussed in Section 7.3.)

m_ClassVariable Member variables that are available to multiple routines 
within a class, but only within a class, are prefixed with an 
m_.

g_GlobalVariable Global variables are prefixed with a g_.

CONSTANT Named constants are in ALL_CAPS.

MACRO Macros are in ALL_CAPS.

Base_EnumeratedType Enumerated types are prefixed with a mnemonic for their 
base type stated in the singular—for example, Color_Red, 
Color_Blue.
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Because Visual Basic is not case-sensitive, special rules apply for differentiating 
between type names and variable names. Take a look at Table 11-5. 

Table 11-4 Sample Naming Conventions for C

Entity Description

TypeName Type definitions use mixed uppercase and lowercase with 
an initial capital letter.

GlobalRoutineName() Public routines are in mixed uppercase and lowercase.

f_FileRoutineName() Routines that are private to a single module (file) are pre-
fixed with an f_.

LocalVariable Local variables are in mixed uppercase and lowercase. 
The name should be independent of the underlying data 
type and should refer to whatever the variable repre-
sents.

RoutineParameter Routine parameters are formatted the same as local vari-
ables. 

f_FileStaticVariable Module (file) variables are prefixed with an f_.

G_GLOBAL_GlobalVariable Global variables are prefixed with a G_ and a mnemonic 
of the module (file) that defines the variable in all upper-
case—for example, SCREEN_Dimensions.

LOCAL_CONSTANT Named constants that are private to a single routine or 
module (file) are in all uppercase—for example, 
ROWS_MAX.

G_GLOBALCONSTANT Global named constants are in all uppercase and are pre-
fixed with G_ and a mnemonic of the module (file) that 
defines the named constant in all uppercase—for exam-
ple, G_SCREEN_ROWS_MAX.

LOCALMACRO() Macro definitions that are private to a single routine or 
module (file) are in all uppercase. 

G_GLOBAL_MACRO() Global macro definitions are in all uppercase and are 
prefixed with G_ and a mnemonic of the module (file) 
that defines the macro in all uppercase—for example, 
G_SCREEN_LOCATION().

Table 11-5 Sample Naming Conventions for Visual Basic

Entity Description

C_ClassName Class names are in mixed uppercase and lowercase with 
an initial capital letter and a C_ prefix. 

T_TypeName Type definitions, including enumerated types and type-
defs, use mixed uppercase and lowercase with an initial 
capital letter and a T_ prefix. 

T_EnumeratedTypes In addition to the rule above, enumerated types are 
always stated in the plural form. 
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11.5 Standardized Prefixes
Further Reading For further 
details on the Hungarian 
naming convention, see 
“The Hungarian Revolution” 
(Simonyi and Heller 1991).

Standardizing prefixes for common meanings provides a terse but consistent and 
readable approach to naming data. The best known scheme for standardizing prefixes 
is the Hungarian naming convention, which is a set of detailed guidelines for naming 
variables and routines (not Hungarians!) that was widely used at one time in 
Microsoft Windows programming. Although the Hungarian naming convention is no 
longer in widespread use, the basic idea of standardizing on terse, precise abbrevia-
tions continues to have value. 

Standardized prefixes are composed of two parts: the user-defined type (UDT) abbre-
viation and the semantic prefix. 

User-Defined Type Abbreviations

The UDT abbreviation identifies the data type of the object or variable being named. 
UDT abbreviations might refer to entities such as windows, screen regions, and fonts. 
A UDT abbreviation generally doesn’t refer to any of the predefined data types offered 
by the programming language.

UDTs are described with short codes that you create for a specific program and then 
standardize on for use in that program. The codes are mnemonics such as wn for win-
dows and scr for screen regions. Table 11-6 offers a sample list of UDTs that you might 
use in a program for a word processor.

localVariable Local variables are in mixed uppercase and lowercase 
with an initial lowercase letter. The name should be inde-
pendent of the underlying data type and should refer to 
whatever the variable represents.

routineParameter Routine parameters are formatted the same as local vari-
ables. 

RoutineName() Routines are in mixed uppercase and lowercase. (Good 
routine names are discussed in Section 7.3.)

m_ClassVariable Member variables that are available to multiple routines 
within a class, but only within a class, are prefixed with an 
m_.

g_GlobalVariable Global variables are prefixed with a g_.

CONSTANT Named constants are in ALL_CAPS.

Base_EnumeratedType Enumerated types are prefixed with a mnemonic for their 
base type stated in the singular—for example, Color_Red, 
Color_Blue.

Table 11-5 Sample Naming Conventions for Visual Basic

Entity Description
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When you use UDTs, you also define programming-language data types that use the 
same abbreviations as the UDTs. Thus, if you had the UDTs in Table 11-6, you’d see 
data declarations like these:

CH    chCursorPosition;

SCR   scrUserWorkspace;

DOC   docActive

PA    firstPaActiveDocument;

PA    lastPaActiveDocument;

WN    wnMain;

Again, these examples relate to a word processor. For use on your own projects, you’d 
create UDT abbreviations for the UDTs that are used most commonly within your 
environment. 

Semantic Prefixes

Semantic prefixes go a step beyond the UDT and describe how the variable or object 
is used. Unlike UDTs, which vary from project to project, semantic prefixes are some-
what standard across projects. Table 11-7 shows a list of standard semantic prefixes.

Table 11-6 Sample of UDTs for a Word Processor

UDT 
Abbreviation Meaning

ch Character (a character not in the C++ sense, but in the sense of the 
data type a word-processing program would use to represent a 
character in a document)

doc Document

pa Paragraph

scr Screen region

sel Selection

wn Window

Table 11-7 Semantic Prefixes 

Semantic 
Prefix Meaning

c Count (as in the number of records, characters, and so on)

first The first element that needs to be dealt with in an array. first is similar to 
min but relative to the current operation rather than to the array itself.

g Global variable

i Index into an array

last The last element that needs to be dealt with in an array. last is the counter-
part of first.
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Semantic prefixes are formatted in lowercase or mixed uppercase and lowercase and 
are combined with the UDTs and with other semantic prefixes as needed. For exam-
ple, the first paragraph in a document would be named pa to show that it’s a para-
graph and first to show that it’s the first paragraph: firstPa. An index into the set of 
paragraphs would be named iPa; cPa is the count, or the number of paragraphs; and 
firstPaActiveDocument and lastPaActiveDocument are the first and last paragraphs in the 
current active document.

Advantages of Standardized Prefixes

Standardized prefixes give you all the general advantages of having a naming conven-
tion as well as several other advantages. Because so many names are standard, you 
have fewer names to remember in any single program or class. 

Standardized prefixes add precision to several areas of naming that tend to be impre-
cise. The precise distinctions between min, first, last, and max are particularly helpful.

Standardized prefixes make names more compact. For example, you can use cpa for 
the count of paragraphs rather than totalParagraphs. You can use ipa to identify an 
index into an array of paragraphs rather than indexParagraphs or paragraphsIndex.

Finally, standardized prefixes allow you to check types accurately when you’re using 
abstract data types that your compiler can’t necessarily check: paReformat = docRefor-
mat is probably wrong because pa and doc are different UDTs.

The main pitfall with standardized prefixes is a programmer neglecting to give the 
variable a meaningful name in addition to its prefix. If ipa unambiguously designates 
an index into an array of paragraphs, it’s tempting not to make the name more mean-
ingful like ipaActiveDocument. For readability, close the loop and come up with a 
descriptive name. 

lim The upper limit of elements that need to be dealt with in an array. lim is 
not a valid index. Like last, lim is used as a counterpart of first. Unlike last, 
lim represents a noninclusive upper bound on the array; last represents a 
final, legal element. Generally, lim equals last + 1.

m Class-level variable

max The absolute last element in an array or other kind of list. max refers to the 
array itself rather than to operations on the array.

min The absolute first element in an array or other kind of list.

p Pointer

Table 11-7 Semantic Prefixes 

Semantic 
Prefix Meaning

KEY POINT
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11.6 Creating Short Names That Are Readable
The desire to use short variable names is in some ways a remnant of an earlier age of 
computing. Older languages like assembler, generic Basic, and Fortran limited vari-
able names to 2–8 characters and forced programmers to create short names. Early 
computing was more closely linked to mathematics and its use of terms like i, j, and k 
as the variables in summations and other equations. In modern languages like C++, 
Java, and Visual Basic, you can create names of virtually any length; you have almost 
no reason to shorten meaningful names.

If circumstances do require you to create short names, note that some methods of 
shortening names are better than others. You can create good short variable names by 
eliminating needless words, using short synonyms, and using any of several abbrevia-
tion strategies. It’s a good idea to be familiar with multiple techniques for abbreviating 
because no single technique works well in all cases.

General Abbreviation Guidelines

Here are several guidelines for creating abbreviations. Some of them contradict others, 
so don’t try to use them all at the same time.

■ Use standard abbreviations (the ones in common use, which are listed in a 
dictionary).

■ Remove all nonleading vowels. (computer becomes cmptr, and screen becomes 
scrn. apple becomes appl, and integer becomes intgr.)

■ Remove articles: and, or, the, and so on. 

■ Use the first letter or first few letters of each word.

■ Truncate consistently after the first, second, or third (whichever is appropriate) 
letter of each word.

■ Keep the first and last letters of each word.

■ Use every significant word in the name, up to a maximum of three words.

■ Remove useless suffixes—ing, ed, and so on.

■ Keep the most noticeable sound in each syllable.

■ Be sure not to change the meaning of the variable. 

■ Iterate through these techniques until you abbreviate each variable name to 
between 8 to 20 characters or the number of characters to which your language 
limits variable names.

KEY POINT
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Phonetic Abbreviations

Some people advocate creating abbreviations based on the sound of the words rather 
than their spelling. Thus skating becomes sk8ing, highlight becomes hilite, before 
becomes b4, execute becomes xqt, and so on. This seems too much like asking people 
to figure out personalized license plates to me, and I don’t recommend it. As an exer-
cise, figure out what these names mean:

Comments on Abbreviations

You can fall into several traps when creating abbreviations. Here are some rules for 
avoiding pitfalls:

Don’t abbreviate by removing one character from a word Typing one character is lit-
tle extra work, and the one-character savings hardly justifies the loss in readability. It’s 
like the calendars that have “Jun” and “Jul.” You have to be in a big hurry to spell June 
as “Jun.” With most one-letter deletions, it’s hard to remember whether you removed 
the character. Either remove more than one character or spell out the word.

Abbreviate consistently Always use the same abbreviation. For example, use Num 
everywhere or No everywhere, but don’t use both. Similarly, don’t abbreviate a word 
in some names and not in others. For instance, don’t use the full word Number in 
some places and the abbreviation Num in others.

Create names that you can pronounce Use xPos rather than xPstn and needsComp 
rather than ndsCmptg. Apply the telephone test—if you can’t read your code to some-
one over the phone, rename your variables to be more distinctive (Kernighan and 
Plauger 1978). 

Avoid combinations that result in misreading or mispronunciation To refer to the 
end of B, favor ENDB over BEND. If you use a good separation technique, you won’t 
need this guideline since B-END, BEnd, or b_end won’t be mispronounced.

Use a thesaurus to resolve naming collisions One problem in creating short names 
is naming collisions—names that abbreviate to the same thing. For example, if you’re 
limited to three characters and you need to use fired and full revenue disbursal in the 
same area of a program, you might inadvertently abbreviate both to frd.

One easy way to avoid naming collisions is to use a different word with the same 
meaning, so a thesaurus is handy. In this example, dismissed might be substituted for 
fired and complete revenue disbursal might be substituted for full revenue disbursal. The 
three-letter abbreviations become dsm and crd, eliminating the naming collision.

ILV2SK8 XMEQWK S2DTM8O NXTC TRMN8R
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Document extremely short names with translation tables in the code In languages 
that allow only very short names, include a translation table to provide a reminder of 
the mnemonic content of the variables. Include the table as comments at the begin-
ning of a block of code. Here’s an example:

Fortran Example of a Good Translation Table
C *******************************************************************

C    Translation Table

C

C    Variable    Meaning

C    --------    -------

C    XPOS        x-Coordinate Position (in meters)

C    YPOS        Y-Coordinate Position (in meters)

C    NDSCMP      Needs Computing (=0 if no computation is needed;

C                                 =1 if computation is needed)

C    PTGTTL      Point Grand Total

C    PTVLMX      Point Value Maximum

C    PSCRMX      Possible Score Maximum

C *****************************************************************

You might think that this technique is outdated, but as recently as mid-2003 I 
worked with a client that had hundreds of thousands of lines of code written in RPG 
that was subject to a 6-character–variable-name limitation. These issues still come 
up from time to time. 

Document all abbreviations in a project-level “Standard Abbreviations” document
Abbreviations in code create two general risks:

■ A reader of the code might not understand the abbreviation.

■ Other programmers might use multiple abbreviations to refer to the same word, 
which creates needless confusion.

To address both these potential problems, you can create a “Standard Abbreviations” 
document that captures all the coding abbreviations used on your project. The docu-
ment can be a word processor document or a spreadsheet. On a very large project, it 
could be a database. The document is checked into version control and checked out 
anytime anyone creates a new abbreviation in the code. Entries in the document 
should be sorted by the full word, not the abbreviation. 

This might seem like a lot of overhead, but aside from a small amount of startup over-
head, it really just sets up a mechanism that helps the project use abbreviations effec-
tively. It addresses the first of the two general risks described above by documenting 
all abbreviations in use. The fact that a programmer can’t create a new abbreviation 
without the overhead of checking the Standard Abbreviations document out of ver-



11.7 Kinds of Names to Avoid 285

sion control, entering the abbreviation, and checking it back in is a good thing. It 
means that an abbreviation won’t be created unless it’s so common that it’s worth the 
hassle of documenting it. 

This approach addresses the second risk by reducing the likelihood that a program-
mer will create a redundant abbreviation. A programmer who wants to abbreviate 
something will check out the abbreviations document and enter the new abbrevia-
tion. If there is already an abbreviation for the word the programmer wants to abbre-
viate, the programmer will notice that and will then use the existing abbreviation 
instead of creating a new one. 

The general issue illustrated by this guideline is the difference between write-time con-
venience and read-time convenience. This approach clearly creates a write-time incon-
venience, but programmers over the lifetime of a system spend far more time reading 
code than writing code. This approach increases read-time convenience. By the time 
all the dust settles on a project, it might well also have improved write-time conve-
nience. 

Remember that names matter more to the reader of the code than to the writer Read 
code of your own that you haven’t seen for at least six months and notice where you 
have to work to understand what the names mean. Resolve to change the practices 
that cause such confusion.

11.7 Kinds of Names to Avoid
Here are some guidelines regarding variable names to avoid:

Avoid misleading names or abbreviations Make sure that a name is unambiguous. 
For example, FALSE is usually the opposite of TRUE and would be a bad abbreviation 
for “Fig and Almond Season.”

Avoid names with similar meanings If you can switch the names of two variables 
without hurting the program, you need to rename both variables. For example, input 
and inputValue, recordNum and numRecords, and fileNumber and fileIndex are so seman-
tically similar that if you use them in the same piece of code you’ll easily confuse them 
and install some subtle, hard-to-find errors.

Cross-Reference The techni-
cal term for differences like 
this between similar variable 
names is “psychological dis-
tance.” For details, see “How 
‘Psychological Distance’ Can 
Help” in Section 23.4.

Avoid variables with different meanings but similar names If you have two variables 
with similar names and different meanings, try to rename one of them or change your 
abbreviations. Avoid names like clientRecs and clientReps. They’re only one letter differ-
ent from each other, and the letter is hard to notice. Have at least two-letter differences 
between names, or put the differences at the beginning or at the end. clientRecords and 
clientReports are better than the original names.

KEY POINT
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Avoid names that sound similar, such as wrap and rap Homonyms get in the way 
when you try to discuss your code with others. One of my pet peeves about Extreme 
Programming (Beck 2000) is its overly clever use of the terms Goal Donor and Gold 
Owner, which are virtually indistinguishable when spoken. You end up having con-
versations like this:

I was just speaking with the Goal Donor—

Did you say “Gold Owner” or “Goal Donor”? 

I said “Goal Donor.” 

What?

GOAL - - - DONOR!

OK, Goal Donor. You don’t have to yell, Goll’ Darn it. 

Did you say “Gold Donut?” 

Remember that the telephone test applies to similar sounding names just as it does to 
oddly abbreviated names. 

Avoid numerals in names If the numerals in a name are really significant, use an array 
instead of separate variables. If an array is inappropriate, numerals are even more inap-
propriate. For example, avoid file1 and file2, or total1 and total2. You can almost always 
think of a better way to differentiate between two variables than by tacking a 1 or a 2 
onto the end of the name. I can’t say never use numerals. Some real-world entities (such 
as Route 66 or Interstate 405) have numerals embedded in them. But consider whether 
there are better alternatives before you create a name that includes numerals.

Avoid misspelled words in names It’s hard enough to remember how words are sup-
posed to be spelled. To require people to remember “correct” misspellings is simply 
too much to ask. For example, misspelling highlight as hilite to save three characters 
makes it devilishly difficult for a reader to remember how highlight was misspelled. 
Was it highlite? hilite? hilight? hilit? jai-a-lai-t? Who knows?

Avoid words that are commonly misspelled in English Absense, acummulate, acsend, 
calender, concieve, defferred, definate, independance, occassionally, prefered, reciept, super-
seed, and many others are common misspellings in English. Most English handbooks 
contain a list of commonly misspelled words. Avoid using such words in your variable 
names.

Don’t differentiate variable names solely by capitalization If you’re programming in 
a case-sensitive language such as C++, you may be tempted to use frd for fired, FRD for 
final review duty, and Frd for full revenue disbursal. Avoid this practice. Although the 
names are unique, the association of each with a particular meaning is arbitrary and 
confusing. Frd could just as easily be associated with final review duty and FRD with 
full revenue disbursal, and no logical rule will help you or anyone else to remember 
which is which.
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Avoid multiple natural languages In multinational projects, enforce use of a single 
natural language for all code, including class names, variable names, and so on. Read-
ing another programmer’s code can be a challenge; reading another programmer’s 
code in Southeast Martian is impossible. 

A more subtle problem occurs in variations of English. If a project is conducted in 
multiple English-speaking countries, standardize on one version of English so that 
you’re not constantly wondering whether the code should say “color” or “colour,” 
“check” or “cheque,” and so on. 

Avoid the names of standard types, variables, and routines All programming-
language guides contain lists of the language’s reserved and predefined names. 
Read the list occasionally to make sure you’re not stepping on the toes of the language 
you’re using. For example, the following code fragment is legal in PL/I, but you would 
be a certifiable idiot to use it:

if if = then then

   then = else;

else else = if;

Don’t use names that are totally unrelated to what the variables represent Sprin-
kling names such as margaret and pookie throughout your program virtually guaran-
tees that no one else will be able to understand it. Avoid your boyfriend’s name, wife’s 
name, favorite beer’s name, or other clever (aka silly) names for variables, unless the 
program is really about your boyfriend, wife, or favorite beer. Even then, you would be 
wise to recognize that each of these might change, and that therefore the generic 
names boyfriend, wife, and favoriteBeer are superior!

Avoid names containing hard-to-read characters Be aware that some characters look 
so similar that it’s hard to tell them apart. If the only difference between two names is 
one of these characters, you might have a hard time telling the names apart. For exam-
ple, try to circle the name that doesn’t belong in each of the following sets:

eyeChartl     eyeChartI     eyeChartl

TTLCONFUSION  TTLCONFUSION  TTLC0NFUSION

hard2Read     hardZRead     hard2Read

GRANDTOTAL    GRANDTOTAL    6RANDTOTAL

ttl5          ttlS          ttlS

Pairs that are hard to distinguish include (1 and l), (1 and I), (. and ,), (0 and O), (2 
and Z), (; and :), (S and 5), and (G and 6).

Cross-Reference For consid-
erations in using data, see 
the checklist on page 257 in 
Chapter 10, “General Issues 
in Using Variables.”

Do details like these really matter? Indeed! Gerald Weinberg reports that in the 1970s, 
a comma was used in a Fortran FORMAT statement where a period should have been 
used. The result was that scientists miscalculated a spacecraft’s trajectory and lost a 
space probe—to the tune of $1.6 billion (Weinberg 1983). 

CODING 
HORROR
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cc2e.com/1191 CHECKLIST: Naming Variables
General Naming Considerations

❑ Does the name fully and accurately describe what the variable represents?

❑ Does the name refer to the real-world problem rather than to the program-
ming-language solution?

❑ Is the name long enough that you don’t have to puzzle it out?

❑ Are computed-value qualifiers, if any, at the end of the name?

❑ Does the name use Count or Index instead of Num?

Naming Specific Kinds of Data
❑ Are loop index names meaningful (something other than i, j, or k if the 

loop is more than one or two lines long or is nested)?

❑ Have all “temporary” variables been renamed to something more mean-
ingful?

❑ Are boolean variables named so that their meanings when they’re true are 
clear?

❑ Do enumerated-type names include a prefix or suffix that indicates the cat-
egory—for example, Color_ for Color_Red, Color_Green, Color_Blue, and so 
on?

❑ Are named constants named for the abstract entities they represent rather 
than the numbers they refer to?

Naming Conventions
❑ Does the convention distinguish among local, class, and global data?

❑ Does the convention distinguish among type names, named constants, 
enumerated types, and variables?

❑ Does the convention identify input-only parameters to routines in lan-
guages that don’t enforce them?

❑ Is the convention as compatible as possible with standard conventions for 
the language?

❑ Are names formatted for readability?

Short Names
❑ Does the code use long names (unless it’s necessary to use short ones)?

❑ Does the code avoid abbreviations that save only one character?

❑ Are all words abbreviated consistently?
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❑ Are the names pronounceable?

❑ Are names that could be misread or mispronounced avoided?

❑ Are short names documented in translation tables?

Common Naming Problems: Have You Avoided...
❑ ...names that are misleading?

❑ ...names with similar meanings?

❑ ...names that are different by only one or two characters?

❑ ...names that sound similar?

❑ ...names that use numerals?

❑ ...names intentionally misspelled to make them shorter?

❑ ...names that are commonly misspelled in English?

❑ ...names that conflict with standard library routine names or with pre-
defined variable names?

❑ ...totally arbitrary names?

❑ ...hard-to-read characters?

Key Points
■ Good variable names are a key element of program readability. Specific kinds of 

variables such as loop indexes and status variables require specific considerations.

■ Names should be as specific as possible. Names that are vague enough or gen-
eral enough to be used for more than one purpose are usually bad names. 

■ Naming conventions distinguish among local, class, and global data. They dis-
tinguish among type names, named constants, enumerated types, and variables.

■ Regardless of the kind of project you’re working on, you should adopt a variable 
naming convention. The kind of convention you adopt depends on the size of 
your program and the number of people working on it.

■ Abbreviations are rarely needed with modern programming languages. If you do 
use abbreviations, keep track of abbreviations in a project dictionary or use the 
standardized prefixes approach. 

■ Code is read far more times than it is written. Be sure that the names you choose 
favor read-time convenience over write-time convenience. 
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Chapter 12

Fundamental Data Types 
cc2e.com/1278 Contents

■ 12.1 Numbers in General: page 292

■ 12.2 Integers: page 293

■ 12.3 Floating-Point Numbers: page 295

■ 12.4 Characters and Strings: page 297

■ 12.5 Boolean Variables: page 301

■ 12.6 Enumerated Types: page 303

■ 12.7 Named Constants: page 307

■ 12.8 Arrays: page 310

■ 12.9 Creating Your Own Types (Type Aliasing): page 311

Related Topics

■ Naming data: Chapter 11

■ Unusual data types: Chapter 13

■ General issues in using variables: Chapter 10

■ Formatting data declarations: “Laying Out Data Declarations” in Section 31.5

■ Documenting variables: “Commenting Data Declarations” in Section 32.5

■ Creating classes: Chapter 6

The fundamental data types are the basic building blocks for all other data types. This 
chapter contains tips for using numbers (in general), integers, floating-point numbers, 
characters and strings, boolean variables, enumerated types, named constants, and 
arrays. The final section in this chapter describes how to create your own types. 

This chapter covers basic troubleshooting for the fundamental types of data. If you’ve 
got your fundamental-data bases covered, skip to the end of the chapter, review the 
checklist of problems to avoid, and move on to the discussion of unusual data types in 
Chapter 13.
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12.1 Numbers in General
Here are several guidelines for making your use of numbers less error-prone: 

Cross-Reference For more 
details on using named con-
stants instead of magic num-
bers, see Section 12.7, 
“Named Constants,” later in 
this chapter.

Avoid “magic numbers” Magic numbers are literal numbers, such as 100 or 47524, 
that appear in the middle of a program without explanation. If you program in a lan-
guage that supports named constants, use them instead. If you can’t use named con-
stants, use global variables when it’s feasible to do so. 

Avoiding magic numbers yields three advantages:

■ Changes can be made more reliably. If you use named constants, you won’t over-
look one of the 100s or change a 100 that refers to something else. 

■ Changes can be made more easily. When the maximum number of entries 
changes from 100 to 200, if you’re using magic numbers you have to find all the 
100s and change them to 200s. If you use 100+1 or 100-1, you’ll also have to find 
all the 101s and 99s and change them to 201s and 199s. If you’re using a named 
constant, you simply change the definition of the constant from 100 to 200 in 
one place.

■ Your code is more readable. Sure, in the expression 

for i = 0 to 99 do ...

you can guess that 99 refers to the maximum number of entries. But the expres-
sion

for i = 0 to MAX_ENTRIES-1 do ...

leaves no doubt. Even if you’re certain that a number will never change, you get 
a readability benefit if you use a named constant.

Use hard-coded 0s and 1s if you need to The values 0 and 1 are used to increment, 
decrement, and start loops at the first element of an array. The 0 in 

for i = 0 to CONSTANT do ...

is OK, and the 1 in 

total = total + 1

is OK. A good rule of thumb is that the only literals that should occur in the body of 
a program are 0 and 1. Any other literals should be replaced with something more 
descriptive.

Anticipate divide-by-zero errors Each time you use the division symbol (/ in most 
languages), think about whether it’s possible for the denominator of the expression to 
be 0. If the possibility exists, write code to prevent a divide-by-zero error.
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Make type conversions obvious Make sure that someone reading your code will be 
aware of it when a conversion between different data types occurs. In C++ you could say

y = x + (float) i

and in Microsoft Visual Basic you could say 

y = x + CSng( i )

This practice also helps to ensure that the conversion is the one you want to occur—
different compilers do different conversions, so you’re taking your chances otherwise.

Cross-Reference For a varia-
tion on this example, see 
“Avoid equality compari-
sons” in Section 12.3.

Avoid mixed-type comparisons If x is a floating-point number and i is an integer, the 
test

if ( i = x ) then ...

is almost guaranteed not to work. By the time the compiler figures out which type it 
wants to use for the comparison, converts one of the types to the other, does a bunch 
of rounding, and determines the answer, you’ll be lucky if your program runs at all. 
Do the conversion manually so that the compiler can compare two numbers of the 
same type and you know exactly what’s being compared.

Heed your compiler’s warnings Many modern compilers tell you when you have dif-
ferent numeric types in the same expression. Pay attention! Every programmer has 
been asked at one time or another to help someone track down a pesky error, only to 
find that the compiler had warned about the error all along. Top programmers fix 
their code to eliminate all compiler warnings. It’s easier to let the compiler do the 
work than to do it yourself.

12.2 Integers
Bear these considerations in mind when using integers:

Check for integer division When you’re using integers, 7/10 does not equal 0.7. It 
usually equals 0, or minus infinity, or the nearest integer, or—you get the picture. What 
it equals varies from language to language. This applies equally to intermediate 
results. In the real world 10 * (7/10) = (10*7) / 10 = 7. Not so in the world of integer 
arithmetic. 10 * (7/10) equals 0 because the integer division (7/10) equals 0. The eas-
iest way to remedy this problem is to reorder the expression so that the divisions are 
done last: (10*7) / 10.

Check for integer overflow When doing integer multiplication or addition, you need 
to be aware of the largest possible integer. The largest possible unsigned integer is 
often 232-1 and is sometimes 216-1, or 65,535. The problem comes up when you mul-
tiply two numbers that produce a number bigger than the maximum integer. For 

KEY POINT
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example, if you multiply 250 * 300, the right answer is 75,000. But if the maximum 
integer is 65,535, the answer you’ll get is probably 9464 because of integer overflow 
(75,000 - 65,536 = 9464). Table 12-1 shows the ranges of common integer types.

The easiest way to prevent integer overflow is to think through each of the terms in 
your arithmetic expression and try to imagine the largest value each can assume. For 
example, if in the integer expression m = j * k, the largest expected value for j is 200 
and the largest expected value for k is 25, the largest value you can expect for m is 200 
* 25 = 5,000. This is OK on a 32-bit machine since the largest integer is 2,147,483,647. 
On the other hand, if the largest expected value for j is 200,000 and the largest 
expected value for k is 100,000, the largest value you can expect for m is 200,000 * 
100,000 = 20,000,000,000. This is not OK since 20,000,000,000 is larger than 
2,147,483,647. In this case, you would have to use 64-bit integers or floating-point 
numbers to accommodate the largest expected value of m.

Also consider future extensions to the program. If m will never be bigger than 5,000, 
that’s great. But if you expect m to grow steadily for several years, take that into account.

Check for overflow in intermediate results The number at the end of the equation 
isn’t the only number you have to worry about. Suppose you have the following code:

Java Example of Overflow of Intermediate Results
int termA = 1000000;

int termB = 1000000;

int product = termA * termB / 1000000;

System.out.println( "( " + termA + " * " + termB + " ) / 1000000 = " + product );

If you think the Product assignment is the same as (1,00,000*1,000,000) / 1,000,000, you 
might expect to get the answer 1,000,000. But the code has to compute the intermediate 
result of 1,000,000*1,000,000 before it can divide by the final 1,000,000, and that means 
it needs a number as big as 1,000,000,000,000. Guess what? Here’s the result:

( 1000000 * 1000000 ) / 1000000 = -727

Table 12-1 Ranges for Different Types of Integers
Integer Type Range
Signed 8-bit -128 through 127
Unsigned 8-bit 0 through 255
Signed 16-bit -32,768 through 32,767
Unsigned 16-bit 0 through 65,535
Signed 32-bit -2,147,483,648 through 2,147,483,647
Unsigned 32-bit 0 through 4,294,967,295
Signed 64-bit -9,223,372,036,854,775,808 through 

9,223,372,036,854,775,807
Unsigned 64-bit 0 through 18,446,744,073,709,551,615
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If your integers go to only 2,147,483,647, the intermediate result is too large for the inte-
ger data type. In this case, the intermediate result that should be 1,000,000,000,000 is  
-727,379,968, so when you divide by 1,000,000, you get -727, rather than 1,000,000.

You can handle overflow in intermediate results the same way you handle integer 
overflow, by switching to a long-integer or floating-point type.

12.3 Floating-Point Numbers
The main consideration in using floating-point numbers is that many fractional deci-
mal numbers can’t be represented accurately using the 1s and 0s available on a digital 
computer. Nonterminating decimals like 1/3 or 1/7 can usually be represented to 
only 7 or 15 digits of accuracy. In my version of Microsoft Visual Basic, a 32-bit float-
ing-point representation of 1/3 equals 0.33333330. It’s accurate to 7 digits. This is 
accurate enough for most purposes but inaccurate enough to trick you sometimes.

Following are a few specific guidelines for using floating-point numbers:

Cross-Reference For algo-
rithms books that describe 
ways to solve these prob-
lems, see “Additional 
Resources on Data Types” in 
Section 10.1.

Avoid additions and subtractions on numbers that have greatly different magnitudes
With a 32-bit floating-point variable, 1,000,000.00 + 0.1 probably produces an answer of 
1,000,000.00 because 32 bits don’t give you enough significant digits to encompass the 
range between 1,000,000 and 0.1. Likewise, 5,000,000.02 - 5,000,000.01 is probably 0.0.

Solutions? If you have to add a sequence of numbers that contains huge differences 
like this, sort the numbers first, and then add them starting with the smallest values. 
Likewise, if you need to sum an infinite series, start with the smallest term—essentially, 
sum the terms backwards. This doesn’t eliminate round-off problems, but it mini-
mizes them. Many algorithms books have suggestions for dealing with cases like this.

1 is equal to 2 for sufficiently 
large values of 1. 
—Anonymous 

Avoid equality comparisons Floating-point numbers that should be equal are not 
always equal. The main problem is that two different paths to the same number don’t 
always lead to the same number. For example, 0.1 added 10 times rarely equals 1.0. The 
following example shows two variables, nominal and sum, that should be equal but aren’t.

Java Example of a Bad Comparison of Floating-Point Numbers 
The variable nominal is a
64-bit real.

double nominal = 1.0;

double sum = 0.0;

for ( int i = 0; i < 10; i++ ) {

sum is 10*0.1. It should be 
1.0.

   sum += 0.1;

}

Here’s the bad comparison. if ( nominal == sum ) {

   System.out.println( "Numbers are the same." );

}

else {

   System.out.println( "Numbers are different." );

}

KEY POINT
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As you can probably guess, the output from this program is

Numbers are different.

The line-by-line values of sum in the for loop look like this:

0.1

0.2

0.30000000000000004

0.4

0.5

0.6

0.7

0.7999999999999999

0.8999999999999999

0.9999999999999999

Thus, it’s a good idea to find an alternative to using an equality comparison for float-
ing-point numbers. One effective approach is to determine a range of accuracy that is 
acceptable and then use a boolean function to determine whether the values are close 
enough. Typically, you’d write an Equals() function that returns true if the values are 
close enough and false otherwise. In Java, such a function would look like this:

Cross-Reference This exam-
ple is proof of the maxim 
that there’s an exception to 
every rule. Variables in this 
realistic example have digits 
in their names. For the rule 
against using digits in vari-
able names, see Section 
11.7, “Kinds of Names to 
Avoid.”

Java Example of a Routine to Compare Floating-Point Numbers  
final double ACCEPTABLE_DELTA = 0.00001;

boolean Equals( double Term1, double Term2 ) { 

   if ( Math.abs( Term1 - Term2 ) < ACCEPTABLE_DELTA ) {

      return true;

   }

   else {

      return false;

   }

}

If the code in the “bad comparison of floating-point numbers” example were con-
verted so that this routine could be used for comparisons, the new comparison would 
look like this:

if ( Equals( Nominal, Sum ) ) ...

The output from the program when it uses this test is 

Numbers are the same.

Depending on the demands of your application, it might be inappropriate to use a 
hard-coded value for ACCEPTABLE_DELTA. You might need to compute 
ACCEPTABLE_DELTA based on the size of the two numbers being compared. 
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Anticipate rounding errors Rounding-error problems are no different from the prob-
lem of numbers with greatly different magnitudes. The same issue is involved, and 
many of the same techniques help to solve rounding problems. In addition, here are 
common specific solutions to rounding problems: 

■ Change to a variable type that has greater precision. If you’re using single-preci-
sion floating point, change to double-precision floating point, and so on. 

Cross-Reference Usually the 
performance impact of con-
verting to BCD will be mini-
mal. If you’re concerned 
about the performance 
impact, see Section 25.6, 
“Summary of the Approach 
to Code Tuning.”

■ Change to binary coded decimal (BCD) variables. The BCD scheme is typically 
slower and takes up more storage space, but it prevents many rounding errors. 
This is particularly valuable if the variables you’re using represent dollars and 
cents or other quantities that must balance precisely.

■ Change from floating-point to integer variables. This is a roll-your-own approach 
to BCD variables. You will probably have to use 64-bit integers to get the preci-
sion you want. This technique requires you to keep track of the fractional part of 
your numbers yourself. Suppose you were originally keeping track of dollars 
using floating point with cents expressed as fractional parts of dollars. This is a 
normal way to handle dollars and cents. When you switch to integers, you have 
to keep track of cents using integers and of dollars using multiples of 100 cents. 
In other words, you multiply dollars by 100 and keep the cents in the 0-to-99 
range of the variable. This might seem absurd at first glance, but it’s an effective 
solution in terms of both speed and accuracy. You can make these manipula-
tions easier by creating a DollarsAndCents class that hides the integer representa-
tion and supports the necessary numeric operations. 

Check language and library support for specific data types Some languages, includ-
ing Visual Basic, have data types such as Currency that specifically support data that is 
sensitive to rounding errors. If your language has a built-in data type that provides 
such functionality, use it!

12.4 Characters and Strings
This section provides some tips for using strings. The first applies to strings in all 
languages.

Cross-Reference Issues for 
using magic characters and 
strings are similar to those 
for magic numbers dis-
cussed in Section 12.1, 
“Numbers in General.”

Avoid magic characters and strings Magic characters are literal characters (such as 
'A') and magic strings are literal strings (such as "Gigamatic Accounting Program") that 
appear throughout a program. If you program in a language that supports the use of 
named constants, use them instead. Otherwise, use global variables. Several reasons 
for avoiding literal strings exist:

■ For commonly occurring strings like the name of your program, command 
names, report titles, and so on, you might at some point need to change the 
string’s contents. For example, "Gigamatic Accounting Program" might change to 
"New and Improved! Gigamatic Accounting Program" for a later version.
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■ International markets are becoming increasingly important, and it’s easier to 
translate strings that are grouped in a string resource file than it is to translate to 
them in situ throughout a program.

■ String literals tend to take up a lot of space. They’re used for menus, messages, 
help screens, entry forms, and so on. If you have too many, they grow beyond 
control and cause memory problems. String space isn’t a concern in many envi-
ronments, but in embedded systems programming and other applications in 
which storage space is at a premium, solutions to string-space problems are eas-
ier to implement if the strings are relatively independent of the source code.

■ Character and string literals are cryptic. Comments or named constants clarify 
your intentions. In the next example, the meaning of 0x1B isn’t clear. The use of 
the ESCAPE constant makes the meaning more obvious.

C++ Examples of Comparisons Using Strings 
Bad! if ( input_char == 0x1B ) ...

Better!
if ( input_char == ESCAPE ) ...

Watch for off-by-one errors Because substrings can be indexed much as arrays are, 
watch for off-by-one errors that read or write past the end of a string. 

cc2e.com/1285 Know how your language and environment support Unicode In some languages 
such as Java, all strings are Unicode. In others such as C and C++, handling Unicode 
strings requires its own set of functions. Conversion between Unicode and other char-
acter sets is often required for communication with standard and third-party libraries. 
If some strings won’t be in Unicode (for example, in C or C++), decide early on 
whether to use the Unicode character set at all. If you decide to use Unicode strings, 
decide where and when to use them.

Decide on an internationalization/localization strategy early in the lifetime of a 
program Issues related to internationalization and localization are major issues. Key 
considerations are deciding whether to store all strings in an external resource and 
whether to create separate builds for each language or to determine the specific lan-
guage at run time. 

cc2e.com/1292 If you know you only need to support a single alphabetic language, consider using an 
ISO 8859 character set For applications that need to support only a single alpha-
betic language (such as English) and that don’t need to support multiple languages or 
an ideographic language (such as written Chinese), the ISO 8859 extended-ASCII-
type standard makes a good alternative to Unicode. 
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If you need to support multiple languages, use Unicode Unicode provides more com-
prehensive support for international character sets than ISO 8859 or other standards. 

Decide on a consistent conversion strategy among string types If you use multiple 
string types, one common approach that helps keep the string types distinct is to keep 
all strings in a single format within the program and convert the strings to other for-
mats as close as possible to input and output operations. 

Strings in C

C++’s standard template library string class has eliminated most of the traditional 
problems with strings in C. For those programmers working directly with C strings, 
here are some ways to avoid common pitfalls: 

Be aware of the difference between string pointers and character arrays The prob-
lem with string pointers and character arrays arises because of the way C handles 
strings. Be alert to the difference between them in two ways: 

■ Be suspicious of any expression containing a string that involves an equal sign. 
String operations in C are nearly always done with strcmp(), strcpy(), strlen(), and 
related routines. Equal signs often imply some kind of pointer error. In C, 
assignments do not copy string literals to a string variable. Suppose you have a 
statement like

StringPtr = "Some Text String";

In this case, "Some Text String" is a pointer to a literal text string and the assign-
ment merely sets the pointer StringPtr to point to the text string. The assignment 
does not copy the contents to StringPtr.

■ Use a naming convention to indicate whether the variables are arrays of charac-
ters or pointers to strings. One common convention is to use ps as a prefix to 
indicate a pointer to a string and ach as a prefix for an array of characters. 
Although they’re not always wrong, you should regard expressions involving 
both ps and ach prefixes with suspicion.

Declare C-style strings to have length CONSTANT+1 In C and C++, off-by-one 
errors with C-style strings are common because it’s easy to forget that a string of 
length n requires n + 1 bytes of storage and to forget to leave room for the null termi-
nator (the byte set to 0 at the end of the string). An effective way to avoid such prob-
lems is to use named constants to declare all strings. A key in this approach is that you 
use the named constant the same way every time. Declare the string to be length CON-
STANT+1, and then use CONSTANT to refer to the length of a string in the rest of the 
code. Here’s an example:
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C Example of Good String Declarations
/* Declare the string to have length of "constant+1".

   Every other place in the program, "constant" rather 

   than "constant+1" is used. */

The string is declared to be of 
length NAME_LENGTH +1.

char name[ NAME_LENGTH + 1 ] = { 0 }; /* string of length NAME_LENGTH */

...

/* Example 1: Set the string to all 'A's using the constant,

   NAME_LENGTH, as the number of 'A's that can be copied.

   Note that NAME_LENGTH rather than NAME_LENGTH + 1 is used. */

Operations on the string 
using NAME_LENGTH 
here…

for ( i = 0; i < NAME_LENGTH; i++ )

   name[ i ] = 'A';

...

/* Example 2: Copy another string into the first string using 

   the constant as the maximum length that can be copied. */

…and here. strncpy( name, some_other_name, NAME_LENGTH );

If you don’t have a convention to handle this, you’ll sometimes declare the string to be 
of length NAME_LENGTH and have operations on it with NAME_ LENGTH-1; at other 
times you’ll declare the string to be of length NAME_LENGTH+1 and have operations 
on it work with length NAME_LENGTH. Every time you use a string, you’ll have to 
remember which way you declared it.

When you use strings the same way every time, you don’t have to remember how you 
dealt with each string individually and you eliminate mistakes caused by forgetting 
the specifics of an individual string. Having a convention minimizes mental overload 
and programming errors.

Cross-Reference For more 
details on initializing data, 
see Section 10.3, “Guidelines 
for Initializing Variables.”

Initialize strings to null to avoid endless strings C determines the end of a string by 
finding a null terminator, a byte set to 0 at the end of the string. No matter how long 
you think the string is, C doesn’t find the end of the string until it finds a 0 byte. If you 
forget to put a null at the end of the string, your string operations might not act the 
way you expect them to.

You can avoid endless strings in two ways. First, initialize arrays of characters to 0 
when you declare them:

C Example of a Good Declaration of a Character Array
char EventName[ MAX_NAME_LENGTH + 1 ] = { 0 };

Second, when you allocate strings dynamically, initialize them to 0 by using calloc() 
instead of malloc(). calloc() allocates memory and initializes it to 0. malloc() allocates 
memory without initializing it, so you take your chances when you use memory allo-
cated by malloc().



12.5 Boolean Variables 301

Cross-Reference For more 
discussion of arrays, read 
Section 12.8, “Arrays,” later in 
this chapter. 

Use arrays of characters instead of pointers in C If memory isn’t a constraint—and 
often it isn’t—declare all your string variables as arrays of characters. This helps to 
avoid pointer problems, and the compiler will give you more warnings when you do 
something wrong.

Use strncpy() instead of strcpy() to avoid endless strings String routines in C come 
in safe versions and dangerous versions. The more dangerous routines such as strcpy() 
and strcmp() keep going until they run into a null terminator. Their safer companions, 
strncpy() and strncmp(), take a parameter for maximum length so that even if the 
strings go on forever, your function calls won’t.

12.5 Boolean Variables
It’s hard to misuse logical or boolean variables, and using them thoughtfully makes 
your program cleaner.

Cross-Reference For details 
on using comments to docu-
ment your program, see 
Chapter 32, “Self-Document-
ing Code.”

Use boolean variables to document your program Instead of merely testing a bool-
ean expression, you can assign the expression to a variable that makes the implication 
of the test unmistakable. For example, in the next fragment, it’s not clear whether the 
purpose of the if test is to check for completion, for an error condition, or for some-
thing else:

Cross-Reference For an 
example of using a boolean 
function to document your 
program, see “Making Com-
plicated Expressions Simple” 
in Section 19.1.

Java Example of Boolean Test in Which the Purpose Is Unclear
if ( ( elementIndex < 0 ) || ( MAX_ELEMENTS < elementIndex ) ||

   ( elementIndex == lastElementIndex ) 

   ) {

   ...

}

In the next fragment, the use of boolean variables makes the purpose of the if test 
clearer:

Java Example of Boolean Test in Which the Purpose Is Clear 
finished = ( ( elementIndex < 0 ) || ( MAX_ELEMENTS < elementIndex ) );

repeatedEntry = ( elementIndex == lastElementIndex );

if ( finished || repeatedEntry ) {

   ...

}

Use boolean variables to simplify complicated tests Often, when you have to code a 
complicated test, it takes several tries to get it right. When you later try to modify the 
test, it can be hard to understand what the test was doing in the first place. Logical 
variables can simplify the test. In the previous example, the program is really testing 
for two conditions: whether the routine is finished and whether it’s working on a 
repeated entry. By creating the boolean variables finished and repeatedEntry, you make 
the if test simpler: easier to read, less error prone, and easier to modify.
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Here’s another example of a complicated test:

Visual Basic Example of a Complicated Test
If ( ( document.AtEndOfStream() ) And ( Not inputError ) ) And _

   ( ( MIN_LINES <= lineCount ) And ( lineCount <= MAX_LINES ) ) And _

   ( Not ErrorProcessing() ) Then

   ' do something or other

   ...

End If

The test in the example is fairly complicated but not uncommonly so. It places a heavy 
mental burden on the reader. My guess is that you won’t even try to understand the if 
test but will look at it and say, “I’ll figure it out later if I really need to.” Pay attention to 
that thought because that’s exactly the same thing other people do when they read 
your code and it contains tests like this.

Here’s a rewrite of the code with boolean variables added to simplify the test:

Visual Basic Example of a Simplified Test
allDataRead = ( document.AtEndOfStream() ) And ( Not inputError )

legalLineCount = ( MIN_LINES <= lineCount ) And ( lineCount <= MAX_LINES )

Here’s the simplified test. If ( allDataRead ) And ( legalLineCount ) And ( Not ErrorProcessing() ) Then

   ' do something or other

   ...

End If 

This second version is simpler. My guess is that you’ll read the boolean expression in 
the if test without any difficulty.

Create your own boolean type, if necessary Some languages, such as C++, Java, and 
Visual Basic have a predefined boolean type. Others, such as C, do not. In languages 
such as C, you can define your own boolean type. In C, you’d do it this way:

C Example of Defining the BOOLEAN Type Using a Simple typedef
typedef int BOOLEAN;

Or you could do it this way, which provides the added benefit of defining true and 
false at the same time:

C Example of Defining the Boolean Type Using an Enum
enum Boolean { 

   True=1, 

   False=(!True) 

};

CODING 
HORROR
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Declaring variables to be BOOLEAN rather than int makes their intended use more 
obvious and makes your program a little more self-documenting.

12.6 Enumerated Types
An enumerated type is a type of data that allows each member of a class of objects to 
be described in English. Enumerated types are available in C++ and Visual Basic and 
are generally used when you know all the possible values of a variable and want to 
express them in words. Here are some examples of enumerated types in Visual Basic:

Visual Basic Examples of Enumerated Types 
Public Enum Color

   Color_Red

   Color_Green

   Color_Blue

End Enum 

Public Enum Country

   Country_China

   Country_England

   Country_France

   Country_Germany

   Country_India

   Country_Japan

   Country_Usa

End Enum 

Public Enum Output

   Output_Screen

   Output_Printer

   Output_File

End Enum 

Enumerated types are a powerful alternative to shopworn schemes in which you 
explicitly say, “1 stands for red, 2 stands for green, 3 stands for blue....” This ability 
suggests several guidelines for using enumerated types:

Use enumerated types for readability Instead of writing statements like 

if chosenColor = 1

you can write more readable expressions like 

if chosenColor = Color_Red

Anytime you see a numeric literal, ask whether it makes sense to replace it with an 
enumerated type.

Enumerated types are especially useful for defining routine parameters. Who knows 
what the parameters to this function call are?
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C++ Examples of a Routine Call That Would be Better with Enumerated Types
int result = RetrievePayrollData( data, true, false, false, true );

In contrast, the parameters to this function call are more understandable:

C++ Examples of a Routine Call That Uses Enumerated Types for Readability
int result = RetrievePayrollData( 

   data, 

   EmploymentStatus_CurrentEmployee, 

   PayrollType_Salaried, 

   SavingsPlan_NoDeduction, 

   MedicalCoverage_IncludeDependents

);

Use enumerated types for reliability With a few languages (Ada in particular), an 
enumerated type lets the compiler perform more thorough type checking than it can 
with integer values and constants. With named constants, the compiler has no way of 
knowing that the only legal values are Color_Red, Color_Green, and Color_Blue. The 
compiler won’t object to statements like color = Country_England or country = 
Output_Printer. If you use an enumerated type, declaring a variable as Color, the com-
piler will allow the variable to be assigned only the values Color_Red, Color_Green, and 
Color_Blue. 

Use enumerated types for modifiability Enumerated types make your code easy to 
modify. If you discover a flaw in your “1 stands for red, 2 stands for green, 3 stands for 
blue” scheme, you have to go through your code and change all the 1s, 2s, 3s, and so 
on. If you use an enumerated type, you can continue adding elements to the list just 
by putting them into the type definition and recompiling.

Use enumerated types as an alternative to boolean variables Often, a boolean vari-
able isn’t rich enough to express the meanings it needs to. For example, suppose you 
have a routine return true if it has successfully performed its task and False otherwise. 
Later you might find that you really have two kinds of False. The first kind means that 
the task failed and the effects are limited to the routine itself; the second kind means 
that the task failed and caused a fatal error that will need to be propagated to the rest 
of the program. In this case, an enumerated type with the values Status_Success, 
Status_Warning, and Status_FatalError would be more useful than a boolean with the 
values true and false. This scheme can easily be expanded to handle additional distinc-
tions in the kinds of success or failure.

Check for invalid values When you test an enumerated type in an if or case statement, 
check for invalid values. Use the else clause in a case statement to trap invalid values:

CODING 
HORROR
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Good Visual Basic Example of Checking for Invalid Values in an Enumerated Type
Select Case screenColor

   Case Color_Red

      ...

   Case Color_Blue

      ...

   Case Color_Green

      ...

Here’s the test for the 
invalid value.

   Case Else

      DisplayInternalError( False, "Internal Error 752: Invalid color." )

End Select

Define the first and last entries of an enumeration for use as loop limits Defining 
the first and last elements in an enumeration to be Color_First, Color_Last, 
Country_First, Country_Last, and so on allows you to write a loop that loops through 
the elements of an enumeration. You set up the enumerated type by using explicit val-
ues, as shown here:

Visual Basic Example of Setting First and Last Values in an Enumerated Type
Public Enum Country

   Country_First = 0 

   Country_China = 0

   Country_England = 1

   Country_France = 2

   Country_Germany = 3

   Country_India = 4

   Country_Japan = 5

   Country_Usa = 6

   Country_Last = 6

End Enum 

Now the Country_First and Country_Last values can be used as loop limits:

Good Visual Basic Example of Looping Through Elements in an Enumeration
' compute currency conversions from US currency to target currency

Dim usaCurrencyConversionRate( Country_Last ) As Single

Dim iCountry As Country

For iCountry = Country_First To Country_Last

   usaCurrencyConversionRate( iCountry ) = ConversionRate( Country_Usa, iCountry )

Next

Reserve the first entry in the enumerated type as invalid When you declare an enu-
merated type, reserve the first value as an invalid value. Many compilers assign the 
first element in an enumerated type to the value 0. Declaring the element that’s 
mapped to 0 to be invalid helps to catch variables that were not properly initialized 
because they are more likely to be 0 than any other invalid value.
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Here’s how the Country declaration would look with that approach: 

Visual Basic Example of Declaring the First Value in an Enumeration to Be Invalid
Public Enum Country

   Country_InvalidFirst = 0 

   Country_First = 1

   Country_China = 1

   Country_England = 2

   Country_France = 3

   Country_Germany = 4

   Country_India = 5

   Country_Japan = 6

   Country_Usa = 7

   Country_Last = 7

End Enum 

Define precisely how First and Last elements are to be used in the project coding 
standard, and use them consistently Using InvalidFirst, First, and Last elements in 
enumerations can make array declarations and loops more readable. But it has the 
potential to create confusion about whether the valid entries in the enumeration 
begin at 0 or 1 and whether the first and last elements of the enumeration are valid. If 
this technique is used, the project’s coding standard should require that InvalidFirst, 
First, and Last elements be used consistently in all enumerations to reduce errors. 

Beware of pitfalls of assigning explicit values to elements of an enumeration Some 
languages allow you to assign specific values to elements within an enumeration, as 
shown in this C++ example:

C++ Example of Explicitly Assigning Values to an Enumeration
enum Color {

   Color_InvalidFirst = 0,

   Color_First = 1,

   Color_Red = 1,

   Color_Green = 2,

   Color_Blue = 4,

   Color_Black = 8,

   Color_Last = 8

};

In this example, if you declared a loop index of type Color and attempted to loop 
through Colors, you would loop through the invalid values of 3, 5, 6, and 7 as well as 
the valid values of 1, 2, 4, and 8. 
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If Your Language Doesn’t Have Enumerated Types

If your language doesn’t have enumerated types, you can simulate them with global 
variables or classes. For example, you could use these declarations in Java:

Cross-Reference At the time 
I’m writing this, Java does 
not support enumerated 
types. By the time you read 
this, it probably will. This is a 
good example of the “rolling 
wave of technology” dis-
cussed in Section 4.3, “Your 
Location on the Technology 
Wave.”

Java Example of Simulating Enumerated Types
// set up Country enumerated type

class Country {

   private Country() {}

   public static final Country China = new Country();

   public static final Country England = new Country();

   public static final Country France = new Country();

   public static final Country Germany = new Country();

   public static final Country India = new Country();

   public static final Country Japan = new Country();

}

// set up Output enumerated type

class Output {

   private Output() {}

   public static final Output Screen = new Output();

   public static final Output Printer = new Output();

   public static final Output File = new Output();

}

These enumerated types make your program more readable because you can use the 
public class members such as Country.England and Output.Screen instead of named 
constants. This particular method of creating enumerated types is also typesafe; 
because each type is declared as a class, the compiler will check for invalid assign-
ments such as Output output = Country.England (Bloch 2001). 

In languages that don’t support classes, you can achieve the same basic effect through 
disciplined use of global variables for each of the elements of the enumeration. 

12.7 Named Constants
A named constant is like a variable except that you can’t change the constant’s value 
once you’ve assigned it. Named constants enable you to refer to fixed quantities, such 
as the maximum number of employees, by a name rather than a number—
MAXIMUM_EMPLOYEES rather than 1000, for instance.

Using a named constant is a way of “parameterizing” your program—putting an aspect 
of your program that might change into a parameter that you can change in one place 
rather than having to make changes throughout the program. If you have ever 
declared an array to be as big as you think it will ever need to be and then run out of 
space because it wasn’t big enough, you can appreciate the value of named constants. 
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When an array size changes, you change only the definition of the constant you used 
to declare the array. This “single-point control” goes a long way toward making soft-
ware truly “soft”: easy to work with and change.

Use named constants in data declarations Using named constants helps program 
readability and maintainability in data declarations and in statements that need to 
know the size of the data they are working with. In the following example, you use 
LOCAL_NUMBER_LENGTH to describe the length of employee phone numbers 
rather than the literal 7.

Good Visual Basic Example of Using a Named Constant in a Data Declaration 
Const AREA_CODE_LENGTH = 3

LOCAL_NUMBER_LENGTH 
is declared as a constant 
here.

Const LOCAL_NUMBER_LENGTH = 7

...

Type PHONE_NUMBER

   areaCode( AREA_CODE_LENGTH ) As String

It’s used here.    localNumber( LOCAL_NUMBER_LENGTH ) As String

End Type

...

' make sure all characters in phone number are digits 

It’s used here, too. For iDigit = 1 To LOCAL_NUMBER_LENGTH 

   If ( phoneNumber.localNumber( iDigit ) < "0" ) Or _

      ( "9" < phoneNumber.localNumber( iDigit ) ) Then

      ' do some error processing

      ...

This is a simple example, but you can probably imagine a program in which the infor-
mation about the phone-number length is needed in many places. 

At the time you create the program, the employees all live in one country, so you need 
only seven digits for their phone numbers. As the company expands and branches are 
established in different countries, you’ll need longer phone numbers. If you have 
parameterized, you can make the change in only one place: in the definition of the 
named constant LOCAL_NUMBER_LENGTH.

Further Reading For more 
details on the value of 
single-point control, see 
pages 57–60 of Software 
Conflict (Glass 1991).

As you might expect, the use of named constants has been shown to greatly aid program 
maintenance. As a general rule, any technique that centralizes control over things that 
might change is a good technique for reducing maintenance efforts (Glass 1991).

Avoid literals, even “safe” ones In the following loop, what do you think the 12 
represents?

Visual Basic Example of Unclear Code 
For i = 1 To 12

   profit( i ) = revenue( i ) – expense( i )

Next
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Because of the specific nature of the code, it appears that the code is probably looping 
through the 12 months in a year. But are you sure? Would you bet your Monty Python 
collection on it? 

In this case, you don’t need to use a named constant to support future flexibility: it’s 
not very likely that the number of months in a year will change anytime soon. But if 
the way the code is written leaves any shadow of a doubt about its purpose, clarify it 
with a well-named constant, like this:

Visual Basic Example of Clearer Code 
For i = 1 To NUM_MONTHS_IN_YEAR 

   profit( i ) = revenue( i ) – expense( i )

Next

This is better, but, to complete the example, the loop index should also be named 
something more informative:

Visual Basic Example of Even Clearer Code 
For month = 1 To NUM_MONTHS_IN_YEAR 

   profit( month ) = revenue( month ) – expense( month )

Next

This example seems quite good, but we can push it even one step further by using an 
enumerated type:

Visual Basic Example of Very Clear Code 
For month = Month_January To Month_December

   profit( month ) = revenue( month ) – expense( month )

Next

With this final example, there can be no doubt about the purpose of the loop.  Even 
if you think a literal is safe, use named constants instead. Be a fanatic about rooting 
out literals in your code. Use a text editor to search for 2, 3, 4, 5, 6, 7, 8, and 9 to make 
sure you haven’t used them accidentally.

Cross-Reference For details 
on simulating enumerated 
types, see “If Your Language 
Doesn’t Have Enumerated 
Types” in the previous sec-
tion, Section 12.6. 

Simulate named constants with appropriately scoped variables or classes If your lan-
guage doesn’t support named constants, you can create your own. By using an approach 
similar to the approach suggested in the earlier Java example in which enumerated 
types were simulated, you can gain many of the advantages of named constants. Typical 
scoping rules apply: prefer local scope, class scope, and global scope in that order.

Use named constants consistently It’s dangerous to use a named constant in one 
place and a literal in another to represent the same entity. Some programming prac-
tices beg for errors; this one is like calling an 800 number and having errors delivered 
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to your door. If the value of the named constant needs to be changed, you’ll change it 
and think you’ve made all the necessary changes. You’ll overlook the hard-coded liter-
als, your program will develop mysterious defects, and fixing them will be a lot harder 
than picking up the phone and yelling for help.

12.8 Arrays
Arrays are the simplest and most common type of structured data. In some languages, 
arrays are the only type of structured data. An array contains a group of items that are 
all of the same type and that are directly accessed through the use of an array index. 
Here are some tips on using arrays.

Make sure that all array indexes are within the bounds of the array In one way or 
another, all problems with arrays are caused by the fact that array elements can be 
accessed randomly. The most common problem arises when a program tries to access 
an array element that’s out of bounds. In some languages, this produces an error; in 
others, it simply produces bizarre and unexpected results.

Consider using containers instead of arrays, or think of arrays as sequential 
structures Some of the brightest people in computer science have suggested that 
arrays never be accessed randomly, but only sequentially (Mills and Linger 1986). 
Their argument is that random accesses in arrays are similar to random gotos in a pro-
gram: such accesses tend to be undisciplined, error prone, and hard to prove correct. 
They suggest using sets, stacks, and queues, whose elements are accessed sequen-
tially, rather than using arrays.

In a small experiment, Mills and Linger found that designs created this way resulted 
in fewer variables and fewer variable references. The designs were relatively efficient 
and led to highly reliable software. 

Consider using container classes that you can access sequentially—sets, stacks, 
queues, and so on—as alternatives before you automatically choose an array. 

Cross-Reference Issues in 
using arrays and loops are 
similar and related. For 
details on loops, see Chapter 
16, “Controlling Loops.”

Check the end points of arrays Just as it’s helpful to think through the end points in 
a loop structure, you can catch a lot of errors by checking the end points of arrays. Ask 
yourself whether the code correctly accesses the first element of the array or mistak-
enly accesses the element before or after the first element. What about the last ele-
ment? Will the code make an off-by-one error? Finally, ask yourself whether the code 
correctly accesses the middle elements of the array.

If an array is multidimensional, make sure its subscripts are used in the correct order
It’s easy to say Array[ i ][ j ] when you mean Array[ j ][ i ], so take the time to double-
check that the indexes are in the right order. Consider using more meaningful names 
than i and j in cases in which their roles aren’t immediately clear.

KEY POINT

1
2
3

HARD DATA
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Watch out for index cross-talk If you’re using nested loops, it’s easy to write Array[ j ] 
when you mean Array[ i ]. Switching loop indexes is called “index cross-talk.” Check for 
this problem. Better yet, use more meaningful index names than i and j to make it 
harder to commit cross-talk mistakes in the first place.

In C, use the ARRAY_LENGTH() macro to work with arrays You can build extra 
flexibility into your work with arrays by defining an ARRAY_LENGTH() macro that 
looks like this:

C Example of Defining an ARRAY_LENGTH() Macro 
#define ARRAY_LENGTH( x )   (sizeof(x)/sizeof(x[0]))

When you use operations on an array, instead of using a named constant for the 
upper bound of the array size, use the ARRAY_LENGTH() macro. Here’s an example:

C Example of Using the ARRAY_LENGTH() Macro for Array Operations 
ConsistencyRatios[] =

   { 0.0, 0.0, 0.58, 0.90, 1.12,

   1.24, 1.32, 1.41, 1.45, 1.49,

   1.51, 1.48, 1.56, 1.57, 1.59 };

   ...

Here’s where the macro is 
used.

for ( ratioIdx = 0; ratioIdx < ARRAY_LENGTH( ConsistencyRatios ); ratioIdx++ );

   ...

This technique is particularly useful for dimensionless arrays such as the one in this 
example. If you add or subtract entries, you don’t have to remember to change a 
named constant that describes the array’s size. Or course, the technique works with 
dimensioned arrays too, but if you use this approach, you don’t always need to set up 
an extra named constant for the array definition. 

12.9 Creating Your Own Types (Type Aliasing)
Programmer-defined data types are one of the most powerful capabilities a language 
can give you to clarify your understanding of a program. They protect your program 
against unforeseen changes and make it easier to read—all without requiring you to 
design, construct, or test new classes. If you’re using C, C++, or another language that 
allows user-defined types, take advantage of them! 

Cross-Reference In many 
cases, it’s better to create a 
class than to create a simple 
data type. For details, see 
Chapter 6, “Working 
Classes.”

To appreciate the power of type creation, suppose you’re writing a program to convert 
coordinates in an x, y, z system to latitude, longitude, and elevation. You think that 
double-precision floating-point numbers might be needed but would prefer to write a 
program with single-precision floating-point numbers until you’re absolutely sure. 
You can create a new type specifically for coordinates by using a typedef statement in 

KEY POINT
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C or C++ or the equivalent in another language. Here’s how you’d set up the type def-
inition in C++:

C++ Example of Creating a Type
typedef float Coordinate;  // for coordinate variables

This type definition declares a new type, Coordinate, that’s functionally the same as 
the type float. To use the new type, you declare variables with it just as you would with 
a predefined type such as float. Here’s an example:

C++ Example of Using the Type You’ve Created
Routine1( ... ) {

   Coordinate latitude;     // latitude in degrees

   Coordinate longitude;    // longitude in degrees

   Coordinate elevation;    // elevation in meters from earth center

   ...

}

...

Routine2( ... ) {

   Coordinate x;   // x coordinate in meters

   Coordinate y;   // y coordinate in meters

   Coordinate z;   // z coordinate in meters

   ...

}

In this code, the variables latitude, longitude, elevation, x, y, and z are all declared to be 
of type Coordinate.

Now suppose that the program changes and you find that you need to use double-pre-
cision variables for coordinates after all. Because you defined a type specifically for 
coordinate data, all you have to change is the type definition. And you have to change 
it in only one place: in the typedef statement. Here’s the changed type definition:

C++ Example of Changed Type Definition
The original float has 
changed to double.

typedef double Coordinate;  // for coordinate variables

Here’s a second example—this one in Pascal. Suppose you’re creating a payroll system 
in which employee names are a maximum of 30 characters long. Your users have told 
you that no one ever has a name longer than 30 characters. Do you hard-code the 
number 30 throughout your program? If you do, you trust your users a lot more than 
I trust mine! A better approach is to define a type for employee names:

Pascal Example of Creating a Type for Employee Names
Type

   employeeName = array[ 1..30 ] of char;



12.9 Creating Your Own Types (Type Aliasing) 313

When a string or an array is involved, it’s usually wise to define a named constant that 
indicates the length of the string or array and then use the named constant in the type 
definition. You’ll find many places in your program in which to use the constant—this 
is just the first place in which you’ll use it. Here’s how it looks:

Pascal Example of Better Type Creation
Const

Here’s the declaration of 
the named constant.

   NAME_LENGTH = 30;

   ...

Type

Here’s where the named 
constant is used.

   employeeName = array[ 1..NAME_LENGTH ] of char;

A more powerful example would combine the idea of creating your own types with 
the idea of information hiding. In some cases, the information you want to hide is 
information about the type of the data.

The coordinates example in C++ is about halfway to information hiding. If you always 
use Coordinate rather than float or double, you effectively hide the type of the data. In 
C++, this is about all the information hiding the language does for you. For the rest, 
you or subsequent users of your code have to have the discipline not to look up the 
definition of Coordinate. C++ gives you figurative, rather than literal, information-hid-
ing ability.

Other languages, such as Ada, go a step further and support literal information hid-
ing. Here’s how the Coordinate code fragment would look in an Ada package that 
declares it:

Ada Example of Hiding Details of a Type Inside a Package
package Transformation is

This statement declares 
Coordinate as private to the 
package.

   type Coordinate is private;

   ...

Here’s how Coordinate looks in another package, one that uses it:

Ada Example of Using a Type from Another Package
with Transformation;

...

procedure Routine1(...) ...

   latitude:  Coordinate;

   longitude: Coordinate;

begin

   -- statements using latitude and longitude

   ...

end Routine1;

Quratek
Typewritten Text
V413HAV
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Notice that the Coordinate type is declared as private in the package specification. That 
means that the only part of the program that knows the definition of the Coordinate 
type is the private part of the Transformation package. In a development environment 
with a group of programmers, you could distribute only the package specification, 
which would make it harder for a programmer working on another package to look 
up the underlying type of Coordinate. The information would be literally hidden. Lan-
guages like C++ that require you to distribute the definition of Coordinate in header 
files undermine true information hiding. 

These examples have illustrated several reasons to create your own types:

■ To make modifications easier It’s little work to create a new type, and it gives 
you a lot of flexibility.

■ To avoid excessive information distribution Hard typing spreads data-typ-
ing details around your program instead of centralizing them in one place. This 
is an example of the information-hiding principle of centralization discussed in 
Section 6.2.

■ To increase reliability In Ada, you can define types such as type Age is range 
0..99. The compiler then generates run-time checks to verify that any variable of 
type Age is always within the range 0..99.

■ To make up for language weaknesses If your language doesn’t have the pre-
defined type you want, you can create it yourself. For example, C doesn’t have a 
boolean or logical type. This deficiency is easy to compensate for by creating the 
type yourself:

typedef int Boolean;

Why Are the Examples of Creating Your Own Types in Pascal and Ada?

Pascal and Ada have gone the way of the stegosaurus and, in general, the languages 
that have replaced them are more usable. In the area of simple type definitions, how-
ever, I think C++, Java, and Visual Basic represent a case of three steps forward and 
one step back. An Ada declaration like 

currentTemperature: INTEGER range 0..212;

contains important semantic information that a statement like

int temperature;

does not. Going a step further, a type declaration like

type Temperature is range 0..212;

...

currentTemperature: Temperature;
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allows the compiler to ensure that currentTemperature is assigned only to other vari-
ables with the Temperature type, and very little extra coding is required to provide that 
extra safety margin. 

Of course, a programmer could create a Temperature class to enforce the same seman-
tics that were enforced automatically by the Ada language, but the step from creating 
a simple data type in one line of code to creating a class is a big step. In many situa-
tions, a programmer would create the simple type but would not step up to the addi-
tional effort of creating a class.  

Guidelines for Creating Your Own Types
Cross-Reference In each 
case, consider whether cre-
ating a class might work bet-
ter than a simple data type. 
For details, see Chapter 6, 
“Working Classes.”

Keep these guidelines in mind as you create your own “user-defined” types:

Create types with functionally oriented names Avoid type names that refer to the 
kind of computer data underlying the type. Use type names that refer to the parts of 
the real-world problem that the new type represents. In the previous examples, the 
definitions created well-named types for coordinates and names—real-world entities. 
Similarly, you could create types for currency, payment codes, ages, and so on—aspects 
of real-world problems.

Be wary of creating type names that refer to predefined types. Type names like BigIn-
teger or LongString refer to computer data rather than the real-world problem. The big 
advantage of creating your own type is that it provides a layer of insulation between 
your program and the implementation language. Type names that refer to the under-
lying programming-language types poke holes in that insulation. They don’t give you 
much advantage over using a predefined type. Problem-oriented names, on the other 
hand, buy you easy modifiability and data declarations that are self-documenting.

Avoid predefined types If there is any possibility that a type might change, avoid using 
predefined types anywhere but in typedef or type definitions. It’s easy to create new types 
that are functionally oriented, and it’s hard to change data in a program that uses hard-
wired types. Moreover, use of functionally oriented type declarations partially docu-
ments the variables declared with them. A declaration like Coordinate x tells you a lot 
more about x than a declaration like float x. Use your own types as much as you can.

Don’t redefine a predefined type Changing the definition of a standard type can cre-
ate confusion. For example, if your language has a predefined type Integer, don’t create 
your own type called Integer. Readers of your code might forget that you’ve redefined 
the type and assume that the Integer they see is the Integer they’re used to seeing.

Define substitute types for portability In contrast to the advice that you not change 
the definition of a standard type, you might want to define substitutes for the stan-
dard types so that on different hardware platforms you can make the variables repre-
sent exactly the same entities. For example, you can define a type INT32 and use it 
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instead of int, or a type LONG64 instead of long. Originally, the only difference 
between the two types would be their capitalization. But when you moved the pro-
gram to a new hardware platform, you could redefine the capitalized versions so that 
they could match the data types on the original hardware.

Be sure not to define types that are easily mistaken for predefined types. It would be 
possible to define INT rather than INT32, but you’re better off creating a clean distinc-
tion between types you define and types provided by the language.  

Consider creating a class rather than using a typedef Simple typedefs can go a long 
way toward hiding information about a variable’s underlying type. In some cases, 
however, you might want the additional flexibility and control you’ll achieve by creat-
ing a class. For details, see Chapter 6, “Working Classes.”

cc2e.com/1206

Cross-Reference For a 
checklist that applies to 
general data issues rather 
than to issues with specific 
types of data, see the check-
list on page 257 in Chapter 
10, “General Issues in Using 
Variables.” For a checklist of 
considerations in naming 
varieties, see the checklist on 
page 288 in Chapter 11, “The 
Power of Variable Names.”

CHECKLIST: Fundamental Data
Numbers in General

❑ Does the code avoid magic numbers?

❑ Does the code anticipate divide-by-zero errors?

❑ Are type conversions obvious?

❑ If variables with two different types are used in the same expression, will 
the expression be evaluated as you intend it to be?

❑ Does the code avoid mixed-type comparisons?

❑ Does the program compile with no warnings?

Integers
❑ Do expressions that use integer division work the way they’re meant to? 

❑ Do integer expressions avoid integer-overflow problems? 

Floating-Point Numbers
❑ Does the code avoid additions and subtractions on numbers with greatly 

different magnitudes?

❑ Does the code systematically prevent rounding errors?

❑ Does the code avoid comparing floating-point numbers for equality? 

Characters and Strings
❑ Does the code avoid magic characters and strings? 

❑ Are references to strings free of off-by-one errors? 



12.9 Creating Your Own Types (Type Aliasing) 317

❑ Does C code treat string pointers and character arrays differently? 

❑ Does C code follow the convention of declaring strings to be length CON-
STANT+1?

❑ Does C code use arrays of characters rather than pointers, when appropriate?

❑ Does C code initialize strings to NULLs to avoid endless strings?

❑ Does C code use strncpy() rather than strcpy()? And strncat() and 
strncmp()?

Boolean Variables
❑ Does the program use additional boolean variables to document condi-

tional tests?

❑ Does the program use additional boolean variables to simplify conditional 
tests?

Enumerated Types
❑ Does the program use enumerated types instead of named constants for 

their improved readability, reliability, and modifiability?

❑ Does the program use enumerated types instead of boolean variables 
when a variable’s use cannot be completely captured with true and false?

❑ Do tests using enumerated types test for invalid values?

❑ Is the first entry in an enumerated type reserved for “invalid”? 

Named Constants
❑ Does the program use named constants for data declarations and loop 

limits rather than magic numbers?

❑ Have named constants been used consistently—not used as named con-
stants in some places and as literals in others?

Arrays
❑ Are all array indexes within the bounds of the array? 

❑ Are array references free of off-by-one errors?

❑ Are all subscripts on multidimensional arrays in the correct order? 

❑ In nested loops, is the correct variable used as the array subscript, avoid-
ing loop-index cross-talk?
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Creating Types
❑ Does the program use a different type for each kind of data that might 

change?

❑ Are type names oriented toward the real-world entities the types represent 
rather than toward programming-language types?

❑ Are the type names descriptive enough to help document data declarations?

❑ Have you avoided redefining predefined types?

❑ Have you considered creating a new class rather than simply redefining a 
type?

Key Points
■ Working with specific data types means remembering many individual rules for 

each type. Use this chapter’s checklist to make sure that you’ve considered the 
common problems.

■ Creating your own types makes your programs easier to modify and more self-
documenting, if your language supports that capability. 

■ When you create a simple type using typedef or its equivalent, consider whether 
you should be creating a new class instead. 
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Chapter 13

Unusual Data Types
cc2e.com/1378 Contents

■ 13.1 Structures: page 319

■ 13.2 Pointers: page 323

■ 13.3 Global Data: page 335

Related Topics

■ Fundamental data types: Chapter 12

■ Defensive programming: Chapter 8

■ Unusual control structures: Chapter 17

■ Complexity in software development: Section 5.2

Some languages support exotic kinds of data in addition to the data types discussed 
in Chapter 12, “Fundamental Data Types.” Section 13.1 describes when you might 
still use structures rather than classes in some circumstances. Section 13.2 describes 
the ins and outs of using pointers. If you’ve ever encountered problems associated 
with using global data, Section 13.3 explains how to avoid such difficulties. If you 
think the data types described in this chapter are not the types you normally read 
about in modern object-oriented programming books, you’re right. That’s why the 
chapter is called “Unusual Data Types.”

13.1 Structures
The term “structure” refers to data that’s built up from other types. Because arrays are 
a special case, they are treated separately in Chapter 12. This section deals with user-
created structured data—structs in C and C++ and Structures in Microsoft Visual Basic. 
In Java and C++, classes also sometimes perform as structures (when the class con-
sists entirely of public data members with no public routines).

You’ll generally want to create classes rather than structures so that you can take 
advantage of the privacy and functionality offered by classes in addition to the public 
data supported by structures. But sometimes directly manipulating blocks of data can 
be useful, so here are some reasons for using structures:
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Use structures to clarify data relationships Structures bundle groups of related 
items together. Sometimes the hardest part of figuring out a program is figuring out 
which data goes with which other data. It’s like going to a small town and asking 
who’s related to whom. You come to find out that everybody’s kind of related to every-
body else, but not really, and you never get a good answer.

If the data has been carefully structured, figuring out what goes with what is much 
easier. Here’s an example of data that hasn’t been structured:

Visual Basic Example of Misleading, Unstructured Variables
name = inputName

address = inputAddress

phone = inputPhone

title = inputTitle

department = inputDepartment

bonus = inputBonus

Because this data is unstructured, it looks as if all the assignment statements belong 
together. Actually, name, address, and phone are variables associated with individual 
employees, and title, department, and bonus are variables associated with a supervisor. 
The code fragment provides no hint that there are two kinds of data at work. In the 
code fragment below, the use of structures makes the relationships clearer:

Visual Basic Example of More Informative, Structured Variables
employee.name = inputName

employee.address = inputAddress

employee.phone = inputPhone

supervisor.title = inputTitle

supervisor.department = inputDepartment

supervisor.bonus = inputBonus

In the code that uses structured variables, it’s clear that some of the data is associated 
with an employee, other data with a supervisor.

Use structures to simplify operations on blocks of data You can combine related ele-
ments into a structure and perform operations on the structure. It’s easier to operate 
on the structure than to perform the same operation on each of the elements. It’s also 
more reliable, and it takes fewer lines of code.

Suppose you have a group of data items that belong together—for instance, data about 
an employee in a personnel database. If the data isn’t combined into a structure, 
merely copying the group of data can involve a lot of statements. Here’s an example in 
Visual Basic:
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Visual Basic Example of Copying a Group of Data Items Clumsily
newName = oldName

newAddress = oldAddress

newPhone = oldPhone

newSsn = oldSsn

newGender = oldGender

newSalary = oldSalary

Every time you want to transfer information about an employee, you have to have this 
whole group of statements. If you ever add a new piece of employee information—for 
example, numWithholdings—you have to find every place at which you have a block of 
assignments and add an assignment for newNumWithholdings = oldNumWithholdings.

Imagine how horrible swapping data between two employees would be. You don’t 
have to use your imagination—here it is:

Visual Basic Example of Swapping Two Groups of Data the Hard Way
' swap new and old employee data

previousOldName = oldName

previousOldAddress = oldAddress

previousOldPhone = oldPhone

previousOldSsn = oldSsn

previousOldGender = oldGender

previousOldSalary = oldSalary

oldName = newName

oldAddress = newAddress

oldPhone = newPhone

oldSsn = newSsn

oldGender = newGender

oldSalary = newSalary

newName = previousOldName

newAddress = previousOldAddress

newPhone = previousOldPhone

newSsn = previousOldSsn

newGender = previousOldGender

newSalary = previousOldSalary

An easier way to approach the problem is to declare a structured variable:

Visual Basic Example of Declaring Structures
Structure Employee

   name As String

   address As String

   phone As String

   ssn As String

   gender As String

   salary As long

CODING 
HORROR



322 Chapter 13: Unusual Data Types

End Structure

Dim newEmployee As Employee

Dim oldEmployee As Employee

Dim previousOldEmployee As Employee

Now you can switch all the elements in the old and new employee structures with 
three statements:

Visual Basic Example of an Easier Way to Swap Two Groups of Data
previousOldEmployee = oldEmployee

oldEmployee = newEmployee

newEmployee = previousOldEmployee

If you want to add a field such as numWithholdings, you simply add it to the Structure 
declaration. Neither the three statements above nor any similar statements through-
out the program need to be modified. C++ and other languages have similar capabili-
ties.

Cross-Reference For details 
on how much data to share 
between routines, see “Keep 
Coupling Loose” in Section 
5.3.

Use structures to simplify parameter lists You can simplify routine parameter lists 
by using structured variables. The technique is similar to the one just shown. Rather 
than passing each of the elements needed individually, you can group related ele-
ments into a structure and pass the whole enchilada as a group structure. Here’s an 
example of the hard way to pass a group of related parameters:

Visual Basic Example of a Clumsy Routine Call Without a Structure
HardWayRoutine( name, address, phone, ssn, gender, salary )

And this is an example of the easy way to call a routine by using a structured variable 
that contains the elements of the first parameter list:

Visual Basic Example of an Elegant Routine Call with a Structure
EasyWayRoutine( employee )

If you want to add numWithholdings to the first kind of call, you have to wade through 
your code and change every call to HardWayRoutine(). If you add a numWithholdings ele-
ment to Employee, you don’t have to change the parameters to EasyWayRoutine() at all.

Cross-Reference For details 
on the hazards of passing 
too much data, see “Keep 
Coupling Loose” in Section 
5.3.

You can carry this technique to extremes, putting all the variables in your program 
into one big, juicy variable and then passing it everywhere. Careful programmers 
avoid bundling data any more than is logically necessary. Furthermore, careful pro-
grammers avoid passing a structure as a parameter when only one or two fields from 
the structure are needed—they pass the specific fields needed instead. This is an 
aspect of information hiding: some information is hidden in routines, and some is hid-
den from routines. Information is passed around on a need-to-know basis.
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Use structures to reduce maintenance Because you group related data when you use 
structures, changing a structure requires fewer changes throughout a program. This is 
especially true in sections of code that aren’t logically related to the change in the 
structure. Since changes tend to produce errors, fewer changes mean fewer errors. If 
your Employee structure has a title field and you decide to delete it, you don’t need to 
change any of the parameter lists or assignment statements that use the whole struc-
ture. Of course, you have to change any code that deals specifically with employee 
titles, but that is conceptually related to deleting the title field and is hard to overlook.

The big advantage of structured the data is found in sections of code that bear no log-
ical relation to the title field. Sometimes programs have statements that refer concep-
tually to a collection of data rather than to individual components. In such cases, 
individual components, such as the title field, are referenced merely because they are 
part of the collection. Such sections of code don’t have any logical reason to work with 
the title field specifically, and those sections are easy to overlook when you change 
title. If you use a structure, it’s all right to overlook such sections because the code 
refers to the collection of related data rather than to each component individually.

13.2 Pointers
Pointer usage is one of the most error-prone areas of modern programming, to such 
an extent that modern languages like Java, C#, and Visual Basic don’t provide a 
pointer data type. Using pointers is inherently complicated, and using them correctly 
requires that you have an excellent understanding of your compiler’s memory-man-
agement scheme. Many common security problems, especially buffer overruns, can be 
traced back to erroneous use of pointers (Howard and LeBlanc 2003).

Even if your language doesn’t require you to use pointers, a good understanding of 
pointers will help your understanding of how your programming language works. A 
liberal dose of defensive programming practices will help even further.

Paradigm for Understanding Pointers

Conceptually, every pointer consists of two parts: a location in memory and a knowl-
edge of how to interpret the contents of that location.

Location in Memory

The location in memory is an address, often expressed in hexadecimal notation. An 
address on a 32-bit processor would be a 32-bit value, such as 0x0001EA40. The 
pointer itself contains only this address. To use the data the pointer points to, you 
have to go to that address and interpret the contents of memory at that location. If you 
were to look at the memory in that location, it would be just a collection of bits. It has 
to be interpreted to be meaningful.

KEY POINT
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Knowledge of How to Interpret the Contents

The knowledge of how to interpret the contents of a location in memory is provided 
by the base type of the pointer. If a pointer points to an integer, what that really means 
is that the compiler interprets the memory location given by the pointer as an integer. 
Of course, you can have an integer pointer, a string pointer, and a floating-point 
pointer all pointing at the same memory location. But only one of the pointers inter-
prets the contents at that location correctly.

In thinking about pointers, it’s helpful to remember that memory doesn’t have any 
inherent interpretation associated with it. It is only through use of a specific type of 
pointer that the bits in a particular location are interpreted as meaningful data.

Figure 13-1 shows several views of the same location in memory, interpreted in several 
different ways.

Figure 13-1 The amount of memory used by each data type is shown by double lines.

In each of the cases in Figure 13-1, the pointer points to the location containing the hex 
value 0x0A. The number of bytes used beyond the 0A depends on how the memory is 
interpreted. The way memory contents are used also depends on how the memory is 

0A 61 62 63 64 65 66 67 68 69 6A

Viewed as: Raw memory contents used for further examples (in hex)
Interpreted as: No interpretation possible without associated pointer variable

65 66 67 68 69 6A

68 69 6A

6A

Viewed as: char
Interpreted as: linefeed character (ASCII hex 0A or decimal 10)

0A 61 62 63 64 65 66 67 68 69 6A

Viewed as: 4-byte integer
Interpreted as: 1667391754

0A 61 62 63 64 65 66 67 68 69

Viewed as: 4-byte floating point
Interpreted as: 4.17595656202980E+0021

0A 61 62 63 64 65 66 67

Viewed as: 2-byte integer
Interpreted as: 24842

0A 61 62 63 64

Viewed as: String[10] (in Visual Basic format with length byte first)
Interpreted as: abcdefghij

0A 61 62 63 64 65 66 67 68 69 6A
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interpreted. (It also depends on what processor you’re using, so keep that in mind if you 
try to duplicate these results on your Desktop Cray.) The same raw memory contents 
can be interpreted as a string, an integer, a floating point, or anything else—it all depends 
on the base type of the pointer that points to the memory.

General Tips on Pointers

With many types of defects, locating the error is the easiest part of dealing with the error 
and correcting it is the hard part. Pointer errors are different. A pointer error is usually 
the result of a pointer’s pointing somewhere it shouldn’t. When you assign a value to a 
bad pointer variable, you write data into an area of memory you shouldn’t. This is called 
“memory corruption.” Sometimes memory corruption produces horrible, fiery system 
crashes; sometimes it alters the results of a calculation in another part of the program; 
sometimes it causes your program to skip routines unpredictably; and sometimes it 
doesn’t do anything at all. In the last case, the pointer error is a ticking time bomb, wait-
ing to ruin your program five minutes before you show it to your most important cus-
tomer. Symptoms of pointer errors tend to be unrelated to causes of pointer errors. 
Thus, most of the work in correcting a pointer error is locating the cause.

Working with pointers successfully requires a two-pronged strategy. First, avoid 
installing pointer errors in the first place. Pointer errors are so difficult to find that 
extra preventive measures are justified. Second, detect pointer errors as soon after 
they are coded as possible. Symptoms of pointer errors are so erratic that extra mea-
sures to make the symptoms more predictable are justified. Here’s how to achieve 
these key goals:

Isolate pointer operations in routines or classes Suppose you use a linked list in sev-
eral places in a program. Rather than traversing the list manually each place it’s used, 
write access routines such as NextLink(), PreviousLink(), InsertLink(), and DeleteLink(). 
By minimizing the number of places in which pointers are accessed, you minimize the 
possibility of making careless mistakes that spread throughout your program and take 
forever to find. Because the code is then relatively independent of data-implementation 
details, you also improve the chance that you can reuse it in other programs. Writing 
routines for pointer allocation is another way to centralize control over your data.

Declare and define pointers at the same time Assigning a variable its initial value 
close to where it is declared is generally good programming practice, and it’s all the 
more valuable when working with pointers. Here is an example of what not to do:

C++ Example of Bad Pointer Initialization
Employee *employeePtr;

// lots of code

...

employeePtr = new Employee;

KEY POINT
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If even this code works correctly initially, it’s error-prone under modification because 
a chance exists that someone will try to use employeePtr between the point where the 
pointer is declared and the time it’s initialized. Here’s a safer approach:

C++ Example of Good Pointer Initialization
// lots of code

...

Employee *employeePtr = new Employee;

Delete pointers at the same scoping level as they were allocated Keep allocation and 
deallocation of pointers symmetric. If you use a pointer within a single scope, call new 
to allocate and delete to deallocate the pointer within the same scope. If you allocate a 
pointer inside a routine, deallocate it inside a sister routine. If you allocate a pointer 
inside an object’s constructor, deallocate it inside the object’s destructor. A routine 
that allocates memory and then expects its client code to deallocate the memory man-
ually creates an inconsistency that is ripe for error.

Check pointers before using them Before you use a pointer in a critical part of your 
program, make sure the memory location it points to is reasonable. For example, if 
you expect memory locations to be between StartData and EndData, you should take 
a suspicious view of a pointer that points before StartData or after EndData. You’ll 
have to determine what the values of StartData and EndData are in your environment. 
You can set this up to work automatically if you use pointers through access routines 
rather than manipulate them directly.

Check the variable referenced by the pointer before using it Sometimes you can per-
form reasonableness checks on the value the pointer points to. For example, if you’re 
supposed to be pointing to an integer value between 0 and 1000, you should be sus-
picious of values over 1000. If you’re pointing to a C++-style string, you might be sus-
picious of strings with lengths greater than 100. This can also be done automatically 
if you work with pointers through access routines.

Use dog-tag fields to check for corrupted memory A “tag field” or “dog tag” is a field 
you add to a structure solely for the purpose of error checking. When you allocate a 
variable, put a value that should remain unchanged into its tag field. When you use 
the structure—especially when you delete the memory—check the tag field’s value. If 
the tag field doesn’t have the expected value, the data has been corrupted.

When you delete the pointer, corrupt the field so that if you accidentally try to free the 
same pointer again, you’ll detect the corruption. For example, let’s say that you need 
to allocate 100 bytes:

1. First, new 104 bytes, 4 bytes more than requested.

104 bytes
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2. Set the first 4 bytes to a dog-tag value, and then return a pointer to the memory 
that starts after that.

3. When the time comes to delete the pointer, check the tag.

4. If the tag is OK, set it to 0 or some other value that you and your program recog-
nize as an invalid tag value. You don’t want the value to be mistaken for a valid 
tag after the memory has been freed. Set the data to 0, 0xCC, or some other non-
random value for the same reason.

5. Finally, delete the pointer.

Putting a dog tag at the beginning of the memory block you’ve allocated allows you to 
check for redundant attempts to deallocate the memory block without needing to 
maintain a list of all the memory blocks you’ve allocated. Putting the dog tag at the 
end of the memory block allows you to check for overwriting memory beyond the 
location that was supposed to be used. You can use tags at the beginning and the end 
of the block to accomplish both objectives.

You can use this approach in concert with the reasonableness check suggested ear-
lier—checking that the pointers are between StartData and EndData. To be sure that a 
pointer points to a reasonable location, rather than checking for a probable range of 
memory, check to see that the pointer is in the list of allocated pointers.

You could check the tag field just once before you delete the variable. A corrupted tag 
would then tell you that sometime during the life of that variable its contents were cor-
rupted. The more often you check the tag field, however, the closer to the root of the 
problem you will detect the corruption.

Add explicit redundancies An alternative to using a tag field is to use certain fields 
twice. If the data in the redundant fields doesn’t match, you know memory has been 
corrupted. This can result in a lot of overhead if you manipulate pointers directly. If 
you isolate pointer operations in routines, however, it adds duplicate code in only a 
few places.

Use extra pointer variables for clarity By all means, don’t skimp on pointer vari-
ables. The point is made elsewhere that a variable shouldn’t be used for more than 
one purpose. This is especially true for pointer variables. It’s hard enough to figure out 

tag

Set pointer to here.

tag

Check this tag.

Free the whole 104 bytes
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what someone is doing with a linked list without having to figure out why one 
genericLink variable is used over and over again or what pointer->next->last->next is 
pointing at. Consider this code fragment:

C++ Example of Traditional Node Insertion Code
void InsertLink(

   Node *currentNode,

   Node *insertNode

   ) {

   // insert "insertNode" after "currentNode"

   insertNode->next = currentNode->next;

   insertNode->previous = currentNode;

   if ( currentNode->next != NULL ) {

This line is needlessly 
difficult.

      currentNode->next->previous = insertNode;

   }

   currentNode->next = insertNode;

}

This is traditional code for inserting a node in a linked list, and it’s needlessly hard to 
understand. Inserting a new node involves three objects: the current node, the node 
currently following the current node, and the node to be inserted between them. The 
code fragment explicitly acknowledges only two objects: insertNode and currentNode. 
It forces you to figure out and remember that currentNode->next is also involved. If you 
tried to diagram what is happening without the node originally following currentNode, 
you would get something like this:

A better diagram would identify all three objects. It would look like this:

Here’s code that explicitly references all three of the objects involved:

C++ Example of More Readable Node-Insertion Code
void InsertLink(

   Node *startNode,

   Node *newMiddleNode

   ) {

   // insert "newMiddleNode" between "startNode" and "followingNode"

   Node *followingNode = startNode->next;

   newMiddleNode->next = followingNode;

   newMiddleNode->previous = startNode;

   if ( followingNode != NULL ) {

      followingNode->previous = newMiddleNode;

   }

   startNode->next = newMiddleNode;

}

currentNode insertNode

startNode newMiddleNode followingNode
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This code fragment has an extra line of code, but without the first fragment’s current-
Node->next->previous, it’s easier to follow.

Simplify complicated pointer expressions Complicated pointer expressions are hard 
to read. If your code contains expressions like p->q->r->s.data, think about the person 
who has to read the expression. Here’s a particularly egregious example:

C++ Example of a Pointer Expression That’s Hard to Understand
for ( rateIndex = 0; rateIndex < numRates; rateIndex++ ) {

   netRate[ rateIndex ] = baseRate[ rateIndex ] * rates->discounts->factors->net;

}

Complicated expressions like the pointer expression in this example make for code 
that has to be figured out rather than read. If your code contains a complicated expres-
sion, assign it to a well-named variable to clarify the intent of the operation. Here’s an 
improved version of the example:

C++ Example of Simplifying a Complicated Pointer Expression
quantityDiscount = rates->discounts->factors->net;

for ( rateIndex = 0; rateIndex < numRates; rateIndex++ ) {

   netRate[ rateIndex ] = baseRate[ rateIndex ] * quantityDiscount;

}

With this simplification, not only do you get a gain in readability, but you might also get 
a boost in performance from simplifying the pointer operation inside the loop. As usual, 
you’d have to measure the performance benefit before you bet any folding money on it.

Draw a picture Code descriptions of pointers can get confusing. It usually helps to 
draw a picture. For example, a picture of the linked-list insertion problem might look 
like the one shown in Figure 13-2.

Cross-Reference Diagrams 
such as the one in Figure 
13-2 can become part of the 
external documentation of 
your program. For details on 
good documentation prac-
tices, see Chapter 32, “Self-
Documenting Code.”

Figure 13-2 An example of a picture that helps us think through the steps involved in 
relinking pointers.
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Initial Linkage

followingNode->previous

startNode->next
startNode followingNode

Desired Linkage

followingNode->previousstartNode->next

startNode followingNode

newMiddleNode

newMiddleNode->previous newMiddleNode->next
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Delete pointers in linked lists in the right order A common problem in working with 
dynamically allocated linked lists is freeing the first pointer in the list first and then 
not being able to get to the next pointer in the list. To avoid this problem, make sure 
that you have a pointer to the next element in a list before you free the current one.

Allocate a reserve parachute of memory If your program uses dynamic memory, you 
need to avoid the problem of suddenly running out of memory, leaving your user and 
your user’s data lost in RAM space. One way to give your program a margin of error is 
to preallocate a memory parachute. Determine how much memory your program 
needs to save work, clean up, and exit gracefully. Allocate that amount of memory at 
the beginning of the program as a reserve parachute, and leave it alone. When you run 
out of memory, free the reserve parachute, clean up, and shut down.

Further Reading For an 
excellent discussion of safe 
approaches to handling 
pointers in C, see Writing 
Solid Code (Maguire 1993).

Shred your garbage Pointer errors are hard to debug because the point at which the 
memory the pointer points to becomes invalid is not deterministic. Sometimes the 
memory contents will look valid long after the pointer is freed. Other times, the mem-
ory will change right away.

In C, you can force errors related to using deallocated pointers to be more consistent 
by overwriting memory blocks with junk data right before they’re deallocated. As with 
many other operations, you can do this automatically if you use access routines. In C, 
each time you delete a pointer, you could use code like this:

C Example of Forcing a Deallocated Object to Contain Junk Data
pointer->SetContentsToGarbage();

delete pointer;

Of course, this technique will not work in C++ where the pointer points to an object, 
and it requires you to implement a Set Contents to Garbage routine for each object..

Set pointers to null after deleting or freeing them A common type of pointer error is 
the “dangling pointer,” use of a pointer that has been delete’d or free’d. One reason 
pointer errors are hard to detect is that sometimes the error doesn’t produce any 
symptoms. By setting pointers to null after freeing them, you don’t change the fact 
that you can read data pointed to by a dangling pointer. But you do ensure that writing 
data to a dangling pointer produces an error. It will probably be an ugly, nasty, disas-
ter of an error, but at least you’ll find it instead of someone else finding it.

The code preceding the delete operation in the previous example could be augmented 
to handle this, too:

C++ Example of Setting a Pointer to Null After Deleting It
pointer->SetContentsToGarbage();

delete pointer;

pointer = NULL;
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Check for bad pointers before deleting a variable One of the best ways to ruin a pro-
gram is to delete() or free() a pointer after it has already been delete’d or free’d. Unfor-
tunately, few languages detect this kind of problem.

Setting freed pointers to null also allows you to check whether a pointer is set to null 
before you use it or attempt to delete it again; if you don’t set freed pointers to null, you 
won’t have that option. That suggests another addition to the pointer deletion code:

C++ Example of Asserting That a Pointer Is Not Null Before Deleting It
ASSERT( pointer != NULL, "Attempting to delete null pointer." );

pointer->SetContentsToGarbage();

delete pointer;

pointer = NULL;

Keep track of pointer allocations Keep a list of the pointers you have allocated. This 
allows you to check whether a pointer is in the list before you dispose of it. Here’s an 
example of how the standard pointer deletion code could be modified to include that:

C++ Example of Checking Whether a Pointer Has Been Allocated
ASSERT( pointer != NULL, "Attempting to delete null pointer." );

if ( IsPointerInList( pointer ) ) {

   pointer->SetContentsToGarbage();

   RemovePointerFromList( pointer );

   delete pointer;

   pointer = NULL;

}

else {

   ASSERT( FALSE, "Attempting to delete unallocated pointer." );

}

Write cover routines to centralize your strategy to avoiding pointer problems As you 
can see from this example, you can end up with quite a lot of extra code each time a 
pointer is new’d or delete’d. Some of the techniques described in this section are mutu-
ally exclusive or redundant, and you wouldn’t want to have multiple, conflicting strat-
egies in use in the same code base. For example, you don’t need to create and check 
dog-tag values if you’re maintaining your own list of valid pointers.

You can minimize programming overhead and reduce chance of errors by creating cover 
routines for common pointer operations. In C++, you could use these two routines:

� SAFE_NEW This routine calls new to allocate the pointer, adds the new 
pointer to a list of allocated pointers, and returns the newly allocated pointer to 
the calling routine. It can also be checked for an exception or a null return from 
new (aka an “out-of-memory” error) in this one place only, which simplifies 
error processing in other parts of your program.
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� SAFE_DELETE This routine checks to see whether the pointer passed to it is 
in the list of allocated pointers. If it is in the list, it sets the variable the pointer 
pointed at to garbage values, removes the pointer from the list, calls C++’s delete 
operator to deallocate the pointer, and sets the pointer to null. If the pointer isn’t 
in the list, SAFE_DELETE displays a diagnostic message and stops the program.

Implemented here as a macro, the SAFE_DELETE routine looks like this:

C++ Example of Putting a Wrapper Around Pointer Deletion Code
#define SAFE_DELETE( pointer ) { \

   ASSERT( pointer != NULL, "Attempting to delete null pointer."); \

   if ( IsPointerInList( pointer ) ) { \

      pointer->SetContentsToGarbage();

      RemovePointerFromList( pointer ); \

      delete pointer; \

      pointer = NULL; \

   } \

   else { \

      ASSERT( FALSE, "Attempting to delete unallocated pointer." ); \

   } \

}

Cross-Reference For details 
on planning to remove code 
used for debugging, see 
“Plan to Remove Debugging 
Aids” in Section 8.6.

In C++, this routine will delete individual pointers, but you would also need to imple-
ment a similar SAFE_DELETE_ARRAY routine to delete arrays.

By centralizing memory handling in these two routines, you can also make 
SAFE_NEW and SAFE_DELETE behave differently in debug mode vs. production 
mode. For example, when SAFE_DELETE detects an attempt to free a null pointer dur-
ing development, it might stop the program, but during production it might simply 
log an error and continue processing.

You can easily adapt this scheme to calloc and free in C and to other languages that use 
pointers.

Use a nonpointer technique Pointers are harder than average to understand, they’re 
error-prone, and they tend to require machine-dependent, unportable code. If you can 
think of an alternative to using a pointer that works reasonably, save yourself a few 
headaches and use it instead.

C++-Pointer Pointers
Further Reading For many 
more tips on using pointers 
in C++, see Effective C++, 2d 
ed. (Meyers 1998) and More 
Effective C++ (Meyers 1996).

C++ introduces some specific wrinkles related to using pointers and references. The 
following subsections describe guidelines that apply to using pointers in C++:

Understand the difference between pointers and references In C++, both pointers 
(*) and the references (&) refer indirectly to an object. To the uninitiated the only 
difference appears to be a purely cosmetic distinction between referring to fields as 
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object->field vs. object.field. The most significant differences are that a reference must 
always refer to an object, whereas a pointer can point to null, and what a reference 
refers to can’t be changed after the reference is initialized.

Use pointers for “pass by reference” parameters and use const references for “pass by 
value” parameters C++ defaults to passing arguments to routines by value rather 
than by reference. When you pass an object to a routine by value, C++ creates a copy 
of the object, and when the object is passed back to the calling routine, a copy is cre-
ated again. For large objects, that copying can eat up time and other resources. Conse-
quently, when passing objects to a routine, you usually want to avoid copying the 
object, which means you want to pass it by reference rather than by value.

Sometimes, however, you would like to have the semantics of a pass by value—that is, 
that the passed object should not be altered—with the implementation of a pass by 
reference—that is, passing the actual object rather than a copy.

In C++, the resolution to this issue is that you use pointers for pass by reference and—
odd as the terminology might sound—“const references” for pass by value! Here’s an 
example:

C++ Example of Passing Parameters by Reference and by Value
void SomeRoutine(

   const LARGE_OBJECT &nonmodifiableObject,

   LARGE_OBJECT *modifiableObject

);

This approach provides the additional benefit of providing a syntactic differentiation 
within the called routine between objects that are supposed to be treated as modifi-
able and those that aren’t. In a modifiable object, the references to members will use 
the object->member notation, whereas for nonmodifiable objects references to mem-
bers will use object.member notation.

The limitation of this approach is difficulties propagating const references. If you control 
your own code base, it’s good discipline to use const whenever possible (Meyers 1998), 
and you should be able to declare pass-by-value parameters as const references. For 
library code or other code you don’t control, you’ll run into problems using const routine 
parameters. The fallback position is still to use references for read-only parameters but 
not declare them const. With that approach, you won’t realize the full benefits of the com-
piler checking for attempts to modify nonmodifiable arguments to a routine, but you’ll at 
least give yourself the visual distinction between object->member and object.member.

Use auto_ptrs If you haven’t developed the habit of using auto_ptrs, get into the 
habit! By deleting memory automatically when the auto_ptr goes out of scope, 
auto_ptrs avoid many of the memory-leakage problems associated with regular point-
ers. In Scott Meyers’s More Effective C++, Item #9 contains a good discussion of 
auto_ptr (Meyers 1996).
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Get smart about smart pointers Smart pointers are a replacement for regular point-
ers or “dumb” pointers (Meyers 1996). They operate similarly to regular pointers, but 
they provide more control over resource management, copy operations, assignment 
operations, object construction, and object destruction. The issues involved are spe-
cific to C++. More Effective C++, Item #28, contains a complete discussion.

C-Pointer Pointers

Here are a few tips on using pointers that apply specifically to the C language:

Use explicit pointer types rather than the default type C lets you use char or void 
pointers for any type of variable. As long as the pointer points, the language doesn’t 
really care what it points at. If you use explicit types for your pointers, however, the 
compiler can give you warnings about mismatched pointer types and inappropriate 
dereferences. If you don’t, it can’t. Use the specific pointer type whenever you can.

The corollary to this rule is to use explicit type casting when you have to make a type 
conversion. For example, in this fragment, it’s clear that a variable of type NODE_ PTR 
is being allocated:

C Example of Explicit Type Casting
NodePtr = (NODE_PTR) calloc( 1, sizeof( NODE ) );

Avoid type casting Avoiding type casting doesn’t have anything to do with going to 
acting school or getting out of always playing “the heavy.” It has to do with avoiding 
squeezing a variable of one type into the space for a variable of another type. Type 
casting turns off your complier’s ability to check for type mismatches and therefore 
creates a hole in your defensive-programming armor. A program that requires many 
type casts probably has some architectural gaps that need to be revisited. Redesign if 
that’s possible; otherwise, try to avoid type casts as much as you can.

Follow the asterisk rule for parameter passing You can pass an argument back from 
a routine in C only if you have an asterisk (*) in front of the argument in the assign-
ment statement. Many C programmers have difficulty determining when C allows a 
value to be passed back to a calling routine. It’s easy to remember that, as long as you 
have an asterisk in front of the parameter when you assign it a value, the value is 
passed back to the calling routine. Regardless of how many asterisks you stack up in 
the declaration, you must have at least one in the assignment statement if you want to 
pass back a value. For example, in the following fragment, the value assigned to 
parameter isn’t passed back to the calling routine because the assignment statement 
doesn’t use an asterisk:
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C Example of Parameter Passing That Won’t Work
void TryToPassBackAValue( int *parameter ) {

   parameter = SOME_VALUE;

}

Here, the value assigned to parameter is passed back because parameter has an asterisk 
in front of it:

C Example of Parameter Passing That Will Work
void TryToPassBackAValue( int *parameter ) {

   *parameter = SOME_VALUE;

}

Use sizeof() to determine the size of a variable in a memory allocation It’s easier to 
use sizeof() than to look up the size in a manual, and sizeof() works for structures you 
create yourself, which aren’t in the manual. Because it’s calculated at compile time, 
sizeof() doesn’t carry a performance penalty. It’s portable—recompiling in a different 
environment automatically changes the value calculated by sizeof(). And it requires lit-
tle maintenance since you can change types you have defined and allocations will be 
adjusted automatically.

13.3 Global Data
Cross-Reference For details 
on the differences between 
global data and class data, 
see “Class data mistaken for 
global data” in Section 5.3.

Global variables are accessible anywhere in a program. The term is also sometimes 
used sloppily to refer to variables with a broader scope than local variables—such as 
class variables that are accessible anywhere within a class. But accessibility anywhere 
within a single class does not by itself mean that a variable is global.

Most experienced programmers have concluded that using global data is riskier than 
using local data. Most experienced programmers have also concluded that access to 
data from several routines is pretty useful.

Even if global variables don’t always produce errors, however, they’re hardly ever the 
best way to program. The rest of this section fully explores the issues involved.

Common Problems with Global Data

If you use global variables indiscriminately or you feel that not being able to use them 
is restrictive, you probably haven’t caught on to the full value of information hiding 
and modularity yet. Modularity, information hiding, and the associated use of well-
designed classes might not be revealed truths, but they go a long way toward making 
large programs understandable and maintainable. Once you get the message, you’ll 
want to write routines and classes with as little connection as possible to global vari-
ables and the outside world.

KEY POINT
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People cite numerous problems in using global data, but the problems boil down to a 
small number of major issues:

Inadvertent changes to global data You might change the value of a global variable 
in one place and mistakenly think that it has remained unchanged somewhere else. 
Such a problem is known as a “side effect.” For example, in this example, theAnswer is 
a global variable:

theAnswer is a global variable. Visual Basic Example of a Side-Effect Problem

GetOtherAnswer() changes 
theAnswer.

averageAnswer is wrong.

theAnswer = GetTheAnswer()

otherAnswer = GetOtherAnswer()

averageAnswer = (theAnswer + otherAnswer) / 2

You might assume that the call to GetOtherAnswer() doesn’t change the value of theAn-
swer; if it does, the average in the third line will be wrong. And, in fact, GetOtherAn-
swer() does change the value of theAnswer, so the program has an error to be fixed.

Bizarre and exciting aliasing problems with global data “Aliasing” refers to calling 
the same variable by two or more different names. This happens when a global vari-
able is passed to a routine and then used by the routine both as a global variable and 
as a parameter. Here’s a routine that uses a global variable:

Visual Basic Example of a Routine That’s Ripe for an Aliasing Problem
Sub WriteGlobal( ByRef inputVar As Integer )

   inputVar = 0

   globalVar = inputVar + 5

   MsgBox( "Input Variable:  " & Str( inputVar ) )

   MsgBox( "Global Variable: " & Str( globalVar ) )

End Sub

Here’s the code that calls the routine with the global variable as an argument:

Visual Basic Example of Calling the Routine with an Argument, Which Exposes 
an Aliasing Problem
WriteGlobal( globalVar )

Since inputVar is initialized to 0 and WriteGlobal() adds 5 to inputVar to get globalVar, 
you’d expect globalVar to be 5 more than inputVar. But here’s the surprising result:

The Result of the Aliasing Problem in Visual Basic
Input Variable:  5

Global Variable: 5

The subtlety here is that globalVar and inputVar are actually the same variable! Since 
globalVar is passed into WriteGlobal() by the calling routine, it’s referenced or 
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“aliased” by two different names. The effect of the MsgBox() lines is thus quite differ-
ent from the one intended: they display the same variable twice, even though they 
refer to two different names.

Re-entrant code problems with global data Code that can be entered by more than 
one thread of control is becoming increasingly common. Multithreaded code creates 
the possibility that global data will be shared not only among routines, but among dif-
ferent copies of the same program. In such an environment, you have to make sure 
that global data keeps its meaning even when multiple copies of a program are run-
ning. This is a significant problem, and you can avoid it by using techniques suggested 
later in this section.

Code reuse hindered by global data To use code from one program in another pro-
gram, you have to be able to pull it out of the first program and plug it into the second. 
Ideally, you’d be able to lift out a single routine or class, plug it into another program, 
and continue merrily on your way.

Global data complicates the picture. If the class you want to reuse reads or writes glo-
bal data, you can’t just plug it into the new program. You have to modify the new pro-
gram or the old class so that they’re compatible. If you take the high road, you’ll 
modify the old class so that it doesn’t use global data. If you do that, the next time you 
need to reuse the class you’ll be able to plug it in with no extra fuss. If you take the low 
road, you’ll modify the new program to create the global data that the old class needs 
to use. This is like a virus; not only does the global data affect the original program, 
but it also spreads to new programs that use any of the old program’s classes.

Uncertain initialization-order issues with global data The order in which data is ini-
tialized among different “translation units” (files) is not defined in some languages, 
notably C++. If the initialization of a global variable in one file uses a global variable that 
was initialized in a different file, all bets are off on the second variable’s value unless you 
take explicit steps to ensure the two variables are initialized in the right sequence.

This problem is solvable with a workaround that Scott Meyers describes in Effective 
C++, Item #47 (Meyers 1998). But the trickiness of the solution is representative of the 
extra complexity that using global data introduces.

Modularity and intellectual manageability damaged by global data The essence of 
creating programs that are larger than a few hundred lines of code is managing com-
plexity. The only way you can intellectually manage a large program is to break it into 
pieces so that you only have to think about one part at a time. Modularization is the 
most powerful tool at your disposal for breaking a program into pieces.

Global data pokes holes in your ability to modularize. If you use global data, can you 
concentrate on one routine at a time? No. You have to concentrate on one routine and 
every other routine that uses the same global data. Although global data doesn’t com-

KEY POINT
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pletely destroy a program’s modularity, it weakens it, and that’s reason enough to try 
to find better solutions to your problems.

Reasons to Use Global Data

Data purists sometimes argue that programmers should never use global data, but 
most programs use “global data” when the term is broadly construed. Data in a data-
base is global data, as is data in configuration files such as the Windows registry. 
Named constants are global data, just not global variables.

Used with discipline, global variables are useful in several situations:

Preservation of global values Sometimes you have data that applies conceptually to 
your whole program. This might be a variable that reflects the state of a program—for 
example, interactive vs. command-line mode, or normal vs. error-recovery mode. Or it 
might be information that’s needed throughout a program—for example, a data table 
that every routine in the program uses.

Cross-Reference For more 
details on named constants, 
see Section 12.7, “Named 
Constants.”

Emulation of named constants Although C++, Java, Visual Basic, and most modern 
languages support named constants, some languages such as Python, Perl, Awk, and 
UNIX shell script still don’t. You can use global variables as substitutes for named 
constants when your language doesn’t support them. For example, you can replace 
the literal values 1 and 0 with the global variables TRUE and FALSE set to 1 and 0, or 
you can replace 66 as the number of lines per page with LINES_PER_PAGE = 66. It’s 
easier to change code later when this approach is used, and the code tends to be easier 
to read. This disciplined use of global data is a prime example of the distinction 
between programming in vs. programming into a language, which is discussed more 
in Section 34.4, “Program into Your Language, Not in It.”

Emulation of enumerated types You can also use global variables to emulate enumer-
ated types in languages such as Python that don’t support enumerated types directly.

Streamlining use of extremely common data Sometimes you have so many refer-
ences to a variable that it appears in the parameter list of every routine you write. 
Rather than including it in every parameter list, you can make it a global variable. 
However, in cases in which a variable seems to be accessed everywhere, it rarely is. 
Usually it’s accessed by a limited set of routines you can package into a class with the 
data they work on. More on this later.

Eliminating tramp data Sometimes you pass data to a routine or class merely so that 
it can be passed to another routine or class. For example, you might have an error-pro-
cessing object that’s used in each routine. When the routine in the middle of the call 
chain doesn’t use the object, the object is called “tramp data.” Use of global variables 
can eliminate tramp data.
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Use Global Data Only as a Last Resort

Before you resort to using global data, consider a few alternatives:

Begin by making each variable local and make variables global only as you need to
Make all variables local to individual routines initially. If you find they’re needed else-
where, make them private or protected class variables before you go so far as to make 
them global. If you finally find that you have to make them global, do it, but only when 
you’re sure you have to. If you start by making a variable global, you’ll never make it 
local, whereas if you start by making it local, you might never need to make it global.

Distinguish between global and class variables Some variables are truly global in that 
they are accessed throughout a whole program. Others are really class variables, used 
heavily only within a certain set of routines. It’s OK to access a class variable any way you 
want to within the set of routines that use it heavily. If routines outside the class need to 
use it, provide the variable’s value by means of an access routine. Don’t access class val-
ues directly—as if they were global variables—even if your programming language allows 
you to. This advice is tantamount to saying “Modularize! Modularize! Modularize!”

Use access routines Creating access routines is the workhorse approach to getting 
around problems with global data. More on that in the next section.

Using Access Routines Instead of Global Data

Anything you can do with global data, you can do better with access routines. The use 
of access routines is a core technique for implementing abstract data types and achiev-
ing information hiding. Even if you don’t want to use a full-blown abstract data type, 
you can still use access routines to centralize control over your data and to protect 
yourself against changes.

Advantages of Access Routines

Using access routines has multiple advantages:

■ You get centralized control over the data. If you discover a more appropriate 
implementation of the structure later, you don’t have to change the code every-
where the data is referenced. Changes don’t ripple through your whole pro-
gram. They stay inside the access routines.

Cross-Reference For more 
details on barricading, see 
Section 8.5, “Barricade Your 
Program to Contain the 
Damage Caused by Errors.”

■ You can ensure that all references to the variable are barricaded. If you push ele-
ments onto the stack with statements like stack.array[ stack.top ] = newElement, 
you can easily forget to check for stack overflow and make a serious mistake. If 
you use access routines—for example, PushStack( newElement )—you can write 
the check for stack overflow into the PushStack() routine. The check will be done 
automatically every time the routine is called, and you can forget about it.

KEY POINT
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Cross-Reference For details 
on information hiding, see 
“Hide Secrets (Information 
Hiding)” in Section 5.3.

■ You get the general benefits of information hiding automatically. Access routines 
are an example of information hiding, even if you don’t design them for that rea-
son. You can change the interior of an access routine without changing the rest 
of the program. Access routines allow you to redecorate the interior of your 
house and leave the exterior unchanged so that your friends still recognize it.

■ Access routines are easy to convert to an abstract data type. One advantage of 
access routines is that you can create a level of abstraction that’s harder to do when 
you’re working with global data directly. For example, instead of writing code that 
says if lineCount > MAX_LINES, an access routine allows you to write code that says 
if PageFull(). This small change documents the intent of the if lineCount test, and it 
does so in the code. It’s a small gain in readability, but consistent attention to 
such details makes the difference between beautifully crafted software and code 
that’s just hacked together.

How to Use Access Routines

Here’s the short version of the theory and practice of access routines: Hide data in a 
class. Declare that data by using the static keyword or its equivalent to ensure only a 
single instance of the data exists. Write routines that let you look at the data and 
change it. Require code outside the class to use the access routines rather than work-
ing directly with the data.

For example, if you have a global status variable g_globalStatus that describes your pro-
gram’s overall status, you can create two access routines: globalStatus.Get() and global-
Status.Set(), each of which does what it sounds like it does. Those routines access a 
variable hidden within the class that replaces g_globalStatus. The rest of the program 
can get all the benefit of the formerly global variable by accessing globalStatus.Get() 
and globalStatus.Set().

Cross-Reference Restricting 
access to global variables 
even when your language 
doesn’t directly support that 
is an example of program-
ming into a language vs. 
programming in a language. 
For more details, see Section 
34.4, “Program into Your 
Language, Not in It.”

If your language doesn’t support classes, you can still create access routines to manip-
ulate the global data but you’ll have to enforce restrictions on the use of the global 
data through coding standards in lieu of built-in programming language enforcement.

Here are a few detailed guidelines for using access routines to hide global variables 
when your language doesn’t have built-in support:

Require all code to go through the access routines for the data A good convention is 
to require all global data to begin with the g_ prefix, and to further require that no 
code access a variable with the g_ prefix except that variable’s access routines. All 
other code reaches the data through the access routines.

Don’t just throw all your global data into the same barrel If you throw all your glo-
bal data into a big pile and write access routines for it, you eliminate the problems of 
global data but you miss out on some of the advantages of information hiding and 
abstract data types. As long as you’re writing access routines, take a moment to think 
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about which class each global variable belongs in and then package the data and its 
access routines with the other data and routines in that class.

Use locking to control access to global variables Similar to concurrency control in a 
multiuser database environment, locking requires that before the value of a global 
variable can be used or updated, the variable must be “checked out.” After the variable 
is used, it’s checked back in. During the time it’s in use (checked out), if some other 
part of the program tries to check it out, the lock/unlock routine displays an error 
message or fires an assertion.

Cross-Reference For details 
on planning for differences 
between developmental and 
production versions of a pro-
gram, see “Plan to Remove 
Debugging Aids” in Section 
8.6 and Section 8.7, “Deter-
mining How Much Defensive 
Programming to Leave in 
Production Code.”

This description of locking ignores many of the subtleties of writing code to fully sup-
port concurrency. For that reason, simplified locking schemes like this one are most 
useful during the development stage. Unless the scheme is very well thought out, it 
probably won’t be reliable enough to be put into production. When the program is 
put into production, the code is modified to do something safer and more graceful 
than displaying error messages. For example, it might log an error message to a file 
when it detects multiple parts of the program trying to lock the same global variable.

This sort of development-time safeguard is fairly easy to implement when you use 
access routines for global data, but it would be awkward to implement if you were 
using global data directly.

Build a level of abstraction into your access routines Build access routines at the 
level of the problem domain rather than at the level of the implementation details. 
That approach buys you improved readability as well as insurance against changes in 
the implementation details.

Compare the pairs of statements in Table 13-1:

In the first three examples, the point is that an abstract access routine tells you a lot 
more than a generic structure. If you use the structure directly, you do too much at 
once: you show both what the structure itself is doing (moving to the next link in a 
linked list) and what’s being done with respect to the entity it represents (getting an 
account, next employee, or rate level). This is a big burden to put on a simple data-
structure assignment. Hiding the information behind abstract access routines lets the 
code speak for itself and makes the code read at the level of the problem domain, 
rather than at the level of implementation details.

Table 13-1 Accessing Global Data Directly and Through Access Routines

Direct Use of Global Data Use of Global Data Through Access Routines

node = node.next account = NextAccount( account )

node = node.next employee = NextEmployee( employee )

node = node.next rateLevel = NextRateLevel( rateLevel ) 

event = eventQueue[ queueFront ] event = HighestPriorityEvent() 

event = eventQueue[ queueBack ] event = LowestPriorityEvent()
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Keep all accesses to the data at the same level of abstraction If you use an access 
routine to do one thing to a structure, you should use an access routine to do every-
thing else to it too. If you read from the structure with an access routine, write to it 
with an access routine. If you call InitStack() to initialize a stack and PushStack() to 
push an item onto the stack, you’ve created a consistent view of the data. If you pop 
the stack by writing value = array[ stack.top ], you’ve created an inconsistent view of the 
data. The inconsistency makes it harder for others to understand the code. Create a 
PopStack() routine instead of writing value = array[ stack top ].

Cross-Reference Using 
access routines for an event 
queue suggests the need to 
create a class. For details, 
see Chapter 6, “Working 
Classes.”

In the example pairs of statements in Table 13-1, the two event-queue operations 
occurred in parallel. Inserting an event into the queue would be trickier than either of 
the two operations in the table, requiring several lines of code to find the place to 
insert the event, adjust existing events to make room for the new event, and adjust the 
front or back of the queue. Removing an event from the queue would be just as com-
plicated. During coding, the complex operations would be put into routines and the 
others would be left as direct data manipulations. This would create an ugly, nonpar-
allel use of the structure. Now compare the pairs of statements in Table 13-2:

Although you might think that these guidelines apply only to large programs, access 
routines have shown themselves to be a productive way of avoiding the problems of 
global data. As a bonus, they make the code more readable and add flexibility.

How to Reduce the Risks of Using Global Data

In most instances, global data is really class data for a class that hasn’t been designed 
or implemented very well. In a few instances, data really does need to be global, but 
accesses to it can be wrapped with access routines to minimize potential problems. In 
a tiny number of remaining instances, you really do need to use global data. In those 
cases, you might think of following the guidelines in this section as getting shots so 
that you can drink the water when you travel to a foreign country: they’re kind of pain-
ful, but they improve the odds of staying healthy.

Cross-Reference For details 
on naming conventions for 
global variables, see “Iden-
tify global variables” in Sec-
tion 11.4.

Develop a naming convention that makes global variables obvious You can avoid 
some mistakes just by making it obvious that you’re working with global data. If 
you’re using global variables for more than one purpose (for example, as variables and 
as substitutes for named constants), make sure your naming convention differentiates 
among the types of uses.

Table 13-2  Parallel and Nonparallel Uses of Complex Data

Nonparallel Use of Complex Data Parallel Use of Complex Data 

event = EventQueue[ queueFront ] event = HighestPriorityEvent()

event = EventQueue[ queueBack ] event = LowestPriorityEvent()

AddEvent( event ) AddEvent( event )

eventCount = eventCount - 1 RemoveEvent( event )
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Create a well-annotated list of all your global variables Once your naming conven-
tion indicates that a variable is global, it’s helpful to indicate what the variable does. A 
list of global variables is one of the most useful tools that someone working with your 
program can have.

Don’t use global variables to contain intermediate results If you need to compute a 
new value for a global variable, assign the global variable the final value at the end of 
the computation rather than using it to hold the result of intermediate calculations.

Don’t pretend you’re not using global data by putting all your data into a monster 
object and passing it everywhere Putting everything into one huge object might sat-
isfy the letter of the law by avoiding global variables, but it’s pure overhead, producing 
none of the benefits of true encapsulation. If you use global data, do it openly. Don’t 
try to disguise it with obese objects.

Additional Resources
cc2e.com/1385 Following are more resources that cover unusual data types:

Maguire, Steve. Writing Solid Code. Redmond, WA: Microsoft Press, 1993. Chapter 3 
contains an excellent discussion of the hazards of pointer use and numerous specific 
tips for avoiding problems with pointers.

Meyers, Scott. Effective C++, 2d ed. Reading, MA: Addison-Wesley, 1998;  Meyers, Scott, 
More Effective C++. Reading, MA: Addison-Wesley, 1996. As the titles suggest, these 
books contain numerous specific tips for improving C++ programs, including guide-
lines for using pointers safely and effectively. More Effective C++ in particular contains 
an excellent discussion of C++’s memory management issues.

cc2e.com/1392 CHECKLIST: Considerations in Using Unusual Data Types
Structures

❑ Have you used structures instead of naked variables to organize and 
manipulate groups of related data?

❑ Have you considered creating a class as an alternative to using a structure?

Global Data
❑ Are all variables local or of class scope unless they absolutely need to be 

global?

❑ Do variable naming conventions differentiate among local, class, and glo-
bal data?

❑ Are all global variables documented?
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❑ Is the code free of pseudoglobal data—mammoth objects containing a 
mishmash of data that’s passed to every routine?

❑ Are access routines used instead of global data?

❑ Are access routines and data organized into classes?

❑ Do access routines provide a level of abstraction beyond the underlying 
data type implementations?

❑ Are all related access routines at the same level of abstraction?

Pointers
❑ Are pointer operations isolated in routines?

❑ Are pointer references valid, or could the pointer be dangling?

❑ Does the code check pointers for validity before using them?

❑ Is the variable that the pointer references checked for validity before it’s 
used?

❑ Are pointers set to null after they’re freed?

❑ Does the code use all the pointer variables needed for the sake of readabil-
ity?

❑ Are pointers in linked lists freed in the right order?

❑ Does the program allocate a reserve parachute of memory so that it can 
shut down gracefully if it runs out of memory?

❑ Are pointers used only as a last resort, when no other method is available?

Key Points
■ Structures can help make programs less complicated, easier to understand, and 

easier to maintain.

■ Whenever you consider using a structure, consider whether a class would work 
better.

■ Pointers are error-prone. Protect yourself by using access routines or classes and 
defensive-programming practices.

■ Avoid global variables, not just because they’re dangerous, but because you can 
replace them with something better.

■ If you can’t avoid global variables, work with them through access routines. 
Access routines give you everything that global variables give you, and more.
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Chapter 14

Organizing Straight-Line 
Code

cc2e.com/1465 Contents

■ 14.1 Statements That Must Be in a Specific Order: page 347

■ 14.2 Statements Whose Order Doesn’t Matter: page 351

Related Topics

■ General control topics: Chapter 19

■ Code with conditionals: Chapter 15

■ Code with loops: Chapter 16

■ Scope of variables and objects: Section 10.4, “Scope”

This chapter turns from a data-centered view of programming to a statement-centered 
view. It introduces the simplest kind of control flow: putting statements and blocks of 
statements in sequential order.

Although organizing straight-line code is a relatively simple task, some organizational 
subtleties influence code quality, correctness, readability, and maintainability.

14.1 Statements That Must Be in a Specific Order
The easiest sequential statements to order are those in which the order counts. Here’s 
an example:

Java Example of Statements in Which Order Counts
data = ReadData();

results = CalculateResultsFromData( data );

PrintResults( results );

Unless something mysterious is happening with this code fragment, the statement 
must be executed in the order shown. The data must be read before the results can be 
calculated, and the results must be calculated before they can be printed.

The underlying concept in this example is that of dependencies. The third statement 
depends on the second, the second on the first. In this example, the fact that one 
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statement depends on another is obvious from the routine names. In the following 
code fragment, the dependencies are less obvious:

Java Example of Statements in Which Order Counts, but Not Obviously
revenue.ComputeMonthly();

revenue.ComputeQuarterly();

revenue.ComputeAnnual();

In this case, the quarterly revenue calculation assumes that the monthly revenues 
have already been calculated. A familiarity with accounting—or even common sense—
might tell you that quarterly revenues have to be calculated before annual revenues. 
There is a dependency, but it’s not obvious merely from reading the code. And here, 
the dependencies aren’t obvious—they’re literally hidden:

Visual Basic Example of Statements in Which Order Dependencies Are Hidden
ComputeMarketingExpense

ComputeSalesExpense

ComputeTravelExpense

ComputePersonnelExpense

DisplayExpenseSummary

Suppose that ComputeMarketingExpense() initializes the class member variables that 
all the other routines put their data into. In such a case, it needs to be called before the 
other routines. How could you know that from reading this code? Because the routine 
calls don’t have any parameters, you might be able to guess that each of these routines 
accesses class data. But you can’t know for sure from reading this code. 

When statements have dependencies that require you to put them in a certain order, 
take steps to make the dependencies clear. Here are some simple guidelines for order-
ing statements:

Organize code so that dependencies are obvious In the Microsoft Visual Basic exam-
ple just presented, ComputeMarketingExpense() shouldn’t initialize the class member 
variables. The routine names suggest that ComputeMarketingExpense() is similar to 
ComputeSalesExpense(), ComputeTravelExpense(), and the other routines except that it 
works with marketing data rather than with sales data or other data. Having Comp-
uteMarketingExpense() initialize the member variable is an arbitrary practice you 
should avoid. Why should initialization be done in that routine instead of one of the 
other two? Unless you can think of a good reason, you should write another routine, 
InitializeExpenseData(), to initialize the member variable. The routine’s name is a clear 
indication that it should be called before the other expense routines.

Name routines so that dependencies are obvious In the Visual Basic example, Comp-
uteMarketingExpense() is misnamed because it does more than compute marketing 
expenses; it also initializes member data. If you’re opposed to creating an additional 
routine to initialize the data, at least give ComputeMarketingExpense() a name that 

KEY POINT
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describes all the functions it performs. In this case, ComputeMarketingExpenseAndIni-
tializeMemberData() would be an adequate name. You might say it’s a terrible name 
because it’s so long, but the name describes what the routine does and is not terrible. 
The routine itself is terrible!

Cross-Reference For details 
on using routines and their 
parameters, see Chapter 5, 
“Design in Construction.”

Use routine parameters to make dependencies obvious Again in the Visual Basic 
example, since no data is passed between routines, you don’t know whether any of 
the routines use the same data. By rewriting the code so that data is passed between 
the routines, you set up a clue that the execution order is important. The new code 
would look like this:

Visual Basic Example of Data That Suggests an Order Dependency
InitializeExpenseData( expenseData )

ComputeMarketingExpense( expenseData )

ComputeSalesExpense( expenseData )

ComputeTravelExpense( expenseData )

ComputePersonnelExpense( expenseData )

DisplayExpenseSummary( expenseData )

Because all the routines use expenseData, you have a hint that they might be working 
on the same data and that the order of the statements might be important. 

In this particular example, a better approach might be to convert the routines to func-
tions that take expenseData as inputs and return updated expenseData as outputs, 
which makes it even clearer that the code includes order dependencies. 

Visual Basic Example of Data and Routine Calls That Suggest an Order Dependency
expenseData = InitializeExpenseData( expenseData )

expenseData = ComputeMarketingExpense( expenseData )

expenseData = ComputeSalesExpense( expenseData )

expenseData = ComputeTravelExpense( expenseData )

expenseData = ComputePersonnelExpense( expenseData )

DisplayExpenseSummary( expenseData )

Data can also indicate that execution order isn’t important, as in this case:

Visual Basic Example of Data That Doesn’t Indicate an Order Dependency
ComputeMarketingExpense( marketingData )

ComputeSalesExpense( salesData )

ComputeTravelExpense( travelData )

ComputePersonnelExpense( personnelData )

DisplayExpenseSummary( marketingData, salesData, travelData, personnelData )

Since the routines in the first four lines don’t have any data in common, the code 
implies that the order in which they’re called doesn’t matter. Because the routine in 
the fifth line uses data from each of the first four routines, you can assume that it 
needs to be executed after the first four routines. 
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Document unclear dependencies with comments Try first to write code without 
order dependencies.Try second to write code that makes dependencies obvious. If 
you’re still concerned that an order dependency isn’t explicit enough, document it. 
Documenting unclear dependencies is one aspect of documenting coding assump-
tions, which is critical to writing maintainable, modifiable code. In the Visual Basic 
example, comments along these lines would be helpful:

Visual Basic Example of Statements in Which Order Dependencies Are Hidden but 
Clarified with Comments
' Compute expense data. Each of the routines accesses the

' member data expenseData. DisplayExpenseSummary 

' should be called last because it depends on data calculated 

' by the other routines.

InitializeExpenseData

ComputeMarketingExpense

ComputeSalesExpense

ComputeTravelExpense

ComputePersonnelExpense

DisplayExpenseSummary

This code doesn’t use the techniques for making order dependencies obvious. It’s bet-
ter to rely on such techniques rather than on comments, but if you’re maintaining 
tightly controlled code or you can’t improve the code itself for some other reason, use 
documentation to compensate for code weaknesses.

Check for dependencies with assertions or error-handling code If the code is critical 
enough, you might use status variables and error-handling code or assertions to doc-
ument critical sequential dependencies. For example, in the class’s constructor, you 
might initialize a class member variable isExpenseDataInitialized to false. Then in Ini-
tializeExpenseData(), you can set isExpenseDataInitialized to true. Each function that 
depends on expenseData being initialized can then check whether isExpenseDataIni-
tialized has been set to true before performing additional operations on expenseData. 
Depending on how extensive the dependencies are, you might also need variables like 
isMarketingExpenseComputed, isSalesExpenseComputed, and so on. 

This technique creates new variables, new initialization code, and new error-checking 
code, all of which create additional possibilities for error. The benefits of this tech-
nique should be weighed against the additional complexity and increased chance of 
secondary errors that this technique creates. 
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14.2 Statements Whose Order Doesn’t Matter
You might encounter cases in which it seems as if the order of a few statements or a 
few blocks of code doesn’t matter at all. One statement doesn’t depend on, or logi-
cally follow, another statement. But ordering affects readability, performance, and 
maintainability, and in the absence of execution-order dependencies, you can use 
secondary criteria to determine the order of statements or blocks of code. The guid-
ing principle is the Principle of Proximity: Keep related actions together.

Making Code Read from Top to Bottom

As a general principle, make the program read from top to bottom rather than jump-
ing around. Experts agree that top-to-bottom order contributes most to readability. 
Simply making the control flow from top to bottom at run time isn’t enough. If some-
one who is reading your code has to search the whole program to find needed infor-
mation, you should reorganize the code. Here’s an example:

C++ Example of Bad Code That Jumps Around
MarketingData marketingData; 

SalesData salesData;

TravelData travelData;

travelData.ComputeQuarterly();

salesData.ComputeQuarterly();

marketingData.ComputeQuarterly();

salesData.ComputeAnnual();

marketingData.ComputeAnnual();

travelData.ComputeAnnual();

salesData.Print();

travelData.Print();

marketingData.Print();

Suppose that you want to determine how marketingData is calculated. You have to 
start at the last line and track all references to marketingData back to the first line. mar-
ketingData is used in only a few other places, but you have to keep in mind how mar-
ketingData is used everywhere between the first and last references to it. In other 
words, you have to look at and think about every line of code in this fragment to figure 
out how marketingData is calculated. And of course this example is simpler than code 
you see in life-size systems. Here’s the same code with better organization:

C++ Example of Good, Sequential Code That Reads from Top to Bottom
MarketingData marketingData;

marketingData.ComputeQuarterly();

marketingData.ComputeAnnual();

marketingData.Print();
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SalesData salesData;

salesData.ComputeQuarterly();

salesData.ComputeAnnual();

salesData.Print();

TravelData travelData;

travelData.ComputeQuarterly();

travelData.ComputeAnnual();

travelData.Print();

Cross-Reference A more 
technical definition of “live” 
variables is given in “Mea-
suring the Live Time of a 
Variable” in Section 10.4.

This code is better in several ways. References to each object are kept close together; 
they’re “localized.” The number of lines of code in which the objects are “live” is small. 
And perhaps most important, the code now looks as if it could be broken into sepa-
rate routines for marketing, sales, and travel data. The first code fragment gave no hint 
that such a decomposition was possible.

Grouping Related Statements
Cross-Reference If you fol-
low the Pseudocode Pro-
gramming Process, your 
code will automatically be 
grouped into related state-
ments. For details on the 
process, see Chapter 9, “The 
Pseudocode Programming 
Process.”

Put related statements together. They can be related because they operate on the same 
data, perform similar tasks, or depend on each other’s being performed in order.

An easy way to test whether related statements are grouped well is to print out a listing 
of your routine and then draw boxes around the related statements. If the statements 
are ordered well, you’ll get a picture like that shown in Figure 14-1, in which the boxes 
don’t overlap.

Figure 14-1 If the code is well organized into groups, boxes drawn around related sections 
don’t overlap. They might be nested.

Cross-Reference For more 
on keeping operations on 
variables together, see Sec-
tion 10.4, “Scope.”

If statements aren’t ordered well, you’ll get a picture something like that shown in Fig-
ure 14-2, in which the boxes do overlap. If you find that your boxes overlap, reorganize 
your code so that related statements are grouped better.
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Figure 14-2 If the code is organized poorly, boxes drawn around related sections overlap. 

Once you’ve grouped related statements, you might find that they’re strongly related and 
have no meaningful relationship to the statements that precede or follow them. In such a 
case, you might want to refactor the strongly related statements into their own routine.

cc2e.com/1472 Checklist: Organizing Straight-Line Code
❑ Does the code make dependencies among statements obvious? 

❑ Do the names of routines make dependencies obvious?

❑ Do parameters to routines make dependencies obvious?

❑ Do comments describe any dependencies that would otherwise be 
unclear?

❑ Have housekeeping variables been used to check for sequential dependen-
cies in critical sections of code? 

❑ Does the code read from top to bottom?

❑ Are related statements grouped together?

❑ Have relatively independent groups of statements been moved into their 
own routines?

Key Points
■ The strongest principle for organizing straight-line code is ordering dependencies.

■ Dependencies should be made obvious through the use of good routine names, 
parameter lists, comments, and—if the code is critical enough—housekeeping 
variables.

■ If code doesn’t have order dependencies, keep related statements as close 
together as possible.
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Chapter 15

Using Conditionals 
cc2e.com/1538 Contents

■ 15.1 if Statements: page 355

■ 15.2 case Statements: page 361

Related Topics

■ Taming deep nesting: Section 19.4

■ General control issues: Chapter 19

■ Code with loops: Chapter 16

■ Straight-line code: Chapter 14

■ Relationship between data types and control structures: Section 10.7

A conditional is a statement that controls the execution of other statements; execution 
of the other statements is “conditioned” on statements such as if, else, case, and switch. 
Although it makes sense logically to refer to loop controls such as while and for as con-
ditionals too, by convention they’ve been treated separately. Chapter 16, “Controlling 
Loops,” will examine while and for statements.

15.1 if Statements
Depending on the language you’re using, you might be able to use any of several kinds 
of if statements. The simplest is the plain if or if-then statement. The if-then-else is a lit-
tle more complex, and chains of if-then-else-if are the most complex.

Plain if-then Statements

Follow these guidelines when writing if statements:

Write the nominal path through the code first; then write the unusual cases Write 
your code so that the normal path through the code is clear. Make sure that the rare 
cases don’t obscure the normal path of execution. This is important for both readabil-
ity and performance.

Make sure that you branch correctly on equality Using > instead of >= or < instead 
of <= is analogous to making an off-by-one error in accessing an array or computing a 
loop index. In a loop, think through the endpoints to avoid an off-by-one error. In a 
conditional statement, think through the equals case to avoid one.

KEY POINT
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Cross-Reference For other 
ways to handle error-pro-
cessing code, see "Summary 
of Techniques for Reducing 
Deep Nesting" in Section 
19.4.

Put the normal case after the if rather than after the else Put the case you nor-
mally expect to process first. This is in line with the general principle of putting code 
that results from a decision as close as possible to the decision. Here’s a code example 
that does a lot of error processing, haphazardly checking for errors along the way:

Visual Basic Example of Code That Processes a Lot of Errors Haphazardly
OpenFile( inputFile, status )

If ( status = Status_Error ) Then

Error case.    errorType = FileOpenError

Else

Nominal case.    ReadFile( inputFile, fileData, status )

   If ( status = Status_Success ) Then

Nominal case.       SummarizeFileData( fileData, summaryData, status )

      If ( status = Status_Error ) Then

Error case.          errorType = ErrorType_DataSummaryError

      Else

Nominal case.          PrintSummary( summaryData )

         SaveSummaryData( summaryData, status )

         If ( status = Status_Error ) Then

Error case.             errorType = ErrorType_SummarySaveError

         Else

Nominal case.             UpdateAllAccounts()

            EraseUndoFile()

            errorType = ErrorType_None

         End If

      End If

   Else

      errorType = ErrorType_FileReadError

   End If

End If

This code is hard to follow because the nominal cases and the error cases are all mixed 
together. It’s hard to find the path that is normally taken through the code. In addi-
tion, because the error conditions are sometimes processed in the if clause rather than 
the else clause, it’s hard to figure out which if test the normal case goes with. In the fol-
lowing rewritten code, the normal path is consistently coded first and all the error 
cases are coded last. This makes it easier to find and read the nominal case.

Visual Basic Example of Code That Processes a Lot of Errors Systematically
OpenFile( inputFile, status )

If ( status = Status_Success ) Then

Nominal case.    ReadFile( inputFile, fileData, status )

   If ( status = Status_Success ) Then

Nominal case.       SummarizeFileData( fileData, summaryData, status )

      If ( status = Status_Success ) Then

Nominal case.          PrintSummary( summaryData )

         SaveSummaryData( summaryData, status )

         If ( status = Status_Success ) Then

Nominal case.             UpdateAllAccounts()

            EraseUndoFile()
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            errorType = ErrorType_None

         Else

Error case.             errorType = ErrorType_SummarySaveError

         End If

      Else

Error case.          errorType = ErrorType_DataSummaryError

      End If

   Else

Error case.       errorType = ErrorType_FileReadError

   End If

Else

Error case.    errorType = ErrorType_FileOpenError

End If

In the revised example, you can read the main flow of the if tests to find the normal 
case. The revision puts the focus on reading the main flow rather than on wading 
through the exceptional cases, so the code is easier to read overall. The stack of error 
conditions at the bottom of the nest is a sign of well-written error-processing code.

This example illustrates one systematic approach to handling normal cases and error 
cases. A variety of other solutions to this problem are discussed throughout this book, 
including using guard clauses, converting to polymorphic dispatch, and extracting 
the inner part of the test into a separate routine. For a complete list of available 
approaches, see “Summary of Techniques for Reducing Deep Nesting” in Section 19.4.

Follow the if clause with a meaningful statement Sometimes you see code like the 
next example, in which the if clause is null:

Java Example of a Null if Clause
if ( SomeTest )

   ;

else {

   // do something

   ...

}

Cross-Reference One key to 
constructing an effective if 
statement is writing the right 
boolean expression to con-
trol it. For details on using 
boolean expressions effec-
tively, see Section 19.1, 
“Boolean Expressions.”

Most experienced programmers would avoid code like this if only to avoid the work of 
coding the extra null line and the else line. It looks silly and is easily improved by 
negating the predicate in the if statement, moving the code from the else clause to the 
if clause, and eliminating the else clause. Here’s how the code would look after those 
changes:

Java Example of a Converted Null if Clause
if ( ! someTest ) {

   // do something

   ...

}

CODING 
HORROR
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Consider the else clause If you think you need a plain if statement, consider 
whether you don’t actually need an if-then-else statement. A classic General Motors 
analysis found that 50 to 80 percent of if statements should have had an else clause 
(Elshoff 1976).

One option is to code the else clause—with a null statement if necessary—to show that 
the else case has been considered. Coding null elses just to show that that case has 
been considered might be overkill, but at the very least, take the else case into account. 
When you have an if test without an else, unless the reason is obvious, use comments 
to explain why the else clause isn’t necessary, like so:

Java Example of a Helpful, Commented else Clause
// if color is valid

if ( COLOR_MIN <= color && color <= COLOR_MAX ) {

   // do something

   ...

}

else {

   // else color is invalid

   // screen not written to –- safely ignore command

}

Test the else clause for correctness When testing your code, you might think that 
the main clause, the if, is all that needs to be tested. If it’s possible to test the else 
clause, however, be sure to do that.

Check for reversal of the if and else clauses A common mistake in programming if-
thens is to flip-flop the code that’s supposed to follow the if clause and the code that’s 
supposed to follow the else clause or to get the logic of the if test backward. Check 
your code for this common error.

Chains of if-then-else Statements

In languages that don’t support case statements—or that support them only partially—
you’ll often find yourself writing chains of if-then-else tests. For example, the code to 
categorize a character might use a chain like this one:

Cross-Reference For more 
details on simplifying com-
plicated expressions, see 
Section 19.1, “Boolean 
Expressions.”

C++ Example of Using an if-then-else Chain to Categorize a Character
if ( inputCharacter < SPACE ) {

   characterType = CharacterType_ControlCharacter;

}

else if ( 

   inputCharacter == ' ' || 

   inputCharacter == ',' || 

   inputCharacter == '.' ||

   inputCharacter == '!' || 

   inputCharacter == '(' || 

   inputCharacter == ')' || 

1
2
3

HARD DATA
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   inputCharacter == ':' ||

   inputCharacter == ';' || 

   inputCharacter == '?' || 

   inputCharacter == '-' 

   ) {

   characterType = CharacterType_Punctuation;

}

else if ( '0' <= inputCharacter && inputCharacter <= '9' ) {

   characterType = CharacterType_Digit;

}

else if ( 

   ( 'a' <= inputCharacter && inputCharacter <= 'z' ) ||

   ( 'A' <= inputCharacter && inputCharacter <= 'Z' ) 

   ) {

   characterType = CharacterType_Letter;

}

Consider these guidelines when writing such if-then-else chains: 

Simplify complicated tests with boolean function calls One reason the code in the 
previous example is hard to read is that the tests that categorize the character are compli-
cated. To improve readability, you can replace them with calls to boolean functions. 
Here’s how the example’s code looks when the tests are replaced with boolean functions:

C++ Example of an if-then-else Chain That Uses Boolean Function Calls
if ( IsControl( inputCharacter ) ) {

   characterType = CharacterType_ControlCharacter;

}

else if ( IsPunctuation( inputCharacter ) ) {

   characterType = CharacterType_Punctuation;

}

else if ( IsDigit( inputCharacter ) ) {

   characterType = CharacterType_Digit;

}

else if ( IsLetter( inputCharacter ) ) {

   characterType = CharacterType_Letter;

}

Put the most common cases first By putting the most common cases first, you mini-
mize the amount of exception-case handling code someone has to read to find the 
usual cases. You improve efficiency because you minimize the number of tests the 
code does to find the most common cases. In the example just shown, letters would 
be more common than punctuation but the test for punctuation is made first. Here’s 
the code revised so that it tests for letters first:

C++ Example of Testing the Most Common Case First
This test, the most common, 
is now done first.

if ( IsLetter( inputCharacter ) ) {

   characterType = CharacterType_Letter;

}



360 Chapter 15: Using Conditionals

else if ( IsPunctuation( inputCharacter ) ) {

   characterType = CharacterType_Punctuation;

}

else if ( IsDigit( inputCharacter ) ) {

   characterType = CharacterType_Digit;

}

This test, the least common, 
is now done last.

else if ( IsControl( inputCharacter ) ) {

   characterType = CharacterType_ControlCharacter;

}

Make sure that all cases are covered Code a final else clause with an error message 
or assertion to catch cases you didn’t plan for. This error message is intended for you 
rather than for the user, so word it appropriately. Here’s how you can modify the char-
acter-classification example to perform an “other cases” test: 

Cross-Reference This is also 
a good example of how you 
can use a chain of if-then-
else tests instead of deeply 
nested code. For details on 
this technique, see Section 
19.4, “Taming Dangerously 
Deep Nesting.”

C++ Example of Using the Default Case to Trap Errors
if ( IsLetter( inputCharacter ) ) {

   characterType = CharacterType_Letter;

}

else if ( IsPunctuation( inputCharacter ) ) {

   characterType = CharacterType_Punctuation;

}

else if ( IsDigit( inputCharacter ) ) {

   characterType = CharacterType_Digit;

}

else if ( IsControl( inputCharacter ) ) {

   characterType = CharacterType_ControlCharacter;

}

else {

   DisplayInternalError( "Unexpected type of character detected." );

}

Replace if-then-else chains with other constructs if your language supports them A 
few languages—Microsoft Visual Basic and Ada, for example—provide case statements 
that support use of strings, enums, and logical functions. Use them—they are easier to 
code and easier to read than if-then-else chains. Code for classifying character types by 
using a case statement in Visual Basic would be written like this:

Visual Basic Example of Using a case Statement Instead of an if-then-else Chain
Select Case inputCharacter

   Case "a" To "z"

      characterType = CharacterType_Letter

   Case " ", ",", ".", "!", "(", ")", ":", ";", "?", "-"

      characterType = CharacterType_Punctuation

   Case "0" To "9"

      characterType = CharacterType_Digit

   Case FIRST_CONTROL_CHARACTER To LAST_CONTROL_CHARACTER

      characterType = CharacterType_Control

   Case Else

      DisplayInternalError( "Unexpected type of character detected." )

End Select



15.2 case Statements 361

15.2 case Statements
The case or switch statement is a construct that varies a great deal from language to lan-
guage. C++ and Java support case only for ordinal types taken one value at a time. 
Visual Basic supports case for ordinal types and has powerful shorthand notations for 
expressing ranges and combinations of values. Many scripting languages don’t sup-
port case statements at all. 

The following sections present guidelines for using case statements effectively:

Choosing the Most Effective Ordering of Cases

You can choose from among a variety of ways to organize the cases in a case statement. 
If you have a small case statement with three options and three corresponding lines of 
code, the order you use doesn’t matter much. If you have a long case statement—for 
example, a case statement that handles dozens of events in an event-driven program—
order is significant. Following are some ordering possibilities:

Order cases alphabetically or numerically If cases are equally important, putting 
them in A-B-C order improves readability. That way a specific case is easy to pick out 
of the group.

Put the normal case first If you have one normal case and several exceptions, put 
the normal case first. Indicate with comments that it’s the normal case and that the 
others are unusual.

Order cases by frequency Put the most frequently executed cases first and the least 
frequently executed last. This approach has two advantages. First, human readers can 
find the most common cases easily. Readers scanning the list for a specific case are 
likely to be interested in one of the most common cases, and putting the common 
ones at the top of the code makes the search quicker. 

Tips for Using case Statements 

Here are several tips for using case statements: 

Cross-Reference For other 
tips on simplifying code, see 
Chapter 24, "Refactoring."

Keep the actions of each case simple Keep the code associated with each case short. 
Short code following each case helps make the structure of the case statement clear. If 
the actions performed for a case are complicated, write a routine and call the routine 
from the case rather than putting the code into the case itself.

Don’t make up phony variables to be able to use the case statement A case state-
ment should be used for simple data that’s easily categorized. If your data isn’t simple, 
use chains of if-then-elses instead. Phony variables are confusing, and you should avoid 
them. For example, don’t do this:

15.1 case Statements
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Java Example of Creating a Phony case Variable—Bad Practice
action = userCommand[ 0 ];

switch ( action ) {

   case 'c': 

      Copy(); 

      break;

   case 'd': 

      DeleteCharacter(); 

      break;

   case 'f': 

      Format(); 

      break;

   case 'h': 

      Help(); 

      break;

   ...

   default: 

      HandleUserInputError( ErrorType.InvalidUserCommand );

} 

The variable that controls the case statement is action. In this case, action is created by peel-
ing off the first character of the userCommand string, a string that was entered by the user.

Cross-Reference In contrast 
to this advice, sometimes 
you can improve readability 
by assigning a complicated 
expression to a well-named 
boolean variable or function. 
For details, see “Making 
Complicated Expressions 
Simple” in Section 19.1.

This troublemaking code is from the wrong side of town and invites problems. In gen-
eral, when you manufacture a variable to use in a case statement, the real data might 
not map onto the case statement the way you want it to. In this example, if the user 
types copy, the case statement peels off the first “c” and correctly calls the Copy() rou-
tine. On the other hand, if the user types cement overshoes, clambake, or cellulite, 
the case statement also peels off the “c” and calls Copy(). The test for an erroneous 
command in the case statement’s else clause won’t work very well because it will miss 
only erroneous first letters rather than erroneous commands.

Rather than making up a phony variable, this code should use a chain of if-then-else-if 
tests to check the whole string. A virtuous rewrite of the code looks like this:

Java Example of Using if-then-elses Instead of a Phony case Variable—Good Practice
if ( UserCommand.equals( COMMAND_STRING_COPY ) ) {

   Copy();

}

else if ( UserCommand.equals( COMMAND_STRING_DELETE ) ) {

   DeleteCharacter();

}

else if ( UserCommand.equals( COMMAND_STRING_FORMAT ) ) {

   Format();

}

else if ( UserCommand.equals( COMMAND_STRING_HELP ) ) {

   Help();

}

...

else {

   HandleUserInputError( ErrorType_InvalidCommandInput );

}

CODING 
HORROR
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Use the default clause only to detect legitimate defaults You might sometimes have 
only one case remaining and decide to code that case as the default clause. Though 
sometimes tempting, that’s dumb. You lose the automatic documentation provided by 
case-statement labels, and you lose the ability to detect errors with the default clause.

Such case statements break down under modification. If you use a legitimate default, 
adding a new case is trivial—you just add the case and the corresponding code. If you 
use a phony default, the modification is more difficult. You have to add the new case, 
possibly making it the new default, and then change the case previously used as the 
default so that it’s a legitimate case. Use a legitimate default in the first place.

Use the default clause to detect errors If the default clause in a case statement isn’t 
being used for other processing and isn’t supposed to occur, put a diagnostic mes-
sage in it:

Java Example of Using the Default Case to Detect Errors—Good Practice
switch ( commandShortcutLetter ) {

   case 'a': 

      PrintAnnualReport();

      break;

   case 'p': 

      // no action required, but case was considered

      break;

   case 'q': 

      PrintQuarterlyReport();

      break;

   case 's': 

      PrintSummaryReport();

      break;

   default: 

      DisplayInternalError( "Internal Error 905: Call customer support." );

} 

Messages like this are useful in both debugging and production code. Most users pre-
fer a message like “Internal Error: Please call customer support” to a system crash or, 
worse, subtly incorrect results that look right until the user’s boss checks them.

If the default clause is used for some purpose other than error detection, the implica-
tion is that every case selector is correct. Double-check to be sure that every value that 
could possibly enter the case statement would be legitimate. If you come up with some 
that wouldn’t be legitimate, rewrite the statements so that the default clause will 
check for errors.

In C++ and Java, avoid dropping through the end of a case statement C-like lan-
guages (C, C++, and Java) don’t automatically break out of each case. Instead, you 
have to code the end of each case explicitly. If you don’t code the end of a case, the 
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program drops through the end and executes the code for the next case. This can lead 
to some particularly egregious coding practices, including the following horrible 
example:

                 

Cross-Reference This code’s 
formatting makes it look bet-
ter than it is. For details on 
how to use formatting to 
make good code look good 
and bad code look bad, see 
“Endline Layout” in Section 
31.3  and the rest of Chapter 
31, “Layout and Style.”

C++ Example of Abusing the case Statement
switch ( InputVar ) {

   case 'A': if ( test ) {

                   // statement 1

                   // statement 2

   case 'B':       // statement 3

                   // statement 4

                   ...

                   } 

                ...

             break;

   ...

}

This practice is bad because it intermingles control constructs. Nested control con-
structs are hard enough to understand; overlapping constructs are all but impossible. 
Modifications of case 'A' or case 'B' will be harder than brain surgery, and it’s likely that 
the cases will need to be cleaned up before any modifications will work. You might as 
well do it right the first time. In general, it’s a good idea to avoid dropping through the 
end of a case statement.

In C++, clearly and unmistakably identify flow-throughs at the end of a case 
statement If you intentionally write code to drop through the end of a case, clearly 
comment the place at which it happens and explain why it needs to be coded that way. 

C++ Example of Documenting Falling Through the End of a case Statement
switch ( errorDocumentationLevel ) {

   case DocumentationLevel_Full:

      DisplayErrorDetails( errorNumber );

      // FALLTHROUGH -- Full documentation also prints summary comments

   case DocumentationLevel_Summary:

      DisplayErrorSummary( errorNumber );

      // FALLTHROUGH -- Summary documentation also prints error number

   case DocumentationLevel_NumberOnly:

      DisplayErrorNumber( errorNumber );

      break;

   default: 

      DisplayInternalError( "Internal Error 905: Call customer support." );

} 

CODING 
HORROR
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This technique is useful about as often as you find someone who would rather have a 
used Pontiac Aztek than a new Corvette. Generally, code that falls through from one 
case to another is an invitation to make mistakes as the code is modified, and it 
should be avoided. 

cc2e.com/1545 CHECKLIST: Using Conditionals
if-then Statements

❑ Is the nominal path through the code clear?

❑ Do if-then tests branch correctly on equality?

❑ Is the else clause present and documented?

❑ Is the else clause correct?

❑ Are the if and else clauses used correctly—not reversed?

❑ Does the normal case follow the if rather than the else? 

if-then-else-if Chains
❑ Are complicated tests encapsulated in boolean function calls?

❑ Are the most common cases tested first?

❑ Are all cases covered?

❑ Is the if-then-else-if chain the best implementation—better than a case 
statement?

case Statements
❑ Are cases ordered meaningfully?

❑ Are the actions for each case simple—calling other routines if necessary?

❑ Does the case statement test a real variable, not a phony one that’s made 
up solely to use and abuse the case statement?

❑ Is the use of the default clause legitimate?

❑ Is the default clause used to detect and report unexpected cases?

❑ In C, C++, or Java, does the end of each case have a break?

15.1 case Statements
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Key Points
■ For simple if-else statements, pay attention to the order of the if and else clauses, 

especially if they process a lot of errors. Make sure the nominal case is clear.

■ For if-then-else chains and case statements, choose an order that maximizes read-
ability.

■ To trap errors, use the default clause in a case statement or the last else in a chain 
of if-then-else statements.

■ All control constructs are not created equal. Choose the control construct that’s 
most appropriate for each section of code.
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Chapter 16

Controlling Loops
cc2e.com/1609 Contents

■ 16.1 Selecting the Kind of Loop: page 367

■ 16.2 Controlling the Loop: page 373

■ 16.3 Creating Loops Easily—From the Inside Out: page 385

■ 16.4 Correspondence Between Loops and Arrays: page 387

Related Topics

■ Taming deep nesting: Section 19.4

■ General control issues: Chapter 19

■ Code with conditionals: Chapter 15

■ Straight-line code: Chapter 14

■ Relationship between control structures and data types: Section 10.7

“Loop” is an informal term that refers to any kind of iterative control structure—any 
structure that causes a program to repeatedly execute a block of code. Common 
loop types are for, while, and do-while in C++ and Java, and For-Next, While-Wend, and 
Do-Loop-While in Microsoft Visual Basic. Using loops is one of the most complex 
aspects of programming; knowing how and when to use each kind of loop is a deci-
sive factor in constructing high-quality software.

16.1 Selecting the Kind of Loop
In most languages, you’ll use a few kinds of loops:

■ The counted loop is performed a specific number of times, perhaps one time for 
each employee.

■ The continuously evaluated loop doesn’t know ahead of time how many times it 
will be executed and tests whether it has finished on each iteration. For example, it 
runs while money remains, until the user selects quit, or until it encounters an error.

■ The endless loop executes forever once it has started. It’s the kind you find in 
embedded systems such as pacemakers, microwave ovens, and cruise controls.

■ The iterator loop performs its action once for each element in a container class.
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The kinds of loops are differentiated first by flexibility—whether the loop executes a 
specified number of times or whether it tests for completion on each iteration.

The kinds of loops are also differentiated by the location of the test for completion. 
You can put the test at the beginning, the middle, or the end of the loop. This charac-
teristic tells you whether the loop executes at least once. If the loop is tested at the 
beginning, its body isn’t necessarily executed. If the loop is tested at the end, its body 
is executed at least once. If the loop is tested in the middle, the part of the loop that 
precedes the test is executed at least once, but the part of the loop that follows the test 
isn’t necessarily executed at all.

Flexibility and the location of the test determine the kind of loop to choose as a con-
trol structure. Table 16-1 shows the kinds of loops in several languages and describes 
each loop’s flexibility and test location.

When to Use a while Loop

Novice programmers sometimes think that a while loop is continuously evaluated and 
that it terminates the instant the while condition becomes false, regardless of which 
statement in the loop is being executed (Curtis et al. 1986). Although it’s not quite 
that flexible, a while loop is a flexible loop choice. If you don’t know ahead of time 
exactly how many times you’ll want the loop to iterate, use a while loop. Contrary to 
what some novices think, the test for the loop exit is performed only once each time 
through the loop, and the main issue with respect to while loops is deciding whether 
to test at the beginning or the end of the loop.

Table 16-1 The Kinds of Loops

Language Kind of Loop Flexibility Test Location

Visual Basic For-Next rigid beginning

While-Wend flexible beginning

Do-Loop-While flexible beginning or end

For-Each rigid beginning

C, C++, C#, Java for flexible beginning

while flexible beginning

do-while flexible end

foreach*

* Available only in C#. Planned for other languages, including Java, at the time of this writing.

rigid beginning
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Loop with Test at the Beginning

For a loop that tests at the beginning, you can use a while loop in C++, C#, Java, Visual 
Basic, and most other languages. You can emulate a while loop in other languages.

Loop with Test at the End

You might occasionally have a situation in which you want a flexible loop, but the 
loop needs to execute at least one time. In such a case, you can use a while loop that is 
tested at its end. You can use do-while in C++, C#, and Java, Do-Loop-While in Visual 
Basic, or you can emulate end-tested loops in other languages.

When to Use a Loop-With-Exit Loop

A loop-with-exit loop is a loop in which the exit condition appears in the middle of the 
loop rather than at the beginning or at the end. The loop-with-exit loop is available 
explicitly in Visual Basic, and you can emulate it with the structured constructs while 
and break in C++, C, and Java or with gotos in other languages.

Normal Loop-With-Exit Loops

A loop-with-exit loop usually consists of the loop beginning, the loop body (including 
an exit condition), and the loop end, as in this Visual Basic example:

Visual Basic Example of a Generic Loop-With-Exit Loop
Do

Statements.    ...

   If ( some exit condition ) Then Exit Do

More statements.    ...

Loop

The typical use of a loop-with-exit loop is for the case in which testing at the beginning 
or at the end of the loop requires coding a loop-and-a-half. Here’s a C++ example of a 
case that warrants a loop-with-exit loop but doesn’t use one:

C++ Example of Duplicated Code That Will Break Down Under Maintenance
// Compute scores and ratings.

score  = 0;

These lines appear here... GetNextRating( &ratingIncrement );

rating = rating + ratingIncrement;

while ( ( score < targetScore ) && ( ratingIncrement != 0 ) ) {

   GetNextScore( &scoreIncrement );

   score = score + scoreIncrement;

…and are repeated here.    GetNextRating( &ratingIncrement );

   rating = rating + ratingIncrement;

}
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The two lines of code at the top of the example are repeated in the last two lines of 
code of the while loop. During modification, you can easily forget to keep the two sets 
of lines parallel. Another programmer modifying the code probably won’t even realize 
that the two sets of lines are supposed to be modified in parallel. Either way, the result 
will be errors arising from incomplete modifications. Here’s how you can rewrite the 
code more clearly:

C++ Example of a Loop-With-Exit Loop That’s Easier to Maintain
// Compute scores and ratings. The code uses an infinite loop

// and a break statement to emulate a loop-with-exit loop.

score = 0;

while ( true ) {

   GetNextRating( &ratingIncrement );

   rating = rating + ratingIncrement;

This is the loop-exit condi-
tion (and now it could be 
simplified using DeMorgan’s 
Theorems, described in 
Section 19.1).

   if ( !( ( score < targetScore ) && ( ratingIncrement != 0 ) ) ) {

      break;

   }

   GetNextScore( &scoreIncrement );

   score = score + scoreIncrement;

}

Here’s how the same code is written in Visual Basic:

Visual Basic Example of a Loop-With-Exit Loop
' Compute scores and ratings

score = 0

Do

   GetNextRating( ratingIncrement )

   rating = rating + ratingIncrement

   If ( not ( score < targetScore and ratingIncrement <> 0 ) ) Then Exit Do

   GetNextScore( ScoreIncrement )

   score = score + scoreIncrement

Loop

Consider these finer points when you use this kind of loop:

Cross-Reference Details on 
exit conditions are presented 
later in this chapter. For 
details on using comments 
with loops, see “Comment-
ing Control Structures” in 
Section 32.5.

Put all the exit conditions in one place. Spreading them around practically guarantees 
that one exit condition or another will be overlooked during debugging, modification, 
or testing.

Use comments for clarification. If you use the loop-with-exit loop technique in a lan-
guage that doesn’t support it directly, use comments to make what you’re doing clear.
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The loop-with-exit loop is a one-entry, one-exit, structured control construct, and it is 
the preferred kind of loop control (Software Productivity Consortium 1989). It has 
been shown to be easier to understand than other kinds of loops. A study of student 
programmers compared this kind of loop with those that exited at either the top or 
the bottom (Soloway, Bonar, and Ehrlich 1983). Students scored 25 percent higher on 
a test of comprehension when loop-with-exit loops were used, and the authors of the 
study concluded that the loop-with-exit structure more closely models the way people 
think about iterative control than other loop structures do.

In common practice, the loop-with-exit loop isn’t widely used yet. The jury is still 
locked in a smoky room arguing about whether it’s a good practice for production 
code. Until the jury is in, the loop-with-exit loop is a good technique to have in your 
programmer’s toolbox—as long as you use it carefully.

Abnormal Loop-With-Exit Loops

Another kind of loop-with-exit loop that’s used to avoid a loop-and-a-half is shown here:

C++ Example of Entering the Middle of a Loop with a goto—Bad Practice
goto Start;

while ( expression ) {

   // do something

   ...

   Start:

   // do something else

   ...

}

At first glance, this seems to be similar to the previous loop-with-exit examples. It’s 
used in simulations in which // do something doesn’t need to be executed at the first 
pass through the loop but  // do something else does. It’s a one-in, one-out control con-
struct: the only way into the loop is through the goto at the top, and the only way out 
of the loop is through the while test. This  approach has two problems: it uses a goto, 
and it’s unusual enough to be confusing.

In C++, you can accomplish the same effect without using a goto, as demonstrated in 
the following example. If the language you’re using doesn’t support a break command, 
you can emulate one with a goto.

C++ Example of Code Rewritten Without a goto—Better Practice
while ( true ) {

The blocks before and after 
the break have been 
switched.

   // do something else

   ...

1
2
3

HARD DATA
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   if ( !( expression ) ) {

      break;

   }

   // do something

   ...

}

When to Use a for Loop
Further Reading For more 
good guidelines on using for 
loops, see Writing Solid 
Code (Maguire 1993).

A for loop is a good choice when you need a loop that executes a specified number of 
times. You can use for in C++, C, Java, Visual Basic, and most other languages.

Use for loops for simple activities that don’t require internal loop controls. Use them 
when the loop control involves simple increments or simple decrements, such as iter-
ating through the elements in a container. The point of a for loop is that you set it up 
at the top of the loop and then forget about it. You don’t have to do anything inside the 
loop to control it. If you have a condition under which execution has to jump out of a 
loop, use a while loop instead.

Likewise, don’t explicitly change the index value of a for loop to force it to terminate. 
Use a while loop instead. The for loop is for simple uses. Most complicated looping 
tasks are better handled by a while loop.

When to Use a foreach Loop

The foreach loop or its equivalent (foreach in C#, For-Each in Visual Basic, for-in in 
Python) is useful for performing an operation on each member of an array or other 
container. It has the advantage of eliminating loop-housekeeping arithmetic and 
therefore eliminating any chance of errors in the loop-housekeeping arithmetic. 
Here’s an example of this kind of loop:

C# Example of a foreach Loop
int [] fibonacciSequence = new int [] { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 };

int oddFibonacciNumbers = 0;

int evenFibonacciNumbers = 0;

// count the number of odd and even numbers in a Fibonacci sequence

foreach ( int fibonacciNumber in fibonacciSequence ) {

   if ( fibonacciNumber % 2 ) == 0 ) {

      evenFibonacciNumbers++;

   }

   else {

      oddFibonacciNumbers++;

   }

}

Console.WriteLine( "Found {0} odd numbers and {1} even numbers.", 

   oddFibonacciNumbers, evenFibonacciNumbers );
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16.2 Controlling the Loop
What can go wrong with a loop? Any answer would have to include incorrect or omit-
ted loop initialization, omitted initialization of accumulators or other variables related 
to the loop, improper nesting, incorrect termination of the loop, forgetting to incre-
ment a loop variable or incrementing the variable incorrectly, and indexing an array 
element from a loop index incorrectly.

You can forestall these problems by observing two practices. First, minimize the num-
ber of factors that affect the loop. Simplify! Simplify! Simplify! Second, treat the inside 
of the loop as if it were a routine—keep as much of the control as possible outside the 
loop. Explicitly state the conditions under which the body of the loop is to be exe-
cuted. Don’t make the reader look inside the loop to understand the loop control. 
Think of a loop as a black box: the surrounding program knows the control condi-
tions but not the contents.

Cross-Reference If you use 
the while ( true )-break tech-
nique described earlier, the 
exit condition is inside the 
black box. Even if you use 
only one exit condition, you 
lose the benefit of treating 
the loop as a black box.

C++ Example of Treating a Loop as a Black Box
while ( !inputFile.EndOfFile() && moreDataAvailable ) {

}

What are the conditions under which this loop terminates? Clearly, all you know is 
that either inputFile.EndOfFile() becomes true or MoreDataAvailable becomes false.

Entering the Loop

Use these guidelines when entering a loop:

Enter the loop from one location only A variety of loop-control structures allows you to 
test at the beginning, middle, or end of a loop. These structures are rich enough to allow 
you to enter the loop from the top every time. You don’t need to enter at multiple locations.

Put initialization code directly before the loop The Principle of Proximity advocates 
putting related statements together. If related statements are strewn across a routine, it’s 
easy to overlook them during modification and to make the modifications incorrectly. If 
related statements are kept together, it’s easier to avoid errors during modification.

Cross-Reference For more 
on limiting the scope of loop 
variables, see “Limit the 
scope of loop-index vari-
ables to the loop itself” later 
in this chapter.

Keep loop-initialization statements with the loop they’re related to. If you don’t, you’re 
more likely to cause errors when you generalize the loop into a bigger loop and forget 
to modify the initialization code. The same kind of error can occur when you move or 
copy the loop code into a different routine without moving or copying its initialization 
code. Putting initializations away from the loop—in the data-declaration section or in 
a housekeeping section at the top of the routine that contains the loop—invites initial-
ization troubles.

KEY POINT
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Use while( true ) for infinite loops You might have a loop that runs without termi-
nating—for example, a loop in firmware such as a pacemaker or a microwave oven. Or 
you might have a loop that terminates only in response to an event—an “event loop.” 
You could code such an infinite loop in several ways. Faking an infinite loop with a 
statement like for i = 1 to 99999 is a poor choice because the specific loop limits muddy 
the intent of the loop—99999 could be a legitimate value. Such a fake infinite loop can 
also break down under maintenance.

The while( true ) idiom is considered a standard way of writing an infinite loop in C++, 
Java, Visual Basic, and other languages that support comparable structures. Some pro-
grammers prefer to use for( ;; ), which is an accepted alternative.

Prefer for loops when they’re appropriate The for loop packages loop-control code 
in one place, which makes for easily readable loops. One mistake programmers com-
monly make when modifying software is changing the loop-initialization code at the 
top of a while loop but forgetting to change related code at the bottom. In a for loop, all 
the relevant code is together at the top of the loop, which makes correct modifications 
easier. If you can use the for loop appropriately instead of another kind of loop, do it.

Don’t use a for loop when a while loop is more appropriate A common abuse of the 
flexible for loop structure in C++, C#, and Java is haphazardly cramming the contents 
of a while loop into a for loop header. The following example shows a while loop 
crammed into a for loop header:

C++ Example of a while Loop Abusively Crammed into a for Loop Header
// read all the records from a file 

for ( inputFile.MoveToStart(), recordCount = 0; !inputFile.EndOfFile(); 

   recordCount++ ) {

   inputFile.GetRecord();

}

The advantage of C++’s for loop over for loops in other languages is that it’s more flex-
ible about the kinds of initialization and termination information it can use. The weak-
ness inherent in such flexibility is that you can put statements into the loop header 
that have nothing to do with controlling the loop.

Reserve the for loop header for loop-control statements—statements that initialize the 
loop, terminate it, or move it toward termination. In the example just shown, the 
inputFile.GetRecord() statement in the body of the loop moves the loop toward termi-
nation, but the recordCount statements don’t; they’re housekeeping statements that 
don’t control the loop’s progress. Putting the recordCount statements in the loop 
header and leaving the inputFile.GetRecord() statement out is misleading; it creates the 
false impression that recordCount controls the loop.

If you want to use the for loop rather than the while loop in this case, put the loop-con-
trol statements in the loop header and leave everything else out. Here’s the right way 
to use the loop header:

CODING 
HORROR
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C++ Example of Logical if Unconventional Use of a for Loop Header
recordCount = 0;

for ( inputFile.MoveToStart(); !inputFile.EndOfFile(); inputFile.GetRecord() ) {

   recordCount++;

}

The contents of the loop header in this example are all related to control of the loop. 
The inputFile.MoveToStart() statement initializes the loop, the !inputFile.EndOfFile() 
statement tests whether the loop has finished, and the inputFile.GetRecord() statement 
moves the loop toward termination. The statements that affect recordCount don’t 
directly move the loop toward termination and are appropriately not included in the 
loop header. The while loop is probably still more appropriate for this job, but at least 
this code uses the loop header logically. For the record, here’s how the code looks 
when it uses a while loop:

C++ Example of Appropriate Use of a while Loop
// read all the records from a file 

inputFile.MoveToStart();

recordCount = 0;

while ( !inputFile.EndOfFile() ) {

   inputFile.GetRecord();

   recordCount++;

}

Processing the Middle of the Loop

The following subsections describe handling the middle of a loop:

Use { and } to enclose the statements in a loop Use code brackets every time. They 
don’t cost anything in speed or space at run time, they help readability, and they help 
prevent errors as the code is modified. They’re a good defensive-programming practice.

Avoid empty loops In C++ and Java, it’s possible to create an empty loop, one in 
which the work the loop is doing is coded on the same line as the test that checks 
whether the work is finished. Here’s an example:

C++ Example of an Empty Loop
while ( ( inputChar = dataFile.GetChar() ) != CharType_Eof ) {

   ;

}
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In this example, the loop is empty because the while expression includes two things: 
the work of the loop—inputChar = dataFile.GetChar()—and a test for whether the loop 
should terminate—inputChar !=  CharType_Eof. The loop would be clearer if it were 
recoded so that the work it does is evident to the reader:

C++ Example of an Empty Loop Converted to an Occupied Loop
do {

   inputChar = dataFile.GetChar();

} while ( inputChar != CharType_Eof  );

The new code takes up three full lines rather than one line and a semicolon, which is 
appropriate since it does the work of three lines rather than that of one line and a 
semicolon.

Keep loop-housekeeping chores at either the beginning or the end of the loop Loop-
housekeeping chores are expressions like i = i + 1 or j++, expressions whose main pur-
pose isn’t to do the work of the loop but to control the loop. The housekeeping is 
done at the end of the loop in this example:

C++ Example of Housekeeping Statements at the End of a Loop
nameCount = 0;

totalLength = 0;

while ( !inputFile.EndOfFile() ) {

   // do the work of the loop

   inputFile >> inputString;

   names[ nameCount ] = inputString;

   ...

   // prepare for next pass through the loop--housekeeping

Here are the housekeeping 
statements.

   nameCount++;

   totalLength = totalLength + inputString.length();

}

As a general rule, the variables you initialize before the loop are the variables you’ll 
manipulate in the housekeeping part of the loop.

Cross-Reference For more 
on optimization, see Chapter 
25, “Code-Tuning Strate-
gies,” and Chapter 26, 
“Code-Tuning Techniques.”

Make each loop perform only one function The mere fact that a loop can be used to 
do two things at once isn’t sufficient justification for doing them together. Loops 
should be like routines in that each one should do only one thing and do it well. If it 
seems inefficient to use two loops where one would suffice, write the code as two 
loops, comment that they could be combined for efficiency, and then wait until bench-
marks show that the section of the program poses a performance problem before 
changing the two loops into one.
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Exiting the Loop

These subsections describe handling the end of a loop:

Assure yourself that the loop ends This is fundamental. Mentally simulate the execu-
tion of the loop until you are confident that, in all circumstances, it ends. Think 
through the nominal cases, the endpoints, and each of the exceptional cases.

Make loop-termination conditions obvious If you use a for loop and don’t fool 
around with the loop index and don’t use a goto or break to get out of the loop, the ter-
mination condition will be obvious. Likewise, if you use a while or repeat-until loop 
and put all the control in the while or repeat-until clause, the termination condition 
will be obvious. The key is putting the control in one place.

Don’t monkey with the loop index of a for loop to make the loop terminate Some 
programmers jimmy the value of a for loop index to make the loop terminate early. 
Here’s an example:

Java Example of Monkeying with a Loop Index
for ( int i = 0; i < 100; i++ ) {

   // some code

   ...

   if ( ... ) {

Here’s the monkeying.       i = 100;

   }

   // more code

   ...

}

The intent in this example is to terminate the loop under some condition by setting i 
to 100, a value that’s larger than the end of the for loop’s range of 0 through 99. Virtu-
ally all good programmers avoid this practice; it’s the sign of an amateur. When you 
set up a for loop, the loop counter is off limits. Use a while loop to provide more con-
trol over the loop’s exit conditions.

Avoid code that depends on the loop index’s final value It’s bad form to use the value 
of the loop index after the loop. The terminal value of the loop index varies from lan-
guage to language and implementation to implementation. The value is different 
when the loop terminates normally and when it terminates abnormally. Even if you 
happen to know what the final value is without stopping to think about it, the next 
person to read the code will probably have to think about it. It’s better form and more 
self-documenting if you assign the final value to a variable at the appropriate point 
inside the loop.

CODING 
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This code misuses the index’s final value:

C++ Example of Code That Misuses a Loop Index’s Terminal Value
for ( recordCount = 0; recordCount < MAX_RECORDS; recordCount++ ) {

   if ( entry[ recordCount ] == testValue ) {

      break;

   }

}

// lots of code 

...

Here’s the misuse of the loop 
index’s terminal value.

if ( recordCount < MAX_RECORDS ) {

   return( true );

}

else {

   return( false );

}

In this fragment, the second test for recordCount < MaxRecords makes it appear that the 
loop is supposed to loop though all the values in entry[] and return true if it finds the 
one equal to testValue and false otherwise. It’s hard to remember whether the index 
gets incremented past the end of the loop, so it’s easy to make an off-by-one error. 
You’re better off writing code that doesn’t depend on the index’s final value. Here’s 
how to rewrite the code:

C++ Example of Code That Doesn’t Misuse a Loop Index’s Terminal Value
found = false;

for ( recordCount = 0; recordCount < MAX_RECORDS; recordCount++ ) {

   if ( entry[ recordCount ] == testValue ) {

      found = true;

      break;

   }

}

// lots of code 

...

return( found );

This second code fragment uses an extra variable and keeps references to recordCount 
more localized. As is often the case when an extra boolean variable is used, the result-
ing code is clearer.

Consider using safety counters A safety counter is a variable you increment each 
pass through a loop to determine whether a loop has been executed too many times. 
If you have a program in which an error would be catastrophic, you can use safety 
counters to ensure that all loops end. This C++ loop could profitably use a safety 
counter:
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C++ Example of a Loop That Could Use a Safety Counter
do {

   node = node->Next;

   ...

} while ( node->Next != NULL );

Here’s the same code with the safety counters added:

C++ Example of Using a Safety Counter
safetyCounter = 0;

do {

   node = node->Next;

   ...

Here’s the safety-counter 
code.

   safetyCounter++;

   if ( safetyCounter >= SAFETY_LIMIT ) {

      Assert( false, "Internal Error: Safety-Counter Violation." );

   }

   ...

} while ( node->Next != NULL );

Safety counters are not a cure-all. Introduced into the code one at a time, safety 
counters increase complexity and can lead to additional errors. Because they aren’t 
used in every loop, you might forget to maintain safety-counter code when you modify 
loops in parts of the program that do use them. If safety counters are instituted as a 
projectwide standard for critical loops, however, you learn to expect them and the 
safety-counter code is no more prone to produce errors later than any other code is.

Exiting Loops Early

Many languages provide a means of causing a loop to terminate in some way other than 
completing the for or while condition. In this discussion, break is a generic term for break 
in C++, C, and Java; for Exit-Do and Exit-For in Visual Basic; and for similar constructs, 
including those simulated with gotos in languages that don’t support break directly. The 
break statement (or equivalent) causes a loop to terminate through the normal exit 
channel; the program resumes execution at the first statement following the loop.

The continue statement is similar to break in that it’s an auxiliary loop-control state-
ment. Rather than causing a loop exit, however, continue causes the program to skip 
the loop body and continue executing at the beginning of the next iteration of the 
loop. A continue statement is shorthand for an if-then clause that would prevent the 
rest of the loop from being executed.

Consider using break statements rather than boolean flags in a while loop In some 
cases, adding boolean flags to a while loop to emulate exits from the body of the loop 
makes the loop hard to read. Sometimes you can remove several levels of indentation 
inside a loop and simplify loop control just by using a break instead of a series of if tests. 
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Putting multiple break conditions into separate statements and placing them near the 
code that produces the break can reduce nesting and make the loop more readable.

Be wary of a loop with a lot of breaks scattered through it A loop’s containing a lot 
of breaks can indicate unclear thinking about the structure of the loop or its role in the 
surrounding code. A proliferation of breaks raises the possibility that the loop could 
be more clearly expressed as a series of loops rather than as one loop with many exits.

According to an article in Software Engineering Notes, the software error that brought 
down the New York City phone systems for 9 hours on January 15, 1990, was due to 
an extra break statement (SEN 1990):

C++ Example of Erroneous Use of a break Statement Within a do-switch-if Block
do {

   ...

   switch

      ...

      if () {

         ...

This break was intended for 
the if but broke out of the 
switch instead.

          break; 

         ...

      }

      ...

} while ( ... );

Multiple breaks don’t necessarily indicate an error, but their existence in a loop is a 
warning sign, a canary in a coal mine that’s gasping for air instead of singing as loud 
as it should be.

Use continue for tests at the top of a loop A good use of continue is for moving exe-
cution past the body of the loop after testing a condition at the top. For example, if the 
loop reads records, discards records of one kind, and processes records of another 
kind, you could put a test like this one at the top of the loop:

Pseudocode Example of a Relatively Safe Use of continue
while ( not eof( file ) ) do

   read( record, file )

   if ( record.Type <> targetType ) then

      continue

   -- process record of targetType

   ...

end while

Using continue in this way lets you avoid an if test that would effectively indent the 
entire body of the loop. If, on the other hand, the continue occurs toward the middle 
or end of the loop, use an if instead.
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Use the labeled break structure if your language supports it Java supports use of 
labeled breaks to prevent the kind of problem experienced with the New York City 
telephone outage. A labeled break can be used to exit a for loop, an if statement, or any 
block of code enclosed in braces (Arnold, Gosling, and Holmes 2000).

Here’s a possible solution to the New York City telephone code problem, with the pro-
gramming language changed from C++ to Java to show the labeled break:

Java Example of a Better Use of a Labeled break Statement Within a 
do-switch-if Block
do {

   ...

   switch

      ...

      CALL_CENTER_DOWN:

      if () {

         ...

The target of the labeled 
break is unambiguous.

          break CALL_CENTER_DOWN; 

         ...

      }

      ...

} while ( ... );

Use break and continue only with caution Use of break eliminates the possibility of 
treating a loop as a black box. Limiting yourself to only one statement to control a 
loop’s exit condition is a powerful way to simplify your loops. Using a break forces the 
person reading your code to look inside the loop for an understanding of the loop 
control. That makes the loop more difficult to understand.

Use break only after you have considered the alternatives. You don’t know with cer-
tainty whether continue and break are virtuous or evil constructs. Some computer sci-
entists argue that they are a legitimate technique in structured programming; some 
argue that they aren’t. Because you don’t know in general whether continue and break 
are right or wrong, use them, but only with a fear that you might be wrong. It really is 
a simple proposition: if you can’t defend a break or a continue, don’t use it.

Checking Endpoints

A single loop usually has three cases of interest: the first case, an arbitrarily selected 
middle case, and the last case. When you create a loop, mentally run through the first, 
middle, and last cases to make sure that the loop doesn’t have any off-by-one errors. If 
you have any special cases that are different from the first or last case, check those too. 
If the loop contains complex computations, get out your calculator and manually 
check the calculations.
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Willingness to perform this kind of check is a key difference between efficient and 
inefficient programmers. Efficient programmers do the work of mental simulations 
and hand calculations because they know that such measures help them find errors.

Inefficient programmers tend to experiment randomly until they find a combination 
that seems to work. If a loop isn’t working the way it’s supposed to, the inefficient pro-
grammer changes the < sign to a <= sign. If that fails, the inefficient programmer 
changes the loop index by adding or subtracting 1. Eventually the programmer using 
this approach might stumble onto the right combination or simply replace the origi-
nal error with a more subtle one. Even if this random process results in a correct pro-
gram, it doesn’t result in the programmer’s knowing why the program is correct.

You can expect several benefits from mental simulations and hand calculations. The 
mental discipline results in fewer errors during initial coding, in more rapid detection 
of errors during debugging, and in a better overall understanding of the program. The 
mental exercise means that you understand how your code works rather than guess-
ing about it.

Using Loop Variables

Here are some guidelines for using loop variables:

Cross-Reference For details 
on naming loop variables, 
see “Naming Loop Indexes” 
in Section 11.2.

Use ordinal or enumerated types for limits on both arrays and loops Generally, loop 
counters should be integer values. Floating-point values don’t increment well. For exam-
ple, you could add 1.0 to 26,742,897.0 and get 26,742,897.0 instead of 26,742,898.0. If 
this incremented value were a loop counter, you’d have an infinite loop.

Use meaningful variable names to make nested loops readable Arrays are often 
indexed with the same variables that are used for loop indexes. If you have a one-
dimensional array, you might be able to get away with using i, j, or k to index it. But if 
you have an array with two or more dimensions, you should use meaningful index 
names to clarify what you’re doing. Meaningful array-index names clarify both the 
purpose of the loop and the part of the array you intend to access.

Here’s code that doesn’t put this principle to work; it uses the meaningless names i, j, 
and k instead:

Java Example of Bad Loop Variable Names
for ( int i = 0; i < numPayCodes; i++ ) {

   for ( int j = 0; j < 12; j++ ) {

      for ( int k = 0; k < numDivisions; k++ ) {

         sum = sum + transaction[ j ][ i ][ k ];

      }

   }

}

KEY POINT

KEY POINT

CODING 
HORROR
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What do you think the array indexes in transaction mean? Do i, j, and k tell you any-
thing about the contents of transaction? If you had the declaration of transaction, could 
you easily determine whether the indexes were in the right order? Here’s the same 
loop with more readable loop variable names:

Java Example of Good Loop Variable Names
for ( int payCodeIdx = 0; payCodeIdx < numPayCodes; payCodeIdx++ ) {

   for (int month = 0; month < 12; month++ ) {

      for ( int divisionIdx = 0; divisionIdx < numDivisions; divisionIdx++ ) {

         sum = sum + transaction[ month ][ payCodeIdx ][ divisionIdx ];

      }

   }

}

What do you think the array indexes in transaction mean this time? In this case, the 
answer is easier to come by because the variable names payCodeIdx, month, and divi-
sionIdx tell you a lot more than i, j, and k did. The computer can read the two versions 
of the loop equally easily. People can read the second version more easily than the 
first, however, and the second version is better since your primary audience is made 
up of humans, not computers.

Use meaningful names to avoid loop-index cross-talk Habitual use of i, j, and k can 
give rise to index cross-talk—using the same index name for two different purposes. 
Take a look at this example:

C++ Example of Index Cross-Talk
i is used first here... for ( i = 0;  i < numPayCodes; i++ ) {

   // lots of code

   ...

   for ( j = 0; j < 12; j++ ) {

      // lots of code 

      ...

...and again here.       for ( i = 0; i < numDivisions; i++ ) {

         sum = sum + transaction[ j ][ i ][ k ];

      }

   }

}

The use of i is so habitual that it’s used twice in the same nesting structure. The sec-
ond for loop controlled by i conflicts with the first, and that’s index cross-talk. Using 
more meaningful names than i, j, and k would have prevented the problem. In general, 
if the body of a loop has more than a couple of lines, if it might grow, or if it’s in a 
group of nested loops, avoid i, j, and k.

Limit the scope of loop-index variables to the loop itself Loop-index cross-talk and 
other uses of loop indexes outside their loops is such a significant problem that the 
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designers of Ada decided to make for loop indexes invalid outside their loops; trying 
to use one outside its for loop generates an error at compile time.

C++ and Java implement the same idea to some extent—they allow loop indexes to be 
declared within a loop, but they don’t require it. In the example on page 378, the 
recordCount variable could be declared inside the for statement, which would limit its 
scope to the for loop, like this:

C++ Example of Declaring a Loop-Index Variable Within a for loop
for ( int recordCount = 0; recordCount < MAX_RECORDS; recordCount++ ) {

   // looping code that uses recordCount

}

In principle, this technique should allow creation of code that redeclares recordCount 
in multiple loops without any risk of misusing the two different recordCounts. That 
usage would give rise to code that looks like this:

C++ Example of Declaring Loop-Indexes Within for loops and Reusing Them Safely—
Maybe!
for ( int recordCount = 0; recordCount < MAX_RECORDS; recordCount++ ) {

   // looping code that uses recordCount

}

// intervening code

for ( int recordCount = 0; recordCount < MAX_RECORDS; recordCount++ ) {

   // additional looping code that uses a different recordCount

}

This technique is helpful for documenting the purpose of the recordCount variable; 
however, don’t rely on your compiler to enforce recordCount’s scope. Section 6.3.3.1 of 
The C++ Programming Language (Stroustrup 1997) says that recordCount should have a 
scope limited to its loop. When I checked this functionality with three different C++ 
compilers, however, I got three different results:

■ The first compiler flagged recordCount in the second for loop for multiple vari-
able declarations and generated an error.

■ The second compiler accepted recordCount in the second for loop but allowed it 
to be used outside the first for loop.

■ The third compiler allowed both usages of recordCount and did not allow either 
one to be used outside the for loop in which it was declared.

As is often the case with more esoteric language features, compiler implementations 
can vary.
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How Long Should a Loop Be?

Loop length can be measured in lines of code or depth of nesting. Here are some 
guidelines:

Make your loops short enough to view all at once If you usually look at loops on 
your monitor and your monitor displays 50 lines, that puts a 50-line restriction on 
you. Experts have suggested a loop-length limit of one page. When you begin to appre-
ciate the principle of writing simple code, however, you’ll rarely write loops longer 
than 15 or 20 lines.

Cross-Reference For details 
on simplifying nesting, see 
Section 19.4, “Taming Dan-
gerously Deep Nesting.”

Limit nesting to three levels Studies have shown that the ability of programmers to 
comprehend a loop deteriorates significantly beyond three levels of nesting (Yourdon 
1986a). If you’re going beyond that number of levels, make the loop shorter (concep-
tually) by breaking part of it into a routine or simplifying the control structure.

Move loop innards of long loops into routines If the loop is well designed, the code 
on the inside of a loop can often be moved into one or more routines that are called 
from within the loop.

Make long loops especially clear Length adds complexity. If you write a short loop, 
you can use riskier control structures such as break and continue, multiple exits, com-
plicated termination conditions, and so on. If you write a longer loop and feel any con-
cern for your reader, you’ll give the loop a single exit and make the exit condition 
unmistakably clear.

16.3 Creating Loops Easily—From the Inside Out
If you sometimes have trouble coding a complex loop—which most programmers do—
you can use a simple technique to get it right the first time. Here’s the general process. 
Start with one case. Code that case with literals. Then indent it, put a loop around it, 
and replace the literals with loop indexes or computed expressions. Put another loop 
around that, if necessary, and replace more literals. Continue the process as long as 
you have to. When you finish, add all the necessary initializations. Since you start at 
the simple case and work outward to generalize it, you might think of this as coding 
from the inside out.

Cross-Reference Coding a 
loop from the inside out is 
similar to the process 
described in Chapter 9, “The 
Pseudocode Programming 
Process.”

Suppose you’re writing a program for an insurance company. It has life-insurance 
rates that vary according to a person’s age and sex. Your job is to write a routine that 
computes the total life-insurance premium for a group. You need a loop that takes the 
rate for each person in a list and adds it to a total. Here’s how you’d do it.
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First, in comments, write the steps the body of the loop needs to perform. It’s easier to 
write down what needs to be done when you’re not thinking about details of syntax, 
loop indexes, array indexes, and so on.

Step 1: Creating a Loop from the Inside Out (Pseudocode Example)
-- get rate from table

-- add rate to total

Second, convert the comments in the body of the loop to code, as much as you can 
without actually writing the whole loop. In this case, get the rate for one person and 
add it to the overall total. Use concrete, specific data rather than abstractions.

Step 2: Creating a Loop from the Inside Out (Pseudocode Example)
table doesn’t have any 
indexes yet.

rate = table[ ]

totalRate = totalRate + rate

The example assumes that table is an array that holds the rate data. You don’t have to 
worry about the array indexes at first. rate is the variable that holds the rate data selected 
from the rate table. Likewise, totalRate is a variable that holds the total of the rates.

Next, put in indexes for the table array:

Step 3: Creating a Loop from the Inside Out (Pseudocode Example)
rate = table[ census.Age ][ census.Gender ]

totalRate = totalRate + rate

The array is accessed by age and sex, so census.Age and census.Gender are used to index 
the array. The example assumes that census is a structure that holds information about 
people in the group to be rated.

The next step is to build a loop around the existing statements. Since the loop is sup-
posed to compute the rates for each person in a group, the loop should be indexed by 
person.

Step 4: Creating a Loop from the Inside Out (Pseudocode Example)
For person = firstPerson to lastPerson

   rate = table[ census.Age, census.Gender ]

   totalRate = totalRate + rate

End For

All you have to do here is put the for loop around the existing code and then indent 
the existing code and put it inside a begin-end pair. Finally, check to make sure that the 
variables that depend on the person loop index have been generalized. In this case, the 
census variable varies with person, so it should be generalized appropriately.
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Step 5: Creating a Loop from the Inside Out (Pseudocode Example)
For person = firstPerson to lastPerson

   rate = table[ census[ person ].Age, census[ person ].Gender ]

   totalRate = totalRate + rate

End For

Finally, write any initializations that are needed. In this case, the totalRate variable 
needs to be initialized.

Final Step: Creating a Loop from the Inside Out (Pseudocode Example)
totalRate = 0

For person = firstPerson to lastPerson

   rate = table[ census[ person ].Age, census[ person ].Gender ]

   totalRate = totalRate + rate

End For

If you had to put another loop around the person loop, you would proceed in the same 
way. You don’t need to follow the steps rigidly. The idea is to start with something con-
crete, worry about only one thing at a time, and build up the loop from simple com-
ponents. Take small, understandable steps as you make the loop more general and 
complex. That way, you minimize the amount of code you have to concentrate on at 
any one time and therefore minimize the chance of error.

16.4 Correspondence Between Loops and Arrays
Cross-Reference For further 
discussion of the correspon-
dence between loops and 
arrays, see Section 10.7, 
“Relationship Between Data 
Types and Control 
Structures.”

Loops and arrays are often related. In many instances, a loop is created to perform an 
array manipulation, and loop counters correspond one-to-one with array indexes. For 
example, these Java for loop indexes correspond to the array indexes:

Java Example of an Array Multiplication
for ( int row = 0; row < maxRows; row++ ) {

   for ( int column = 0; column < maxCols; column++ ) {

      product[ row ][ column ] = a[ row ][ column ] * b[ row ][ column ];

   }

}

In Java, a loop is necessary for this array operation. But it’s worth noting that looping 
structures and arrays aren’t inherently connected. Some languages, especially APL 
and Fortran 90 and later, provide powerful array operations that eliminate the need 
for loops like the one just shown. Here’s an APL code fragment that performs the 
same operation:

APL Example of an Array Multiplication
product <- a x b
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The APL is simpler and less error-prone. It uses only three operands, whereas the Java 
fragment uses 17. It doesn’t have loop variables, array indexes, or control structures to 
code incorrectly.

One point of this example is that you do some programming to solve a problem and 
some to solve it in a particular language. The language you use to solve a problem sub-
stantially affects your solution.

cc2e.com/1616 CHECKLIST: Loops
Loop Selection and Creation

❑ Is a while loop used instead of a for loop, if appropriate?

❑ Was the loop created from the inside out?

Entering the Loop
❑ Is the loop entered from the top?

❑ Is initialization code directly before the loop?

❑ If the loop is an infinite loop or an event loop, is it constructed cleanly 
rather than using a kludge such as for i = 1 to 9999?

❑ If the loop is a C++, C, or Java for loop, is the loop header reserved for loop-
control code?

Inside the Loop
❑ Does the loop use { and } or their equivalent to enclose the loop body and 

prevent problems arising from improper modifications?

❑ Does the loop body have something in it? Is it nonempty?

❑ Are housekeeping chores grouped, at either the beginning or the end of 
the loop?

❑ Does the loop perform one and only one function, as a well-defined rou-
tine does?

❑ Is the loop short enough to view all at once?

❑ Is the loop nested to three levels or less?

❑ Have long loop contents been moved into their own routine?

❑ If the loop is long, is it especially clear?
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Loop Indexes
❑ If the loop is a for loop, does the code inside it avoid monkeying with the 

loop index?

❑ Is a variable used to save important loop-index values rather than using 
the loop index outside the loop?

❑ Is the loop index an ordinal type or an enumerated type—not floating-
point?

❑ Does the loop index have a meaningful name?

❑ Does the loop avoid index cross-talk?

Exiting the Loop
❑ Does the loop end under all possible conditions?

❑ Does the loop use safety counters—if you’ve instituted a safety-counter 
standard?

❑ Is the loop’s termination condition obvious?

❑ If break or continue are used, are they correct?

Key Points
■ Loops are complicated. Keeping them simple helps readers of your code.

■ Techniques for keeping loops simple include avoiding exotic kinds of loops, 
minimizing nesting, making entries and exits clear, and keeping housekeeping 
code in one place.

■ Loop indexes are subjected to a great deal of abuse. Name them clearly, and use 
them for only one purpose.

■ Think through the loop carefully to verify that it operates normally under each 
case and terminates under all possible conditions.
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Chapter 17

Unusual Control Structures
cc2e.com/1778 Contents

■ 17.1 Multiple Returns from a Routine: page 391

■ 17.2 Recursion: page 393

■ 17.3 goto: page 398

■ 17.4 Perspective on Unusual Control Structures: page 408

Related Topics

■ General control issues: Chapter 19

■ Straight-line code: Chapter 14

■ Code with conditionals: Chapter 15

■ Code with loops: Chapter 16

■ Exception handling: Section 8.4

Several control constructs exist in a hazy twilight zone somewhere between being 
leading-edge and being discredited and disproved—often in both places at the same 
time! These constructs aren’t available in all languages but can be useful when used 
with care in those languages that do offer them.

17.1 Multiple Returns from a Routine
Most languages support some means of exiting from a routine partway through the 
routine. The return and exit statements are control constructs that enable a program to 
exit from a routine at will. They cause the routine to terminate through the normal 
exit channel, returning control to the calling routine. The word return is used here as 
a generic term for return in C++ and Java, Exit Sub and Exit Function in Microsoft Visual 
Basic, and similar constructs. Here are guidelines for using the return statement:

Use a return when it enhances readability In certain routines, once you know the 
answer, you want to return it to the calling routine immediately. If the routine is 
defined in such a way that it doesn’t require any further cleanup once it detects an 
error, not returning immediately means that you have to write more code.KEY POINT
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The following is a good example of a case in which returning from multiple places in 
a routine makes sense:

C++ Example of a Good Multiple Return from a Routine
This routine returns a 
Comparison enumerated 
type. 

Comparison Compare( int value1, int value2 ) {

   if ( value1 < value2 ) {

      return Comparison_LessThan;

   }

   else if ( value1 > value2 ) {

      return Comparison_GreaterThan;

   }

   return Comparison_Equal;

}

Other examples are less clear-cut, as the next subsection illustrates. 

Use guard clauses (early returns or exits) to simplify complex error processing
Code that has to check for numerous error conditions before performing its nominal 
actions can result in deeply indented code and can obscure the nominal case, as 
shown here:

Visual Basic Code That Obscures the Nominal Case
If file.validName() Then

   If file.Open() Then

      If encryptionKey.valid() Then

         If file.Decrypt( encryptionKey ) Then

This is the code for the 
nominal case.

            ' lots of code

            ...

         End If

      End If

   End If

End If

Indenting the main body of the routine inside four if statements is aesthetically ugly, 
especially if there’s much code inside the innermost if statement. In such cases, the 
flow of the code is sometimes clearer if the erroneous cases are checked first, clearing 
the way for the nominal path through the code. Here’s how that might look:

Simple Visual Basic Code That Uses Guard Clauses to Clarify the Nominal Case
' set up, bailing out if errors are found

If Not file.validName() Then Exit Sub

If Not file.Open() Then Exit Sub

If Not encryptionKey.valid() Then Exit Sub

If Not file.Decrypt( encryptionKey ) Then Exit Sub

' lots of code

...
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This simple code makes this technique look like a tidy solution, but production code 
often requires more extensive housekeeping or cleanup when an error condition is 
detected. Here is a more realistic example:

More Realistic Visual Basic Code That Uses Guard Clauses to Clarify the Nominal Case
' set up, bailing out if errors are found

If Not file.validName() Then 

   errorStatus = FileError_InvalidFileName

   Exit Sub

End If 

If Not file.Open() Then 

   errorStatus = FileError_CantOpenFile

   Exit Sub

End If 

If Not encryptionKey.valid() Then 

   errorStatus = FileError_InvalidEncryptionKey

   Exit Sub

End If 

If Not file.Decrypt( encryptionKey ) Then 

   errorStatus = FileError_CantDecryptFile

   Exit Sub

End If 

This is the code for the 
nominal case. 

' lots of code

...

With production-size code, the Exit Sub approach creates a noticeable amount of code 
before the nominal case is handled. The Exit Sub approach does avoid the deep nest-
ing of the first example, however, and, if the code in the first example were expanded 
to show setting an errorStatus variable, the Exit Sub approach would do a better job of 
keeping related statements together. When all the dust settles, the Exit Sub approach 
does appear more readable and maintainable, just not by a very wide margin. 

Minimize the number of returns in each routine It’s harder to understand a routine 
when, reading it at the bottom, you’re unaware of the possibility that it returned some-
where above. For that reason, use returns judiciously—only when they improve readability. 

17.2 Recursion
In recursion, a routine solves a small part of a problem itself, divides the problem into 
smaller pieces, and then calls itself to solve each of the smaller pieces. Recursion is 
usually called into play when a small part of the problem is easy to solve and a large 
part is easy to decompose into smaller pieces.

Recursion isn’t useful often, but when used judiciously it produces elegant solutions, 
as in this example in which a sorting algorithm makes excellent use of recursion:

KEY POINT
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Java Example of a Sorting Algorithm That Uses Recursion
void QuickSort( int firstIndex, int lastIndex, String [] names ) {

   if ( lastIndex > firstIndex ) {

      int midPoint = Partition( firstIndex, lastIndex, names );

Here are the recursive calls.       QuickSort( firstIndex, midPoint-1, names );

      QuickSort( midPoint+1, lastIndex, names )

   }

}

In this case, the sorting algorithm chops an array in two and then calls itself to sort 
each half of the array. When it calls itself with a subarray that’s too small to sort—such 
as ( lastIndex <= firstIndex )—it stops calling itself.

For a small group of problems, recursion can produce simple, elegant solutions. For a 
slightly larger group of problems, it can produce simple, elegant, hard-to-understand 
solutions. For most problems, it produces massively complicated solutions—in those 
cases, simple iteration is usually more understandable. Use recursion selectively.

Example of Recursion

Suppose you have a data type that represents a maze. A maze is basically a grid, and at 
each point on the grid you might be able to turn left, turn right, move up, or move 
down. You’ll often be able to move in more than one direction.

How do you write a program to find its way through the maze, as shown in Figure 17-
1? If you use recursion, the answer is fairly straightforward. You start at the beginning 
and then try all possible paths until you find your way out of the maze. The first time 
you visit a point, you try to move left. If you can’t move left, you try to go up or down, 
and if you can’t go up or down, you try to go right. You don’t have to worry about get-
ting lost because you drop a few bread crumbs on each spot as you visit it, and you 
don’t visit the same spot twice.

Figure 17-1 Recursion can be a valuable tool in the battle against complexity—when used 
to attack suitable problems. 

Left

Down

Up

Right
Go up because left
is unavailable.
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The recursive code looks like this:

C++ Example of Moving Through a Maze Recursively
bool FindPathThroughMaze( Maze maze, Point position ) {

   // if the position has already been tried, don't try it again

   if ( AlreadyTried( maze, position ) ) {

      return false;

   }

   

   // if this position is the exit, declare success

   if ( ThisIsTheExit( maze, position ) ) {

      return true;

   }

   

   // remember that this position has been tried

   RememberPosition( maze, position );

   

   // check the paths to the left, up, down, and to the right; if

   // any path is successful, stop looking 

   if ( MoveLeft( maze, position, &newPosition ) ) {

      if ( FindPathThroughMaze( maze, newPosition ) ) {

         return true;

      }

   }

   

   if ( MoveUp( maze, position, &newPosition ) ) {

      if ( FindPathThroughMaze( maze, newPosition ) ) {

         return true;

      }

   }

   

   if ( MoveDown( maze, position, &newPosition ) ) {

      if ( FindPathThroughMaze( maze, newPosition ) ) {

         return true;

      }

   }

   

   if ( MoveRight( maze, position, &newPosition ) ) {

      if ( FindPathThroughMaze( maze, newPosition ) ) {

         return true;

      }

   }

   return false;

}

The first line of code checks to see whether the position has already been tried. One 
key aim in writing a recursive routine is the prevention of infinite recursion. In this 
case, if you don’t check for having tried a point, you might keep trying it infinitely.

The second statement checks to see whether the position is the exit from the maze. If 
ThisIsTheExit() returns true, the routine itself returns true.
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The third statement remembers that the position has been visited. This prevents the 
infinite recursion that would result from a circular path.

The remaining lines in the routine try to find a path to the left, up, down, and to the 
right. The code stops the recursion if the routine ever returns true—that is, when the 
routine finds a path through the maze.

The logic used in this routine is fairly straightforward. Most people experience some 
initial discomfort using recursion because it’s self-referential. In this case, however, an 
alternative solution would be much more complicated and recursion works well.

Tips for Using Recursion

Keep these tips in mind when using recursion:

Make sure the recursion stops Check the routine to make sure that it includes a non-
recursive path. That usually means that the routine has a test that stops further recur-
sion when it’s not needed. In the maze example, the tests for AlreadyTried() and 
ThisIsTheExit() ensure that the recursion stops.

Use safety counters to prevent infinite recursion If you’re using recursion in a situa-
tion that doesn’t allow a simple test such as the one just described, use a safety 
counter to prevent infinite recursion. The safety counter has to be a variable that’s not 
re-created each time you call the routine. Use a class member variable or pass the 
safety counter as a parameter. Here’s an example:

Visual Basic Example of Using a Safety Counter to Prevent Infinite Recursion
The recursive routine must 
be able to change the value 
of safetyCounter, so in Visual 
Basic it’s a ByRef parameter.

Public Sub RecursiveProc( ByRef safetyCounter As Integer )

   If ( safetyCounter > SAFETY_LIMIT ) Then

      Exit Sub

   End If

   safetyCounter = safetyCounter + 1

   ...

   RecursiveProc( safetyCounter )

End Sub

In this case, if the routine exceeds the safety limit, it stops recursing.

If you don’t want to pass the safety counter as an explicit parameter, you could use a 
member variable in C++, Java, or Visual Basic, or the equivalent in other languages. 

Limit recursion to one routine Cyclic recursion (A calls B calls C calls A) is danger-
ous because it’s hard to detect. Mentally managing recursion in one routine is tough 
enough; understanding recursion that spans routines is too much. If you have cyclic 
recursion, you can usually redesign the routines so that the recursion is restricted to a 
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single routine. If you can’t and you still think that recursion is the best approach, use 
safety counters as a recursive insurance policy.

Keep an eye on the stack With recursion, you have no guarantees about how much 
stack space your program uses and it’s hard to predict in advance how the program 
will behave at run time. You can take a couple of steps to control its run-time behavior, 
however.

First, if you use a safety counter, one of the considerations in setting a limit for it 
should be how much stack you’re willing to allocate to the recursive routine. Set the 
safety limit low enough to prevent a stack overflow.

Second, watch for allocation of local variables in recursive functions, especially mem-
ory-intensive objects. In other words, use new to create objects on the heap rather 
than letting the compiler create auto objects on the stack. 

Don’t use recursion for factorials or Fibonacci numbers One problem with com-
puter-science textbooks is that they present silly examples of recursion. The typical 
examples are computing a factorial or computing a Fibonacci sequence. Recursion is 
a powerful tool, and it’s really dumb to use it in either of those cases. If a programmer 
who worked for me used recursion to compute a factorial, I’d hire someone else. 
Here’s the recursive version of the factorial routine:

Java Example of an Inappropriate Solution: Using Recursion to Compute a Factorial
int Factorial( int number ) {

   if ( number == 1 ) {

      return 1;

   }

   else {

      return number * Factorial( number - 1 );

   }

}

In addition to being slow and making the use of run-time memory unpredictable, the 
recursive version of this routine is harder to understand than the iterative version, 
which follows:

Java Example of an Appropriate Solution: Using Iteration to Compute a Factorial
int Factorial( int number ) {

   int intermediateResult = 1;

   for ( int factor = 2; factor <= number; factor++ ) {

      intermediateResult = intermediateResult * factor;

   }

   return intermediateResult;

}

CODING 
HORROR
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You can draw three lessons from this example. First, computer-science textbooks 
aren’t doing the world any favors with their examples of recursion. Second, and more 
important, recursion is a much more powerful tool than its confusing use in comput-
ing factorials or Fibonacci numbers would suggest. Third, and most important, you 
should consider alternatives to recursion before using it. You can do anything with 
stacks and iteration that you can do with recursion. Sometimes one approach works 
better; sometimes the other does. Consider both before you choose either one.

17.3 goto
cc2e.com/1785 You might think the debate related to gotos is extinct, but a quick trip through modern 

source-code repositories like SourceForge.net shows that the goto is still alive and well 
and living deep in your company’s server. Moreover, modern equivalents of the goto 
debate still crop up in various guises, including debates about multiple returns, mul-
tiple loop exits, named loop exits, error processing, and exception handling. 

The Argument Against gotos

The general argument against gotos is that code without gotos is higher-quality code. 
The famous letter that sparked the original controversy was Edsger Dijkstra’s “Go To 
Statement Considered Harmful” in the March 1968 Communications of the ACM. 
Dijkstra observed that the quality of code was inversely proportional to the number of 
gotos the programmer used. In subsequent work, Dijkstra has argued that code that 
doesn’t contain gotos can more easily be proven correct.

Code containing gotos is hard to format. Indentation should be used to show logical 
structure, and gotos have an effect on logical structure. Using indentation to show the 
logical structure of a goto and its target, however, is difficult or impossible.

Use of gotos defeats compiler optimizations. Some optimizations depend on a pro-
gram’s flow of control residing within a few statements. An unconditional goto makes 
the flow harder to analyze and reduces the ability of the compiler to optimize the 
code. Thus, even if introducing a goto produces an efficiency at the source-language 
level, it may well reduce overall efficiency by thwarting compiler optimizations.

Proponents of gotos sometimes argue that they make code faster or smaller. But code 
containing gotos is rarely the fastest or smallest possible. Donald Knuth’s marvelous, 
classic article “Structured Programming with go to Statements” gives several examples 
of cases in which using gotos makes for slower and larger code (Knuth 1974).

In practice, the use of gotos leads to the violation of the principle that code should 
flow strictly from top to bottom. Even if gotos aren’t confusing when used carefully, 
once gotos are introduced, they spread through the code like termites through a rot-
ting house. If any gotos are allowed, the bad creep in with the good, so it’s better not 
to allow any of them.
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Overall, experience in the two decades that followed the publication of Dijkstra’s letter 
showed the folly of producing goto-laden code. In a survey of the literature, Ben Shneider-
man concluded that the evidence supports Dijkstra’s view that we’re better off without 
the goto (1980), and many modern languages, including Java, don’t even have gotos.

The Argument for gotos

The argument for the goto is characterized by an advocacy of its careful use in specific 
circumstances rather than its indiscriminate use. Most arguments against gotos speak 
against indiscriminate use. The goto controversy erupted when Fortran was the most 
popular language. Fortran had no presentable loop structures, and in the absence of 
good advice on programming loops with gotos, programmers wrote a lot of spaghetti 
code. Such code was undoubtedly correlated with the production of low-quality pro-
grams, but it has little to do with the careful use of a goto to make up for a gap in a 
modern language’s capabilities.

A well-placed goto can eliminate the need for duplicate code. Duplicate code leads to 
problems if the two sets of code are modified differently. Duplicate code increases the 
size of source and executable files. The bad effects of the goto are outweighed in such 
a case by the risks of duplicate code.

Cross-Reference For details 
on using gotos in code that 
allocates resources, see “Error 
Processing and gotos” in this 
section. See also the discus-
sion of exception handling in 
Section 8.4, “Exceptions.”

The goto is useful in a routine that allocates resources, performs operations on those 
resources, and then deallocates the resources. With a goto, you can clean up in one 
section of code. The goto reduces the likelihood of your forgetting to deallocate the 
resources in each place you detect an error.

In some cases, the goto can result in faster and smaller code. Knuth’s 1974 article cited 
a few cases in which the goto produced a legitimate gain.

Good programming doesn’t mean eliminating gotos. Methodical decomposition, 
refinement, and selection of control structures automatically lead to goto-free pro-
grams in most cases. Achieving goto-less code is not the aim but the outcome, and put-
ting the focus on avoiding gotos isn’t helpful.

The evidence suggests only 
that deliberately chaotic 
control structure degrades 
[programmer] performance. 
These experiments provide 
virtually no evidence for the 
beneficial effect of any spe-
cific method of structuring 
control flow. 
—B. A. Sheil

Decades’ worth of research with gotos failed to demonstrate their harmfulness. In a 
survey of the literature, B. A. Sheil concluded that unrealistic test conditions, poor 
data analysis, and inconclusive results failed to support the claim of Shneiderman and 
others that the number of bugs in code was proportional to the number of gotos 
(1981). Sheil didn’t go so far as to conclude that using gotos is a good idea—rather, that 
experimental evidence against them was not conclusive.

Finally, the goto has been incorporated into many modern languages, including Visual 
Basic, C++, and the Ada language, the most carefully engineered programming lan-
guage in history. Ada was developed long after the arguments on both sides of the goto 
debate had been fully developed, and after considering all sides of the issue, Ada’s 
engineers decided to include the goto.  

17.3 goto
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The Phony goto Debate

A primary feature of most goto discussions is a shallow approach to the question. The 
arguer on the “gotos are evil” side presents a trivial code fragment that uses gotos and 
then shows how easy it is to rewrite the fragment without gotos. This proves mainly 
that it’s easy to write trivial code without gotos.

The arguer on the “I can’t live without gotos” side usually presents a case in which 
eliminating a goto results in an extra comparison or the duplication of a line of code. 
This proves mainly that there’s a case in which using a goto results in one less compar-
ison—not a significant gain on today’s computers.

Most textbooks don’t help. They provide a trivial example of rewriting some code 
without a goto as if that covers the subject. Here’s a disguised example of a trivial piece 
of code from such a textbook:

C++ Example of Code That’s Supposed to Be Easy to Rewrite Without gotos
do {

   GetData( inputFile, data );

   if ( eof( inputFile ) ) {

      goto LOOP_EXIT;

   }

   DoSomething( data );

} while ( data != -1 );

LOOP_EXIT:

The book quickly replaces this code with goto-less code:

C++ Example of Supposedly Equivalent Code, Rewritten Without gotos
GetData( inputFile, data );

while ( ( !eof( inputFile ) ) && ( ( data != -1 ) ) ) {

   DoSomething( data );

   GetData( inputFile, data )

}

This so-called “trivial” example contains an error. In the case in which data equals -1 
entering the loop, the translated code detects the -1 and exits the loop before executing 
DoSomething(). The original code executes DoSomething() before the -1 is detected. The 
programming book trying to show how easy it is to code without gotos translated its own 
example incorrectly. But the author of that book shouldn’t feel too bad; other books 
make similar mistakes. Even the pros have difficulty translating code that uses gotos.

Here’s a faithful translation of the code with no gotos:
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C++ Example of Truly Equivalent Code, Rewritten Without gotos
do {

   GetData( inputFile, data );

   if ( !eof( inputFile )) {

      DoSomething( data );

   }

} while ( ( data != -1 ) && ( !eof( inputFile ) ) );

Even with a correct translation of the code, the example is still phony because it 
shows a trivial use of the goto. Such cases are not the ones for which thoughtful pro-
grammers choose a goto as their preferred form of control.

It would be hard at this late date to add anything worthwhile to the theoretical goto 
debate. What’s not usually addressed, however, is the situation in which a program-
mer fully aware of the goto-less alternatives chooses to use a goto to enhance readabil-
ity and maintainability.

The following sections present cases in which some experienced programmers have 
argued for using gotos. The discussions provide examples of code with gotos and code 
rewritten without gotos and evaluate the tradeoffs between the versions.

Error Processing and gotos

Writing highly interactive code calls for paying a lot of attention to error processing 
and cleaning up resources when errors occur. The following code example purges a 
group of files. The routine first gets a group of files to be purged, and then it finds each 
file, opens it, overwrites it, and erases it. The routine checks for errors at each step.

Visual Basic Code with gotos That Processes Errors and Cleans Up Resources
' This routine purges a group of files.

Sub PurgeFiles( ByRef errorState As Error_Code )

   Dim fileIndex As Integer

   Dim fileToPurge As Data_File

   Dim fileList As File_List

   Dim numFilesToPurge As Integer

   MakePurgeFileList( fileList, numFilesToPurge )

   errorState = FileStatus_Success

   fileIndex = 0

   While ( fileIndex < numFilesToPurge ) 

      fileIndex = fileIndex + 1

      If Not ( FindFile( fileList( fileIndex ), fileToPurge ) ) Then

         errorState = FileStatus_FileFindError

Here’s a GoTo.          GoTo END_PROC

      End If
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      If Not OpenFile( fileToPurge ) Then

         errorState = FileStatus_FileOpenError

Here’s a GoTo.          GoTo END_PROC

      End If

      If Not OverwriteFile( fileToPurge ) Then

         errorState = FileStatus_FileOverwriteError

Here’s a GoTo.          GoTo END_PROC

      End If

      if Not Erase( fileToPurge ) Then

         errorState = FileStatus_FileEraseError

Here’s a GoTo.          GoTo END_PROC

      End If

   End While

Here’s the GoTo label. END_PROC:

   DeletePurgeFileList( fileList, numFilesToPurge )

End Sub

This routine is typical of circumstances in which experienced programmers decide to 
use a goto. Similar cases come up when a routine needs to allocate and clean up 
resources like database connections, memory, or temporary files. The alternative to 
gotos in those cases is usually duplicating code to clean up the resources. In such 
cases, a programmer might balance the evil of the goto against the headache of dupli-
cate-code maintenance and decide that the goto is the lesser evil.

You can rewrite the previous routine in a couple of ways to avoid gotos, and both ways 
involve tradeoffs. The possible rewrite strategies follow:

Rewrite with nested if statements To rewrite with nested if statements, nest the if 
statements so that each is executed only if the previous test succeeds. This is the stan-
dard, textbook programming approach to eliminating gotos. Here’s a rewrite of the 
routine using the standard approach:

Cross-Reference This rou-
tine could also be rewritten 
with break and no gotos. For 
details on that approach, see 
“Exiting Loops Early” in Sec-
tion 16.2.

Visual Basic Code That Avoids gotos by Using Nested ifs
' This routine purges a group of files.

Sub PurgeFiles( ByRef errorState As Error_Code )

   Dim fileIndex As Integer

   Dim fileToPurge As Data_File

   Dim fileList As File_List

   Dim numFilesToPurge As Integer

   MakePurgeFileList( fileList, numFilesToPurge )

   errorState = FileStatus_Success

   fileIndex = 0

The While test has been 
changed to add a test for 
errorState.

   While ( fileIndex < numFilesToPurge And errorState = FileStatus_Success ) 

      

      fileIndex = fileIndex + 1
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      If FindFile( fileList( fileIndex ), fileToPurge ) Then

         If OpenFile( fileToPurge ) Then

            If OverwriteFile( fileToPurge ) Then

               If Not Erase( fileToPurge ) Then

                  errorState = FileStatus_FileEraseError

               End If

            Else ' couldn't overwrite file

               errorState = FileStatus_FileOverwriteError

            End If

         Else ' couldn't open file

            errorState = FileStatus_FileOpenError

         End If

      Else ' couldn't find file 

This line is 13 lines away 
from the If statement that 
invokes it.

            errorState = FileStatus_FileFindError

      End If

   End While 

   DeletePurgeFileList( fileList, numFilesToPurge )

End Sub

For people used to programming without gotos, this code might be easier to read than 
the goto version, and if you use it, you won’t have to face an inquisition from the goto 
goon squad.

Cross-Reference For more 
details on indentation and 
other coding layout issues, 
see Chapter 31, “Layout and 
Style.” For details on nesting 
levels, see Section 19.4, 
“Taming Dangerously Deep 
Nesting.”

The main disadvantage of this nested-if approach is that the nesting level is deep, very 
deep. To understand the code, you have to keep the whole set of nested ifs in your 
mind at once. Moreover, the distance between the error-processing code and the code 
that invokes it is too great: the code that sets errorState to FileStatus_FileFindError, for 
example, is 13 lines from the if statement that invokes it.

With the goto version, no statement is more than four lines from the condition that 
invokes it. And you don’t have to keep the whole structure in your mind at once. You 
can essentially ignore any preceding conditions that were successful and focus on the 
next operation. In this case, the goto version is more readable and more maintainable 
than the nested-if version.

Rewrite with a status variable To rewrite with a status variable (also called a state 
variable), create a variable that indicates whether the routine is in an error state. In 
this case, the routine already uses the errorState status variable, so you can use that.

Visual Basic Code That Avoids gotos by Using a Status Variable
' This routine purges a group of files.

Sub PurgeFiles( ByRef errorState As Error_Code )

   Dim fileIndex As Integer

   Dim fileToPurge As Data_File

   Dim fileList As File_List

   Dim numFilesToPurge As Integer

   MakePurgeFileList( fileList, numFilesToPurge )

   errorState = FileStatus_Success

   fileIndex = 0

17.3 goto
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The While test has been 
changed to add a test for 
errorState.

   While ( fileIndex < numFilesToPurge ) And ( errorState = FileStatus_Success ) 

      

      fileIndex = fileIndex + 1

      If Not FindFile( fileList( fileIndex ), fileToPurge ) Then

         errorState = FileStatus_FileFindError

      End If 

The status variable is tested.       If ( errorState = FileStatus_Success ) Then

         If Not OpenFile( fileToPurge ) Then

            errorState = FileStatus_FileOpenError

         End If 

      End If

The status variable is tested.       If ( errorState = FileStatus_Success ) Then

         If Not OverwriteFile( fileToPurge ) Then

            errorState = FileStatus_FileOverwriteError

         End If

      End If

The status variable is tested.       If ( errorState = FileStatus_Success ) Then

         If Not Erase( fileToPurge ) Then

            errorState = FileStatus_FileEraseError

         End If 

      End If 

   End While 

   DeletePurgeFileList( fileList, numFilesToPurge )

End Sub

The advantage of the status-variable approach is that it avoids the deeply nested if-
then-else structures of the first rewrite and is thus easier to understand. It also places 
the action following the if-then-else test closer to the test than the nested-if approach 
did, and it completely avoids else clauses.

Understanding the nested-if version requires some mental gymnastics. The status-
variable version is easier to understand because it closely models the way people 
think about the problem. You find the file. If everything is OK, you open the file. If 
everything is still OK, you overwrite the file. If everything is still OK...

The disadvantage of this approach is that using status variables isn’t as common a 
practice as it should be. Document their use fully, or some programmers might not 
understand what you’re up to. In this example, the use of well-named enumerated 
types helps significantly.

Rewrite with try-finally Some languages, including Visual Basic and Java, provide a 
try-finally statement that can be used to clean up resources under error conditions. 

To rewrite using the try-finally approach, enclose the code that would otherwise need 
to check for errors inside a try block, and place the cleanup code inside a finally block. 
The try block specifies the scope of the exception handling, and the finally block per-
forms any resource cleanup. The finally block will always be called regardless of 
whether an exception is thrown and regardless of whether the PurgeFiles() routine 
Catches any exception that’s thrown. 
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Visual Basic Code That Avoids gotos by Using try-finally
' This routine purges a group of files. Exceptions are passed to the caller.

Sub PurgeFiles()

 Dim fileIndex As Integer

 Dim fileToPurge As Data_File

 Dim fileList As File_List

 Dim numFilesToPurge As Integer

 MakePurgeFileList( fileList, numFilesToPurge )

 Try

 fileIndex = 0

 While ( fileIndex < numFilesToPurge ) 

 fileIndex = fileIndex + 1

 FindFile( fileList( fileIndex ), fileToPurge )

 OpenFile( fileToPurge )

 OverwriteFile( fileToPurge )

 Erase( fileToPurge )

 End While

 Finally

 DeletePurgeFileList( fileList, numFilesToPurge )

 End Try

End Sub

This approach assumes that all function calls throw exceptions for failures rather than 
returning error codes. 

The advantage of the try-finally approach is that it is simpler than the goto approach 
and doesn’t use gotos. It also avoids the deeply nested if-then-else structures.

The limitation of the try-finally approach is that it must be implemented consistently 
throughout a code base. If the previous code were part of a code base that used error 
codes in addition to exceptions, the exception code would be required to set error 
codes for each possible error, and that requirement would make the code about as 
complicated as the other approaches. 

Comparison of the Approaches
Cross-Reference For a com-
plete list of techniques that 
can be applied to situations 
like this, see “Summary of 
Techniques for Reducing 
Deep Nesting” in Section 
19.4.

Each of the four methods has something to be said for it. The goto approach avoids 
deep nesting and unnecessary tests but of course has gotos. The nested-if approach 
avoids gotos but is deeply nested and gives an exaggerated picture of the logical com-
plexity of the routine. The status-variable approach avoids gotos and deep nesting but 
introduces extra tests. And the try-finally approach avoids both gotos and deep nesting 
but isn’t available in all languages. 

The try-finally approach is the most straightforward in languages that provide try-
finally and in code bases that haven’t already standardized on another approach. If 
try-finally isn’t an option, the status-variable approach is slightly preferable to the goto 
and nested-if approaches because it’s more readable and it models the problem better, 
but that doesn’t make it the best approach in all circumstances. 

Any of these techniques works well when applied consistently to all the code in a proj-
ect. Consider all the tradeoffs, and then make a projectwide decision about which 
method to favor.

17.3 goto
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gotos and Sharing Code in an else Clause

One challenging situation in which some programmers would use a goto is the case in 
which you have two conditional tests and an else clause and you want to execute code 
in one of the conditions and in the else clause. Here’s an example of a case that could 
drive someone to goto:

C++ Example of Sharing Code in an else Clause with a goto
if ( statusOk ) {

   if ( dataAvailable ) {

      importantVariable = x;

      goto MID_LOOP;

   }

}

else {

   importantVariable = GetValue();

   MID_LOOP:

   // lots of code

   ...

}

This is a good example because it’s logically tortuous—it’s nearly impossible to read it 
as it stands, and it’s hard to rewrite it correctly without a goto. If you think you can eas-
ily rewrite it without gotos, ask someone to review your code! Several expert program-
mers have rewritten it incorrectly.

You can rewrite the code in several ways. You can duplicate code, put the common code 
into a routine and call it from two places, or retest the conditions. In most languages, the 
rewrite will be a tiny bit larger and slower than the original, but it will be extremely close. 
Unless the code is in a really hot loop, rewrite it without thinking about efficiency.

The best rewrite would be to put the // lots of code part into its own routine. Then you can 
call the routine from the places you would otherwise have used as origins or destinations 
of gotos and preserve the original structure of the conditional. Here’s how it looks:

C++ Example of Sharing Code in an else Clause by Putting Common Code 
into a Routine
if ( statusOk ) {

   if ( dataAvailable ) {

      importantVariable = x;

      DoLotsOfCode( importantVariable );

   }

}

else {

   importantVariable = GetValue();

   DoLotsOfCode( importantVariable );

}

CODING 
HORROR
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Normally, writing a new routine is the best approach. Sometimes, however, it’s not 
practical to put duplicated code into its own routine. In this case, you can work 
around the impractical solution by restructuring the conditional so that you keep the 
code in the same routine rather than putting it into a new routine:

C++ Example of Sharing Code in an else Clause Without a goto
if ( ( statusOk && dataAvailable ) || !statusOk ) {

   if ( statusOk && dataAvailable ) {

      importantVariable = x;

   }

   else {

      importantVariable = GetValue();

   }

   // lots of code

   ...

}

Cross-Reference Another 
approach to this problem is 
to use a decision table. For 
details, see Chapter 18, 
“Table-Driven Methods.”

This is a faithful and mechanical translation of the logic in the goto version. It tests statu-
sOK two extra times and dataAvailable once, but the code is equivalent. If retesting the 
conditionals bothers you, notice that the value of statusOK doesn’t need to be tested 
twice in the first if test. You can also drop the test for dataAvailable in the second if test.

Summary of Guidelines for Using gotos
Use of gotos is a matter of religion. My dogma is that in modern languages, you can 
easily replace nine out of ten gotos with equivalent sequential constructs. In these sim-
ple cases, you should replace gotos out of habit. In the hard cases, you can still exorcise 
the goto in nine out of ten cases: You can break the code into smaller routines, use try-
finally, use nested ifs, test and retest a status variable, or restructure a conditional. 
Eliminating the goto is harder in these cases, but it’s good mental exercise and the 
techniques discussed in this section give you the tools to do it.

In the remaining one case out of 100 in which a goto is a legitimate solution to the prob-
lem, document it clearly and use it. If you have your rain boots on, it’s not worth walking 
around the block to avoid a mud puddle. But keep your mind open to goto-less 
approaches suggested by other programmers. They might see something you don’t.

Here’s a summary of guidelines for using gotos:

■ Use gotos to emulate structured control constructs in languages that don’t sup-
port them directly. When you do, emulate them exactly. Don’t abuse the extra 
flexibility the goto gives you.

■ Don’t use the goto when an equivalent built-in construct is available.

Cross-Reference For details 
on improving efficiency, see 
Chapter 25, “Code-Tuning 
Strategies,” and Chapter 26, 
“Code-Tuning Techniques.”

■ Measure the performance of any goto used to improve efficiency. In most cases, 
you can recode without gotos for improved readability and no loss in efficiency. 
If your case is the exception, document the efficiency improvement so that goto-
less evangelists won’t remove the goto when they see it.

KEY POINT

17.3 goto
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■ Limit yourself to one goto label per routine unless you’re emulating structured 
constructs.

■ Limit yourself to gotos that go forward, not backward, unless you’re emulating 
structured constructs.

■ Make sure all goto labels are used. Unused labels might be an indication of missing 
code, namely the code that goes to the labels. If the labels aren’t used, delete them.

■ Make sure a goto doesn’t create unreachable code.

■ If you’re a manager, adopt the perspective that a battle over a single goto isn’t 
worth the loss of the war. If the programmer is aware of the alternatives and is 
willing to argue, the goto is probably OK.

17.4 Perspective on Unusual Control Structures
At one time or another, someone thought that each of the following control structures 
was a good idea:

■ Unrestricted use of gotos

■ Ability to compute a goto target dynamically and jump to the computed location

■ Ability to use goto to jump from the middle of one routine into the middle of 
another routine

■ Ability to call a routine with a line number or label that allowed execution to 
begin somewhere in the middle of the routine

■ Ability to have the program generate code on the fly and then execute the code 
it just wrote 

At one time, each of these ideas was regarded as acceptable or even desirable, even 
though now they all look hopelessly quaint, outdated, or dangerous. The field of soft-
ware development has advanced largely through restricting what programmers can do 
with their code. Consequently, I view unconventional control structures with strong 
skepticism. I suspect that the majority of constructs in this chapter will eventually find 
their way onto the programmer’s scrap heap along with computed goto labels, variable 
routine entry points, self-modifying code, and other structures that favored flexibility 
and convenience over structure and the ability to manage complexity. 

Additional Resources
cc2e.com/1792 The following resources also address unusual control structures:

Returns

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: 
Addison-Wesley, 1999. In the description of the refactoring called “Replace Nested 
Conditional with Guard Clauses,” Fowler suggests using multiple return statements 
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from a routine to reduce nesting in a set of if statements. Fowler argues that multiple 
returns are an appropriate means of achieving greater clarity, and that no harm arises 
from having multiple returns from a routine. 

gotos

These articles contain the whole goto debate. It erupts from time to time in most work-
places, textbooks, and magazines, but you won’t hear anything that wasn’t fully 
explored 20 years ago.

cc2e.com/1799 Dijkstra, Edsger. “Go To Statement Considered Harmful.” Communications of the ACM 
11, no. 3 (March 1968): 147–48, also available from www.cs.utexas.edu/users/EWD/. 
This is the famous letter in which Dijkstra put the match to the paper and ignited one 
of the longest-running controversies in software development.

Wulf, W. A. “A Case Against the GOTO.” Proceedings of the 25th National ACM Confer-
ence, August 1972: 791–97. This paper was another argument against the indiscrimi-
nate use of gotos. Wulf argued that if programming languages provided adequate control 
structures, gotos would become largely unnecessary. Since 1972, when the paper was 
written, languages such as C++, Java, and Visual Basic have proven Wulf correct.

Knuth, Donald. “Structured Programming with go to Statements,” 1974. In Classics in 
Software Engineering, edited by Edward Yourdon. Englewood Cliffs, NJ: Yourdon Press, 
1979. This long paper isn’t entirely about gotos, but it includes a horde of code exam-
ples that are made more efficient by eliminating gotos and another horde of code 
examples that are made more efficient by adding gotos.

Rubin, Frank. “‘GOTO Considered Harmful’ Considered Harmful.” Communications 
of the ACM 30, no. 3 (March 1987): 195–96. In this rather hotheaded letter to the edi-
tor, Rubin asserts that goto-less programming has cost businesses “hundreds of mil-
lions of dollars.” He then offers a short code fragment that uses a goto and argues that 
it’s superior to goto-less alternatives.

The response that Rubin’s letter generated was more interesting than the letter itself. 
For five months, Communications of the ACM (CACM) published letters that offered 
different versions of Rubin’s original seven-line program. The letters were evenly 
divided between those defending gotos and those castigating them. Readers suggested 
roughly 17 different rewrites, and the rewritten code fully covered the spectrum of 
approaches to avoiding gotos. The editor of CACM noted that the letter had generated 
more response by far than any other issue ever considered in the pages of CACM.

For the follow-up letters, see

■ Communications of the ACM 30, no. 5 (May 1987): 351–55.

■ Communications of the ACM 30, no. 6 (June 1987): 475–78.

■ Communications of the ACM 30, no. 7 (July 1987): 632–34.
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■ Communications of the ACM 30, no. 8 (August 1987): 659–62.

■ Communications of the ACM 30, no. 12 (December 1987): 997, 1085.

cc2e.com/1706 Clark, R. Lawrence, “A Linguistic Contribution of GOTO-less Programming,” Datama-
tion, December 1973. This classic paper humorously argues for replacing the “go to” 
statement with the “come from” statement. It was also reprinted in the April 1974 edi-
tion of Communications of the ACM. 

cc2e.com/1713 CHECKLIST: Unusual Control Structures
return

❑ Does each routine use return only when necessary?

❑ Do returns enhance readability?

Recursion
❑ Does the recursive routine include code to stop the recursion?

❑ Does the routine use a safety counter to guarantee that the routine stops?

❑ Is recursion limited to one routine?

❑ Is the routine’s depth of recursion within the limits imposed by the size of 
the program’s stack?

❑ Is recursion the best way to implement the routine? Is it better than simple 
iteration?

goto
❑ Are gotos used only as a last resort, and then only to make code more read-

able and maintainable?

❑ If a goto is used for the sake of efficiency, has the gain in efficiency been 
measured and documented?

❑ Are gotos limited to one label per routine?

❑ Do all gotos go forward, not backward?

❑ Are all goto labels used?

Key Points
■ Multiple returns can enhance a routine’s readability and maintainability, and they 

help prevent deeply nested logic. They should, nevertheless, be used carefully.

■ Recursion provides elegant solutions to a small set of problems. Use it carefully, too.

■ In a few cases, gotos are the best way to write code that’s readable and maintain-
able. Such cases are rare. Use gotos only as a last resort.
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Chapter 18

Table-Driven Methods
cc2e.com/1865 Contents

■ 18.1 General Considerations in Using Table-Driven Methods: page 411

■ 18.2 Direct Access Tables: page 413

■ 18.3 Indexed Access Tables: page 425

■ 18.4 Stair-Step Access Tables: page 426

■ 18.5 Other Examples of Table Lookups: page 429

Related Topics

■ Information hiding: “Hide Secrets (Information Hiding)” in Section 5.3

■ Class design: Chapter 6

■ Using decision tables to replace complicated logic: in Section 19.1

■ Substitute table lookups for complicated expressions: in Section 26.1

A table-driven method is a scheme that allows you to look up information in a table 
rather than using logic statements (if and case) to figure it out. Virtually anything you 
can select with logic statements, you can select with tables instead. In simple cases, 
logic statements are easier and more direct. As the logic chain becomes more complex, 
tables become increasingly attractive.

If you’re already familiar with table-driven methods, this chapter might be just a 
review. In that case, you might examine “Flexible-Message-Format Example” in Sec-
tion 18.2 for a good example of how an object-oriented design isn’t necessarily better 
than any other kind of design just because it’s object-oriented, and then you might 
move on to the discussion of general control issues in Chapter 19. 

18.1 General Considerations in Using Table-Driven Methods
Used in appropriate circumstances, table-driven code is simpler than complicated 
logic, easier to modify, and more efficient. Suppose you wanted to classify characters 
into letters, punctuation marks, and digits; you might use a complicated chain of logic 
like this one: KEY POINT
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Java Example of Using Complicated Logic to Classify a Character
if ( ( ( 'a' <= inputChar ) && ( inputChar <= 'z' ) ) ||

   ( ( 'A' <= inputChar ) && ( inputChar <= 'Z' ) ) ) {

   charType = CharacterType.Letter;

} 

else if ( ( inputChar == ' ' ) || ( inputChar == ',' ) ||

   ( inputChar == '.' ) || ( inputChar == '!' ) || ( inputChar == '(' ) ||

   ( inputChar == ')' ) || ( inputChar == ':' ) || ( inputChar == ';' ) ||

   ( inputChar == '?' ) || ( inputChar == '-' ) ) {

   charType = CharacterType.Punctuation;

}

else if ( ( '0' <= inputChar ) && ( inputChar <= '9' ) ) {

   charType = CharacterType.Digit;

}

If you used a lookup table instead, you’d store the type of each character in an array 
that’s accessed by character code. The complicated code fragment just shown  would 
be replaced by this:

Java Example of Using a Lookup Table to Classify a Character 
charType = charTypeTable[ inputChar ];

This fragment assumes that the charTypeTable array has been set up earlier. You put 
your program’s knowledge into its data rather than into its logic—in the table instead 
of in the if tests. 

Two Issues in Using Table-Driven Methods

When you use table-driven methods, you have to address two issues. First you have to 
address the question of how to look up entries in the table. You can use some data to 
access a table directly. If you need to classify data by month, for example, keying into 
a month table is straightforward. You can use an array with indexes 1 through 12.

Other data is too awkward to be used to look up a table entry directly. If you need to 
classify data by Social Security Number, for example, you can’t use the Social Security 
Number to key into the table directly unless you can afford to store 999-99-9999 
entries in your table. You’re forced to use a more complicated approach. Here’s a list of 
ways to look up an entry in a table:

■ Direct access

■ Indexed access 

■ Stair-step access 

Each of these kinds of accesses is described in more detail in subsections later in this 
chapter.

KEY POINT
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The second issue you have to address if you’re using a table-driven method is what 
you should store in the table. In some cases, the result of a table lookup is data. If 
that’s the case, you can store the data in the table. In other cases, the result of a table 
lookup is an action. In such a case, you can store a code that describes the action or, 
in some languages, you can store a reference to the routine that implements the action. 
In either of these cases, tables become more complicated.

18.2 Direct Access Tables
Like all lookup tables, direct-access tables replace more complicated logical control 
structures. They are “direct access” because you don’t have to jump through any com-
plicated hoops to find the information you want in the table. As Figure 18-1 suggests, 
you can pick out the entry you want directly.

Figure 18-1 As the name suggests, a direct-access table allows you to access the table ele-
ment you’re interested in directly. 

Days-in-Month Example

Suppose you need to determine the number of days per month (forgetting about leap 
year, for the sake of argument). A clumsy way to do it, of course, is to write a large if 
statement:

Visual Basic Example of a Clumsy Way to Determine the Number of Days in a Month
If ( month = 1 ) Then

   days = 31

ElseIf ( month = 2 ) Then

   days = 28

ElseIf ( month = 3 ) Then

   days = 31

ElseIf ( month = 4 ) Then

   days = 30

ElseIf ( month = 5 ) Then

   days = 31

ElseIf ( month = 6 ) Then

   days = 30

ElseIf ( month = 7 ) Then

   days = 31

KEY POINT

(age, year)

Lookup Table



414 Chapter 18: Table-Driven Methods

ElseIf ( month = 8 ) Then

   days = 31

ElseIf ( month = 9 ) Then

   days = 30

ElseIf ( month = 10 ) Then

   days = 31

ElseIf ( month = 11 ) Then

   days = 30

ElseIf ( month = 12 ) Then

   days = 31

End If 

An easier and more modifiable way to perform the same function is to put the data in 
a table. In Microsoft Visual Basic, you’d first set up the table:

Visual Basic Example of an Elegant Way to Determine the Number of Days in a 
Month
' Initialize Table of "Days Per Month" Data

Dim daysPerMonth() As Integer = _

   { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

Now, instead of using the long if statement, you can just use a simple array access to 
find out the number of days in a month:

Visual Basic Example of an Elegant Way to Determine the Number of Days in a 
Month (continued)
days = daysPerMonth( month-1 )

If you wanted to account for leap year in the table-lookup version, the code would still 
be simple, assuming LeapYearIndex() has a value of either 0 or 1:

Visual Basic Example of an Elegant Way to Determine the Number of Days in a 
Month (continued)
days = daysPerMonth( month-1, LeapYearIndex() )

In the if-statement version, the long string of ifs would grow even more complicated if 
leap year were considered.

Determining the number of days per month is a convenient example because you can 
use the month variable to look up an entry in the table. You can often use the data that 
would have controlled a lot of if statements to access a table directly.
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Insurance Rates Example

Suppose you’re writing a program to compute medical insurance rates and you have 
rates that vary by age, gender, marital status, and whether a person smokes. If you had 
to write a logical control structure for the rates, you’d get something like this:

Java Example of a Clumsy Way to Determine an Insurance Rate
if ( gender == Gender.Female ) {

   if ( maritalStatus == MaritalStatus.Single ) {

      if ( smokingStatus == SmokingStatus.NonSmoking ) {

         if ( age < 18 ) {

            rate = 200.00;

         }

         else if ( age == 18 ) {

            rate = 250.00;

         }

         else if ( age == 19 ) {

            rate = 300.00;

         }

         ...

         else if ( 65 < age ) {

            rate = 450.00;

      }

      else { 

         if ( age < 18 ) {

            rate = 250.00;

         }

         else if ( age == 18 ) {

            rate = 300.00;

         }

         else if ( age == 19 ) {

            rate = 350.00;

         }

         ...

         else if ( 65 < age ) {

            rate = 575.00;

         }

      }

   else if ( maritalStatus == MaritalStatus.Married )

   ...

} 

The abbreviated version of the logic structure should be enough to give you an idea of 
how complicated this kind of thing can get. It doesn’t show married females, any 
males, or most of the ages between 18 and 65. You can imagine how complicated it 
would get when you programmed the whole rate table.

You might say, “Yeah, but why did you do a test for each age? Why don’t you just put 
the rates in arrays for each age?” That’s a good question, and one obvious improve-
ment would be to put the rates into separate arrays for each age.

CODING 
HORROR
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A better solution, however, is to put the rates into arrays for all the factors, not just age. 
Here’s how you would declare the array in Visual Basic: 

Visual Basic Example of Declaring Data to Set Up an Insurance Rates Table
Public Enum SmokingStatus

   SmokingStatus_First = 0

   SmokingStatus_Smoking = 0

   SmokingStatus_NonSmoking = 1

   SmokingStatus_Last = 1

End Enum

Public Enum Gender

   Gender_First = 0

   Gender_Male = 0

   Gender_Female = 1

   Gender_Last = 1

End Enum

Public Enum MaritalStatus

   MaritalStatus_First = 0

   MaritalStatus_Single = 0

   MaritalStatus_Married = 1

   MaritalStatus_Last = 1

End Enum

Const MAX_AGE As Integer = 125

Dim rateTable ( SmokingStatus_Last, Gender_Last, MaritalStatus_Last, _

   MAX_AGE ) As Double

Cross-Reference One 
advantage of a table-driven 
approach is that you can put 
the table’s data in a file and 
read it at run time. That 
allows you to change some-
thing like an insurance rates 
table without changing the 
program itself. For more on 
the idea, see Section 10.6, 
“Binding Time.”

Once you declare the array, you have to figure out some way of putting data into it. 
You can use assignment statements, read the data from a disk file, compute the data, 
or do whatever is appropriate. After you’ve set up the data, you’ve got it made when 
you need to calculate a rate. The complicated logic shown earlier is replaced with a 
simple statement like this one:

Visual Basic Example of an Elegant Way to Determine an Insurance Rate 
rate = rateTable( smokingStatus, gender, maritalStatus, age )

This approach has the general advantages of replacing complicated logic with a table 
lookup. The table lookup is more readable and easier to change.

Flexible-Message-Format Example

You can use a table to describe logic that’s too dynamic to represent in code. With the 
character-classification example, the days-in-the-month example, and the insurance 
rates example, you at least knew that you could write a long string of if statements if 
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you needed to. In some cases, however, the data is too complicated to describe with 
hard-coded if statements. 

If you think you’ve got the idea of how direct-access tables work, you might want to 
skip the next example. It’s a little more complicated than the earlier examples, 
though, and it further demonstrates the power of table-driven approaches.

Suppose you’re writing a routine to print messages that are stored in a file. The file 
usually has about 500 messages, and each file has about 20 kinds of messages. The 
messages originally come from a buoy and give water temperature, the buoy’s loca-
tion, and so on.

Each of the messages has several fields, and each message starts with a header that has 
an ID to let you know which of the 20 or so kinds of messages you’re dealing with. Fig-
ure 18-2 illustrates how the messages are stored.

Figure 18-2 Messages are stored in no particular order, and each one is identified with a 
message ID.

The format of the messages is volatile, determined by your customer, and you don’t 
have enough control over your customer to stabilize it. Figure 18-3 shows what a few 
of the messages look like in detail.

ID for Buoy
Temperature Message

Message Contents

ID for Buoy
Drift Message

Message Contents

ID for Buoy
Location Message

Message Contents
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Figure 18-3 Aside from the Message ID, each kind of message has its own format.

Logic-Based Approach

If you used a logic-based approach, you’d probably read each message, check the ID, 
and then call a routine that’s designed to read, interpret, and print each kind of mes-
sage. If you had 20 kinds of messages, you’d have 20 routines.  You’d also have who-
knows-how-many lower-level routines to support them—for example, you’d have a 
PrintBuoyTemperatureMessage() routine to print the buoy temperature message. An 
object-oriented approach wouldn’t be much better: you’d typically use an abstract 
message object with a subclass for each message type. 

Each time the format of any message changed, you’d have to change the logic in the 
routine or class responsible for that message. In the detailed message earlier, if the 
average-temperature field changed from a floating point to something else, you’d have 
to change the logic of PrintBuoyTemperatureMessage(). (If the buoy itself changed from 
a “floating point” to something else, you’d have to get a new buoy!)

In the logic-based approach, the message-reading routine consists of a loop to read 
each message, decode the ID, and then call one of 20 routines based on the message 
ID. Here’s the pseudocode for the logic-based approach:

Cross-Reference This low-
level pseudocode is used for 
a different purpose than the 
pseudocode you use for rou-
tine design. For details on 
designing in pseudocode, 
see Chapter 9, “The 
Pseudocode Programming 
Process.”

While more messages to read

   Read a message header

   Decode the message ID from the message header

   If the message header is type 1 then

      Print a type 1 message

   Else if the message header is type 2 then

      Print a type 2 message

   ...

   Else if the message header is type 19 then

      Print a type 19 message

   Else if the message header is type 20 then

      Print a type 20 message

ID for Buoy
Temperature Message

Average Temperature
(floating point)

Temperature Range
(floating point)

Number of Samples 
(integer)

Location 
(character string)

Time of Measurement 
(time of day)

ID for Buoy
Drift Message

Change in Latitude 
(floating point)

Change in Longitude
(floating point)

Time of Measurement 
(time of day)

ID for Buoy
Location Message

Latitude
(floating point)

Longitude 
(floating point)

Depth 
(integer)

Time of Measurement 
(time of day)
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The pseudocode is abbreviated because you can get the idea without seeing all 20 cases.

Object-Oriented Approach

If you were using a rote object-oriented approach, the logic would be hidden in the 
object inheritance structure but the basic structure would be just as complicated: 

While more messages to read

   Read a message header

   Decode the message ID from the message header

   If the message header is type 1 then

      Instantiate a type 1 message object

   Else if the message header is type 2 then

      Instantiate a type 2 message object

   ...

   Else if the message header is type 19 then

      Instantiate a type 19 message object

   Else if the message header is type 20 then

      Instantiate a type 20 message object

   End if

End While

Regardless of whether the logic is written directly or contained within specialized 
classes, each of the 20 kinds of messages will have its own routine for printing its mes-
sage. Each routine could also be expressed in pseudocode. This is the pseudocode for 
the routine to read and print the buoy temperature message:

Print "Buoy Temperature Message"

Read a floating-point value

Print "Average Temperature"

Print the floating-point value

Read a floating-point value

Print "Temperature Range"

Print the floating-point value

Read an integer value

Print "Number of Samples"

Print the integer value

Read a character string

Print "Location"

Print the character string

Read a time of day

Print "Time of Measurement"

Print the time of day

This is the code for just one kind of message. Each of the other 19 kinds of messages 
would require similar code. And if a 21st kind of message was added, either a 21st rou-
tine or a 21st subclass would need to be added—either way a new message type would 
require the code to be changed. 
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Table-Driven Approach

The table-driven approach is more economical than the previous approach. The mes-
sage-reading routine consists of a loop that reads each message header, decodes the 
ID, looks up the message description in the Message array, and then calls the same 
routine every time to decode the message. With a table-driven approach, you can 
describe the format of each message in a table rather than hard-coding it in program 
logic. This makes it easier to code originally, generates less code, and makes it easier to 
maintain without changing code. 

To use this approach, you start by listing the kinds of messages and the types of fields. 
In C++, you could define the types of all the possible fields this way:

C++ Example of Defining Message Data Types 
enum FieldType { 

   FieldType_FloatingPoint, 

   FieldType_Integer,

   FieldType_String,

   FieldType_TimeOfDay, 

   FieldType_Boolean, 

   FieldType_BitField,

   FieldType_Last = FieldType_BitField

};

Rather than hard-coding printing routines for each of the 20 kinds of messages, you 
can create a handful of routines that print each of the primary data types—floating 
point, integer, character string, and so on. You can describe the contents of each kind 
of message in a table (including the name of each field) and then decode each mes-
sage based on the description in the table. A table entry to describe one kind of mes-
sage might look like this:

Example of Defining a Message Table Entry
Message Begin

   NumFields 5

   MessageName "Buoy Temperature Message"

   Field 1, FloatingPoint, "Average Temperature"

   Field 2, FloatingPoint, "Temperature Range"

   Field 3, Integer, "Number of Samples"

   Field 4, String, "Location"

   Field 5, TimeOfDay, "Time of Measurement"

Message End

This table could be hard-coded in the program (in which case, each of the elements 
shown would be assigned to variables), or it could be read from a file at program star-
tup time or later. 

Once message definitions are read into the program, instead of having all the informa-
tion embedded in a program’s logic, you have it embedded in data. Data tends to be 
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more flexible than logic. Data is easy to change when a message format changes. If you 
have to add a new kind of message, you can just add another element to the data table.

Here’s the pseudocode for the top-level loop in the table-driven approach:

The first three lines here 
are the same as in the 
logic-based approach.

While more messages to read

   Read a message header

   Decode the message ID from the message header

   Look up the message description in the message-description table

   Read the message fields and print them based on the message description

End While

Unlike the pseudocode for the logic-based approach, the pseudocode in this case isn’t 
abbreviated because the logic is so much less complicated. In the logic below this 
level, you’ll find one routine that’s capable of interpreting a message description from 
the message description table, reading message data, and printing a message. That 
routine is more general than any of the logic-based message-printing routines but not 
much more complicated, and it will be one routine instead of 20:

While more fields to print

   Get the field type from the message description

   case ( field type )

      of ( floating point )

         read a floating-point value

         print the field label

         print the floating-point value

      of ( integer )

         read an integer value

         print the field label

         print the integer value

      of ( character string )

         read a character string

         print the field label

         print the character string

      of ( time of day )

         read a time of day

         print the field label

         print the time of day

      of ( boolean )

         read a single flag

         print the field label

         print the single flag

      of ( bit field )

         read a bit field

         print the field label

         print the bit field

   End Case

End While
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Admittedly, this routine with its six cases is longer than the single routine needed to 
print the buoy temperature message. But this is the only routine you need. You don’t 
need 19 other routines for the 19 other kinds of messages. This routine handles the 
six field types and takes care of all the kinds of messages.

This routine also shows the most complicated way of implementing this kind of table 
lookup because it uses a case statement. Another approach would be to create an 
abstract class AbstractField and then create subclasses for each field type. You won’t need 
a case statement; you can call the member routine of the appropriate type of object. 

Here’s how you would set up the object types in C++:

C++ Example of Setting Up Object Types
class AbstractField {

   public:

   virtual void ReadAndPrint( string, FileStatus & ) = 0;

};

class FloatingPointField : public AbstractField {

   public:

   virtual void ReadAndPrint( string, FileStatus & ) {

   ...

   }

};

class IntegerField ...

class StringField ...

...

This code fragment declares a member routine for each class that has a string param-
eter and a FileStatus parameter.

The next step is to declare an array to hold the set of objects. The array is the lookup 
table, and here’s how it looks:

C++ Example of Setting Up a Table to Hold an Object of Each Type
AbstractField* field[ Field_Last+1];

The final step required to set up the table of objects is to assign the names of specific 
objects to the Field  array:

C++ Example of Setting Up a List of Objects
field[ Field_FloatingPoint ] = new FloatingPointField();

field[ Field_Integer ] = new IntegerField();

field[ Field_String ] = new StringField();

field[ Field_TimeOfDay ] = new TimeOfDayField();

field[ Field_Boolean ] = new BooleanField();

field[ Field_BitField ] = new BitFieldField();
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This code fragment assumes that FloatingPointField and the other identifiers on the 
right side of the assignment statements are names of objects of type AbstractField. 
Assigning the objects to array elements in the array means that you can call the cor-
rect ReadAndPrint() routine by referencing an array element instead of by using a spe-
cific kind of object directly.

Once the table of routines is set up, you can handle a field in the message simply by 
accessing the table of objects and calling one of the member routines in the table. The 
code looks like this:

C++ Example of Looking Up Objects and Member Routines in a Table
This stuff is just house-
keeping for each field in 
a message.

fieldIdx = 1;

while ( ( fieldIdx <= numFieldsInMessage ) && ( fileStatus == OK ) ) {

   fieldType = fieldDescription[ fieldIdx ].FieldType; 

   fieldName = fieldDescription[ fieldIdx ].FieldName;

This is the table lookup that 
calls a routine depending 
on the type of the field—
just by looking it up in a 
table of objects.

   field[ fieldType ].ReadAndPrint( fieldName, fileStatus );

   fieldIdx++;

}

Remember the original 34 lines of table-lookup pseudocode containing the case state-
ment? If you replace the case statement with a table of objects, this is all the code you’d 
need to provide the same functionality. Incredibly, it’s also all the code needed to 
replace all 20 of the individual routines in the logic-based approach. Moreover, if the 
message descriptions are read from a file, new message types won’t require code 
changes unless there’s a new field type. 

You can use this approach in any object-oriented language. It’s less error-prone, more 
maintainable, and more efficient than lengthy if statements, case statements, or copi-
ous subclasses. 

The fact that a design uses inheritance and polymorphism doesn’t make it a good 
design. The rote object-oriented design described earlier in the “Object-Oriented 
Approach” section would require as much code as a rote functional design—or more. 
That approach made the solution space more complicated, rather than less. The key 
design insight in this case is neither object orientation nor functional orientation—it’s 
the use of a well thought out lookup table. 

Fudging Lookup Keys
In each of the three previous examples, you could use the data to key into the table 
directly. That is, you could use messageID as a key without alteration, as you could use 
month in the days-per-month example and gender, maritalStatus, and smokingStatus in 
the insurance rates example.

You’d always like to key into a table directly because it’s simple and fast. Sometimes, 
however, the data isn’t cooperative. In the insurance rates example, age wasn’t well 
behaved. The original logic had one rate for people under 18, individual rates for ages 
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18 through 65, and one rate for people over 65. This meant that for ages 0 through 17 
and 66 and over, you couldn’t use the age to key directly into a table that stored only 
one set of rates for several ages. 

This leads to the topic of fudging table-lookup keys. You can fudge keys in several ways:

Duplicate information to make the key work directly One straightforward way to 
make age work as a key into the rates table is to duplicate the under-18 rates for each 
of the ages 0 through 17 and then use the age to key directly into the table. You can do 
the same thing for ages 66 and over. The benefits of this approach are that the table 
structure itself is straightforward and the table accesses are also straightforward. If 
you needed to add age-specific rates for ages 17 and below, you could just change the 
table. The drawbacks are that the duplication would waste space for redundant infor-
mation and increase the possibility of errors in the table—if only because the table 
would contain redundant data.

Transform the key to make it work directly A second way to make Age work as a 
direct key is to apply a function to Age so that it works well. In this case, the function 
would have to change all ages 0 through 17 to one key, say 17, and all ages above 66 to 
another key, say 66. This particular range is well behaved enough that you could use 
min() and max() functions to make the transformation. For example, you could use 
the expression

max( min( 66, Age ), 17 )

to create a table key that ranges from 17 to 66.

Creating the transformation function requires that you recognize a pattern in the 
data you want to use as a key, and that’s not always as simple as using the min() and 
max() routines. Suppose that in this example the rates were for five-year age bands 
instead of one-year bands. Unless you wanted to duplicate all your data five times, 
you’d have to come up with a function that divided Age by 5 properly and used the 
min() and max() routines.

Isolate the key transformation in its own routine If you have to fudge data to make 
it work as a table key, put the operation that changes the data to a key into its own rou-
tine. A routine eliminates the possibility of using different transformations in different 
places. It makes modifications easier when the transformation changes. A good name 
for the routine, like KeyFromAge(), also clarifies and documents the purpose of the 
mathematical machinations. 

If your environment provides ready-made key transformations, use them. For exam-
ple, Java provides HashMap, which can be used to associate key/value pairs. 
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18.3 Indexed Access Tables
Sometimes a simple mathematical transformation isn’t powerful enough to make the 
jump from data like Age to a table key. Some such cases are suited to the use of an 
indexed access scheme.

When you use indexes, you use the primary data to look up a key in an index table and 
then you use the value from the index table to look up the main data you’re interested in.

Suppose you run a warehouse and have an inventory of about 100 items. Suppose fur-
ther that each item has a four-digit part number that ranges from 0000 through 9999. 
In this case, if you want to use the part number to key directly into a table that 
describes some aspect of each item, you set up an index array with 10,000 entries 
(from 0 through 9999). The array is empty except for the 100 entries that correspond 
to part numbers of the 100 items in your warehouse. As Figure 18-4 shows, those 
entries point to an item-description table that has far fewer than 10,000 entries.

Figure 18-4 Rather than being accessed directly, an indexed access table is accessed via an 
intermediate index. 

Indexed access schemes offer two main advantages. First, if each of the entries in the 
main lookup table is large, it takes a lot less space to create an index array with a lot of 
wasted space than it does to create a main lookup table with a lot of wasted space. For 
example, suppose that the main table takes 100 bytes per entry and that the index 

Array of Indexes into 
Lookup Table 

(mostly empty)

Lookup Table 
(mostly full)
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array takes 2 bytes per entry. Suppose that the main table has 100 entries and that the 
data used to access it has 10,000 possible values. In such a case, the choice is between 
having an index with 10,000 entries or a main data member with 10,000 entries. If 
you use an index, your total memory use is 30,000 bytes. If you forgo the index struc-
ture and waste space in the main table, your total memory use is 1,000,000 bytes.

The second advantage, even if you don’t save space by using an index, is that it’s some-
times cheaper to manipulate entries in an index than entries in a main table. For 
example, if you have a table with employee names, hiring dates, and salaries, you can 
create one index that accesses the table by employee name, another that accesses the 
table by hiring date, and a third that accesses the table by salary.

A final advantage of an index-access scheme is the general table-lookup advantage of 
maintainability. Data encoded in tables is easier to maintain than data embedded in 
code. To maximize the flexibility, put the index-access code in its own routine and call 
the routine when you need to get a table key from a part number. When it’s time to 
change the table, you might decide to switch the index-accessing scheme or switch to 
another table-lookup scheme altogether. The access scheme will be easier to change if 
you don’t spread index accesses throughout your program.

18.4 Stair-Step Access Tables
Yet another kind of table access is the stair-step method. This access method isn’t as 
direct as an index structure, but it doesn’t waste as much data space.

The general idea of stair-step structures, illustrated in Figure 18-5, is that entries in a 
table are valid for ranges of data rather than for distinct data points. 

Figure 18-5 The stair-step approach categorizes each entry by determining the level at 
which it hits a “staircase.” The “step” it hits determines its category.

For example, if you’re writing a grading program, the “B” entry range might be from 75 
percent to 90 percent. Here’s a range of grades you might have to program someday:

≥ 90.0% A

< 90.0% B

< 75.0% C

< 65.0% D

< 50.0% F
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This is an ugly range for a table lookup because you can’t use a simple data-transfor-
mation function to key into the letters A through F. An index scheme would be awk-
ward because the numbers are floating point. You might consider converting the 
floating-point numbers to integers, and in this case that would be a valid design 
option, but for the sake of illustration, this example will stick with floating point.

To use the stair-step method, you put the upper end of each range into a table and 
then write a loop to check a score against the upper end of each range. When you find 
the point at which the score first exceeds the top of a range, you know what the grade 
is. With the stair-step technique, you have to be careful to handle the endpoints of the 
ranges properly. Here’s the code in Visual Basic that assigns grades to a group of stu-
dents based on this example:

Visual Basic Example of a Stair-Step Table Lookup
' set up data for grading table

Dim rangeLimit() As Double = { 50.0, 65.0, 75.0, 90.0, 100.0 }

Dim grade() As String =  { "F",  "D",  "C",  "B",  "A"  }

maxGradeLevel = grade.Length – 1

...

' assign a grade to a student based on the student's score

gradeLevel = 0

studentGrade = "A"

While ( ( studentGrade = "A" ) and ( gradeLevel < maxGradeLevel ) )

   If ( studentScore < rangeLimit( gradeLevel ) ) Then

      studentGrade = grade( gradeLevel )

   End If

   gradeLevel = gradeLevel + 1

Wend

Although this is a simple example, you can easily generalize it to handle multiple stu-
dents, multiple grading schemes (for example, different grades for different point lev-
els on different assignments), and changes in the grading scheme. 

The advantage of this approach over other table-driven methods is that it works well 
with irregular data. The grading example is simple in that, although grades are 
assigned at irregular intervals, the numbers are “round,” ending with 5s and 0s. The 
stair-step approach is equally well suited to data that doesn’t end neatly with 5s and 
0s. You can use the stair-step approach in statistics work for probability distributions 
with numbers like this:

Probability Insurance Claim Amount

0.458747 $0.00

0.547651 $254.32

0.627764 $514.77

0.776883 $747.82

0.893211 $1,042.65
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Ugly numbers like these defy any attempt to come up with a function to neatly trans-
form them into table keys. The stair-step approach is the answer. 

This approach also enjoys the general advantages of table-driven approaches: it’s flex-
ible and modifiable. If the grading ranges in the grading example were to change, the 
program could easily be adapted by modifying the entries in the RangeLimit array. You 
could easily generalize the grade-assignment part of the program so that it would 
accept a table of grades and corresponding cut-off scores. The grade-assignment part 
of the program wouldn’t have to use scores expressed as percentages; it could use raw 
points rather than percentages, and the program wouldn’t have to change much.

Here are a few subtleties to consider as you use the stair-step technique: 

Watch the endpoints Make sure you’ve covered the case at the top end of each stair-
step range. Run the stair-step search so that it finds items that map to any range other 
than the uppermost range, and then have the rest fall into the uppermost range. 
Sometimes this requires creating an artificial value for the top of the uppermost range.

Be careful about mistaking < for <=. Make sure that the loop terminates properly with 
values that fall into the top ranges and that the range boundaries are handled correctly.

Consider using a binary search rather then a sequential search  In the grading 
example, the loop that assigns the grade searches sequentially through the list of 
grading limits. If you had a larger list, the cost of the sequential search might become 
prohibitive. If it does, you can replace it with a quasi-binary search. It’s a “quasi” 
binary search because the point of most binary searches is to find a value. In this case, 
you don’t expect to find the value; you expect to find the right category for the value. 
The binary-search algorithm must correctly determine where the value should go. 
Remember also to treat the endpoint as a special case.

Consider using indexed access instead of the stair-step technique An index-access 
scheme such as the ones described in Section 18.3 might be a good alternative to a stair-
step technique. The searching required in the stair-step method can add up, and if exe-
cution speed is a concern, you might be willing to trade the space an extra index struc-
ture takes up for the time advantage you get with a more direct access method.

Obviously, this alternative isn’t a good choice in all cases. In the grading example, you 
could probably use it; if you had only 100 discrete percentage points, the memory cost 
of setting up an index array wouldn’t be prohibitive. If, on the other hand, you had the 

0.957665 $5,887.55

0.976544 $12,836.98

0.987889 $27,234.12

...

Probability Insurance Claim Amount
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probability data listed earlier, you couldn’t set up an indexing scheme because you 
can’t key into entries with numbers like 0.458747 and 0.547651.

Cross-Reference For more 
on good approaches to 
choosing design alternatives, 
see Chapter 5, “Design in 
Construction.”

In some cases, any of the several options might work. The point of design is choosing 
one of the several good options for your case. Don’t worry too much about choosing 
the best one. As Butler Lampson, a distinguished engineer at Microsoft, says, it’s better 
to strive for a good solution and avoid disaster rather than trying to find the best solu-
tion (Lampson 1984).

Put the stair-step table lookup into its own routine When you create a transforma-
tion function that changes a value like StudentGrade into a table key, put it into its own 
routine.

18.5 Other Examples of Table Lookups
A few other examples of table lookups appear in other sections of the book. They’re 
used in the course of discussing other techniques, and the contexts don’t emphasize 
the table lookups per se. Here’s where you’ll find them:

■ Looking up rates in an insurance table: Section 16.3, “Creating Loops Easily—
From the Inside Out”

■ Using decision tables to replace complicated logic: “Use decision tables to 
replace complicated conditions” in Section 19.1.

■ Cost of memory paging during a table lookup: Section 25.3, “Kinds of Fat and 
Molasses”

■ Combinations of boolean values (A or B or C): “Substitute Table Lookups for 
Complicated Expressions” in Section 26.1

■ Precomputing values in a loan repayment table: Section 26.4, “Expressions.”

cc2e.com/1872 CHECKLIST: Table-Driven Methods
❑ Have you considered table-driven methods as an alternative to compli-

cated logic? 

❑ Have you considered table-driven methods as an alternative to compli-
cated inheritance structures? 

❑ Have you considered storing the table’s data externally and reading it at 
run time so that the data can be modified without changing code? 

❑ If the table cannot be accessed directly via a straightforward array index 
(as in the age example), have you put the access-key calculation into a rou-
tine rather than duplicating the index calculation in the code? 
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Key Points
■ Tables provide an alternative to complicated logic and inheritance structures. If 

you find that you’re confused by a program’s logic or inheritance tree, ask your-
self whether you could simplify by using a lookup table.

■ One key consideration in using a table is deciding how to access the table. You 
can access tables by using direct access, indexed access, or stair-step access. 

■ Another key consideration in using a table is deciding what exactly to put into 
the table. 
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Chapter 19

General Control Issues
cc2e.com/1978 Contents

■ 19.1 Boolean Expressions: page 431

■ 19.2 Compound Statements (Blocks): page 443

■ 19.3 Null Statements: page 444

■ 19.4 Taming Dangerously Deep Nesting: page 445

■ 19.5 A Programming Foundation: Structured Programming: page 454

■ 19.6 Control Structures and Complexity: page 456

Related Topics

■ Straight-line code: Chapter 14

■ Code with conditionals: Chapter 15

■ Code with loops: Chapter 16

■ Unusual control structures: Chapter 17

■ Complexity in software development: “Software’s Primary Technical Imperative: 
Managing Complexity” in Section 5.2

No discussion of control would be complete unless it went into several general issues 
that crop up when you think about control constructs. Most of the information in this 
chapter is detailed and pragmatic. If you’re reading for the theory of control structures 
rather than for the gritty details, concentrate on the historical perspective on struc-
tured programming in Section 19.5 and on the relationships between control struc-
tures in Section 19.6.

19.1 Boolean Expressions
Except for the simplest control structure, the one that calls for the execution of statements 
in sequence, all control structures depend on the evaluation of boolean expressions.

Using true and false for Boolean Tests

Use the identifiers true and false in boolean expressions rather than using values like 
0 and 1. Most modern languages have a boolean data type and provide predefined 
identifiers for true and false. They make it easy—they don’t even allow you to assign 
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values other than true or false to boolean variables. Languages that don’t have a bool-
ean data type require you to have more discipline to make boolean expressions read-
able. Here’s an example of the problem:

Visual Basic Examples of Using Ambiguous Flags for Boolean Values
Dim printerError As Integer

Dim reportSelected As Integer

Dim summarySelected As Integer

...

If printerError = 0 Then InitializePrinter()

If printerError = 1 Then NotifyUserOfError()

If reportSelected = 1 Then PrintReport()

If summarySelected = 1 Then PrintSummary()

If printerError = 0 Then CleanupPrinter()

If using flags like 0 and 1 is common practice, what’s wrong with it? It’s not clear from 
reading the code whether the function calls are executed when the tests are true or 
when they’re false. Nothing in the code fragment itself tells you whether 1 represents 
true and 0 false or whether the opposite is true. It’s not even clear that the values 1 and 
0 are being used to represent true and false. For example, in the If reportSelected = 1 line, 
the 1 could easily represent the first report, a 2 the second, a 3 the third; nothing in the 
code tells you that 1 represents either true or false. It’s also easy to write 0 when you 
mean 1 and vice versa.

Use terms named true and false for tests with boolean expressions. If your language 
doesn’t support such terms directly, create them using preprocessor macros or global 
variables. The previous code example is rewritten here using Microsoft Visual Basic’s 
built-in True and False:

Good, but Not Great Visual Basic Examples of Using True and False for Tests Instead 
of Numeric Values

Cross-Reference For an 
even better approach to 
making these same tests, 
see the next code example. 

Dim printerError As Boolean

Dim reportSelected As ReportType

Dim summarySelected As Boolean

...

If ( printerError = False ) Then InitializePrinter()

If ( printerError = True ) Then NotifyUserOfError()

If ( reportSelected = ReportType_First ) Then PrintReport()

If ( summarySelected = True ) Then PrintSummary()

If ( printerError = False ) Then CleanupPrinter()

Use of the True and False constants makes the intent clearer. You don’t have to remem-
ber what 1 and 0 represent, and you won’t accidentally reverse them. Moreover, in the 

CODING 
HORROR
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rewritten code, it’s now clear that some of the 1s and 0s in the original Visual Basic 
example weren’t being used as boolean flags. The If reportSelected = 1 line was not a 
boolean test at all; it tested whether the first report had been selected.

This approach tells the reader that you’re making a boolean test. It’s also harder to 
write true when you mean false than it is to write 1 when you mean 0, and you avoid 
spreading the magic numbers 0 and 1 throughout your code. Here are some tips on 
defining true and false in boolean tests:

Compare boolean values to true and false implicitly You can write clearer tests by 
treating the expressions as boolean expressions. For example, write

while ( not done ) ...

while ( a > b ) ...

rather than

while ( done = false ) ...

while ( (a > b) = true ) ...

Using implicit comparisons reduces the number of terms that someone reading your 
code has to keep in mind, and the resulting expressions read more like conversational 
English. The previous example could be rewritten with even better style like this:

Better Visual Basic Examples of Testing for True and False Implicitly
Dim printerError As Boolean

Dim reportSelected As ReportType

Dim summarySelected As Boolean

...

If ( Not printerError ) Then InitializePrinter()

If ( printerError ) Then NotifyUserOfError()

If ( reportSelected = ReportType_First ) Then PrintReport()

If ( summarySelected ) Then PrintSummary()

If ( Not printerError ) Then CleanupPrinter()

Cross-Reference For details, 
see Section 12.5, “Boolean 
Variables.”

If your language doesn’t support boolean variables and you have to emulate them, you 
might not be able to use this technique because emulations of true and false can’t 
always be tested with statements like while ( not done ).

Making Complicated Expressions Simple

You can take several steps to simplify complicated expressions:

Break complicated tests into partial tests with new boolean variables Rather than 
creating a monstrous test with half a dozen terms, assign intermediate values to terms 
that allow you to perform a simpler test.
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Move complicated expressions into boolean functions If a test is repeated often or 
distracts from the main flow of the program, move the code for the test into a function 
and test the value of the function. For example, here’s a complicated test:

Visual Basic Example of a Complicated Test
If ( ( document.AtEndOfStream ) And ( Not inputError ) ) And _

   ( ( MIN_LINES <= lineCount ) And ( lineCount <= MAX_LINES ) ) And _

   ( Not ErrorProcessing(  ) ) Then

   ' do something or other

   ...

End If

This is an ugly test to have to read through if you’re not interested in the test itself. By 
putting it into a boolean function, you can isolate the test and allow the reader to for-
get about it unless it’s important. Here’s how you could put the if test into a function:

Cross-Reference For details 
on the technique of using 
intermediate variables to 
clarify a boolean test, see 
“Use boolean variables to 
document your program” in 
Section 12.5.

Visual Basic Example of a Complicated Test Moved into a Boolean Function, with 
New Intermediate Variables to Make the Test Clearer
Function DocumentIsValid( _

   ByRef documentToCheck As Document, _

   lineCount As Integer, _

   inputError As Boolean _

   ) As Boolean

   

   Dim allDataRead As Boolean

   Dim legalLineCount As Boolean

Intermediate variables are 
introduced here to clarify the 
test on the final line, below. 

   allDataRead = ( documentToCheck.AtEndOfStream ) And ( Not inputError )

   legalLineCount = ( MIN_LINES <= lineCount ) And ( lineCount <= MAX_LINES )

   DocumentIsValid = allDataRead And legalLineCount And ( Not ErrorProcessing() )

End Function

This example assumes that ErrorProcessing() is a boolean function that indicates the 
current processing status. Now, when you read through the main flow of the code, 
you don’t have to read the complicated test:

Visual Basic Example of the Main Flow of the Code Without the Complicated Test
If ( DocumentIsValid( document, lineCount, inputError ) ) Then

   ' do something or other

   ...

End If 

If you use the test only once, you might not think it’s worthwhile to put it into a rou-
tine. But putting the test into a well-named function improves readability and makes 
it easier for you to see what your code is doing, and that’s a sufficient reason to do it. 

KEY POINT
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The new function name introduces an abstraction into the program that documents 
the purpose of the test in code. That’s even better than documenting the test with 
comments because the code is more likely to be read than the comments and it’s 
more likely to be kept up to date, too. 

Cross-Reference For details 
on using tables as substi-
tutes for complicated logic, 
see Chapter 18, “Table-
Driven Methods.”

Use decision tables to replace complicated conditions Sometimes you have a compli-
cated test involving several variables. It can be helpful to use a decision table to per-
form the test rather than using ifs or cases. A decision-table lookup is easier to code 
initially, having only a couple of lines of code and no tricky control structures. This 
minimization of complexity minimizes the opportunity for mistakes. If your data 
changes, you can change a decision table without changing the code; you only need to 
update the contents of the data structure.

Forming Boolean Expressions Positively
I ain’t not no undummy.
—Homer Simpson

Not a few people don’t have not any trouble understanding a nonshort string of 
nonpositives—that is, most people have trouble understanding a lot of negatives. 
You can do several things to avoid complicated negative boolean expressions in 
your programs:

In if statements, convert negatives to positives and flip-flop the code in the if and else 
clauses Here’s an example of a negatively expressed test:

Java Example of a Confusing Negative Boolean Test
Here’s the negative not. if ( !statusOK ) {

   // do something

   ...

}

else {

   // do something else

   ...

}

You can change this to the following positively expressed test:

The test in this line has 
been reversed.

Java Example of a Clearer Positive Boolean Test
if ( statusOK ) {

   // do something else

The code in this block has 
been switched...

   ...

}

else {

...with the code in this block.    // do something

   ...

}
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Cross-Reference The rec-
ommendation to frame 
boolean expressions posi-
tively sometimes contradicts 
the recommendation to 
code the nominal case after 
the if rather than the else. 
(See Section 15.1, “if State-
ments.”) In such a case, you 
have to think about the ben-
efits of each approach and 
decide which is better for 
your situation.

The second code fragment is logically the same as the first but is easier to read 
because the negative expression has been changed to a positive.

Alternatively, you could choose a different variable name, one that would reverse the 
truth value of the test. In the example, you could replace statusOK with ErrorDetected, 
which would be true when statusOK was false.

Apply DeMorgan’s Theorems to simplify boolean tests with negatives DeMorgan’s 
Theorems let you exploit the logical relationship between an expression and a version 
of the expression that means the same thing because it’s doubly negated. For exam-
ple, you might have a code fragment that contains the following test:

Java Example of a Negative Test
if ( !displayOK || !printerOK ) ...

This is logically equivalent to the following:

Java Example After Applying DeMorgan’s Theorems
if ( !( displayOK && printerOK ) ) ...

Here you don’t have to flip-flop if and else clauses; the expressions in the last two code 
fragments are logically equivalent. To apply DeMorgan’s Theorems to the logical oper-
ator and or the logical operator or and a pair of operands, you negate each of the oper-
ands, switch the ands and ors, and negate the entire expression. Table 19-1 
summarizes the possible transformations under DeMorgan’s Theorems.

Table 19-1 Transformations of Logical Expressions Under DeMorgan’s Theorems

Initial Expression Equivalent Expression

not A and not B not ( A or B )

not A and B not ( A or not B )

A and not B not ( not A or B )

A and B not ( not A or not B )

not A or not B*

* This is the expression used in the example.

not ( A and B )

not A or B not ( A and not B )

A or not B not ( not A and B )

A or B not ( not A and not B )
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Using Parentheses to Clarify Boolean Expressions
Cross-Reference For an 
example of using parenthe-
ses to clarify other kinds of 
expressions, see “Parenthe-
ses” in Section 31.2.

If you have a complicated boolean expression, rather than relying on the language’s 
evaluation order, parenthesize to make your meaning clear. Using parentheses makes 
less of a demand on your reader, who might not understand the subtleties of how 
your language evaluates boolean expressions. If you’re smart, you won’t depend on 
your own or your reader’s in-depth memorization of evaluation precedence—espe-
cially when you have to switch among two or more languages. Using parentheses isn’t 
like sending a telegram: you’re not charged for each character—the extra characters are 
free.

Here’s an expression with too few parentheses:

Java Example of an Expression Containing Too Few Parentheses
if ( a < b == c == d ) ...

This is a confusing expression to begin with, and it’s even more confusing because it’s 
not clear whether the coder means to test ( a < b ) == ( c == d ) or ( ( a < b ) == c ) == d. 
The following version of the expression is still a little confusing, but the parentheses 
help:

Java Example of an Expression Better Parenthesized
if ( ( a < b ) == ( c == d ) ) ...

In this case, the parentheses help readability and the program’s correctness—the com-
piler wouldn’t have interpreted the first code fragment this way. When in doubt, 
parenthesize.

Cross-Reference Many pro-
grammer-oriented text edi-
tors have commands that 
match parentheses, brack-
ets, and braces. For details 
on programming editors, see 
“Editing” in Section 30.2.

Use a simple counting technique to balance parentheses If you have trouble telling 
whether parentheses balance, here’s a simple counting trick that helps. Start by saying 
“zero.” Move along the expression, left to right. When you encounter an opening 
parenthesis, say “one.” Each time you encounter another opening parenthesis, 
increase the number you say. Each time you encounter a closing parenthesis, decrease 
the number you say. If, at the end of the expression, you’re back to 0, your parentheses 
are balanced.

Java Example of Balanced Parentheses
Read this. if ( ( ( a < b ) == ( c == d ) ) && !done ) ...

   | | |       |    |        | |          |

Say this. 0  1 2 3       2    3        2 1          0
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In this example, you ended with a 0, so the parentheses are balanced. In the next 
example, the parentheses aren’t balanced:

Java Example of Unbalanced Parentheses
Read this. if ( ( a < b ) == ( c == d ) ) && !done ) ...

   | |       |    |        | |          |

Say this. 0  1 2       1    2        1 0         -1

The 0 before you get to the last closing parenthesis is a tip-off that a parenthesis is 
missing before that point. You shouldn’t get a 0 until the last parenthesis of the 
expression.

Fully parenthesize logical expressions Parentheses are cheap, and they aid readabil-
ity. Fully parenthesizing logical expressions as a matter of habit is good practice. 

Knowing How Boolean Expressions Are Evaluated

Many languages have an implied form of control that comes into play in the evalua-
tion of boolean expressions. Compilers for some languages evaluate each term in a 
boolean expression before combining the terms and evaluating the whole expression. 
Compilers for other languages have “short-circuit” or “lazy” evaluation, evaluating 
only the pieces necessary. This is particularly significant when, depending on the 
results of the first test, you might not want the second test to be executed. For exam-
ple, suppose you’re checking the elements of an array and you have the following test:

Pseudocode Example of an Erroneous Test
while ( i < MAX_ELEMENTS and item[ i ] <> 0 ) ...

If this whole expression is evaluated, you’ll get an error on the last pass through the 
loop. The variable i equals maxElements, so the expression item[ i ] is equivalent to 
item[ maxElements ], which is an array-index error. You might argue that it doesn’t mat-
ter since you’re only looking at the value, not changing it. But it’s sloppy program-
ming practice and could confuse someone reading the code. In many environments it 
will also generate either a run-time error or a protection violation. 

In pseudocode, you could restructure the test so that the error doesn’t occur:

Pseudocode Example of a Correctly Restructured Test
while ( i < MAX_ELEMENTS ) 

   if ( item[ i ] <> 0 ) then

      ...

This is correct because item[ i ] isn’t evaluated unless i is less than maxElements.
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Many modern languages provide facilities that prevent this kind of error from hap-
pening in the first place. For example, C++ uses short-circuit evaluation: if the first 
operand of the and is false, the second isn’t evaluated because the whole expression 
would be false anyway. In other words, in C++ the only part of

if ( SomethingFalse && SomeCondition ) ...

that’s evaluated is SomethingFalse. Evaluation stops as soon as SomethingFalse is iden-
tified as false.

Evaluation is similarly short-circuited with the or operator. In C++ and Java, the only 
part of

if ( somethingTrue || someCondition ) ...

that is evaluated is somethingTrue. The evaluation stops as soon as somethingTrue is 
identified as true because the expression is always true if any part of it is true. As a 
result of this method of evaluation, the following statement is a fine, legal statement.

Java Example of a Test That Works Because of Short-Circuit Evaluation
if ( ( denominator != 0 ) && ( ( item / denominator ) > MIN_VALUE ) ) ...

If this full expression were evaluated when denominator equaled 0, the division in the 
second operand would produce a divide-by-zero error. But since the second part isn’t 
evaluated unless the first part is true, it is never evaluated when denominator equals 0, 
so no divide-by-zero error occurs.

On the other hand, because the && (and)  is evaluated left to right, the following log-
ically equivalent statement doesn’t work:

Java Example of a Test That Short-Circuit Evaluation Doesn’t Rescue
if ( ( ( item / denominator ) > MIN_VALUE ) && ( denominator != 0 ) ) ...

In this case, item / denominator is evaluated before denominator != 0. Consequently, 
this code commits the divide-by-zero error.

Java further complicates this picture by providing “logical” operators. Java’s logical & 
and | operators guarantee that all terms will be fully evaluated regardless of whether 
the truth or falsity of the expression could be determined without a full evaluation. In 
other words, in Java, this is safe:

Java Example of a Test That Works Because of Short-Circuit (Conditional) Evaluation
if ( ( denominator != 0 ) && ( ( item / denominator ) > MIN_VALUE ) ) ...
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But this is not safe: 

Java Example of a Test That Doesn’t Work Because Short-Circuit Evaluation Isn’t 
Guaranteed
if ( ( denominator != 0 ) & ( ( item / denominator ) > MIN_VALUE ) ) ...

Different languages use different kinds of evaluation, and language implementers tend 
to take liberties with expression evaluation, so check the manual for the specific ver-
sion of the language you’re using to find out what kind of evaluation your language 
uses. Better yet, since a reader of your code might not be as sharp as you are, use 
nested tests to clarify your intentions instead of depending on evaluation order and 
short-circuit evaluation.

Writing Numeric Expressions in Number-Line Order

Organize numeric tests so that they follow the points on a number line. In general, 
structure your numeric tests so that you have comparisons like these:

MIN_ELEMENTS <= i and i <= MAX_ELEMENTS

i < MIN_ELEMENTS or MAX_ELEMENTS < i

The idea is to order the elements left to right, from smallest to largest. In the first line, 
MIN_ELEMENTS and MAX_ELEMENTS are the two endpoints, so they go at the ends. 
The variable i is supposed to be between them, so it goes in the middle. In the second 
example, you’re testing whether i is outside the range, so i goes on the outside of the 
test at either end and MIN_ELEMENTS and MAX_ELEMENTS go on the inside. This 
approach maps easily to a visual image of the comparison in Figure 19-1:

Figure 19-1 Examples of using number-line ordering for boolean tests. 

If you’re testing i against MIN_ELEMENTS only, the position of i varies depending on 
where i is when the test is successful. If i is supposed to be smaller, you’ll have a test 
like this:

while ( i < MIN_ELEMENTS ) ...

But if i is supposed to be larger, you’ll have a test like this:

while ( MIN_ELEMENTS < i ) ...

KEY POINT

MIN_ELEMENTS <= i and i <= MAX_ELEMENTS

MIN_ELEMENTS Valid values for i MAX_ELEMENTS

i < MIN_ELEMENTS or MAX_ELEMENTS < i

MIN_ELEMENTS

Valid values for i

MAX_ELEMENTS
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This approach is clearer than tests like

( i > MIN_ELEMENTS ) and ( i < MAX_ELEMENTS )

which give the reader no help in visualizing what is being tested.

Guidelines for Comparisons to 0 

Programming languages use 0 for several purposes. It’s a numeric value. It’s a null ter-
minator in a string. It’s the value of a null pointer. It’s the value of the first item in an 
enumeration. It’s false in logical expressions. Because it’s used for so many purposes, 
you should write code that highlights the specific way 0 is used.

Compare logical variables implicitly As mentioned earlier, it’s appropriate to write 
logical expressions such as

while ( !done ) ...

This implicit comparison to 0 is appropriate because the comparison is in a logical 
expression.

Compare numbers to 0 Although it’s appropriate to compare logical expressions 
implicitly, you should compare numeric expressions explicitly. For numbers, write

while ( balance != 0 ) ...

rather than

while ( balance ) ...

Compare characters to the null terminator ('\0') explicitly in C Characters, like 
numbers, aren’t logical expressions. Thus, for characters, write

while ( *charPtr != '\0' ) ...

rather than

while ( *charPtr ) ...

This recommendation goes against the common C convention for handling character 
data (as in the second example here), but it reinforces the idea that the expression is 
working with character data rather than logical data. Some C conventions aren’t 
based on maximizing readability or maintainability, and this is an example of one. 
Fortunately, this whole issue is fading into the sunset as more code is written using 
C++ and STL strings. 

Compare pointers to NULL For pointers, write

while ( bufferPtr != NULL ) ...
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rather than

while ( bufferPtr ) ...

Like the recommendation for characters, this one goes against the established C con-
vention, but the gain in readability justifies it.

Common Problems with Boolean Expressions

Boolean expressions are subject to a few additional pitfalls that pertain to specific 
languages: 

In C-derived languages, put constants on the left side of comparisons C-derived lan-
guages pose some special problems with boolean expressions. If you have problems 
mistyping = instead of ==, consider the programming convention of putting constants 
and literals on the left sides of expressions, like this:

C++ Example of Putting a Constant on the Left Side of an Expression—An Error the 
Compiler Will Catch
if ( MIN_ELEMENTS = i ) ...

In this expression, the compiler should flag the single = as an error since assigning any-
thing to a constant is invalid. In contrast, in the following expression, the compiler will 
flag this only as a warning, and only if you have compiler warnings fully turned on:

C++ Example of Putting a Constant on the Right Side of an Expression—An Error the 
Compiler Might Not Catch
if ( i = MIN_ELEMENTS ) ...

This recommendation conflicts with the recommendation to use number-line order-
ing. My personal preference is to use number-line ordering and let the compiler warn 
me about unintended assignments. 

In C++, consider creating preprocessor macro substitutions for &&, ||, and == (but 
only as a last resort) If you have such a problem, it’s possible to create #define macros 
for boolean and and or, and use AND and OR instead of && and ||. Similarly, using = 
when you mean == is an easy mistake to make. If you get stung often by this one, you 
might create a macro like EQUALS for logical equals (==).

Many experienced programmers view this approach as aiding readability for the pro-
grammer who can’t keep details of the programming language straight but as degrad-
ing readability for the programmer who is more fluent in the language. In addition, 
most compilers will provide error warnings for usages of assignment and bitwise 
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operators that seem like errors. Turning on full compiler warnings is usually a better 
option than creating nonstandard macros. 

In Java, know the difference between a==b and a.equals(b) In Java, a==b tests for 
whether a and b refer to the same object, whereas a.equals(b) tests for whether the 
objects have the same logical value. In general, Java programs should use expressions 
like a.equals(b) rather than a==b. 

19.2 Compound Statements (Blocks)
A “compound statement” or “block” is a collection of statements that are treated as a 
single statement for purposes of controlling the flow of a program. Compound state-
ments are created by writing { and } around a group of statements in C++, C#, C, and 
Java. Sometimes they are implied by the keywords of a command, such as For and 
Next in Visual Basic. Guidelines for using compound statements effectively follow:

Cross-Reference Many pro-
grammer-oriented text edi-
tors have commands that 
match braces, brackets, and 
parentheses. For details, see 
“Editing” in Section 30.2.

Write pairs of braces together Fill in the middle after you write both the opening 
and closing parts of a block. People often complain about how hard it is to match pairs 
of braces or begin-and-end pairs, and that’s a completely unnecessary problem. If you 
follow this guideline, you will never have trouble matching such pairs again.

Write this first: 

for ( i = 0; i < maxLines; i++ )

Write this next: 

for ( i = 0; i < maxLines; i++ ) {   }

Write this last: 

for ( i = 0; i < maxLines; i++ ) {

   // whatever goes in here   ...   

}

This applies to all blocking structures, including if, for, and while in C++ and Java and 
the If-Then-Else, For-Next, and While-Wend combinations in Visual Basic.

Use braces to clarify conditionals Conditionals are hard enough to read without 
having to determine which statements go with the if test. Putting a single statement 
after an if test is sometimes appealing aesthetically, but under maintenance such state-
ments tend to become more complicated blocks, and single statements are error-
prone when that happens. 

Use blocks to clarify your intentions regardless of whether the code inside the block is 
1 line or 20. 
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19.3 Null Statements
In C++, it’s possible to have a null statement, a statement consisting entirely of a semi-
colon, as shown here:

C++ Example of a Traditional Null Statement
while ( recordArray.Read( index++ ) != recordArray.EmptyRecord() )

   ;

The while in C++ requires that a statement follow, but it can be a null statement. The 
semicolon on a line by itself is a null statement. Here are guidelines for handling null 
statements in C++:

Cross-Reference The best 
way to handle null state-
ments is probably to avoid 
them. For details, see “Avoid 
empty loops” in Section 16.2.

Call attention to null statements Null statements are uncommon, so make them 
obvious. One way is to give the semicolon of a null statement a line of its own. Indent 
it, just as you would any other statement. This is the approach shown in the previous 
example. Alternatively, you can use a set of empty braces to emphasize the null state-
ment. Here are two examples:

C++ Examples of a Null Statement That’s Emphasized
This is one way to show the 
null statement.

This is another way to show 
it.

while ( recordArray.Read( index++ ) ) != recordArray.EmptyRecord() ) {}

while ( recordArray.Read( index++ ) != recordArray.EmptyRecord() ) {

   ;

}

Create a preprocessor DoNothing() macro or inline function for null statements
The statement doesn’t do anything but make indisputably clear the fact that nothing 
is supposed to be done. This is similar to marking blank document pages with the 
statement “This page intentionally left blank.” The page isn’t really blank, but you 
know nothing else is supposed to be on it.

Here’s how you can make your own null statement in C++ by using #define. (You 
could also create it as an inline function, which would have the same effect.)

C++ Example of a Null Statement That’s Emphasized with DoNothing() 
#define DoNothing()

...

while ( recordArray.Read( index++ ) != recordArray.EmptyRecord() ) {

   DoNothing();

}

In addition to using DoNothing()in empty while and for loops, you can use it for unim-
portant choices of a switch statement; including DoNothing() makes it clear that the 
case was considered and nothing is supposed to be done. 
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If your language doesn’t support preprocessor macros or inline functions, you could 
create a DoNothing() routine that simply immediately returns control back to the call-
ing routine. 

Consider whether the code would be clearer with a non-null loop body Most of the 
code that results in loops with empty bodies relies on side effects in the loop-control 
code. In most cases, the code is more readable when the side effects are made explicit, 
as shown here:

C++ Examples of Rewriting Code More Clearly with a Non-Null Loop Body
RecordType record = recordArray.Read( index );

index++;

while ( record != recordArray.EmptyRecord() ) {

   record = recordArray.Read( index );

   index++;

}

This approach introduces an additional loop-control variable and requires more lines 
of code, but it emphasizes straightforward programming practice rather than clever 
use of side effects. Such emphasis is preferable in production code. 

19.4 Taming Dangerously Deep Nesting
Excessive indentation, or “nesting,” has been pilloried in computing literature for 25 
years and is still one of the chief culprits in confusing code. Studies by Noam Chom-
sky and Gerald Weinberg suggest that few people can understand more than three 
levels of nested ifs (Yourdon 1986a), and many researchers recommend avoiding nest-
ing to more than three or four levels (Myers 1976, Marca 1981, and Ledgard and Tauer 
1987a). Deep nesting works against what Chapter 5, “Design in Construction,” 
describes as Software’s Primary Technical Imperative: Managing Complexity. That is 
reason enough to avoid deep nesting. 

It’s not hard to avoid deep nesting. If you have deep nesting, you can redesign the tests 
performed in the if and else clauses or you can refactor code into simpler routines. The 
following subsections present several ways to reduce the nesting depth:

Simplify a nested if by retesting part of the condition If the nesting gets too deep, 
you can decrease the number of nesting levels by retesting some of the conditions. 
This code example has nesting that’s deep enough to warrant restructuring:

C++ Example of Bad, Deeply Nested Code
if ( inputStatus == InputStatus_Success ) {

   // lots of code

   ...

   if ( printerRoutine != NULL ) {

1
2
3

HARD DATA

KEY POINT

CODING 
HORROR
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Cross-Reference Retesting 
part of the condition to 
reduce complexity is similar 
to retesting a status variable. 
That technique is demon-
strated in “Error Processing 
and gotos” in Section 17.3.

      // lots of code

      ...

      if ( SetupPage() ) {

         // lots of code

         ...

         if ( AllocMem( &printData ) ) {

            // lots of code

            ...

         } 

      } 

   } 

} 

This example is contrived to show nesting levels. The // lots of code parts are intended 
to suggest that the routine has enough code to stretch across several screens or across 
the page boundary of a printed code listing. Here’s the code revised to use retesting 
rather than nesting:

C++ Example of Code Mercifully Unnested by Retesting
if ( inputStatus == InputStatus_Success ) {

   // lots of code

   ...

   if ( printerRoutine != NULL ) {

      // lots of code

      ...

   }

}

if ( ( inputStatus == InputStatus_Success ) && 

   ( printerRoutine != NULL ) && SetupPage() ) {

   // lots of code

   ...

   if ( AllocMem( &printData ) ) {

      // lots of code

      ...

   }

}

This is a particularly realistic example because it shows that you can’t reduce the nest-
ing level for free; you have to put up with a more complicated test in return for the 
reduced level of nesting. A reduction from four levels to two is a big improvement in 
readability, however, and is worth considering.

Simplify a nested if by using a break block An alternative to the approach just 
described is to define a section of code that will be executed as a block. If some con-
dition in the middle of the block fails, execution skips to the end of the block. 

C++ Example of Using a break Block
do { 

   // begin break block

   if ( inputStatus != InputStatus_Success ) {

      break; // break out of block

   }
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   // lots of code

   ...

   if ( printerRoutine == NULL ) {

      break; // break out of block

   }

   // lots of code

   ...

   if ( !SetupPage() ) {

      break; // break out of block

   }

   // lots of code

   ...

   if ( !AllocMem( &printData ) ) {

      break; // break out of block

   }

   // lots of code

   ...

} while (FALSE); // end break block

This technique is uncommon enough that it should be used only when your entire 
team is familiar with it and when it has been adopted by the team as an accepted cod-
ing practice. 

Convert a nested if to a set of if-then-elses If you think about a nested if test criti-
cally, you might discover that you can reorganize it so that it uses if-then-elses rather 
than nested ifs. Suppose you have a bushy decision tree like this:

Java Example of an Overgrown Decision Tree
if ( 10 < quantity ) {

   if ( 100 < quantity ) {

      if ( 1000 < quantity ) {

         discount = 0.10;

      }

      else {

         discount = 0.05;

      }

   }

   else {

      discount = 0.025;

   }

}

else {

   discount = 0.0;

}

This test is poorly organized in several ways, one of which is that the tests are redundant. 
When you test whether quantity is greater than 1000, you don’t also need to test whether 
it’s greater than 100 and greater than 10. Consequently, you can reorganize the code:
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Java Example of a Nested if Converted to a Set of if-then-elses
if ( 1000 < quantity ) {

   discount = 0.10;

}

else if ( 100 < quantity ) {

   discount = 0.05;

}

else if ( 10 < quantity ) {

   discount = 0.025;

}

else {

   discount = 0;

}

This solution is easier than some because the numbers increase neatly. Here’s how 
you could rework the nested if if the numbers weren’t so tidy:

Java Example of a Nested if Converted to a Set of if-then-elses When the 
Numbers Are “Messy”
if ( 1000 < quantity ) {

   discount = 0.10;

}

else if ( ( 100 < quantity ) && ( quantity <= 1000 ) ) {

   discount = 0.05;

}

else if ( ( 10 < quantity ) && ( quantity <= 100 ) ) {

   discount = 0.025;

}

else if ( quantity <= 10 ) {

   discount = 0;

}

The main difference between this code and the previous code is that the expressions 
in the else-if clauses don’t rely on previous tests. This code doesn’t need the else 
clauses to work, and the tests actually could be performed in any order. The code 
could consist of four ifs and no elses. The only reason the else version is preferable is 
that it avoids repeating tests unnecessarily.

Convert a nested if to a case statement You can recode some kinds of tests, particu-
larly those with integers, to use a case statement rather than chains of ifs and elses. You 
can’t use this technique in some languages, but it’s a powerful technique for those in 
which you can. Here’s how to recode the example in Visual Basic:

Visual Basic Example of Converting a Nested if to a case Statement
Select Case quantity

   Case 0 To 10

      discount = 0.0

   Case 11 To 100

      discount = 0.025
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   Case 101 To 1000

      discount = 0.05

   Case Else

      discount = 0.10

End Select

This example reads like a book. When you compare it to the two examples of multiple 
indentations a few pages earlier, it seems like a particularly clean solution.

Factor deeply nested code into its own routine If deep nesting occurs inside a loop, 
you can often improve the situation by putting the inside of the loop into its own rou-
tine. This is especially effective if the nesting is a result of both conditionals and itera-
tions. Leave the if-then-else branches in the main loop to show the decision branching, 
and then move the statements within the branches to their own routines. This code 
needs to be improved by such a modification:

C++ Example of Nested Code That Needs to Be Broken into Routines
while ( !TransactionsComplete() ) {

   // read transaction record

   transaction = ReadTransaction();

   // process transaction depending on type of transaction

   if ( transaction.Type == TransactionType_Deposit ) {

      // process a deposit

      if ( transaction.AccountType == AccountType_Checking ) {

         if ( transaction.AccountSubType == AccountSubType_Business )

            MakeBusinessCheckDep( transaction.AccountNum, transaction.Amount );

         else if ( transaction.AccountSubType == AccountSubType_Personal )

            MakePersonalCheckDep( transaction.AccountNum, transaction.Amount );

         else if ( transaction.AccountSubType == AccountSubType_School )

            MakeSchoolCheckDep( transaction.AccountNum, transaction.Amount );

      }

      else if ( transaction.AccountType == AccountType_Savings )

         MakeSavingsDep( transaction.AccountNum, transaction.Amount );

      else if ( transaction.AccountType == AccountType_DebitCard )

         MakeDebitCardDep( transaction.AccountNum, transaction.Amount );

      else if ( transaction.AccountType == AccountType_MoneyMarket )

         MakeMoneyMarketDep( transaction.AccountNum, transaction.Amount );

      else if ( transaction.AccountType == AccountType_Cd )

         MakeCDDep( transaction.AccountNum, transaction.Amount );

   }

   else if ( transaction.Type == TransactionType_Withdrawal ) {

      // process a withdrawal

      if ( transaction.AccountType == AccountType_Checking )

         MakeCheckingWithdrawal( transaction.AccountNum, transaction.Amount );

      else if ( transaction.AccountType == AccountType_Savings )

         MakeSavingsWithdrawal( transaction.AccountNum, transaction.Amount );

      else if ( transaction.AccountType == AccountType_DebitCard )

         MakeDebitCardWithdrawal( transaction.AccountNum, transaction.Amount );

   }
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Here’s the 
TransactionType_Transfer 
transaction type.

   else if ( transaction.Type == TransactionType_Transfer ) {

      MakeFundsTransfer( 

         transaction.SourceAccountType, 

         transaction.TargetAccountType, 

         transaction.AccountNum, 

         transaction.Amount 

      );

   }

   else {

      // process unknown kind of transaction

      LogTransactionError( "Unknown Transaction Type", transaction );

   }

}

Although it’s complicated, this isn’t the worst code you’ll ever see. It’s nested to only 
four levels, it’s commented, it’s logically indented, and the functional decomposition 
is adequate, especially for the TransactionType_Transfer transaction type. In spite of its 
adequacy, however, you can improve it by breaking the contents of the inner if tests 
into their own routines.

Cross-Reference This kind of 
functional decomposition is 
especially easy if you initially 
built the routine using the 
steps described in Chapter 9, 
“The Pseudocode Program-
ming Process.” Guidelines 
for functional decomposition 
are given in “Divide and 
Conquer” in Section 5.4.

C++ Example of Good, Nested Code After Decomposition into Routines
while ( !TransactionsComplete() ) {

   // read transaction record

   transaction = ReadTransaction();

   // process transaction depending on type of transaction

   if ( transaction.Type == TransactionType_Deposit ) {

      ProcessDeposit( 

         transaction.AccountType, 

         transaction.AccountSubType,

         transaction.AccountNum, 

         transaction.Amount 

      );

   }

   else if ( transaction.Type == TransactionType_Withdrawal ) {

      ProcessWithdrawal( 

         transaction.AccountType, 

         transaction.AccountNum,

         transaction.Amount 

      );

   }

   else if ( transaction.Type == TransactionType_Transfer ) {

      MakeFundsTransfer( 

         transaction.SourceAccountType, 

         transaction.TargetAccountType,

         transaction.AccountNum, 

         transaction.Amount 

      );

   }

   else {

      // process unknown transaction type

      LogTransactionError("Unknown Transaction Type", transaction );

   }

}
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The code in the new routines has simply been lifted out of the original routine and 
formed into new routines. (The new routines aren’t shown here.) The new code has 
several advantages. First, two-level nesting makes the structure simpler and easier to 
understand. Second, you can read, modify, and debug the shorter while loop on one 
screen—it doesn’t need to be broken across screen or printed-page boundaries. Third, 
putting the functionality of ProcessDeposit() and ProcessWithdrawal() into routines 
accrues all the other general advantages of modularization. Fourth, it’s now easy to 
see that the code could be broken into a case statement, which would make it even eas-
ier to read, as shown below:

C++ Example of Good, Nested Code After Decomposition and Use of a 
case Statement
while ( !TransactionsComplete() ) {

   // read transaction record

   transaction = ReadTransaction();

   // process transaction depending on type of transaction

   switch ( transaction.Type ) {

      case ( TransactionType_Deposit ):

         ProcessDeposit( 

            transaction.AccountType, 

            transaction.AccountSubType,

            transaction.AccountNum, 

            transaction.Amount 

            );

         break;

      case ( TransactionType_Withdrawal ):

         ProcessWithdrawal( 

            transaction.AccountType, 

            transaction.AccountNum,

            transaction.Amount 

            );

         break;

      case ( TransactionType_Transfer ):

         MakeFundsTransfer( 

            transaction.SourceAccountType,

            transaction.TargetAccountType,

            transaction.AccountNum, 

            transaction.Amount 

            );

         break;

      default:

         // process unknown transaction type

         LogTransactionError("Unknown Transaction Type", transaction );

         break;

   }

}
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Use a more object-oriented approach A straightforward way to simplify this particu-
lar code in an object-oriented environment is to create an abstract Transaction base 
class and subclasses for Deposit, Withdrawal, and Transfer. 

C++ Example of Good Code That Uses Polymorphism
TransactionData transactionData;

Transaction *transaction; 

while ( !TransactionsComplete() ) {

   // read transaction record

   transactionData = ReadTransaction();

   // create transaction object, depending on type of transaction

   switch ( transactionData.Type ) {

      case ( TransactionType_Deposit ):

         transaction = new Deposit( transactionData );

         break;

      case ( TransactionType_Withdrawal ):

         transaction = new Withdrawal( transactionData );

         break;

      case ( TransactionType_Transfer ):

         transaction = new Transfer( transactionData );

         break;

      default:

         // process unknown transaction type

         LogTransactionError("Unknown Transaction Type", transactionData );

         return;

   }

   transaction->Complete(); 

   delete transaction;

}

In a system of any size, the switch statement would be converted to use a factory 
method that could be reused anywhere an object of Transaction type needed to be cre-
ated. If this code were in such a system, this part of it would become even simpler:

Cross-Reference For more 
beneficial code improve-
ments like this, see Chapter 
24, "Refactoring."

C++ Example of Good Code That Uses Polymorphism and an Object Factory
TransactionData transactionData;

Transaction *transaction; 

while ( !TransactionsComplete() ) {

   // read transaction record and complete transaction

   transactionData = ReadTransaction();

   transaction = TransactionFactory.Create( transactionData );

   transaction->Complete(); 

   delete transaction;

}

For the record, the code in the TransactionFactory.Create() routine is a simple adapta-
tion of the code from the prior example’s switch statement: 
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C++ Example of Good Code for an Object Factory
Transaction *TransactionFactory::Create( 

   TransactionData transactionData 

   ) {

 

   // create transaction object, depending on type of transaction

   switch ( transactionData.Type ) {

      case ( TransactionType_Deposit ):

         return new Deposit( transactionData );

         break;

 

      case ( TransactionType_Withdrawal ):

         return new Withdrawal( transactionData );

         break;

 

      case ( TransactionType_Transfer ):

         return new Transfer( transactionData );

         break;

 

      default:

         // process unknown transaction type

         LogTransactionError( "Unknown Transaction Type", transactionData );

         return NULL; 

   }

}

Redesign deeply nested code Some experts argue that case statements virtually 
always indicate poorly factored code in object-oriented programming and are rarely, if 
ever, needed (Meyer 1997). This transformation from case statements that invoke rou-
tines to an object factory with polymorphic method calls is one such example.

More generally, complicated code is a sign that you don’t understand your program 
well enough to make it simple. Deep nesting is a warning sign that indicates a need to 
break out a routine or redesign the part of the code that’s complicated. It doesn’t 
mean you have to modify the routine, but you should have a good reason for not 
doing so if you don’t.

Summary of Techniques for Reducing Deep Nesting

The following is a list of the techniques you can use to reduce deep nesting, along with 
references to the sections in this book that discuss the techniques:

■ Retest part of the condition (this section)

■ Convert to if-then-elses (this section)

■ Convert to a case statement (this section)

■ Factor deeply nested code into its own routine (this section)

■ Use objects and polymorphic dispatch (this section) 
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■ Rewrite the code to use a status variable (in Section 17.3)

■ Use guard clauses to exit a routine and make the nominal path through the code 
clearer (in Section 17.1)

■ Use exceptions (Section 8.4)

■ Redesign deeply nested code entirely (this section)

19.5 A Programming Foundation: Structured Programming
The term “structured programming” originated in a landmark paper, “Structured Pro-
gramming,” presented by Edsger Dijkstra at the 1969 NATO conference on software 
engineering (Dijkstra 1969). By the time structured programming came and went, the 
term “structured” had been applied to every software-development activity, including 
structured analysis, structured design, and structured goofing off. The various struc-
tured methodologies weren’t joined by any common thread except that they were all 
created at a time when the word “structured” gave them extra cachet.

The core of structured programming is the simple idea that a program should use 
only one-in, one-out control constructs (also called single-entry, single-exit control 
constructs). A one-in, one-out control construct is a block of code that has only one 
place it can start and only one place it can end. It has no other entries or exits. Struc-
tured programming isn’t the same as structured, top-down design. It applies only at 
the detailed coding level.

A structured program progresses in an orderly, disciplined way, rather than jumping 
around unpredictably. You can read it from top to bottom, and it executes in much the 
same way. Less disciplined approaches result in source code that provides a less 
meaningful, less readable picture of how a program executes in the machine. Less 
readability means less understanding and, ultimately, lower program quality.

The central concepts of structured programming are still useful today and apply to 
considerations in using break, continue, throw, catch, return, and other topics. 

The Three Components of Structured Programming

The next few sections describe the three constructs that constitute the core of struc-
tured programming.

Sequence

Cross-Reference For details 
on using sequences, see 
Chapter 14, “Organizing 
Straight-Line Code.”

A sequence is a set of statements executed in order. Typical sequential statements 
include assignments and calls to routines. Here are two examples:
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Java Examples of Sequential Code
// a sequence of assignment statements

a = "1";

b = "2";

c = "3";

// a sequence of calls to routines

System.out.println( a );

System.out.println( b );

System.out.println( c );

Selection

Cross-Reference For details 
on using selections, see 
Chapter 15, “Using Condi-
tionals.”

A selection is a control structure that causes statements to be executed selectively. The 
if-then-else statement is a common example. Either the if-then clause or the else clause 
is executed, but not both. One of the clauses is “selected” for execution.

A case statement is another example of selection control. The switch statement in C++ 
and Java and the select statement in Visual Basic are all examples of case. In each 
instance, one of several cases is selected for execution. Conceptually, if statements and 
case statements are similar. If your language doesn’t support case statements, you can 
emulate them with if statements. Here are two examples of selection:

Java Examples of Selection
// selection in an if statement

if ( totalAmount > 0.0 ) {

   // do something

   ...

}

else {

   // do something else

   ...

}

// selection in a case statement

switch ( commandShortcutLetter ) {

   case 'a': 

      PrintAnnualReport();

      break;

   case 'q': 

      PrintQuarterlyReport();

      break;

   case 's': 

      PrintSummaryReport();

      break;

   default: 

      DisplayInternalError( "Internal Error 905: Call customer support." );

} 
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Iteration

Cross-Reference For details 
on using iterations, see 
Chapter 16, “Controlling 
Loops.”

An iteration is a control structure that causes a group of statements to be executed 
multiple times. An iteration is commonly referred to as a “loop.” Kinds of iterations 
include For-Next in Visual Basic and while and for in C++ and Java. This code fragment 
shows examples of iteration in Visual Basic:

Visual Basic Examples of Iteration
' example of iteration using a For loop

For index = first To last 

   DoSomething( index )

Next

' example of iteration using a while loop

index = first

While ( index <= last ) 

   DoSomething ( index )

   index = index + 1

Wend

' example of iteration using a loop-with-exit loop

index = first

Do 

   If ( index > last ) Then Exit Do

   DoSomething ( index )

   index = index + 1

Loop

The core thesis of structured programming is that any control flow whatsoever can be 
created from these three constructs of sequence, selection, and iteration (Böhm Jaco-
pini 1966). Programmers sometimes favor language structures that increase conve-
nience, but programming seems to have advanced largely by restricting what we are 
allowed to do with our programming languages. Prior to structured programming, 
use of gotos provided the ultimate in control-flow convenience, but code written that 
way turned out to be incomprehensible and unmaintainable. My belief is that use of 
any control structure other than the three standard structured programming con-
structs—that is, the use of break, continue, return, throw-catch, and so on—should be 
viewed with a critical eye. 

19.6 Control Structures and Complexity
One reason so much attention has been paid to control structures is that they are a big 
contributor to overall program complexity. Poor use of control structures increases 
complexity; good use decreases it.
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Make things as simple as 
possible—but no simpler. 
—Albert Einstein

One measure of “programming complexity” is the number of mental objects you have 
to keep in mind simultaneously in order to understand a program. This mental jug-
gling act is one of the most difficult aspects of programming and is the reason pro-
gramming requires more concentration than other activities. It’s the reason 
programmers get upset about “quick interruptions”—such interruptions are tanta-
mount to asking a juggler to keep three balls in the air and hold your groceries at the 
same time.

Intuitively, the complexity of a program would seem to largely determine the amount 
of effort required to understand it. Tom McCabe published an influential paper argu-
ing that a program’s complexity is defined by its control flow (1976). Other research-
ers have identified factors other than McCabe’s cyclomatic complexity metric (such as 
the number of variables used in a routine), but they agree that control flow is at least 
one of the largest contributors to complexity, if not the largest.

How Important Is Complexity?
Cross-Reference For more 
on complexity, see “Soft-
ware’s Primary Technical 
Imperative: Managing Com-
plexity” in Section 5.2.

Computer-science researchers have been aware of the importance of complexity for at 
least two decades. Many years ago, Edsger Dijkstra cautioned against the hazards of 
complexity: “The competent programmer is fully aware of the strictly limited size of 
his own skull; therefore, he approaches the programming task in full humility” (Dijk-
stra 1972). This does not imply that you should increase the capacity of your skull to 
deal with enormous complexity. It implies that you can never deal with enormous 
complexity and must take steps to reduce it wherever possible.

Control-flow complexity is important because it has been correlated with low reliabil-
ity and frequent errors (McCabe 1976, Shen et al. 1985). William T. Ward reported a 
significant gain in software reliability resulting from using McCabe’s complexity met-
ric at Hewlett-Packard (1989b). McCabe’s metric was used on one 77,000-line pro-
gram to identify problem areas. The program had a post-release defect rate of 0.31 
defects per thousand lines of code. A 125,000-line program had a post-release defect 
rate of 0.02 defects per thousand lines of code. Ward reported that because of their 
lower complexity, both programs had substantially fewer defects than other programs 
at Hewlett-Packard. My own company, Construx Software, has experienced similar 
results using complexity measures to identify problematic routines in the 2000s.  

General Guidelines for Reducing Complexity

You can better deal with complexity in one of two ways. First, you can improve your 
own mental juggling abilities by doing mental exercises. But programming itself is 
usually enough exercise, and people seem to have trouble juggling more than about 
five to nine mental entities (Miller 1956). The potential for improvement is small. Sec-
ond, you can decrease the complexity of your programs and the amount of concentra-
tion required to understand them.

KEY POINT
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How to Measure Complexity

Further Reading The 
approach described here is 
based on Tom McCabe’s 
influential paper “A Com-
plexity Measure” (1976).

You probably have an intuitive feel for what makes a routine more or less complex. 
Researchers have tried to formalize their intuitive feelings and have come up with several 
ways of measuring complexity. Perhaps the most influential of the numeric techniques is 
Tom McCabe’s, in which complexity is measured by counting the number of “decision 
points” in a routine. Table 19-2 describes a method for counting decision points.

Here’s an example:

if ( ( (status = Success) and done ) or

     ( not done and ( numLines >= maxLines ) ) ) then ...

In this fragment, you count 1 to start, 2 for the if, 3 for the and, 4 for the or, and 5 for 
the and. Thus, this fragment contains a total of five decision points.

What to Do with Your Complexity Measurement

After you have counted the decision points, you can use the number to analyze your 
routine’s complexity:

Moving part of a routine into another routine doesn’t reduce the overall complexity of 
the program; it just moves the decision points around. But it reduces the amount of 
complexity you have to deal with at any one time. Since the important goal is to min-
imize the number of items you have to juggle mentally, reducing the complexity of a 
given routine is worthwhile.

The maximum of 10 decision points isn’t an absolute limit. Use the number of deci-
sion points as a warning flag that indicates a routine might need to be redesigned. 
Don’t use it as an inflexible rule. A case statement with many cases could be more than 
10 elements long, and, depending on the purpose of the case statement, it might be 
foolish to break it up. 

Table 19-2 Techniques for Counting the Decision Points in a Routine

1. Start with 1 for the straight path through the routine.

2. Add 1 for each of the following keywords, or their equivalents: if  while  repeat  for  
and  or

3. Add 1 for each case in a case statement.

0–5 The routine is probably fine.

6–10 Start to think about ways to simplify the routine.

10+ Break part of the routine into a second routine and call it from the first 
routine.
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Other Kinds of Complexity
Further Reading For an 
excellent discussion of com-
plexity metrics, see Software 
Engineering Metrics and 
Models (Conte, Dunsmore, 
and Shen 1986).

The McCabe measure of complexity isn’t the only sound measure, but it’s the measure 
most discussed in computing literature and it’s especially helpful when you’re think-
ing about control flow. Other measures include the amount of data used, the number 
of nesting levels in control constructs, the number of lines of code, the number of 
lines between successive references to variables (“span”),  the number of lines that a 
variable is in use (“live time”), and the amount of input and output. Some researchers 
have developed composite metrics based on combinations of these simpler ones.

cc2e.com/1985 CHECKLIST: Control-Structure Issues
❑ Do expressions use true and false rather than 1 and 0?

❑ Are boolean values compared to true and false implicitly?

❑ Are numeric values compared to their test values explicitly?

❑ Have expressions been simplified by the addition of new boolean vari-
ables and the use of boolean functions and decision tables?

❑ Are boolean expressions stated positively?

❑ Do pairs of braces balance?

❑ Are braces used everywhere they’re needed for clarity?

❑ Are logical expressions fully parenthesized? 

❑ Have tests been written in number-line order? 

❑ Do Java tests uses a.equals(b) style instead of a == b when appropriate? 

❑ Are null statements obvious?

❑ Have nested statements been simplified by retesting part of the condi-
tional, converting to if-then-else or case statements, moving nested code 
into its own routine, converting to a more object-oriented design, or have 
they been improved in some other way?

❑ If a routine has a decision count of more than 10, is there a good reason for 
not redesigning it?
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Key Points
■ Making boolean expressions simple and readable contributes substantially to 

the quality of your code.

■ Deep nesting makes a routine hard to understand. Fortunately, you can avoid it 
relatively easily.

■ Structured programming is a simple idea that is still relevant: you can build any 
program out of a combination of sequences, selections, and iterations. 

■ Minimizing complexity is a key to writing high-quality code.
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Chapter 20

The Software-Quality 
Landscape

cc2e.com/2036 Contents

■ 20.1 Characteristics of Software Quality: page 463

■ 20.2 Techniques for Improving Software Quality: page 466

■ 20.3 Relative Effectiveness of Quality Techniques: page 469

■ 20.4 When to Do Quality Assurance: page 473

■ 20.5 The General Principle of Software Quality: page 474

Related Topics

■ Collaborative construction: Chapter 21

■ Developer testing: Chapter 22

■ Debugging: Chapter 23

■ Prerequisites to construction: Chapters 3 and 4

■ Do prerequisites apply to modern software projects?: in Section 3.1

This chapter surveys software-quality techniques from a construction point of view. 
The entire book is about improving software quality, of course, but this chapter 
focuses on quality and quality assurance per se. It focuses more on big-picture issues 
than it does on hands-on techniques. If you’re looking for practical advice about col-
laborative development, testing, and debugging, move on to the next three chapters.

20.1 Characteristics of Software Quality
Software has both external and internal quality characteristics. External characteristics 
are characteristics that a user of the software product is aware of, including the following:

■ Correctness The degree to which a system is free from faults in its specifica-
tion, design, and implementation.

■ Usability The ease with which users can learn and use a system.
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■ Efficiency Minimal use of system resources, including memory and execution 
time.

■ Reliability The ability of a system to perform its required functions under 
stated conditions whenever required—having a long mean time between failures.

■ Integrity The degree to which a system prevents unauthorized or improper 
access to its programs and its data. The idea of integrity includes restricting 
unauthorized user accesses as well as ensuring that data is accessed properly—
that is, that tables with parallel data are modified in parallel, that date fields con-
tain only valid dates, and so on.

■ Adaptability The extent to which a system can be used, without modification, 
in applications or environments other than those for which it was specifically 
designed.

■ Accuracy The degree to which a system, as built, is free from error, especially 
with respect to quantitative outputs. Accuracy differs from correctness; it is a 
determination of how well a system does the job it’s built for rather than 
whether it was built correctly.

■ Robustness The degree to which a system continues to function in the pres-
ence of invalid inputs or stressful environmental conditions.

Some of these characteristics overlap, but all have different shades of meaning that are 
applicable more in some cases, less in others.

External characteristics of quality are the only kind of software characteristics that 
users care about. Users care about whether the software is easy to use, not about 
whether it’s easy for you to modify. They care about whether the software works cor-
rectly, not about whether the code is readable or well structured.

Programmers care about the internal characteristics of the software as well as the 
external ones. This book is code-centered, so it focuses on the internal quality charac-
teristics, including

■ Maintainability The ease with which you can modify a software system to 
change or add capabilities, improve performance, or correct defects.

■ Flexibility The extent to which you can modify a system for uses or environ-
ments other than those for which it was specifically designed.

■ Portability The ease with which you can modify a system to operate in an 
environment different from that for which it was specifically designed.

■ Reusability The extent to which and the ease with which you can use parts of 
a system in other systems.

■ Readability The ease with which you can read and understand the source 
code of a system, especially at the detailed-statement level.
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■ Testability The degree to which you can unit-test and system-test a system; 
the degree to which you can verify that the system meets its requirements.

■ Understandability The ease with which you can comprehend a system at both 
the system-organizational and detailed-statement levels. Understandability has to 
do with the coherence of the system at a more general level than readability does.

As in the list of external quality characteristics, some of these internal characteristics 
overlap, but they too each have different shades of meaning that are valuable.

The internal aspects of system quality are the main subject of this book and aren’t dis-
cussed further in this chapter.

The difference between internal and external characteristics isn’t completely clear-cut 
because at some level internal characteristics affect external ones. Software that isn’t 
internally understandable or maintainable impairs your ability to correct defects, 
which in turn affects the external characteristics of correctness and reliability. Soft-
ware that isn’t flexible can’t be enhanced in response to user requests, which in turn 
affects the external characteristic of usability. The point is that some quality character-
istics are emphasized to make life easier for the user and some are emphasized to 
make life easier for the programmer. Try to know which is which and when and how 
these characteristics interact.

The attempt to maximize certain characteristics inevitably conflicts with the attempt to 
maximize others. Finding an optimal solution from a set of competing objectives is one 
activity that makes software development a true engineering discipline. Figure 20-1 
shows the way in which focusing on some external quality characteristics affects others. 
The same kinds of relationships can be found among the internal characteristics of soft-
ware quality.

The most interesting aspect of this chart is that focusing on a specific characteristic 
doesn’t always mean a tradeoff with another characteristic. Sometimes one hurts 
another, sometimes one helps another, and sometimes one neither hurts nor helps 
another. For example, correctness is the characteristic of functioning exactly to speci-
fication. Robustness is the ability to continue functioning even under unanticipated 
conditions. Focusing on correctness hurts robustness and vice versa. In contrast, 
focusing on adaptability helps robustness and vice versa.

The chart shows only typical relationships among the quality characteristics. On any 
given project, two characteristics might have a relationship that’s different from their 
typical relationship. It’s useful to think about your specific quality goals and whether 
each pair of goals is mutually beneficial or antagonistic.
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Figure 20-1 Focusing on one external characteristic of software quality can affect other 
characteristics positively, adversely, or not at all.

20.2 Techniques for Improving Software Quality
Software quality assurance is a planned and systematic program of activities designed 
to ensure that a system has the desired characteristics. Although it might seem that 
the best way to develop a high-quality product would be to focus on the product itself, 
in software quality assurance you also need to focus on the software-development pro-
cess. Some of the elements of a software-quality program are described in the follow-
ing subsections:

Software-quality objectives One powerful technique for improving software quality 
is setting explicit quality objectives from among the external and internal characteristics 
described in the previous section. Without explicit goals, programmers might work to 
maximize characteristics different from the ones you expect them to maximize. The 
power of setting explicit goals is discussed in more detail later in this section.

Explicit quality-assurance activity One common problem in assuring quality is that 
quality is perceived as a secondary goal. Indeed, in some organizations, quick and 
dirty programming is the rule rather than the exception. Programmers like Global 
Gary, who litter their code with defects and “complete” their programs quickly, are 
rewarded more than programmers like High-Quality Henry, who write excellent pro-
grams and make sure that they are usable before releasing them. In such organiza-
tions, it shouldn’t be surprising that programmers don’t make quality their first 
priority. The organization must show programmers that quality is a priority. Making 
the quality-assurance activity explicit makes the priority clear, and programmers will 
respond accordingly.
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Cross-Reference For details 
on testing, see Chapter 22, 
“Developer Testing.”

Testing strategy Execution testing can provide a detailed assessment of a product’s 
reliability. Part of quality assurance is developing a test strategy in conjunction with 
the product requirements, architecture, and design. Developers on many projects rely 
on testing as the primary method of both quality assessment and quality improve-
ment. The rest of this chapter demonstrates in more detail that this is too heavy a bur-
den for testing to bear by itself. 

Cross-Reference For a dis-
cussion of one class of soft-
ware-engineering guidelines 
appropriate for construction, 
see Section 4.2, “Program-
ming Conventions.”

Software-engineering guidelines Guidelines should control the technical character 
of the software as it’s developed. Such guidelines apply to all software development 
activities, including problem definition, requirements development, architecture, con-
struction, and system testing. The guidelines in this book are, in one sense, a set of 
software-engineering guidelines for construction.

Informal technical reviews Many software developers review their work before turn-
ing it over for formal review. Informal reviews include desk-checking the design or the 
code or walking through the code with a few peers.

Cross-Reference Reviews 
and inspections are dis-
cussed in Chapter 21, “Col-
laborative Construction.”

Formal technical reviews One part of managing a software-engineering process is 
catching problems at the “lowest-value” stage—that is, at the time at which the least 
investment has been made and at which problems cost the least to correct. To achieve 
such a goal, developers use “quality gates,” periodic tests or reviews that determine 
whether the quality of the product at one stage is sufficient to support moving on to 
the next. Quality gates are usually used to transition between requirements develop-
ment and architecture, architecture and construction, and construction and system 
testing. The “gate” can be an inspection, a peer review, a customer review, or an audit.

Cross-Reference For more 
details on how development 
approaches vary depending 
on the kind of project, see 
Section 3.2, “Determine the 
Kind of Software You’re 
Working On.”

A “gate” does not mean that architecture or requirements need to be 100 percent com-
plete or frozen; it does mean that you will use the gate to determine whether the 
requirements or architecture are good enough to support downstream development. 
“Good enough” might mean that you’ve sketched out the most critical 20 percent of 
the requirements or architecture, or it might mean you’ve specified 95 percent in 
excruciating detail—which end of the scale you should aim for depends on the nature 
of your specific project. 

External audits An external audit is a specific kind of technical review used to deter-
mine the status of a project or the quality of a product being developed. An audit team 
is brought in from outside the organization and reports its findings to whoever com-
missioned the audit, usually management.

Development Process
Further Reading For a dis-
cussion of software develop-
ment as a process, see 
Professional Software Devel-
opment (McConnell 1994).

Each of the elements mentioned so far has something to do explicitly with assuring 
software quality and implicitly with the process of software development. Develop-
ment efforts that include quality-assurance activities produce better software than 
those that do not. Other processes that aren’t explicitly quality-assurance activities 
also affect software quality.
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Cross-Reference For details 
on change control, see 
Section 28.2, “Configuration 
Management.”

Change-control procedures One big obstacle to achieving software quality is uncon-
trolled changes. Uncontrolled requirements changes can result in disruption to 
design and coding. Uncontrolled changes in design can result in code that doesn’t 
agree with its requirements, inconsistencies in the code, or more time spent modify-
ing code to meet the changing design than spent moving the project forward. Uncon-
trolled changes in the code itself can result in internal inconsistencies and uncertain-
ties about which code has been fully reviewed and tested and which hasn’t. The 
natural effect of change is to destabilize and degrade quality, so handling changes 
effectively is a key to achieving high quality levels.

Measurement of results Unless results of a quality-assurance plan are measured, 
you’ll have no way to know whether the plan is working. Measurement tells you 
whether your plan is a success or a failure and also allows you to vary your process in 
a controlled way to see how it can be improved. You can also measure quality 
attributes themselves—correctness, usability, efficiency, and so on—and it’s useful to 
do so. For details on measuring quality attributes, see Chapter 9 of Principles of Soft-
ware Engineering (Gilb 1988). 

Prototyping Prototyping is the development of realistic models of a system’s key 
functions. A developer can prototype parts of a user interface to determine usability, 
critical calculations to determine execution time, or typical data sets to determine 
memory requirements. A survey of 16 published and 8 unpublished case studies com-
pared prototyping to traditional, specification-development methods. The compari-
son revealed that prototyping can lead to better designs, better matches with user 
needs, and improved maintainability (Gordon and Bieman 1991).

Setting Objectives

Explicitly setting quality objectives is a simple, obvious step in achieving quality soft-
ware, but it’s easy to overlook. You might wonder whether, if you set explicit quality 
objectives, programmers will actually work to achieve them? The answer is, yes, they 
will, if they know what the objectives are and that the objectives are reasonable. 
Programmers can’t respond to a set of objectives that change daily or that are impos-
sible to meet.

Gerald Weinberg and Edward Schulman conducted a fascinating experiment to inves-
tigate the effect on programmer performance of setting quality objectives (1974). They 
had five teams of programmers work on five versions of the same program. The same 
five quality objectives were given to each of the five teams, and each team was told to 
optimize a different objective. One team was told to minimize the memory required, 
another was told to produce the clearest possible output, another was told to build 
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the most readable code, another was told to use the minimum number of statements, 
and the last group was told to complete the program in the least amount of time pos-
sible. Table 20-1 shows how each team was ranked according to each objective.

The results of this study were remarkable. Four of the five teams finished first in the 
objective they were told to optimize. The other team finished second in its objective. 
None of the teams did consistently well in all objectives.

The surprising implication is that people actually do what you ask them to do. Pro-
grammers have high achievement motivation: They will work to the objectives speci-
fied, but they must be told what the objectives are. The second implication is that, as 
expected, objectives conflict and it’s generally not possible to do well on all of them.

20.3 Relative Effectiveness of Quality Techniques
The various quality-assurance practices don’t all have the same effectiveness. Many 
techniques have been studied, and their effectiveness at detecting and removing 
defects is known. This and several other aspects of the “effectiveness” of the quality-
assurance practices are discussed in this section.

Percentage of Defects Detected
If builders built buildings the 
way programmers wrote 
programs, then the first 
woodpecker that came along 
would destroy civilization.
—Gerald Weinberg

Some practices are better at detecting defects than others, and different methods find 
different kinds of defects. One way to evaluate defect-detection methods is to deter-
mine the percentage of defects they detect out of the total defects that exist at that 

Table 20-1 Team Ranking on Each Objective

Objective Team Was Told 
to Optimize

Minimum 
memory 
use

Most 
readable 
output

Most 
readable 
code

Least 
code

Minimum 
programming 
time

Minimum memory 1 4 4 2 5

Output readability 5 1 1 5 3

Program readability 3 2 2 3 4

Least code 2 5 3 1 3

Minimum programming 
time

4 3 5 4 1

Source: Adapted from “Goals and Performance in Computer Programming” (Weinberg and Schulman
1974).
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point in the project. Table 20-2 shows the percentages of defects detected by several 
common defect-detection techniques.

The most interesting facts that this data reveals is that the modal rates don’t rise above 
75 percent for any single technique and that the techniques average about 40 percent. 
Moreover, for the most common kinds of defect detection—unit testing and integra-
tion testing—the modal rates are only 30–35 percent. The typical organization uses a 
test-heavy defect-removal approach and achieves only about 85 percent defect-
removal efficiency. Leading organizations use a wider variety of techniques and 
achieve defect-removal efficiencies of 95 percent or higher (Jones 2000). 

The strong implication is that if project developers are striving for a higher defect-
detection rate, they need to use a combination of techniques. A classic study by Glen-
ford Myers confirmed this implication (1978b). Myers studied a group of program-
mers with a minimum of 7 and an average of 11 years of professional experience. 
Using a program with 15 known errors, he had each programmer look for errors by 
using one of these techniques:

■ Execution testing against the specification

■ Execution testing against the specification with the source code

■ Walk-through/inspection using the specification and the source code

Table 20-2 Defect-Detection Rates

Removal Step Lowest Rate Modal Rate Highest Rate

Informal design reviews 25% 35% 40%

Formal design inspections 45% 55% 65%

Informal code reviews 20% 25% 35%

Formal code inspections 45% 60% 70%

Modeling or prototyping 35% 65% 80%

Personal desk-checking of code 20% 40% 60%

Unit test 15% 30% 50%

New function (component) test 20% 30% 35%

Integration test 25% 35% 40%

Regression test 15% 25% 30%

System test 25% 40% 55%

Low-volume beta test (<10 sites) 25% 35% 40%

High-volume beta test (>1,000 sites) 60% 75% 85%

Source: Adapted from Programming Productivity (Jones 1986a), “Software Defect-Removal Effi-
ciency” (Jones 1996), and “What We Have Learned About Fighting Defects” (Shull et al. 2002).
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Myers found a huge variation in the number of defects detected in the program, rang-
ing from 1.0 to 9.0 defects found. The average number found was 5.1, or about a third 
of those known.

When used individually, no method had a statistically significant advantage over any 
of the others. The variety of errors people found was so great, however, that any com-
bination of two methods—including having two independent groups using the same 
method—increased the total number of defects found by a factor of almost 2. Studies 
at NASA’s Software Engineering Laboratory, Boeing, and other companies have 
reported that different people tend to find different defects. Only about 20 percent 
of the errors found by inspections were found by more than one inspector 
(Kouchakdjian, Green, and Basili 1989; Tripp, Struck, and Pflug 1991; Schneider, 
Martin, and Tsai 1992).

Glenford Myers points out that human processes (inspections and walk-throughs, for 
instance) tend to be better than computer-based testing at finding certain kinds of 
errors and that the opposite is true for other kinds of errors (1979). This result was con-
firmed in a later study, which found that code reading detected more interface defects 
and functional testing detected more control defects (Basili, Selby, and Hutchens 1986). 
Test guru Boris Beizer reports that informal test approaches typically achieve only 
50–60 percent test coverage unless you’re using a coverage analyzer (Johnson 1994).

The upshot is that defect-detection methods work better in combination than they do 
singly. Jones made the same point when he observed that cumulative defect-detection 
efficiency is significantly higher than that of any individual technique. The outlook for 
the effectiveness of testing used by itself is bleak. Jones points out that a combination 
of unit testing, functional testing, and system testing often results in a cumulative 
defect detection of less than 60 percent, which is usually inadequate for production 
software.

This data can also be used to understand why programmers who begin working with a 
disciplined defect-removal technique such as Extreme Programming experience higher 
defect-removal levels than they have experienced previously. As Table 20-3 illustrates, the 
set of defect-removal practices used in Extreme Programming would be expected to 
achieve about 90 percent defect-removal efficiency in the average case and 97 percent in 
the best case, which is far better than the industry average of 85 percent defect removal. 
Although some people have linked this effectiveness to synergy among Extreme Pro-
gramming’s practices, it is really just a predictable outcome of using these specific defect-
removal practices. Other combinations of practices can work equally well or better, and 
the determination of which specific defect-removal practices to use to achieve a desired 
quality level is one part of effective project planning. 
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Cost of Finding Defects

Some defect-detection practices cost more than others. The most economical practices 
result in the least cost per defect found, all other things being equal. The qualification 
that all other things must be equal is important because per-defect cost is influenced by 
the total number of defects found, the stage at which each defect is found, and other fac-
tors besides the economics of a specific defect-detection technique.

Most  studies have found that inspections are cheaper than testing. A study at the Soft-
ware Engineering Laboratory found that code reading detected about 80 percent 
more faults per hour than testing (Basili and Selby 1987). Another organization found 
that it cost six times as much to detect design defects by using testing as by using 
inspections (Ackerman, Buchwald, and Lewski 1989). A later study at IBM found that 
only 3.5 staff hours were needed to find each error when using code inspections, 
whereas 15–25 hours were needed to find each error through testing (Kaplan 1995).

Cost of Fixing Defects

The cost of finding defects is only one part of the cost equation. The other is the cost 
of fixing defects. It might seem at first glance that how the defect is found wouldn’t 
matter—it would always cost the same amount to fix.

Cross-Reference For details 
on the fact that defects 
become more expensive the 
longer they stay in a system, 
see “Appeal to Data” in Sec-
tion 3.1. For an up-close look 
at errors themselves, see 
Section 22.4, “Typical Errors.”

That isn’t true because the longer a defect remains in the system, the more expensive it 
becomes to remove. A detection technique that finds the error earlier therefore results in 
a lower cost of fixing it. Even more important, some techniques, such as inspections, 
detect the symptoms and causes of defects in one step; others, such as testing, find 
symptoms but require additional work to diagnose and fix the root cause. The result is 
that one-step techniques are substantially cheaper overall than two-step ones.

Table 20-3 Extreme Programming’s Estimated Defect-Detection Rate 

Removal Step Lowest Rate Modal Rate Highest Rate

Informal design reviews 
(pair programming)

25% 35% 40%

Informal code reviews 
(pair programming)

20% 25% 35%

Personal desk-checking of code 20% 40% 60%

Unit test 15% 30% 50%

Integration test 25% 35% 40%

Regression test 15% 25% 30%

Expected cumulative defect-removal 
efficiency

~74% ~90% ~97%
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Microsoft’s applications division has found that it takes three hours to find and fix a 
defect by using code inspection, a one-step technique, and 12 hours to find and fix a 
defect by using testing, a two-step technique (Moore 1992). Collofello and Woodfield 
reported on a 700,000-line program built by over 400 developers (1989). They found 
that code reviews were several times as cost-effective as testing—a 1.38 return on 
investment vs. 0.17.

The bottom line is that an effective software-quality program must include a combina-
tion of techniques that apply to all stages of development. Here’s a recommended 
combination for achieving higher-than-average quality:

■ Formal inspections of all requirements, all architecture, and designs for critical 
parts of a system 

■ Modeling or prototyping 

■ Code reading or inspections

■ Execution testing

20.4 When to Do Quality Assurance
Cross-Reference Quality 
assurance of upstream activ-
ities—requirements and 
architecture, for instance—
is outside the scope of this 
book. The “Additional 
Resources” section at the 
end of the chapter describes 
books you can turn to for 
more information about 
them.

As Chapter 3 (“Measure Twice, Cut Once: Upstream Prerequisites”) noted, the earlier 
an error is inserted into software, the more entangled it becomes in other parts of the 
software and the more expensive it becomes to remove. A fault in requirements can 
produce one or more corresponding faults in design, which can produce many corre-
sponding faults in code. A requirements error can result in extra architecture or in bad 
architectural decisions. The extra architecture results in extra code, test cases, and 
documentation. Or a requirements error can result in architecture, code, and test 
cases that are thrown away. Just as it’s a good idea to work out the defects in the blue-
prints for a house before pouring the foundation in concrete, it’s a good idea to catch 
requirements and architecture errors before they affect later activities.

In addition, errors in requirements or architecture tend to be more sweeping than 
construction errors. A single architectural error can affect several classes and dozens 
of routines, whereas a single construction error is unlikely to affect more than one rou-
tine or class. For this reason, too, it’s cost-effective to catch errors as early as you can.

Defects creep into software at all stages. Consequently, you should emphasize quality-
assurance work in the early stages and throughout the rest of the project. It should be 
planned into the project as work begins; it should be part of the technical fiber of the 
project as work continues; and it should punctuate the end of the project, verifying 
the quality of the product as work ends.
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20.5 The General Principle of Software Quality
There’s no such thing as a free lunch, and even if there were, there’s no guarantee that 
it would be any good. Software development is a far cry from haute cuisine, however, 
and software quality is unusual in a significant way. The General Principle of Software 
Quality is that improving quality reduces development costs.

Understanding this principle depends on understanding a key observation: the best 
way to improve productivity and quality is to reduce the time spent reworking code, 
whether the rework arises from changes in requirements, changes in design, or debug-
ging. The industry-average productivity for a software product is about 10 to 50 of 
lines of delivered code per person per day (including all noncoding overhead). It 
takes only a matter of minutes to type in 10 to 50 lines of code, so how is the rest of the 
day spent?

Cross-Reference For details 
on the difference between 
writing an individual program 
and writing a software prod-
uct, see “Programs, Products, 
Systems, and System Prod-
ucts” in Section 27.5.

Part of the reason for these seemingly low productivity figures is that industry average 
numbers like these factor nonprogrammer time into the lines-of-code-per-day figure. 
Tester time, project manager time, and administrative support time are all included. 
Noncoding activities, such as requirements development and architecture work, are 
also typically factored into those lines-of-code-per-day figures. But none of that is what 
takes up so much time. 

The single biggest activity on most projects is debugging and correcting code that 
doesn’t work properly. Debugging and associated refactoring and other rework con-
sume about 50 percent of the time on a traditional, naive software-development cycle. 
(See Section 3.1, “Importance of Prerequisites,” for more details.) Reducing debug-
ging by preventing errors improves productivity. Therefore, the most obvious method 
of shortening a development schedule is to improve the quality of the product and 
decrease the amount of time spent debugging and reworking the software.

This analysis is confirmed by field data. In a review of 50 development projects involv-
ing over 400 work-years of effort and almost 3 million lines of code, a study at NASA’s 
Software Engineering Laboratory found that increased quality assurance was associated 
with decreased error rate but did not increase overall development cost (Card 1987).

A study at IBM produced similar findings:

Software projects with the lowest levels of defects had the shortest development 
schedules and the highest development productivity.... software defect removal is 
actually the most expensive and time-consuming form of work for software 
(Jones 2000).

KEY POINT
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The same effect holds true at the small end of the scale. In a 1985 study, 166 profes-
sional programmers wrote programs from the same specification. The resulting pro-
grams averaged 220 lines of code and a little under five hours to write. The fascinating 
result was that programmers who took the median time to complete their programs 
produced programs with the greatest number of errors. The programmers who took 
more or less than the median time produced programs with significantly fewer errors 
(DeMarco and Lister 1985). Figure 20-2 graphs the results.

Figure 20-2 Neither the fastest nor the slowest development approach produces the soft-
ware with the most defects.

The two slowest groups took about five times as long to achieve roughly the same 
defect rate as the fastest group. It’s not necessarily the case that writing software with-
out defects takes more time than writing software with defects. As the graph shows, it 
can take less.

Admittedly, on certain kinds of projects, quality assurance costs money. If you’re writ-
ing code for the space shuttle or for a medical life-support system, the degree of reli-
ability required makes the project more expensive.

Compared to the traditional code-test-debug cycle, an enlightened software-quality 
program saves money. It redistributes resources away from debugging and refactoring 
into upstream quality-assurance activities. Upstream activities have more leverage on 
product quality than downstream activities, so the time you invest upstream saves 
more time downstream. The net effect is fewer defects, shorter development time, and 
lower costs. You’ll see several more examples of the General Principle of Software 
Quality in the next three chapters.
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cc2e.com/2043 CHECKLIST: A Quality-Assurance Plan
❑ Have you identified specific quality characteristics that are important to 

your project?

❑ Have you made others aware of the project’s quality objectives?

❑ Have you differentiated between external and internal quality characteristics?

❑ Have you thought about the ways in which some characteristics might 
compete with or complement others?

❑ Does your project call for the use of several different error-detection tech-
niques suited to finding several different kinds of errors?

❑ Does your project include a plan to take steps to assure software quality 
during each stage of software development?

❑ Is the quality measured in some way so that you can tell whether it’s 
improving or degrading?

❑ Does management understand that quality assurance incurs additional 
costs up front in order to save costs later?

Additional Resources
cc2e.com/2050 It’s not hard to list books in this section because virtually any book on effective software 

methodologies describes techniques that result in improved quality and productivity. 
The difficulty is finding books that deal with software quality per se. Here are two:

Ginac, Frank P. Customer Oriented Software Quality Assurance. Englewood Cliffs, NJ: Pren-
tice Hall, 1998. This is a very short book that describes quality attributes, quality metrics, 
QA programs, and the role of testing in quality, as well as well-known quality improve-
ment programs, including the Software Engineering Institute’s CMM and ISO 9000. 

Lewis, William E. Software Testing and Continuous Quality Improvement, 2d ed. Auer-
bach Publishing, 2000. This book provides a comprehensive discussion of a quality 
life cycle, as well as extensive discussion of testing techniques. It also provides numer-
ous forms and checklists. 
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Relevant Standards
cc2e.com/2057 IEEE Std 730-2002, IEEE Standard for Software Quality Assurance Plans. 

IEEE Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology. 

IEEE Std 1028-1997, Standard for Software Reviews.

IEEE Std 1008-1987 (R1993), Standard for Software Unit Testing.

IEEE Std 829-1998, Standard for Software Test Documentation.

Key Points
■ Quality is free, in the end, but it requires a reallocation of resources so that 

defects are prevented cheaply instead of fixed expensively.

■ Not all quality-assurance goals are simultaneously achievable. Explicitly decide 
which goals you want to achieve, and communicate the goals to other people on 
your team.

■ No single defect-detection technique is completely effective by itself. Testing by 
itself is not optimally effective at removing errors. Successful quality-assurance 
programs use several different techniques to detect different kinds of errors.

■ You can apply effective techniques during construction and many equally power-
ful techniques before construction. The earlier you find a defect, the less inter-
twined it will become with the rest of your code and the less damage it will cause.

■ Quality assurance in the software arena is process-oriented. Software develop-
ment doesn’t have a repetitive phase that affects the final product like manufac-
turing does, so the quality of the result is controlled by the process used to 
develop the software.
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Chapter 21

Collaborative Construction
cc2e.com/2185 Contents

■ 21.1 Overview of Collaborative Development Practices: page 480

■ 21.2 Pair Programming: page 483

■ 21.3 Formal Inspections: page 485

■ 21.4 Other Kinds of Collaborative Development Practices: page 492

Related Topics

■ The software-quality landscape: Chapter 20

■ Developer testing: Chapter 22

■ Debugging: Chapter 23

■ Prerequisites to construction: Chapters 3 and 4

You might have had an experience common to many programmers. You walk into 
another programmer’s cubicle and say, “Would you mind looking at this code? I’m hav-
ing some trouble with it.” You start to explain the problem: “It can’t be a result of this 
thing, because I did that. And it can’t be the result of this other thing, because I did this. 
And it can’t be the result of—wait a minute. It could be the result of that. Thanks!” You’ve 
solved your problem before your “helper” has had a chance to say a word.

In one way or another, all collaborative construction techniques are attempts to for-
malize the process of showing your work to someone else for the purpose of flushing 
out errors.

If you’ve read about inspections and pair programming before, you won’t find much 
new information in this chapter. The extent of the hard data about the effectiveness of 
inspections in Section 21.3 might surprise you, and you might not have considered 
the code-reading alternative described in Section 21.4. You might also take a look at 
Table 21-1, “Comparison of Collaborative Construction Techniques,” at the end of the 
chapter. If your knowledge is all from your own experience, read on! Other people 
have had different experiences, and you’ll find some new ideas.
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21.1 Overview of Collaborative Development Practices
“Collaborative construction” refers to pair programming, formal inspections, informal 
technical reviews, and document reading, as well as other techniques in which develop-
ers share responsibility for creating code and other work products. At my company, the 
term “collaborative construction” was coined by Matt Peloquin in about 2000. The term 
appears to have been coined independently by others in the same time frame.

All collaborative construction techniques, despite their differences, are based on the 
ideas that developers are blind to some of the trouble spots in their work, that other 
people don’t have the same blind spots, and that it’s beneficial for developers to have 
someone else look at their work. Studies at the Software Engineering Institute have 
found that developers insert an average of 1 to 3 defects per hour into their designs 
and 5 to 8 defects per hour into code (Humphrey 1997), so attacking these blind 
spots is a key to effective construction.

Collaborative Construction Complements Other Quality-Assurance 
Techniques

The primary purpose of collaborative construction is to improve software quality. As 
noted in Chapter 20, “The Software-Quality Landscape,” software testing has limited 
effectiveness when used alone—the average defect-detection rate is only about 30 per-
cent for unit testing, 35 percent for integration testing, and 35 percent for low-volume 
beta testing. In contrast, the average effectivenesses of design and code inspections are 
55 and 60 percent (Jones 1996). The secondary benefit of collaborative construction 
is that it decreases development time, which in turn lowers development costs.

Early reports on pair programming suggest that it can achieve a code-quality level simi-
lar to formal inspections (Shull et al 2002). The cost of full-up pair programming is 
probably higher than the cost of solo development—on the order of 10–25 percent 
higher—but the reduction in development time appears to be on the order of 45 percent, 
which in some cases may be a decisive advantage over solo development (Boehm and 
Turner 2004), although not over inspections which have produced similar results.

Technical reviews have been studied much longer than pair programming, and their 
results, as described in case studies and elsewhere, have been impressive:

■ IBM found that each hour of inspection prevented about 100 hours of related 
work (testing and defect correction) (Holland 1999).

■ Raytheon reduced its cost of defect correction (rework) from about 40 percent 
of total project cost to about 20 percent through an initiative that focused on 
inspections (Haley 1996).
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■ Hewlett-Packard reported that its inspection program saved an estimated $21.5 
million per year (Grady and Van Slack 1994).

■ Imperial Chemical Industries found that the cost of maintaining a portfolio of 
about 400 programs was only about 10 percent as high as the cost of maintaining 
a similar set of programs that had not been inspected (Gilb and Graham 1993).

■ A study of large programs found that each hour spent on inspections avoided an 
average of 33 hours of maintenance work and that inspections were up to 20 
times more efficient than testing (Russell 1991).

■ In a software-maintenance organization, 55 percent of one-line maintenance 
changes were in error before code reviews were introduced. After reviews were 
introduced, only 2 percent of the changes were in error (Freedman and Wein-
berg 1990). When all changes were considered, 95 percent were correct the first 
time after reviews were introduced. Before reviews were introduced, under 20 
percent were correct the first time.

■ A group of 11 programs were developed by the same group of people, and all 
were released to production. The first five were developed without reviews and 
averaged 4.5 errors per 100 lines of code. The other six were inspected and aver-
aged only 0.82 errors per 100 lines of code. Reviews cut the errors by over 80 
percent (Freedman and Weinberg 1990).

■ Capers Jones reports that of all the software projects he has studied that have 
achieved 99 percent defect-removal rates or better, all have used formal inspec-
tions. Also, none of the projects that achieved less than 75 percent defect-
removal efficiency used formal inspections (Jones 2000).

A number of these cases illustrate the General Principle of Software Quality, which holds 
that reducing the number of defects in the software also improves development time.

Various studies have shown that in addition to being more effective at catching errors 
than testing, collaborative practices find different kinds of errors than testing does 
(Myers 1978; Basili, Selby, and Hutchens 1986). As Karl Wiegers points out, “A 
human reviewer can spot unclear error messages, inadequate comments, hard-coded 
variable values, and repeated code patterns that should be consolidated. Testing 
won’t” (Wiegers 2002). A secondary effect is that when people know their work will 
be reviewed, they scrutinize it more carefully. Thus, even when testing is done effec-
tively, reviews or other kinds of collaboration are needed as part of a comprehensive 
quality program.

KEY POINT
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Collaborative Construction Provides Mentoring in Corporate Culture 
and Programming Expertise
Informal review procedures 
were passed on from person 
to person in the general cul-
ture of computing for many 
years before they were 
acknowledged in print. The 
need for reviewing was so 
obvious to the best pro-
grammers that they rarely 
mentioned it in print, while 
the worst programmers 
believed they were so good 
that their work did not need 
reviewing. 
—Daniel Freedman and 
Gerald Weinberg

Software standards can be written down and distributed, but if no one talks about 
them or encourages others to use them, they won’t be followed. Reviews are an impor-
tant mechanism for giving programmers feedback about their code. The code, the 
standards, and the reasons for making the code meet the standards are good topics 
for review discussions.

In addition to feedback about how well they follow standards, programmers need 
feedback about more subjective aspects of programming: formatting, comments, vari-
able names, local and global variable use, design approaches, the-way-we-do-things-
around-here, and so on. Programmers who are still wet behind the ears need guidance 
from those who are more knowledgeable, and more knowledgeable programmers 
who tend to be busy need to be encouraged to spend time sharing what they know. 
Reviews create a venue for more experienced and less experienced programmers to 
communicate about technical issues. As such, reviews are an opportunity for cultivat-
ing quality improvements in the future as much as in the present.

One team that used formal inspections reported that inspections quickly brought all 
the developers up to the level of the best developers (Tackett and Van Doren 1999).

Collective Ownership Applies to All Forms of 
Collaborative Construction
Cross-Reference A concept 
that spans all collaborative 
construction techniques is 
the idea of collective owner-
ship. In some development 
models, programmers own 
the code they write and offi-
cial or unofficial restrictions 
on modifying someone else’s 
code exist. Collective owner-
ship increases the need for 
work coordination, especially 
configuration management. 
For details, see Section 28.2, 
“Configuration Manage-
ment.”

With collective ownership, all code is owned by the group rather than by individuals 
and can be accessed and modified by various members of the group. This produces 
several valuable benefits:

■ Better code quality arises from multiple sets of eyes seeing the code and multiple 
programmers working on the code.

■ The impact of someone leaving the project is lessened because multiple people 
are familiar with each section of code.

■ Defect-correction cycles are shorter overall because any of several programmers 
can potentially be assigned to fix bugs on an as-available basis.

Some methodologies, such as Extreme Programming, recommend formally pairing 
programmers and rotating their work assignments over time. At my company, we’ve 
found that programmers don’t need to pair up formally to achieve good code cover-
age. Over time we achieve cross-coverage through a combination of formal and infor-
mal technical reviews, pair programming when needed, and rotation of defect-
correction assignments.
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Collaboration Applies As Much Before Construction As After

This book is about construction, so collaboration on detailed design and code are the 
focus of this chapter. However, most of the comments about collaborative construc-
tion in this chapter also apply to estimates, plans, requirements, architecture, testing, 
and maintenance work. By studying the references at the end of the chapter, you can 
apply collaborative techniques to most software development activities.

21.2 Pair Programming
When pair programming, one programmer types in code at the keyboard and the 
other programmer watches for mistakes and thinks strategically about whether the 
code is being written correctly and whether the right code is being written. Pair pro-
gramming was originally popularized by Extreme Programming (Beck 2000), but it is 
now being used more widely (Williams and Kessler 2002).

Keys to Success with Pair Programming

The basic concept of pair programming is simple, but its use nonetheless benefits 
from a few guidelines:

Support pair programming with coding standards Pair programming will not be effec-
tive if the two people in the pair spend their time arguing about coding style. Try to stan-
dardize what Chapter 5, “Design in Construction,” refers to as the “accidental attributes” 
of programming so that the programmers can focus on the “essential” task at hand.

Don’t let pair programming turn into watching The person without the keyboard 
should be an active participant in the programming. That person is analyzing the 
code, thinking ahead to what will be coded next, evaluating the design, and planning 
how to test the code.

Don’t force pair programming of the easy stuff One group that used pair program-
ming for the most complicated code found it more expedient to do detailed design at 
the whiteboard for 15 minutes and then to program solo (Manzo 2002). Most organi-
zations that have tried pair programming eventually settle into using pairs for part of 
their work but not all of it (Boehm and Turner 2004).

Rotate pairs and work assignments regularly In pair programming, as with other 
collaborative development practices, benefit arises from different programmers learn-
ing different parts of the system. Rotate pair assignments regularly to encourage cross-
pollination—some experts recommend changing pairs as often as daily (Reifer 2002).

Encourage pairs to match each other’s pace One partner going too fast limits the 
benefit of having the other partner. The faster partner needs to slow down, or the pair 
should be broken up and reconfigured with different partners.
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Make sure both partners can see the monitor Even seemingly mundane issues like 
being able to see the monitor and using fonts that are too small can cause problems.

Don’t force people who don’t like each other to pair Sometimes personality conflicts 
prevent people from pairing effectively. It’s pointless to force people who don’t get 
along to pair, so be sensitive to personality matches (Beck 2000, Reifer 2002).

Avoid pairing all newbies Pair programming works best when at least one of the 
partners has paired before (Larman 2004).

Assign a team leader If your whole team wants to do 100 percent of its program-
ming in pairs, you’ll still need to assign one person to coordinate work assign-
ments, be held accountable for results, and act as the point of contact for people 
outside the project.

Benefits of Pair Programming

Pair programming produces numerous benefits:

■ It holds up better under stress than solo development. Pairs encourage each 
other to keep code quality high even when there’s pressure to write quick and 
dirty code.

■ It improves code quality. The readability and understandability of the code 
tends to rise to the level of the best programmer on the team.

■ It shortens schedules. Pairs tend to write code faster and with fewer errors. The 
project team spends less time at the end of the project correcting defects.

■ It produces all the other general benefits of collaborative construction, includ-
ing disseminating corporate culture, mentoring junior programmers, and foster-
ing collective ownership.

cc2e.com/2192 CHECKLIST: Effective Pair Programming
❑ Do you have a coding standard so that pair programmers stay focused on 

programming rather than on philosophical coding-style discussions?

❑ Are both partners participating actively?

❑ Are you avoiding pair programming everything and, instead, selecting the 
assignments that will really benefit from pair programming?

❑ Are you rotating pair assignments and work assignments regularly?

❑ Are the pairs well matched in terms of pace and personality?

❑ Is there a team leader to act as the focal point for management and other 
people outside the project?
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21.3 Formal Inspections
Further Reading If you want 
to read the original article on 
inspections, see “Design and 
Code Inspections to Reduce 
Errors in Program Develop-
ment” (Fagan 1976).

An inspection is a specific kind of review that has been shown to be extremely effec-
tive in detecting defects and to be relatively economical compared to testing. Inspec-
tions were developed by Michael Fagan and used at IBM for several years before Fagan 
published the paper that made them public. Although any review involves reading 
designs or code, an inspection differs from a run-of-the-mill review in several key 
ways:

■ Checklists focus the reviewers’ attention on areas that have been problems in 
the past.

■ The inspection focuses on defect detection, not correction.

■ Reviewers prepare for the inspection meeting beforehand and arrive with a list 
of the problems they’ve discovered.

■ Distinct roles are assigned to all participants.

■ The moderator of the inspection isn’t the author of the work product under 
inspection.

■ The moderator has received specific training in moderating inspections.

■ The inspection meeting is held only if all participants have adequately prepared.

■ Data is collected at each inspection and is fed into future inspections to improve 
them.

■ General management doesn’t attend the inspection meeting unless you’re inspect-
ing a project plan or other management materials. Technical leaders might attend.

What Results Can You Expect from Inspections?

Individual inspections typically catch about 60 percent of defects, which is higher 
than other techniques except prototyping and high-volume beta testing. These results 
have been confirmed numerous times at various organizations, including Harris 
BCSD, National Software Quality Experiment, Software Engineering Institute, Hewlett 
Packard, and so on (Shull et al 2002).

The combination of design and code inspections usually removes 70–85 percent or 
more of the defects in a product (Jones 1996). Inspections identify error-prone classes 
early, and Capers Jones reports that they result in 20–30 percent fewer defects per 
1000 lines of code than less formal review practices. Designers and coders learn to 
improve their work through participating in inspections, and inspections increase 
productivity by about 20 percent (Fagan 1976, Humphrey 1989, Gilb and Graham 
1993, Wiegers 2002). On a project that uses inspections for design and code, the 
inspections will take up about 10–15 percent of project budget and will typically 
reduce overall project cost.
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Inspections can also be used for assessing progress, but it’s the technical progress that 
is assessed. That usually means answering two questions: Is the technical work being 
done? And is the technical work being done well? The answers to both questions are 
byproducts of formal inspections.

Roles During an Inspection

One key characteristic of an inspection is that each person involved has a distinct role 
to play. Here are the roles:

Moderator The moderator is responsible for keeping the inspection moving at a rate 
that’s fast enough to be productive but slow enough to find the most errors possible. 
The moderator must be technically competent—not necessarily an expert in the partic-
ular design or code under inspection, but capable of understanding relevant details. 
This person manages other aspects of the inspection, such as distributing the design 
or code to be reviewed, distributing the inspection checklist, setting up a meeting 
room, reporting inspection results, and following up on the action items assigned at 
the inspection meeting.

Author The person who wrote the design or code plays a relatively minor role in the 
inspection. Part of the goal of an inspection is to be sure that the design or code 
speaks for itself. If the design or code under inspection turns out to be unclear, the 
author will be assigned the job of making it clearer. Otherwise, the author’s duties are 
to explain parts of the design or code that are unclear and, occasionally, to explain 
why things that seem like errors are actually acceptable. If the project is unfamiliar to 
the reviewers, the author might also present an overview of the project in preparation 
for the inspection meeting.

Reviewer A reviewer is anyone who has a direct interest in the design or code but 
who is not the author. A reviewer of a design might be the programmer who will 
implement the design. A tester or higher-level architect might also be involved. The 
role of the reviewers is to find defects. They usually find defects during preparation, 
and, as the design or code is discussed at the inspection meeting, the group should 
find considerably more defects.

Scribe The scribe records errors that are detected and the assignments of action 
items during the inspection meeting. Neither the author nor the moderator should be 
the scribe.

Management Including management in inspections is not usually a good idea. The 
point of a software inspection is that it is a purely technical review. Management’s 
presence changes the interactions: people feel that they, instead of the review materi-
als, are under evaluation, which changes the focus from technical to political. How-
ever, management has a right to know the results of an inspection, and an inspection 
report is prepared to keep management informed.
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Similarly, under no circumstances should inspection results be used for performance 
appraisals. Don’t kill the goose that lays the golden eggs. Code examined in an inspec-
tion is still under development. Evaluation of performance should be based on final 
products, not on work that isn’t finished.

Overall, an inspection should have no fewer than three participants. It’s not possible 
to have a separate moderator, author, and reviewer with fewer than three people, and 
those roles shouldn’t be combined. Traditional advice is to limit an inspection to 
about six people because, with any more, the group becomes too large to manage. 
Researchers have generally found that having more than two to three reviewers 
doesn’t appear to increase the number of defects found (Bush and Kelly 1989, Porter 
and Votta 1997). However, these general findings are not unanimous, and results 
appear to vary depending on the kind of material being inspected (Wiegers 2002). 
Pay attention to your experience, and adjust your approach accordingly.

General Procedure for an Inspection

An inspection consists of several distinct stages:

Planning The author gives the design or code to the moderator. The moderator 
decides who will review the material and when and where the inspection meeting will 
occur; the moderator then distributes the design or code and a checklist that focuses 
the attention of the inspectors. Materials should be printed with line numbers to 
speed up error identification during the meeting.

Overview When the reviewers aren’t familiar with the project they are reviewing, the 
author can spend up to an hour or so describing the technical environment within 
which the design or code has been created. Having an overview tends to be a danger-
ous practice because it can lead to a glossing over of unclear points in the design or 
code under inspection. The design or code should speak for itself; the overview 
shouldn’t speak for it.

Cross-Reference For a list of 
checklists you can use to 
improve code quality, see 
page xxix.

Preparation Each reviewer works alone to scrutinize the design or code for errors. 
The reviewers use the checklist to stimulate and direct their examination of the review 
materials.

For a review of application code written in a high-level language, reviewers can pre-
pare at about 500 lines of code per hour. For a review of system code written in a high-
level language, reviewers can prepare at only about 125 lines of code per hour (Hum-
phrey 1989). The most effective rate of review varies a great deal, so keep records of 
preparation rates in your organization to determine the rate that’s most effective in 
your environment.

Some organizations have found that inspections are more effective when each 
reviewer is assigned a specific perspective. A reviewer might be asked to prepare for 
the inspection from the point of view of the maintenance programmer, the customer, 
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or the designer, for example. Research on perspective-based reviews has not been 
comprehensive, but it suggests that perspective-based reviews might uncover more 
errors than general reviews.

An additional variation in inspection preparation is to assign each reviewer one or 
more scenarios to check. Scenarios can involve specific questions that a reviewer is 
assigned to answer, such as “Are there any requirements that are not satisfied by this 
design?” A scenario might also involve a specific task that a reviewer is assigned to per-
form, such as listing the specific requirements that a particular design element satis-
fies. You can also assign some reviewers to read the material front to back, back to 
front, or inside out.

Inspection Meeting The moderator chooses someone other than the author to para-
phrase the design or read the code (Wiegers 2003). All logic is explained, including 
each branch of each logical structure. During this presentation, the scribe records 
errors as they are detected, but discussion of an error stops as soon as it’s recognized 
as an error. The scribe notes the type and the severity of the error, and the inspection 
moves on. If you have problems keeping the discussions focused, the moderator 
might ring a bell to get the group’s attention and put the discussion back on track.

The rate at which the design or the code is considered should be neither too slow 
nor too fast. If it’s too slow, attention can lag and the meeting won’t be productive. 
If it’s too fast, the group can overlook errors it would otherwise catch. Optimal 
inspection rates vary from environment to environment, just as preparation rates 
do. Keep records so that over time you can determine the optimal rate for your envi-
ronment. Other organizations have found that for system code, an inspection rate of 
90 lines of code per hour is optimal. For applications code, the inspection rate can 
be as rapid as 500 lines of code per hour (Humphrey 1989). An average of about 
150–200 nonblank, noncomment source statements per hour is a good place to 
start (Wiegers 2002).

Don’t discuss solutions during the meeting. The group should stay focused on identi-
fying defects. Some inspection groups don’t even allow discussion about whether a 
defect is really a defect. They assume that if someone is confused enough to think it’s 
a defect, the design, code, or documentation needs to be clarified.

The meeting generally should not last more than two hours. This doesn’t mean that 
you have to fake a fire alarm to get everyone out at the two-hour mark, but experience 
at IBM and other companies has been that reviewers can’t concentrate for much more 
than about two hours at a time. For the same reason, it’s unwise to schedule more 
than one inspection on the same day.

Inspection Report Within a day of the inspection meeting, the moderator produces 
an inspection report (e-mail or equivalent) that lists each defect, including its type and 
severity. The inspection report helps to ensure that all defects will be corrected, and 
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it’s used to develop a checklist that emphasizes problems specific to the organiza-
tion. If you collect data on the time spent and the number of errors found over time, 
you can respond to challenges about inspection’s efficacy with hard data. Other-
wise, you’ll be limited to saying that inspections seem better. That won’t be as con-
vincing to someone who thinks testing seems better. You’ll also be able to tell if 
inspections aren’t working in your environment and modify or abandon them, as 
appropriate. Data collection is also important because any new methodology needs 
to justify its existence.

Rework The moderator assigns defects to someone, usually the author, for repair. 
The assignee resolves each defect on the list.

Follow-Up The moderator is responsible for seeing that all rework assigned during 
the inspection is carried out. Depending on the number of errors found and the sever-
ity of those errors, you might follow up by having the reviewers reinspect the entire 
work product, having the reviewers reinspect only the fixes, or allowing the author to 
complete the fixes without any follow-up.

Third-Hour Meeting Even though during the inspection participants aren’t allowed 
to discuss solutions to the problems raised, some might still want to. You can hold an 
informal, third-hour meeting to allow interested parties to discuss solutions after the 
official inspection is over.

Fine-Tuning the Inspection

Once you become skilled at performing inspections “by the book,” you can usually 
find several ways to improve them. Don’t introduce changes willy-nilly, though. 
“Instrument” the inspection process so that you know whether your changes are 
beneficial.

Companies have often found that removing or combining any of the stages costs more 
than is saved (Fagan 1986). If you’re tempted to change the inspection process with-
out measuring the effect of the change, don’t. If you have measured the process and 
you know that your changed process works better than the one described here, go 
right ahead.

As you do inspections, you’ll notice that certain kinds of errors occur more fre-
quently than other kinds. Create a checklist that calls attention to those kinds of 
errors so that reviewers will focus on them. Over time, you’ll find kinds of errors 
that aren’t on the checklist; add those to it. You might find that some errors on the 
initial checklist cease to occur; remove those. After a few inspections, your organiza-
tion will have a checklist for inspections customized to its needs, and it might also 
have some clues about trouble areas in which its programmers need more training 
or support. Limit your checklist to one page or less. Longer ones are hard to use at 
the level of detail needed in an inspection.
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Egos in Inspections
Further Reading For a dis-
cussion of egoless program-
ming, see The Psychology of 
Computer Programming, 2d 
ed. (Weinberg 1998).

The point of the inspection itself is to discover defects in the design or code. It is not 
to explore alternatives or to debate about who is right and who is wrong. The point is 
most certainly not to criticize the author of the design or code. The experience should 
be a positive one for the author in which it’s obvious that group participation 
improves the program and is a learning experience for all involved. It should not con-
vince the author that some people in the group are jerks or that it’s time to look for a 
new job. Comments like “Anyone who knows Java knows that it’s more efficient to 
loop from 0 to num-1, not 1 to num” are totally inappropriate, and if they occur, the 
moderator should make their inappropriateness unmistakably clear.

Because the design or code is being criticized and the author probably feels somewhat 
attached to it, the author will naturally feel some of the heat directed at the code. The 
author should anticipate hearing criticisms of several defects that aren’t really defects 
and several more that seem debatable. In spite of that, the author should acknowledge 
each alleged defect and move on. Acknowledging a criticism doesn’t imply that the 
author agrees with the content of the criticism. The author should not try to defend 
the work under review. After the review, the author can think about each point in pri-
vate and decide whether it’s valid.

Reviewers must remember that the author has the ultimate responsibility for deciding 
what to do about a defect. It’s fine to enjoy finding defects (and outside the review, to 
enjoy proposing solutions), but each reviewer must respect the author’s ultimate right 
to decide how to resolve an error.

Inspections and Code Complete
I had a personal experience using inspections on the second edition of Code Complete. 
For the first edition of this book I initially wrote a rough draft. After letting the rough 
draft of each chapter sit in a drawer for a week or two, I reread the chapter cold and 
corrected the errors I found. I then circulated the revised chapter to about a dozen 
peers for review, several of whom reviewed it quite thoroughly. I corrected the errors 
they found. After a few more weeks, I reviewed it again myself and corrected more 
errors. Finally, I submitted the manuscript to the publisher, where it was reviewed by 
a copy editor, technical editor, and proofreader. The book was in print for more than 
10 years, and readers sent in about 200 corrections during that time.

You might think there wouldn’t be many errors left in the book that had gone through 
all that review activity. But that wasn’t the case. To create the second edition, I used 
formal inspections of the first edition to identify issues that needed to be addressed in 
the second edition. Teams of three to four reviewers prepared according to the guide-
lines described in this chapter. Somewhat to my surprise, our formal inspections 
found several hundred errors in the first edition text that had not previously been 
detected through any of the numerous review activities.
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If I had any doubts about the value of formal inspections, my experience in creating 
the second edition of Code Complete eliminated them.

Inspection Summary

Inspection checklists encourage focused concentration. The inspection process is sys-
tematic because of its standard checklists and standard roles. It is also self-optimizing 
because it uses a formal feedback loop to improve the checklists and to monitor prepa-
ration and inspection rates. With this control over the process and continuing optimiza-
tion, inspection quickly becomes a powerful technique almost no matter how it begins.

Further Reading For more 
details on the SEI’s concept 
of developmental maturity, 
see Managing the Software 
Process (Humphrey 1989).

The Software Engineering Institute (SEI) has defined a Capability Maturity Model 
(CMM) that measures the effectiveness of an organization’s software-development 
process (SEI 1995). The inspection process demonstrates what the highest level is 
like. The process is systematic and repeatable and uses measured feedback to improve 
itself. You can apply the same ideas to many of the techniques described in this book. 
When generalized to an entire development organization, these ideas are, in a nut-
shell, what it takes to move the organization to the highest possible level of quality 
and productivity.

cc2e.com/2199 CHECKLIST: Effective Inspections
❑ Do you have checklists that focus reviewer attention on areas that have 

been problems in the past?

❑ Have you focused the inspection on defect detection rather than correc-
tion?

❑ Have you considered assigning perspectives or scenarios to help reviewers 
focus their preparation work?

❑ Are reviewersrs given enough time to prepare before the inspection meet-
ing, and is each one prepared?

❑ Does each participant have a distinct role to play—moderator, reviewer, 
scribe, and so on?

❑ Does the meeting move at a productive rate?

❑ Is the meeting limited to two hours?

❑ Have all inspection participants received specific training in conducting 
inspections, and has the moderator received special training in moderation 
skills?

❑ Is data about error types collected at each inspection so that you can tailor 
future checklists to your organization?
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❑ Is data about preparation and inspection rates collected so that you can 
optimize future preparation and inspections?

❑ Are the action items assigned at each inspection followed up, either per-
sonally by the moderator or with a reinspection?

❑ Does management understand that it should not attend inspection meetings?

❑ Is there a follow-up plan to assure that fixes are made correctly?

21.4 Other Kinds of Collaborative Development Practices
Other kinds of collaboration haven’t accumulated the body of empirical support 
that inspections or pair programming have, so they’re covered in less depth here. 
The collaborations covered in this section includes walk-throughs, code reading, 
and dog-and-pony shows.

Walk-Throughs

A walk-through is a popular kind of review. The term is loosely defined, and at least 
some of its popularity can be attributed to the fact that people can call virtually any 
kind of review a “walk-through.”

Because the term is so loosely defined, it’s hard to say exactly what a walk-through is. 
Certainly, a walk-through involves two or more people discussing a design or code. It 
might be as informal as an impromptu bull session around a whiteboard; it might be 
as formal as a scheduled meeting with an overhead presentation prepared by the art 
department and a formal summary sent to management. In one sense, “where two or 
three are gathered together,” there is a walk-through. Proponents of walk-throughs 
like the looseness of such a definition, so I’ll just point out a few things that all walk-
throughs have in common and leave the rest of the details to you:

■ The walk-through is usually hosted and moderated by the author of the design 
or code under review.

■ The walk-through focuses on technical issues—it’s a working meeting.

■ All participants prepare for the walk-through by reading the design or code and 
looking for errors.

■ The walk-through is a chance for senior programmers to pass on experience and 
corporate culture to junior programmers. It’s also a chance for junior program-
mers to present new methodologies and to challenge timeworn, possibly obso-
lete, assumptions.

■ A walk-through usually lasts 30 to 60 minutes.

■ The emphasis is on error detection, not correction.
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■ Management doesn’t attend.

■ The walk-through concept is flexible and can be adapted to the specific needs of 
the organization using it.

What Results Can You Expect from a Walk-Through?

Used intelligently and with discipline, a walk-through can produce results similar to 
those of an inspection—that is, it can typically find between 20 and 40 percent of the 
errors in a program (Myers 1979, Boehm 1987b, Yourdon 1989b, Jones 1996). But in 
general, walk-throughs have been found to be significantly less effective than inspec-
tions (Jones 1996).

Used unintelligently, walk-throughs are more trouble than they’re worth. The low end 
of their effectiveness, 20 percent, isn’t worth much, and at least one organization (Boe-
ing Computer Services) found peer reviews of code to be “extremely expensive.” Boe-
ing found it was difficult to motivate project personnel to apply walk-through 
techniques consistently, and when project pressures increased, walk-throughs 
became nearly impossible (Glass 1982).

I’ve become more critical of walk-throughs during the past 10 years as a result of what 
I’ve seen in my company’s consulting business. I’ve found that when people have bad 
experiences with technical reviews, it is nearly always with informal practices such as 
walk-throughs rather than with formal inspections. A review is basically a meeting, 
and meetings are expensive. If you’re going to incur the overhead of holding a meet-
ing, it’s worthwhile to structure the meeting as a formal inspection. If the work prod-
uct you’re reviewing doesn’t justify the overhead of a formal inspection, it doesn’t 
justify the overhead of a meeting at all. In such a case you’re better off using document 
reading or another less interactive approach.

Inspections seem to be more effective than walk-throughs at removing errors. So why 
would anyone choose to use walk-throughs?

If you have a large review group, a walk-through is a good review choice because it 
brings many diverse viewpoints to bear on the item under review. If everyone involved 
in the walk-through can be convinced that the solution is all right, it probably doesn’t 
have any major flaws.

If reviewers from other organizations are involved, a walk-through might also be pref-
erable. Roles in an inspection are more formalized and require some practice before 
people perform them effectively. Reviewers who haven’t participated in inspections 
before are at a disadvantage. If you want to solicit their contributions, a walk-through 
might be the best choice.

Inspections are more focused than walk-throughs and generally pay off better. Conse-
quently, if you’re choosing a review standard for your organization, choose inspec-
tions first unless you have good reason not to.
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Code Reading

Code reading is an alternative to inspections and walk-throughs. In code reading, you 
read source code and look for errors. You also comment on qualitative aspects of the 
code, such as its design, style, readability, maintainability, and efficiency.

A study at NASA’s Software Engineering Laboratory found that code reading detected 
about 3.3 defects per hour of effort. Testing detected about 1.8 errors per hour (Card 
1987). Code reading also found 20 to 60 percent more errors over the life of the 
project than the various kinds of testing did.

Like the idea of a walk-through, the concept of code reading is loosely defined. A code 
reading usually involves two or more people reading code independently and then 
meeting with the author of the code to discuss it. Here’s how code reading goes:

■ In preparation for the meeting, the author of the code hands out source listings 
to the code readers. The listings are from 1000 to 10,000 lines of code; 4000 
lines is typical.

■ Two or more people read the code. Use at least two people to encourage compe-
tition between the reviewers. If you use more than two, measure everyone’s con-
tribution so that you know how much the extra people contribute.

■ Reviewers read the code independently. Estimate a rate of about 1000 lines a 
day.

■ When the reviewers have finished reading the code, the code-reading meeting is 
hosted by the author of the code. The meeting lasts one or two hours and 
focuses on problems discovered by the code readers. No one makes any attempt 
to walk through the code line by line. The meeting is not even strictly necessary.

■ The author of the code fixes the problems identified by the reviewers.

The difference between code reading on the one hand and inspections and walk-
throughs on the other is that code reading focuses more on individual review of the 
code than on the meeting. The result is that each reviewer’s time is focused on finding 
problems in the code. Less time is spent in meetings in which each person contributes 
only part of the time and in which a substantial amount of the effort goes into moder-
ating group dynamics. Less time is spent delaying meetings until each person in the 
group can meet for two hours. Code readings are especially valuable in situations in 
which reviewers are geographically dispersed.

A study of 13 reviews at AT&T found that the importance of the review meeting itself 
was overrated; 90 percent of the defects were found in preparation for the review 
meeting, and only about 10 percent were found during the review itself (Votta 1991, 
Glass 1999).
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Dog-and-Pony Shows

Dog-and-pony shows are reviews in which a software product is demonstrated to a 
customer. Customer reviews are common in software developed for government con-
tracts, which often stipulate that reviews will be held for requirements, design, and 
code. The purpose of a dog-and-pony show is to demonstrate to the customer that the 
project is OK, so it’s a management review rather than a technical review.

Don’t rely on dog-and-pony shows to improve the technical quality of your products. 
Preparing for them might have an indirect effect on technical quality, but usually more 
time is spent in making good-looking presentation slides than in improving the qual-
ity of the software. Rely on inspections, walk-throughs, or code reading for technical 
quality improvements.

Comparison of Collaborative Construction Techniques
What are the differences among the various kinds of collaborative construction? Table 
21-1 provides a summary of each technique’s major characteristics.

Table 21-1 Comparison of Collaborative Construction Techniques

Property
Pair 
Programming

Formal 
Inspection

Informal Review 
(Walk-Throughs)

Defined participant roles Yes Yes No

Formal training in how to per-
form the roles

Maybe, through 
coaching

Yes No

Who “drives” the collaboration Person with the 
keyboard

Moderator Author, usually

Focus of collaboration Design, coding, 
testing, and defect 
correction

Defect detec-
tion only

Varies

Focused review effort—looks 
for the most frequently found 
kinds of errors

Informal, if at all Yes No

Follow-up to reduce bad fixes Yes Yes No

Fewer future errors because of 
detailed error feedback to indi-
vidual programmers

Incidental Yes Incidental

Improved process efficiency 
from analysis of results

No Yes No

Useful for nonconstruction 
activities

Possibly Yes Yes

Typical percentage of defects 
found

40–60% 45–70% 20–40%
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Pair programming doesn’t have decades of data supporting its effectiveness like for-
mal inspection does, but the initial data suggests it’s on roughly equal footing with 
inspections, and anecdotal reports have also been positive.

If pair programming and formal inspections produce similar results for quality, cost, 
and schedule, the choice between them becomes a matter of personal style rather 
than one of technical substance. Some people prefer to work solo, only occasionally 
breaking out of solo mode for inspection meetings. Others prefer to spend more of 
their time directly working with others. The choice between the two techniques can 
be driven by the work-style preference of a team’s specific developers, and subgroups 
within the team might be allowed to choose which way they would like to do most of 
their work. You should also use different techniques with a project, as appropriate.

Additional Resources
cc2e.com/2106 Here are more resources concerning collaborative contruction:

Pair Programming

Williams, Laurie and Robert Kessler. Pair Programming Illuminated. Boston, MA: Addi-
son Wesley, 2002. This book explains the detailed ins and outs of pair programming, 
including how to handle various personality matches (for example, expert and inex-
pert, introvert and extrovert) and other implementation issues.

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison 
Wesley, 2000. This book touches on pair programming briefly and shows how it can 
be used in conjunction with other mutually supportive techniques, including coding 
standards, frequent integration, and regression testing.

Reifer, Donald. “How to Get the Most Out of Extreme Programming/Agile Methods,” 
Proceedings, XP/Agile Universe 2002. New York, NY: Springer; pp. 185–196. This paper 
summarizes industrial experience with Extreme Programming and agile methods and 
presents keys to success for pair programming.

Inspections

Wiegers, Karl. Peer Reviews in Software: A Practical Guide. Boston, MA: Addison Wesley, 
2002. This well-written book describes the ins and outs of various kinds of reviews, 
including formal inspections and other, less formal practices. It’s well researched, has 
a practical focus, and is easy to read.
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Gilb, Tom and Dorothy Graham. Software Inspection. Wokingham, England: Addison-
Wesley, 1993. This contains a thorough discussion of inspections circa the early 
1990s. It has a practical focus and includes case studies that describe experiences sev-
eral organizations have had in setting up inspection programs.

Fagan, Michael E. “Design and Code Inspections to Reduce Errors in Program Devel-
opment.” IBM Systems Journal 15, no. 3 (1976): 182–211.

Fagan, Michael E. “Advances in Software Inspections.” IEEE Transactions on Software 
Engineering, SE-12, no. 7 (July 1986): 744–51. These two articles were written by the 
developer of inspections. They contain the meat of what you need to know to run an 
inspection, including all the standard inspection forms.

Relevant Standards

IEEE Std 1028-1997, Standard for Software Reviews

IEEE Std 730-2002, Standard for Software Quality Assurance Plans

Key Points
■ Collaborative development practices tend to find a higher percentage of defects 

than testing and to find them more efficiently.

■ Collaborative development practices tend to find different kinds of errors than 
testing does, implying that you need to use both reviews and testing to ensure 
the quality of your software.

■ Formal inspections use checklists, preparation, well-defined roles, and contin-
ual process improvement to maximize error-detection efficiency. They tend to 
find more defects than walk-throughs.

■ Pair programming typically costs about the same as inspections and produces 
similar quality code. Pair programming is especially valuable when schedule 
reduction is desired. Some developers prefer working in pairs to working solo.

■ Formal inspections can be used on work products such as requirements, 
designs, and test cases, as well as on code.

■ Walk-throughs and code reading are alternatives to inspections. Code reading 
offers more flexibility in using each person’s time effectively.
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Testing is the most popular quality-improvement activity—a practice supported by a 
wealth of industrial and academic research and by commercial experience. Software is 
tested in numerous ways, some of which are typically performed by developers and 
some of which are more commonly performed by specialized test personnel:

■ Unit testing is the execution of a complete class, routine, or small program that 
has been written by a single programmer or team of programmers, which is 
tested in isolation from the more complete system.

■ Component testing is the execution of a class, package, small program, or other 
program element that involves the work of multiple programmers or program-
ming teams, which is tested in isolation from the more complete system.

■ Integration testing is the combined execution of two or more classes, packages, 
components, or subsystems that have been created by multiple programmers or 
programming teams. This kind of testing typically starts as soon as there are two 
classes to test and continues until the entire system is complete.
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■ Regression testing is the repetition of previously executed test cases for the pur-
pose of finding defects in software that previously passed the same set of tests.

■ System testing is the execution of the software in its final configuration, including 
integration with other software and hardware systems. It tests for security, per-
formance, resource loss, timing problems, and other issues that can’t be tested 
at lower levels of integration.

In this chapter, “testing” refers to testing by the developer, which typically consists of 
unit tests, component tests, and integration tests but can sometimes include regres-
sion tests and system tests. Numerous additional kinds of testing are performed by 
specialized test personnel and are rarely performed by developers, including beta 
tests, customer-acceptance tests, performance tests, configuration tests, platform 
tests, stress tests, usability tests, and so on. These kinds of testing are not discussed 
further in this chapter.

Testing is usually broken into two broad categories: black-box testing and white-box 
(or glass-box) testing. “Black-box testing” refers to tests in which the tester cannot see 
the inner workings of the item being tested. This obviously does not apply when you 
test code that you have written! “White-box testing” refers to tests in which the tester 
is aware of the inner workings of the item being tested. This is the kind of testing that 
you as a developer use to test your own code. Both black-box and white-box testing 
have strengths and weaknesses; this chapter focuses on white-box testing because 
that’s the kind of testing that developers perform.

Some programmers use the terms “testing” and “debugging” interchangeably, but 
careful programmers distinguish between the two activities. Testing is a means of 
detecting errors. Debugging is a means of diagnosing and correcting the root causes 
of errors that have already been detected. This chapter deals exclusively with error 
detection. Error correction is discussed in detail in Chapter 23, “Debugging.”

The whole topic of testing is much larger than the subject of testing during construc-
tion. System testing, stress testing, black-box testing, and other topics for test special-
ists are discussed in the “Additional Resources” section at the end of the chapter.

22.1 Role of Developer Testing in Software Quality
Cross-Reference For details 
on reviews, see Chapter 21, 
“Collaborative Construction.”

Testing is an important part of any software-quality program, and in many cases it’s 
the only part. This is unfortunate, because collaborative development practices in 
their various forms have been shown to find a higher percentage of errors than testing 
does, and they cost less than half as much per error found as testing does (Card 1987, 
Russell 1991, Kaplan 1995). Individual testing steps (unit test, component test, and 
integration test) typically find less than 50 percent of the errors present each. The 
combination of testing steps often finds less than 60 percent of the errors present 
(Jones 1998).

KEY POINT
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Programs do not acquire 
bugs as people acquire 
germs, by hanging around 
other buggy programs. Pro-
grammers must insert them. 
—Harlan Mills

If you were to list a set of software-development activities on “Sesame Street” and ask, 
“Which of these things is not like the others?” the answer would be “Testing.” Testing 
is a hard activity for most developers to swallow for several reasons:

■ Testing’s goal runs counter to the goals of other development activities. The goal 
is to find errors. A successful test is one that breaks the software. The goal of 
every other development activity is to prevent errors and keep the software from 
breaking.

■ Testing can never completely prove the absence of errors. If you have tested 
extensively and found thousands of errors, does it mean that you’ve found all 
the errors or that you have thousands more to find? An absence of errors could 
mean ineffective or incomplete test cases as easily as it could mean perfect soft-
ware.

■ Testing by itself does not improve software quality. Test results are an indicator 
of quality, but in and of themselves they don’t improve it. Trying to improve soft-
ware quality by increasing the amount of testing is like trying to lose weight by 
weighing yourself more often. What you eat before you step onto the scale deter-
mines how much you will weigh, and the software-development techniques you 
use determine how many errors testing will find. If you want to lose weight, 
don’t buy a new scale; change your diet. If you want to improve your software, 
don’t just test more; develop better.

■ Testing requires you to assume that you’ll find errors in your code. If you assume 
you won’t, you probably won’t, but only because you’ll have set up a self-fulfill-
ing prophecy. If you execute the program hoping that it won’t have any errors, it 
will be too easy to overlook the errors you find. In a study that has become a 
classic, Glenford Myers had a group of experienced programmers test a pro-
gram with 15 known defects. The average programmer found only 5 of the 15 
errors. The best found only 9. The main source of undetected errors was that 
erroneous output was not examined carefully enough. The errors were visible, 
but the programmers didn’t notice them (Myers 1978).

You must hope to find errors in your code. Such a hope might seem like an 
unnatural act, but you should hope that it’s you who finds the errors and not 
someone else.

A key question is, How much time should be spent in developer testing on a typical 
project? A commonly cited figure for all testing is 50 percent of the time spent on the 
project, but that’s misleading. First, that particular figure combines testing and debug-
ging; testing alone takes less time. Second, that figure represents the amount of time 
that’s typically spent rather than the time that should be spent. Third, the figure 
includes independent testing as well as developer testing.

1
2
3
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As Figure 22-1 shows, depending on the project’s size and complexity, developer test-
ing should probably take 8 to 25 percent of the total project time. This is consistent 
with much of the data that has been reported.

Figure 22-1 As the size of the project increases, developer testing consumes a smaller per-
centage of the total development time. The effects of program size are described in more 
detail in Chapter 27, “How Program Size Affects Construction.”

A second question is, What do you do with the results of developer testing? Most 
immediately, you can use the results to assess the reliability of the product under 
development. Even if you never correct the defects that testing finds, testing describes 
how reliable the software is. Another use for the results is that they can and usually do 
guide corrections to the software. Finally, over time, the record of defects found 
through testing helps reveal the kinds of errors that are most common. You can use 
this information to select appropriate training classes, direct future technical review 
activities, and design future test cases.

Testing During Construction

The big, wide world of testing sometimes ignores the subject of this chapter: “white-box” 
or “glass-box” testing. You generally want to design a class to be a black box—a user of the 
class won’t have to look past the interface to know what the class does. In testing the 
class, however, it’s advantageous to treat it as a glass box, to look at the internal source 
code of the class as well as its inputs and outputs. If you know what’s inside the box, you 
can test the class more thoroughly. Of course, you also have the same blind spots in test-
ing the class that you had in writing it, and so black-box testing has advantages too.

During construction, you generally write a routine or class, check it mentally, and 
then review it or test it. Regardless of your integration or system-testing strategy, you 
should test each unit thoroughly before you combine it with any others. If you’re writ-
ing several routines, you should test them one at a time. Routines aren’t really any eas-
ier to test individually, but they’re much easier to debug. If you throw several untested 
routines together at once and find an error, any of the several routines might be guilty. 
If you add one routine at a time to a collection of previously tested routines, you know 
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that any new errors are the result of the new routine or of interactions with the new 
routine. The debugging job is easier.

Collaborative construction practices have many strengths to offer that testing can’t 
match. But part of the problem with testing is that testing often isn’t performed as well 
as it could be. A developer can perform hundreds of tests and still achieve only partial 
code coverage. A feeling of good test coverage doesn’t mean that actual test coverage is 
adequate. An understanding of basic test concepts can support better testing and raise 
testing’s effectiveness.

22.2 Recommended Approach to Developer Testing
A systematic approach to developer testing maximizes your ability to detect errors of 
all kinds with a minimum of effort. Be sure to cover this ground:

■ Test for each relevant requirement to make sure that the requirements have been 
implemented. Plan the test cases for this step at the requirements stage or as 
early as possible—preferably before you begin writing the unit to be tested. Con-
sider testing for common omissions in requirements. The level of security, stor-
age, the installation procedure, and system reliability are all fair game for testing 
and are often overlooked at requirements time.

■ Test for each relevant design concern to make sure that the design has been imple-
mented. Plan the test cases for this step at the design stage or as early as possible—
before you begin the detailed coding of the routine or class to be tested.

■ Use “basis testing” to add detailed test cases to those that test the requirements 
and the design. Add data-flow tests, and then add the remaining test cases needed 
to thoroughly exercise the code. At a minimum, you should test every line of code. 
Basis testing and data-flow testing are described later in this chapter.

■ Use a checklist of the kinds of errors you’ve made on the project to date or have 
made on previous projects.

Design the test cases along with the product. This can help avoid errors in require-
ments and design, which tend to be more expensive than coding errors. Plan to test 
and find defects as early as possible because it’s cheaper to fix defects early.

Test First or Test Last?
Developers sometimes wonder whether it’s better to write test cases after the code has 
been written or beforehand (Beck 2003). The defect-cost increase graph—see Figure 3-1 
on page 30—suggests that writing test cases first will minimize the amount of time 
between when a defect is inserted into the code and when the defect is detected and 
removed. This turns out to be one of many reasons to write test cases first:

■ Writing test cases before writing the code doesn’t take any more effort than writ-
ing test cases after the code; it simply resequences the test-case-writing activity.
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■ When you write test cases first, you detect defects earlier and you can correct 
them more easily.

■ Writing test cases first forces you to think at least a little bit about the require-
ments and design before writing code, which tends to produce better code.

■ Writing test cases first exposes requirements problems sooner, before the code 
is written, because it’s hard to write a test case for a poor requirement.

■ If you save your test cases, which you should do, you can still test last, in addi-
tion to testing first.

All in all, I think test-first programming is one of the most beneficial software practices 
to emerge during the past decade and is a good general approach. But it isn’t a testing 
panacea, because it’s subject to the general limitations of developer testing, which are 
described next.

Limitations of Developer Testing

Watch for the following limitations with developer testing:

Developer tests tend to be “clean tests” Developers tend to test for whether the code 
works (clean tests) rather than test for all the ways the code breaks (dirty tests). 
Immature testing organizations tend to have about five clean tests for every dirty test. 
Mature testing organizations tend to have five dirty tests for every clean test. This ratio 
is not reversed by reducing the clean tests; it’s done by creating 25 times as many dirty 
tests (Boris Beizer in Johnson 1994).

Developer testing tends to have an optimistic view of test coverage Average program-
mers believe they are achieving 95 percent test coverage, but they’re typically achiev-
ing more like 80 percent test coverage in the best case, 30 percent in the worst case, 
and more like 50-60 percent in the average case (Boris Beizer in Johnson 1994).

Developer testing tends to skip more sophisticated kinds of test coverage Most devel-
opers view the kind of test coverage known as “100% statement coverage” as ade-
quate. This is a good start, but it’s hardly sufficient. A better coverage standard is to 
meet what’s called “100% branch coverage,” with every predicate term being tested 
for at least one true and one false value. Section 22.3, “Bag of Testing Tricks,” provides 
more details about how to accomplish this.

None of these points reduce the value of developer testing, but they do help put 
developer testing into proper perspective. As valuable as developer testing is, it isn’t 
sufficient to provide adequate quality assurance on its own and should be supple-
mented with other practices, including independent testing and collaborative con-
struction techniques.

1
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22.3 Bag of Testing Tricks
Why isn’t it possible to prove that a program is correct by testing it? To use testing to 
prove that a program works, you’d have to test every conceivable input value to the 
program and every conceivable combination of input values. Even for simple pro-
grams, such an undertaking would become massively prohibitive. Suppose, for exam-
ple, that you have a program that takes a name, an address, and a phone number and 
stores them in a file. This is certainly a simple program, much simpler than any whose 
correctness you’d really be worried about. Suppose further that each of the possible 
names and addresses is 20 characters long and that there are 26 possible characters to 
be used in them. This would be the number of possible inputs:

Even with this relatively small amount of input, you have one-with-66-zeros possible test 
cases. To put this in perspective, if Noah had gotten off the ark and started testing this 
program at the rate of a trillion test cases per second, he would be far less than 1 percent 
of the way done today. Obviously, if you added a more realistic amount of data, the task 
of exhaustively testing all possibilities would become even more impossible.

Incomplete Testing
Cross-Reference One way of 
telling whether you’ve cov-
ered all the code is to use a 
coverage monitor. For details, 
see “Coverage Monitors” in 
Section 22.5, “Test-Support 
Tools,” later in this chapter.

Since exhaustive testing is impossible, practically speaking, the art of testing is that of 
picking the test cases most likely to find errors. Of the 1066 possible test cases, only a 
few are likely to disclose errors that the others don’t. You need to concentrate on pick-
ing a few that tell you different things rather than a set that tells you the same thing 
over and over.

When you’re planning tests, eliminate those that don’t tell you anything new—that is, 
tests on new data that probably won’t produce an error if other, similar data didn’t 
produce an error. Various people have proposed various methods of covering the 
bases efficiently, and several of these methods are discussed in the following sections.

Structured Basis Testing

In spite of the hairy name, structured basis testing is a fairly simple concept. The idea 
is that you need to test each statement in a program at least once. If the statement is a 
logical statement—an if or a while, for example—you need to vary the testing according 

Name 2620 (20 characters, each with 26 possible choices)

Address 2620 (20 characters, each with 26 possible choices)

Phone Number 1010 (10 digits, each with 10 possible choices)

Total Possibilities = 2620 * 2620 * 1010 ≈ 1066
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to how complicated the expression inside the if or while is to make sure that the state-
ment is fully tested. The easiest way to make sure that you’ve gotten all the bases cov-
ered is to calculate the number of paths through the program and then develop the 
minimum number of test cases that will exercise every path through the program.

You might have heard of “code coverage” testing or “logic coverage” testing. They are 
approaches in which you test all the paths through a program. Since they cover all 
paths, they’re similar to structured basis testing, but they don’t include the idea of cov-
ering all paths with a minimal set of test cases. If you use code coverage or logic cover-
age testing, you might create many more test cases than you would need to cover the 
same logic with structured basis testing.

Cross-Reference This proce-
dure is similar to the one for 
measuring complexity in 
“How to Measure Complex-
ity” in Section 19.6.

You can compute the minimum number of cases needed for basis testing in this 
straightforward way:

1. Start with 1 for the straight path through the routine.

2. Add 1 for each of the following keywords, or their equivalents: if, while, repeat, 
for, and, and or.

3. Add 1 for each case in a case statement. If the case statement doesn’t have a 
default case, add 1 more.

Here’s an example:

Simple Example of Computing the Number of Paths Through a Java Program
Count “1” for the routine 
itself.

Count “2” for the if.

Statement1;

Statement2;

if ( x < 10 ) {

   Statement3;

}

Statement4;

In this instance, you start with one and count the if once to make a total of two. That 
means that you need to have at least two test cases to cover all the paths through the 
program. In this example, you’d need to have the following test cases:

■ Statements controlled by if are executed (x < 10).

■ Statements controlled by if aren’t executed (x >= 10).

The sample code needs to be a little more realistic to give you an accurate idea of how 
this kind of testing works. Realism in this case includes code containing defects.
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The following listing is a slightly more complicated example. This piece of code is 
used throughout the chapter and contains a few possible errors.

Example of Computing the Number of Cases Needed for Basis Testing 
of a Java Program

Count “1” for the routine 
itself.

1  // Compute Net Pay

2  totalWithholdings = 0;

3  

Count “2” for the for. 4  for ( id = 0; id < numEmployees; id++ ) {

5  

6     // compute social security withholding, if below the maximum

Count “3” for the if. 7     if ( m_employee[ id ].governmentRetirementWithheld < MAX_GOVT_RETIREMENT ) {

8        governmentRetirement = ComputeGovernmentRetirement( m_employee[ id ] );

9     }

10 

11    // set default to no retirement contribution

12    companyRetirement = 0;

13 

14    // determine discretionary employee retirement contribution

Count “4” for the if and “5” 
for the &&.

15    if ( m_employee[ id ].WantsRetirement &&

16       EligibleForRetirement( m_employee[ id ] ) ) {

17       companyRetirement = GetRetirement( m_employee[ id ] );

18    }

19 

20    grossPay = ComputeGrossPay ( m_employee[ id ] );

21 

22    // determine IRA contribution

23    personalRetirement = 0;

Count “6” for the if. 24    if ( EligibleForPersonalRetirement( m_employee[ id ] ) ) {

25       personalRetirement = PersonalRetirementContribution( m_employee[ id ],

26          companyRetirement, grossPay );

27    }

28 

29    // make weekly paycheck

30    withholding = ComputeWithholding( m_employee[ id ] );

31    netPay = grossPay - withholding - companyRetirement - governmentRetirement –

32       personalRetirement;

33    PayEmployee( m_employee[ id ], netPay );
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34 

35    // add this employee's paycheck to total for accounting

36    totalWithholdings = totalWithholdings + withholding;

37    totalGovernmentRetirement = totalGovernmentRetirement + governmentRetirement;

38    totalRetirement = totalRetirement + companyRetirement;

39 } 

40 

41 SavePayRecords( totalWithholdings, totalGovernmentRetirement, totalRetirement );

In this example, you’ll need one initial test case plus one for each of the five keywords, 
for a total of six. That doesn’t mean that any six test cases will cover all the bases. It 
means that, at a minimum, six cases are required. Unless the cases are constructed 
carefully, they almost surely won’t cover all the bases. The trick is to pay attention to 
the same keywords you used when counting the number of cases needed. Each key-
word in the code represents something that can be either true or false; make sure you 
have at least one test case for each true and at least one for each false.

Here is a set of test cases that covers all the bases in this example:

If the routine were much more complicated than this, the number of test cases you’d 
have to use just to cover all the paths would increase pretty quickly. Shorter routines 
tend to have fewer paths to test. Boolean expressions without a lot of ands and ors 
have fewer variations to test. Ease of testing is another good reason to keep your rou-
tines short and your boolean expressions simple.

Now that you’ve created six test cases for the routine and satisfied the demands of 
structured basis testing, can you consider the routine to be fully tested? Probably not. 

Case Test Description Test Data

1 Nominal case All boolean conditions are true

2 The initial for condi-
tion is false

numEmployees < 1

3 The first if is false m_employee[ id ].governmentRetirementWith-
held >=MAX_GOVT_RETIREMENT

4 The second if is false 
because the first part 
of the and is false

not m_employee[ id ].WantsRetirement

5 The second if is false 
because the second 
part of the and is false

not EligibleForRetirement( m_employee[id] )

6 The third if is false not EligibleForPersonalRetirement( m_employee[ 
id ] )

Note: This table will be extended with additional test cases throughout the chapter.
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This kind of testing assures you only that all of the code will be executed. It does not 
account for variations in data.

Data-Flow Testing

Considering the last section and this one together gives you another example illustrat-
ing that control flow and data flow are equally important in computer programming.

Data-flow testing is based on the idea that data usage is at least as error-prone as con-
trol flow. Boris Beizer claims that at least half of all code consists of data declarations 
and initializations (Beizer 1990).

Data can exist in one of three states:

■ Defined The data has been initialized, but it hasn’t been used yet.

■ Used The data has been used for computation, as an argument to a routine, or 
for something else.

■ Killed The data was once defined, but it has been undefined in some way. For 
example, if the data is a pointer, perhaps the pointer has been freed. If it’s a for-
loop index, perhaps the program is out of the loop and the programming lan-
guage doesn’t define the value of a for-loop index once it’s outside the loop. If 
it’s a pointer to a record in a file, maybe the file has been closed and the record 
pointer is no longer valid.

In addition to having the terms “defined,” “used,” and “killed,” it’s convenient to have 
terms that describe entering or exiting a routine immediately before or after doing 
something to a variable:

■ Entered The control flow enters the routine immediately before the variable is 
acted upon. A working variable is initialized at the top of a routine, for example.

■ Exited The control flow leaves the routine immediately after the variable is 
acted upon. A return value is assigned to a status variable at the end of a routine, 
for example.

Combinations of Data States

The normal combination of data states is that a variable is defined, used one or more 
times, and perhaps killed. View the following patterns suspiciously:

■ Defined-Defined If you have to define a variable twice before the value sticks, 
you don’t need a better program, you need a better computer! It’s wasteful and 
error-prone, even if not actually wrong.
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■ Defined-Exited If the variable is a local variable, it doesn’t make sense to 
define it and exit without using it. If it’s a routine parameter or a global variable, 
it might be all right.

■ Defined-Killed Defining a variable and then killing it suggests that either the 
variable is extraneous or the code that was supposed to use the variable is miss-
ing.

■ Entered-Killed This is a problem if the variable is a local variable. It wouldn’t 
need to be killed if it hasn’t been defined or used. If, on the other hand, it’s a rou-
tine parameter or a global variable, this pattern is all right as long as the variable 
is defined somewhere else before it’s killed.

■ Entered-Used Again, this is a problem if the variable is a local variable. The 
variable needs to be defined before it’s used. If, on the other hand, it’s a routine 
parameter or a global variable, the pattern is all right if the variable is defined 
somewhere else before it’s used.

■ Killed-Killed A variable shouldn’t need to be killed twice. Variables don’t 
come back to life. A resurrected variable indicates sloppy programming. Double 
kills are also fatal for pointers—one of the best ways to hang your machine is to 
kill (free) a pointer twice.

■ Killed-Used Using a variable after it has been killed is a logical error. If the 
code seems to work anyway (for example, a pointer that still points to memory 
that’s been freed), that’s an accident, and Murphy’s Law says that the code will 
stop working at the time when it will cause the most mayhem.

■ Used-Defined Using and then defining a variable might or might not be a 
problem, depending on whether the variable was also defined before it was 
used. Certainly if you see a used-defined pattern, it’s worthwhile to check for a 
previous definition.

Check for these anomalous sequences of data states before testing begins. After you’ve 
checked for the anomalous sequences, the key to writing data-flow test cases is to 
exercise all possible defined-used paths. You can do this to various degrees of thor-
oughness, including

■ All definitions. Test every definition of every variable—that is, every place at 
which any variable receives a value. This is a weak strategy because if you try to 
exercise every line of code, you’ll do this by default.

■ All defined-used combinations. Test every combination of defining a variable in 
one place and using it in another. This is a stronger strategy than testing all def-
initions because merely executing every line of code does not guarantee that 
every defined-used combination will be tested.
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Here’s an example:

Java Example of a Program Whose Data Flow Is to Be Tested
if ( Condition 1 ) {

   x = a;

}

else {

   x = b;

}

if ( Condition 2 ) {

   y = x + 1;

}

else {

   y = x - 1;

}

To cover every path in the program, you need one test case in which Condition 1 is true 
and one in which it’s false. You also need a test case in which Condition 2 is true and 
one in which it’s false. This can be handled by two test cases: Case 1 (Condition 1=True, 
Condition 2=True) and Case 2 (Condition 1=False, Condition 2=False). Those two cases 
are all you need for structured basis testing. They’re also all you need to exercise every 
line of code that defines a variable; they give you the weak form of data-flow testing 
automatically.

To cover every defined-used combination, however, you need to add a few more cases. 
Right now you have the cases created by having Condition 1 and Condition 2 true at the 
same time and Condition 1 and Condition 2 false at the same time:

x = a

...

y = x + 1

and

x = b

...

y = x - 1

But you need two more cases to test every defined-used combination: (1) x = a and 
then y = x - 1 and (2) x = b and then y = x + 1. In this example, you can get these com-
binations by adding two more cases: Case 3 (Condition 1=True, Condition 2=False) and 
Case 4 (Condition 1=False, Condition 2=True).

A good way to develop test cases is to start with structured basis testing, which gives 
you some if not all of the defined-used data flows. Then add the cases you still need to 
have a complete set of defined-used data-flow test cases.
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As discussed in the previous section, structured basis testing provided six test cases 
for the routine beginning on page 507. Data-flow testing of each defined-used pair 
requires several more test cases, some of which are covered by existing test cases and 
some of which aren’t. Here are all the data-flow combinations that add test cases 
beyond the ones generated by structured basis testing:

Once you run through the process of listing data-flow test cases a few times, you’ll get 
a sense of which cases are fruitful and which are already covered. When you get stuck, 
list all the defined-used combinations. That might seem like a lot of work, but it’s guar-
anteed to show you any cases that you didn’t test for free in the basis-testing approach.

Equivalence Partitioning
Cross-Reference Equiva-
lence partitioning is dis-
cussed in far more depth in 
the books listed in the “Addi-
tional Resources” section at 
the end of this chapter.

A good test case covers a large part of the possible input data. If two test cases flush 
out exactly the same errors, you need only one of them. The concept of “equivalence 
partitioning” is a formalization of this idea and helps reduce the number of test cases 
required.

In the listing beginning on page 507, line 7 is a good place to use equivalence partition-
ing. The condition to be tested is m_employee[ ID ].governmentRetirementWithheld < 
MAX_GOVT_RETIREMENT. This case has two equivalence classes: the class in which 
m_employee[ ID ].governmentRetirementWithheld is less than MAX_GOVT_RETIREMENT 
and the class in which it’s greater than or equal to MAX_GOVT_RETIREMENT. 
Other parts of the program might have other related equivalence classes that imply 
that you need to test more than two possible values of m_employee[ ID ].government-
RetirementWithheld, but as far as this part of the program is concerned, only two are 
needed.

Thinking about equivalence partitioning won’t give you a lot of new insight into a pro-
gram when you have already covered the program with basis and data-flow testing. It’s 
especially helpful, however, when you’re looking at a program from the outside (from 
a specification rather than the source code) or when the data is complicated and the 
complications aren’t all reflected in the program’s logic.

Case Test Description
7 Define companyRetirement in line 12, and use it first in line 26.

This isn’t necessarily covered by any of the previous test cases.
8 Define companyRetirement in line 12, and use it first in line 31.

This isn’t necessarily covered by any of the previous test cases.
9 Define companyRetirement in line 17, and use it first in line 31.

This isn’t necessarily covered by any of the previous test cases.
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Error Guessing
Cross-Reference For details 
on heuristics, see Section 
2.2, “How to Use Software 
Metaphors.”

In addition to the formal test techniques, good programmers use a variety of less for-
mal, heuristic techniques to expose errors in their code. One heuristic is the technique 
of error guessing. The term “error guessing” is a lowbrow name for a sensible concept. 
It means creating test cases based upon guesses about where the program might have 
errors, although it implies a certain amount of sophistication in the guessing.

You can base guesses on intuition or on past experience. Chapter 21, “Collaborative 
Construction,” points out that one virtue of inspections is that they produce and 
maintain a list of common errors. The list is used to check new code. When you keep 
records of the kinds of errors you’ve made before, you improve the likelihood that 
your “error guess” will discover an error.

The next few sections describe specific kinds of errors that lend themselves to error 
guessing.

Boundary Analysis

One of the most fruitful areas for testing is boundary conditions—off-by-one errors. 
Saying num – 1 when you mean num and saying >= when you mean > are common 
mistakes.

The idea of boundary analysis is to write test cases that exercise the boundary condi-
tions. Pictorially, if you’re testing for a range of values that are less than max, you have 
three possible conditions:

As shown, there are three boundary cases: just less than max, max itself, and just 
greater than max. It takes three cases to ensure that none of the common mistakes has 
been made.

The code sample on page 507 contains a check for m_employee[ ID ].governmentRe-
tirementWithheld < MAX_GOVT_RETIREMENT. According to the principles of 
boundary analysis, three cases should be examined:

Case Test Description

1 Case 1 is defined so that the true condition for m_employee[ ID ].govern-
mentRetirementWithheld < MAX_GOVT_RETIREMENT is the first case on the 
true side of the boundary. Thus, the Case 1 test case sets m_employee[ ID 
].governmentRetirementWithheld to MAX_GOVT_RETIREMENT – 1. This test 
case was already generated.

Boundary 
below Max

Boundary 
above MaxMax
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Compound Boundaries

Boundary analysis also applies to minimum and maximum allowable values. In this 
example, it might be minimum or maximum grossPay, companyRetirement, or Personal-
RetirementContribution, but because calculations of those values are outside the scope 
of the routine, test cases for them aren’t discussed further here.

A more subtle kind of boundary condition occurs when the boundary involves a com-
bination of variables. For example, if two variables are multiplied together, what hap-
pens when both are large positive numbers? Large negative numbers? 0? What if all 
the strings passed to a routine are uncommonly long?

In the running example, you might want to see what happens to the variables total-
Withholdings, totalGovernmentRetirement, and totalRetirement when every member of a 
large group of employees has a large salary—say, a group of programmers at $250,000 
each. (We can always hope!) This calls for another test case:

A test case in the same vein but on the opposite side of the looking glass would be a 
small group of employees, each of whom has a salary of $0.00:

Classes of Bad Data

Aside from guessing that errors show up around boundary conditions, you can guess 
about and test for several other classes of bad data. Typical bad-data test cases include

■ Too little data (or no data)

■ Too much data

3 Case 3 is defined so that the false condition for m_employee[ ID ]. govern-
mentRetirementWithheld < MAX_GOVT_RETIREMENT is on the false side of 
the boundary. Thus, the Case 3 test case sets m_employee[ ID ].governmen-
tRetirementWithheld to MAX_GOVT_RETIREMENT + 1. This test case was 
also already generated.

10 An additional test case is added for the case directly on the boundary in 
which m_employee [ ID ].governmentRetirementWithheld = 
MAX_GOVT_RETIREMENT.

Case Test Description

11 A large group of employees, each of whom has a large salary (what consti-
tutes “large” depends on the specific system being developed)—for the 
sake of example, we’ll say 1000 employees, each with a salary of $250,000, 
none of whom have had any social security tax withheld and all of whom 
want retirement withholding.

Case Test Description

12 A group of 10 employees, each of whom has a salary of $0.00.
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■ The wrong kind of data (invalid data)

■ The wrong size of data

■ Uninitialized data

Some of the test cases you would think of if you followed these suggestions have 
already been covered. For example, “too little data” is covered by Cases 2 and 12, and 
it’s hard to come up with anything for “wrong size of data.” Classes of bad data none-
theless gives rise to a few more cases:

Classes of Good Data

When you try to find errors in a program, it’s easy to overlook the fact that the nomi-
nal case might contain an error. Usually the nominal cases described in the basis-test-
ing section represent one kind of good data. Following are other kinds of good data 
that are worth checking. Checking each of these kinds of data can reveal errors, 
depending on the item being tested.

■ Nominal cases—middle-of-the-road, expected values

■ Minimum normal configuration

■ Maximum normal configuration

■ Compatibility with old data

The minimum normal configuration is useful for testing not just one item, but a group 
of items. It’s similar in spirit to the boundary condition of many minimal values, but 
it’s different in that it creates the set of minimum values out of the set of what is nor-
mally expected. One example would be to save an empty spreadsheet when testing a 
spreadsheet. For testing a word processor, it would be saving an empty document. In 
the case of the running example, testing the minimum normal configuration would 
add the following test case:

The maximum normal configuration is the opposite of the minimum. It’s similar in 
spirit to boundary testing, but again, it creates a set of maximum values out of the set 

Case Test Description

13 An array of 100,000,000 employees. Tests for too much data. Of course, 
how much is too much would vary from system to system, but for the sake 
of the example, assume that this is far too much.

14 A negative salary. Wrong kind of data.

15 A negative number of employees. Wrong kind of data.

Case Test Description

16 A group of one employee. To test the minimum normal configuration.
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of expected values. An example of this would be saving a spreadsheet that’s as large as 
the “maximum spreadsheet size” advertised on the product’s packaging. Or printing 
the maximum-size spreadsheet. For a word processor, it would be saving a document 
of the largest recommended size. In the case of the running example, testing the max-
imum normal configuration depends on the maximum normal number of employees. 
Assuming it’s 500, you would add the following test case:

The last kind of normal data testing—testing for compatibility with old data—comes 
into play when the program or routine is a replacement for an older program or rou-
tine. The new routine should produce the same results with old data that the old rou-
tine did, except in cases in which the old routine was defective. This kind of continuity 
between versions is the basis for regression testing, the purpose of which is to ensure 
that corrections and enhancements maintain previous levels of quality without back-
sliding. In the case of the running example, the compatibility criterion wouldn’t add 
any test cases.

Use Test Cases That Make Hand-Checks Convenient

Let’s suppose you’re writing a test case for a nominal salary; you need a nominal sal-
ary, and the way you get one is to type in whatever numbers your hands land on. I’ll 
try it:

1239078382346

OK. That’s a pretty high salary, a little over a trillion dollars, in fact, but if I trim it so 
that it’s somewhat realistic, I get $90,783.82.

Now, further suppose that the test case succeeds—that is, it finds an error. How do you 
know that it’s found an error? Well, presumably, you know what the answer is and 
what it should be because you calculated the correct answer by hand. When you try to 
do hand-calculations with an ugly number like $90,783.82, however, you’re as likely to 
make an error in the hand-calc as you are to discover one in your program. On the 
other hand, a nice, even number like $20,000 makes number crunching a snap. The 0s 
are easy to punch into the calculator, and multiplying by 2 is something most pro-
grammers can do without using their fingers and toes.

You might think that an ugly number like $90,783.82 would be more likely to reveal 
errors, but it’s no more likely to than any other number in its equivalence class.

Case Test Description

17 A group of 500 employees. To test the maximum normal configuration.



22.4 Typical Errors 517

22.4 Typical Errors
This section is dedicated to the proposition that you can test best when you know as 
much as possible about your enemy: errors.

Which Classes Contain the Most Errors?

It’s natural to assume that defects are distributed evenly throughout your source code. 
If you have an average of 10 defects per 1000 lines of code, you might assume that 
you’ll have one defect in a class that contains 100 lines of code. This is a natural 
assumption, but it’s wrong.

Capers Jones reported that a focused quality-improvement program at IBM identified 
31 of 425 classes in the IMS system as error-prone. The 31 classes were repaired or 
completely redeveloped, and, in less than a year, customer-reported defects against 
IMS were reduced ten to one. Total maintenance costs were reduced by about 45 per-
cent. Customer satisfaction improved from “unacceptable” to “good” (Jones 2000).

Most errors tend to be concentrated in a few highly defective routines. Here is the gen-
eral relationship between errors and code:

■ Eighty percent of the errors are found in 20 percent of a project’s classes or rou-
tines (Endres 1975, Gremillion 1984, Boehm 1987b, Shull et al 2002).

■ Fifty percent of the errors are found in 5 percent of a project’s classes (Jones 
2000).

These relationships might not seem so important until you recognize a few corollaries. 
First, 20% of a project’s routines contribute 80% of the cost of development (Boehm 
1987b). That doesn’t necessarily mean that the 20% that cost the most are the same 
as the 20% with the most defects, but it’s pretty suggestive.

Second, regardless of the exact proportion of the cost contributed by highly defective 
routines, highly defective routines are extremely expensive. In a classic study in the 
1960s, IBM performed an analysis of its OS/360 operating system and found that 
errors were not distributed evenly across all routines but were concentrated into a few. 
Those error-prone routines were found to be “the most expensive entities in program-
ming” (Jones 1986a). They contained as many as 50 defects per 1000 lines of code, 
and fixing them often cost 10 times what it took to develop the whole system. (The 
costs included customer support and in-the-field maintenance.)

KEY POINT
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Cross-Reference Another 
class of routines that tend to 
contain a lot of errors is the 
class of overly complex rou-
tines. For details on identify-
ing and simplifying routines, 
see “General Guidelines for 
Reducing Complexity” in 
Section 19.6.

Third, the implication of expensive routines for development is clear. As the old 
expression goes, “time is money.” The corollary is that “money is time,” and if you can 
cut close to 80 percent of the cost by avoiding troublesome routines, you can cut a 
substantial amount of the schedule as well. This is a clear illustration of the General 
Principle of Software Quality: improving quality improves the development schedule 
and reduces development costs.

Fourth, the implication of avoiding troublesome routines for maintenance is equally 
clear. Maintenance activities should be focused on identifying, redesigning, and 
rewriting from the ground up those routines that have been identified as error-prone. 
In the IMS project mentioned earlier, productivity of IMS releases improved about 15 
percent after replacement of the error-prone classes (Jones 2000).

Errors by Classification
Cross-Reference For a list of 
all the checklists in the book, 
see the list following the 
book’s table of contents.

Several researchers have tried to classify errors by type and determine the extent to 
which each kind of error occurs. Every programmer has a list of errors that have been 
particularly troublesome: off-by-one errors, forgetting to reinitialize a loop variable, 
and so on. The checklists presented throughout the book provide more details.

Boris Beizer combined data from several studies, arriving at an exceptionally detailed 
error taxonomy (Beizer 1990). Following is a summary of his results:

Beizer reported his results to a precise two decimal places, but the research into error 
types has generally been inconclusive. Different studies report wildly different kinds 
of errors, and studies that report on similar kinds of errors arrive at wildly different 
results, results that differ by 50% rather than by hundredths of a percentage point.

Given the wide variations in reports, combining results from multiple studies as 
Beizer has done probably doesn’t produce meaningful data. But even if the data isn’t 
conclusive, some of it is suggestive. Following are some of the suggestions that can be 
derived from the data:

25.18% Structural

22.44% Data

16.19% Functionality as implemented

9.88% Construction

8.98% Integration

8.12% Functional requirements

2.76% Test definition or execution

1.74% System, software architecture

4.71% Unspecified
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The scope of most errors is fairly limited One study found that 85 percent of errors 
could be corrected without modifying more than one routine (Endres 1975).

Many errors are outside the domain of construction Researchers conducting a series 
of 97 interviews found that the three most common sources of errors were thin appli-
cation-domain knowledge, fluctuating and conflicting requirements, and communica-
tion and coordination breakdown (Curtis, Krasner, and Iscoe 1988).

If you see hoof prints, think 
horses—not zebras. The OS 
is probably not broken. And 
the database is probably just 
fine.
—Andy Hunt and 
Dave Thomas

Most construction errors are the programmers’ fault A pair of studies performed 
many years ago found that, of total errors reported, roughly 95% are caused by pro-
grammers, 2% by systems software (the compiler and the operating system), 2% by 
some other software, and 1% by the hardware (Brown and Sampson 1973, Ostrand 
and Weyuker 1984). Systems software and development tools are used by many more 
people today than they were in the 1970s and 1980s, and so my best guess is that, 
today, an even higher percentage of errors are the programmers’ fault.

Clerical errors (typos) are a surprisingly common source of problems One study 
found that 36% of all construction errors were clerical mistakes (Weiss 1975). A 1987 
study of almost 3 million lines of flight-dynamics software found that 18% of all errors 
were clerical (Card 1987). Another study found that 4% of all errors were spelling 
errors in messages (Endres 1975). In one of my programs, a colleague found several 
spelling errors simply by running all the strings from the executable file through a 
spelling checker. Attention to detail counts. If you doubt that, consider that three of 
the most expensive software errors of all time—costing $1.6 billion, $900 million, and 
$245 million—involved the change of a single character in a previously correct program 
(Weinberg 1983).

Misunderstanding the design is a recurring theme in studies of programmer errors
Beizer’s compilation study, for what it’s worth, found that 16% of the errors grew out 
of misinterpretations of the design (Beizer 1990). Another study found that 19% of 
the errors resulted from misunderstood design (Weiss 1975). It’s worthwhile to take 
the time you need to understand the design thoroughly. Such time doesn’t produce 
immediate dividends—you don’t necessarily look like you’re working—but it pays off 
over the life of the project.

Most errors are easy to fix About 85% of errors can be fixed in less than a few hours. 
About 15% can be fixed in a few hours to a few days. And about 1% take longer (Weiss 
1975, Ostrand and Weyuker 1984, Grady 1992). This result is supported by Barry 
Boehm’s observation that about 20% of the errors take about 80% of the resources to 
fix (Boehm 1987b). Avoid as many of the hard errors as you can by doing require-
ments and design reviews upstream. Handle the numerous small errors as efficiently 
as you can.
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It’s a good idea to measure your own organization’s experiences with errors The 
diversity of results cited in this section indicates that people in different organizations 
have tremendously different experiences. That makes it hard to apply other organiza-
tions’ experiences to yours. Some results go against common intuition; you might 
need to supplement your intuition with other tools. A good first step is to start mea-
suring your development process so that you know where the problems are.

Proportion of Errors Resulting from Faulty Construction

If the data that classifies errors is inconclusive, so is much of the data that attributes 
errors to the various development activities. One certainty is that construction always 
results in a significant number of errors. Sometimes people argue that the errors 
caused by construction are cheaper to fix than the errors caused by requirements or 
design. Fixing individual construction errors might be cheaper, but the evidence 
doesn’t support such a claim about the total cost.

Here are my conclusions:

■ On small projects, construction defects make up the vast bulk of all errors. In 
one study of coding errors on a small project (1000 lines of code), 75% of 
defects resulted from coding, compared to 10% from requirements and 15% 
from design (Jones 1986a). This error breakdown appears to be representative 
of many small projects.

■ Construction defects account for at least 35% of all defects regardless of project 
size. Although the proportion of construction defects is smaller on large 
projects, they still account for at least 35% of all defects (Beizer 1990, Jones 
2000). Some researchers have reported proportions in the 75% range even on 
very large projects (Grady 1987). In general, the better the application area is 
understood, the better the overall architecture is. Errors then tend to be concen-
trated in detailed design and coding (Basili and Perricone 1984).

■ Construction errors, although cheaper to fix than requirements and design 
errors, are still expensive. A study of two very large projects at Hewlett-Packard 
found that the average construction defect cost 25–50% as much to fix as the 
average design error (Grady 1987). When the greater number of construction 
defects was figured into the overall equation, the total cost to fix construction 
defects was one to two times as much as the cost attributed to design defects.

Figure 22-2 provides a rough idea of the relationship between project size and the 
source of errors.
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Figure 22-2 As the size of the project increases, the proportion of errors committed during 
construction decreases. Nevertheless, construction errors account for 45–75% of all errors 
on even the largest projects.

How Many Errors Should You Expect to Find?

The number of errors you should expect to find varies according to the quality of the 
development process you use. Here’s the range of possibilities:

■ Industry average experience is about 1–25 errors per 1000 lines of code for 
delivered software. The software has usually been developed using a hodge-
podge of techniques (Boehm 1981, Gremillion 1984, Yourdon 1989a, Jones 
1998, Jones 2000, Weber 2003). Cases that have one-tenth as many errors as 
this are rare; cases that have 10 times more tend not to be reported. (They prob-
ably aren’t ever completed!)

■ The Applications Division at Microsoft experiences about 10–20 defects per 
1000 lines of code during in-house testing and 0.5 defects per 1000 lines of code 
in released product (Moore 1992). The technique used to achieve this level is a 
combination of the code-reading techniques described in Section 21.4, “Other 
Kinds of Collaborative Development Practices,” and independent testing.

■ Harlan Mills pioneered “cleanroom development,” a technique that has been 
able to achieve rates as low as 3 defects per 1000 lines of code during in-house 
testing and 0.1 defects per 1000 lines of code in released product (Cobb and 
Mills 1990). A few projects—for example, the space-shuttle software—have 
achieved a level of 0 defects in 500,000 lines of code by using a system of formal 
development methods, peer reviews, and statistical testing (Fishman 1996).

■ Watts Humphrey reports that teams using the Team Software Process (TSP) have 
achieved defect levels of about 0.06 defects per 1000 lines of code. TSP focuses on 
training developers not to create defects in the first place (Weber 2003).
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On some projects, 
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The results of the TSP and cleanroom projects confirm another version of the General 
Principle of Software Quality: it’s cheaper to build high-quality software than it is to 
build and fix low-quality software. Productivity for a fully checked-out, 80,000-line 
cleanroom project was 740 lines of code per work-month. The industry average rate 
for fully checked-out code is closer to 250–300 lines per work-month, including all 
noncoding overhead (Cusumano et al 2003). The cost savings and productivity come 
from the fact that virtually no time is devoted to debugging on TSP or cleanroom 
projects. No time spent on debugging? That is truly a worthy goal!

Errors in Testing Itself

You may have had an experience like this: The software is found to be in error. You 
have a few immediate hunches about which part of the code might be wrong, but all 
that code seems to be correct. You run several more test cases to try to refine the error, 
but all the new test cases produce correct results. You spend several hours reading 
and rereading the code and hand-calculating the results. They all check out. After a 
few more hours, something causes you to reexamine the test data. Eureka! The error’s 
in the test data! How idiotic it feels to waste hours tracking down an error in the test 
data rather than in the code!

This is a common experience. Test cases are often as likely or more likely to contain 
errors than the code being tested (Weiland 1983, Jones 1986a, Johnson 1994). The 
reasons are easy to find—especially when the developer writes the test cases. Test cases 
tend to be created on the fly rather than through a careful design and construction 
process. They are often viewed as one-time tests and are developed with the care com-
mensurate with something to be thrown away.

You can do several things to reduce the number of errors in your test cases:

Check your work Develop test cases as carefully as you develop code. Such care cer-
tainly includes double-checking your own testing. Step through test code in a debug-
ger, line by line, just as you would production code. Walk-throughs and inspections of 
test data are appropriate.

Plan test cases as you develop your software Effective planning for testing should 
start at the requirements stage or as soon as you get the assignment for the program. 
This helps to avoid test cases based on mistaken assumptions.

Keep your test cases Spend a little quality time with your test cases. Save them for 
regression testing and for work on version 2. It’s easy to justify the trouble if you know 
you’re going to keep them rather than throw them away.

Plug unit tests into a test framework Write code for unit tests first, but integrate 
them into a systemwide test framework (like JUnit) as you complete each test. Having 
an integrated test framework prevents the tendency, just mentioned, to throw away 
test cases.

KEY POINT

1
2
3

HARD DATA



22.5 Test-Support Tools 523

22.5 Test-Support Tools
This section surveys the kinds of testing tools you can buy commercially or build 
yourself. It won’t name specific products because they could easily be out of date by 
the time you read this. Refer to your favorite programmer’s magazine for the most 
recent specifics.

Building Scaffolding to Test Individual Classes

The term “scaffolding” comes from building construction. Scaffolding is built so that 
workers can reach parts of a building they couldn’t reach otherwise. Software scaffold-
ing is built for the sole purpose of making it easy to exercise code.

Further Reading For several 
good examples of scaffold-
ing, see Jon Bentley’s essay 
“A Small Matter of Program-
ming” in Programming 
Pearls, 2d ed. (2000).

One kind of scaffolding is a class that’s dummied up so that it can be used by another 
class that’s being tested. Such a class is called a “mock object” or “stub object” 
(Mackinnon, Freemand, and Craig 2000; Thomas and Hunt 2002). A similar 
approach can be used with low-level routines, which are called “stub routines.” You 
can make a mock object or stub routines more or less realistic, depending on how 
much veracity you need. In these cases, the scaffolding can

■ Return control immediately, having taken no action.

■ Test the data fed to it.

■ Print a diagnostic message, perhaps an echo of the input parameters, or log a 
message to a file.

■ Get return values from interactive input.

■ Return a standard answer regardless of the input.

■ Burn up the number of clock cycles allocated to the real object or routine.

■ Function as a slow, fat, simple, or less accurate version of the real object or routine.

Another kind of scaffolding is a fake routine that calls the real routine being tested. 
This is called a “driver” or, sometimes, a “test harness.” This scaffolding can

■ Call the object with a fixed set of inputs.

■ Prompt for input interactively and call the object with it.

■ Take arguments from the command line (in operating systems that support it) 
and call the object.

■ Read arguments from a file and call the object.

■ Run through predefined sets of input data in multiple calls to the object.
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Cross-Reference The line 
between testing tools and 
debugging tools is fuzzy. For 
details on debugging tools, 
see Section 23.5, “Debug-
ging Tools—Obvious and 
Not-So-Obvious.”

A final kind of scaffolding is the dummy file, a small version of the real thing that has 
the same types of components that a full-size file has. A small dummy file offers a cou-
ple of advantages. Because it’s small, you can know its exact contents and can be rea-
sonably sure that the file itself is error-free. And because you create it specifically for 
testing, you can design its contents so that any error in using it is conspicuous.

cc2e.com/2268 Obviously, building scaffolding requires some work, but if an error is ever detected in 
a class, you can reuse the scaffolding. And numerous tools exist to streamline creation 
of mock objects and other scaffolding. If you use scaffolding, the class can also be 
tested without the risk of its being affected by interactions with other classes. Scaffold-
ing is particularly useful when subtle algorithms are involved. It’s easy to get stuck in 
a rut in which it takes several minutes to execute each test case because the code being 
exercised is embedded in other code. Scaffolding allows you to exercise the code 
directly. The few minutes that you spend building scaffolding to exercise the deeply 
buried code can save hours of debugging time.

You can use any of the numerous test frameworks available to provide scaffolding for 
your programs (JUnit, CppUnit, NUnit, and so on). If your environment isn’t sup-
ported by one of the existing test frameworks, you can write a few routines in a class 
and include a main() scaffolding routine in the file to test the class, even though the 
routines being tested aren’t intended to stand by themselves. The main() routine can 
read arguments from the command line and pass them to the routine being tested so 
that you can exercise the routine on its own before integrating it with the rest of the 
program. When you integrate the code, leave the routines and the scaffolding code 
that exercises them in the file and use preprocessor commands or comments to deac-
tivate the scaffolding code. Since it’s preprocessed out, it doesn’t affect the executable 
code, and since it’s at the bottom of the file, it’s not in the way visually. No harm is 
done by leaving it in. It’s there if you need it again, and it doesn’t burn up the time it 
would take to remove and archive it.

Diff Tools
Cross-Reference For details 
on regression testing, see 
“Retesting (Regression Test-
ing)” in Section 22.6.

Regression testing, or retesting, is a lot easier if you have automated tools to check the 
actual output against the expected output. One easy way to check printed output is to 
redirect the output to a file and use a file-comparison tool such as diff to compare the 
new output against the expected output that was sent to a file previously. If the out-
puts aren’t the same, you have detected a regression error.

Test-Data Generators
cc2e.com/2275 You can also write code to exercise selected pieces of a program systematically. A few 

years ago, I developed a proprietary encryption algorithm and wrote a file-encryption 
program to use it. The intent of the program was to encode a file so that it could be 
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decoded only with the right password. The encryption didn’t just change the file 
superficially; it altered the entire contents. It was critical that the program be able to 
decode a file properly, because the file would be ruined otherwise.

I set up a test-data generator that fully exercised the encryption and decryption parts 
of the program. It generated files of random characters in random sizes, from 0K 
through 500K. It generated passwords of random characters in random lengths from 
1 through 255. For each random case, it generated two copies of the random file, 
encrypted one copy, reinitialized itself, decrypted the copy, and then compared each 
byte in the decrypted copy to the unaltered copy. If any bytes were different, the gen-
erator printed all the information I needed to reproduce the error.

I weighted the test cases toward the average length of my files, 30K, which was consid-
erably shorter than the maximum length of 500K. If I had not weighted the test cases 
toward a shorter length, file lengths would have been uniformly distributed between 
0K and 500K. The average tested file length would have been 250K. The shorter aver-
age length meant that I could test more files, passwords, end-of-file conditions, odd 
file lengths, and other circumstances that might produce errors than I could have 
with uniformly random lengths.

The results were gratifying. After running only about 100 test cases, I found two errors 
in the program. Both arose from special cases that might never have shown up in prac-
tice, but they were errors nonetheless and I was glad to find them. After fixing them, 
I ran the program for weeks, encrypting and decrypting over 100,000 files without an 
error. Given the range in file contents, lengths, and passwords I tested, I could confi-
dently assert that the program was correct.

Here are some lessons from this story:

■ Properly designed random-data generators can generate unusual combinations 
of test data that you wouldn’t think of.

■ Random-data generators can exercise your program more thoroughly than you 
can.

■ You can refine randomly generated test cases over time so that they emphasize a 
realistic range of input. This concentrates testing in the areas most likely to be 
exercised by users, maximizing reliability in those areas.

■ Modular design pays off during testing. I was able to pull out the encryption and 
decryption code and use it independently of the user-interface code, making the 
job of writing a test driver straightforward.

■ You can reuse a test driver if the code it tests ever has to be changed. Once I had 
corrected the two early errors, I was able to start retesting immediately.
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Coverage Monitors
cc2e.com/2282 Karl Wiegers reports that testing done without measuring code coverage typically 

exercises only about 50–60% of the code (Wiegers 2002). A coverage monitor is a tool 
that keeps track of the code that’s exercised and the code that isn’t. A coverage moni-
tor is especially useful for systematic testing because it tells you whether a set of test 
cases fully exercises the code. If you run your full set of test cases and the coverage 
monitor indicates that some code still hasn’t been executed, you know that you need 
more tests.

Data Recorder/Logging

Some tools can monitor your program and collect information on the program’s state 
in the event of a failure—similar to the “black box” that airplanes use to diagnose crash 
results. Strong logging aids error diagnosis and supports effective service after the 
software has been released.

You can build your own data recorder by logging significant events to a file. Record 
the system state prior to an error and details of the exact error conditions. This func-
tionality can be compiled into the development version of the code and compiled out 
of the released version. Alternatively, if you implement logging with self-pruning stor-
age and thoughtful placement and content of error messages, you can include logging 
functions in release versions. 

Symbolic Debuggers
Cross-Reference The avail-
ability of debuggers varies 
according to the maturity of 
the technology environment. 
For more on this phenome-
non, see Section 4.3, “Your 
Location on the Technology 
Wave.”

A symbolic debugger is a technological supplement to code walk-throughs and 
inspections. A debugger has the capacity to step through code line by line, keep track 
of variables’ values, and always interpret the code the same way the computer does. 
The process of stepping through a piece of code in a debugger and watching it work is 
enormously valuable.

Walking through code in a debugger is in many respects the same process as having 
other programmers step through your code in a review. Neither your peers nor the 
debugger has the same blind spots that you do. The additional benefit with a debug-
ger is that it’s less labor-intensive than a team review. Watching your code execute 
under a variety of input-data sets is good assurance that you’ve implemented the 
code you intended to.

A good debugger is even a good tool for learning about your language because you 
can see exactly how the code executes. You can toggle back and forth between a 
view of your high-level language code and a view of the assembler code to see how 
the high-level code is translated into assembler. You can watch registers and the 
stack to see how arguments are passed. You can look at code your compiler has 
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optimized to see the kinds of optimizations that are performed. None of these ben-
efits has much to do with the debugger’s intended use—diagnosing errors that have 
already been detected—but imaginative use of a debugger produces benefits far 
beyond its initial charter.

System Perturbers
cc2e.com/2289 Another class of test-support tools are designed to perturb a system. Many people 

have stories of programs that work 99 times out of 100 but fail on the hundredth run-
through with the same data. The problem is nearly always a failure to initialize a vari-
able somewhere, and it’s usually hard to reproduce because 99 times out of 100 the 
uninitialized variable happens to be 0.

Test-support tools in this class have a variety of capabilities:

■ Memory filling You want to be sure you don’t have any uninitialized variables. 
Some tools fill memory with arbitrary values before you run your program so 
that uninitialized variables aren’t set to 0 accidentally. In some cases, the mem-
ory might be set to a specific value. For example, on the x86 processor, the value 
0xCC is the machine-language code for a breakpoint interrupt. If you fill mem-
ory with 0xCC and have an error that causes you to execute something you 
shouldn’t, you’ll hit a breakpoint in the debugger and detect the error.

■ Memory shaking In multitasking systems, some tools can rearrange memory 
as your program operates so that you can be sure you haven’t written any code 
that depends on data being in absolute rather than relative locations.

■ Selective memory failing A memory driver can simulate low-memory condi-
tions in which a program might be running out of memory, fail on a memory 
request, grant an arbitrary number of memory requests before failing, or fail on 
an arbitrary number of requests before granting one. This is especially useful for 
testing complicated programs that work with dynamically allocated memory.

■ Memory-access checking (bounds checking) Bounds checkers watch 
pointer operations to make sure your pointers behave themselves. Such a tool is 
useful for detecting uninitialized or dangling pointers.

Error Databases
cc2e.com/2296 One powerful test tool is a database of errors that have been reported. Such a database 

is both a management and a technical tool. It allows you to check for recurring errors, 
track the rate at which new errors are being detected and corrected, and track the sta-
tus of open and closed errors and their severity. For details on what information you 
should keep in an error database, see Section 22.7, “Keeping Test Records.”
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22.6 Improving Your Testing
The steps for improving your testing are similar to the steps for improving any other 
process. You have to know exactly what the process does so that you can vary it 
slightly and observe the effects of the variation. When you observe a change that has 
a positive effect, you modify the process so that it becomes a little better. The following 
sections describe how to do this with testing.

Planning to Test
Cross-Reference Part of 
planning to test is formalizing 
your plans in writing. To find 
further information on test 
documentation, refer to the 
“Additional Resources” sec-
tion at the end of Chapter 32.

One key to effective testing is planning from the beginning of the project to test. Put-
ting testing on the same level of importance as design or coding means that time will 
be allocated to it, it will be viewed as important, and it will be a high-quality process. 
Test planning is also an element of making the testing process repeatable. If you can’t 
repeat it, you can’t improve it.

Retesting (Regression Testing)

Suppose that you’ve tested a product thoroughly and found no errors. Suppose that 
the product is then changed in one area and you want to be sure that it still passes all 
the tests it did before the change—that the change didn’t introduce any new defects. 
Testing designed to make sure the software hasn’t taken a step backward, or 
“regressed,” is called “regression testing.”

It’s nearly impossible to produce a high-quality software product unless you can sys-
tematically retest it after changes have been made. If you run different tests after each 
change, you have no way of knowing for sure that no new defects have been intro-
duced. Consequently, regression testing must run the same tests each time. Some-
times new tests are added as the product matures, but the old tests are kept too.

Automated Testing

The only practical way to manage regression testing is to automate it. People become 
numbed from running the same tests many times and seeing the same test results 
many times. It becomes too easy to overlook errors, which defeats the purpose of 
regression testing. Test guru Boriz Beizer reports that the error rate in manual testing 
is comparable to the bug rate in the code being tested. He estimates that in manual 
testing, only about half of all the tests are executed properly (Johnson 1994).

Benefits of test automation include the following:

■ An automated test has a lower chance of being wrong than a manual test.

■ Once you automate a test, it’s readily available for the rest of the project with lit-
tle incremental effort on your part.

KEY POINT
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■ If tests are automated, they can be run frequently to see whether any code check-
ins have broken the code. Test automation is part of the foundation of test-inten-
sive practices, such as the daily build and smoke test and Extreme Programming.

■ Automated tests improve your chances of detecting any given problem at the 
earliest possible moment, which tends to minimize the work needed to diag-
nose and correct the problem.

■ Automated tests provide a safety net for large-scale code changes because they 
increase your chance of quickly detecting defects inserted during the modifications.

Cross-Reference For more 
on the relationship between 
technology maturity and 
development practices, see 
Section 4.3, “Your Location 
on the Technology Wave.”

■ Automated tests are especially useful in new, volatile technology environments 
because they flush out changes in the environments sooner rather than later.

The main tools used to support automated testing provide test scaffolding, generate 
input, capture output, and compare actual output with expected output. The variety 
of tools discussed in the preceding section will perform some or all of these functions.

22.7 Keeping Test Records
Aside from making the testing process repeatable, you need to measure the project so 
that you can tell for sure whether changes improve or degrade  it. Here are a few kinds 
of data you can collect to measure your project:

■ Administrative description of the defect (the date reported, the person who 
reported it, a title or description, the build number, the date fixed)

■ Full description of the problem

■ Steps to take to repeat the problem

■ Suggested workaround for the problem

■ Related defects

■ Severity of the problem—for example, fatal, bothersome, or cosmetic

■ Origin of the defect: requirements, design, coding, or testing

■ Subclassification of a coding defect: off-by-one, bad assignment, bad array 
index, bad routine call, and so on

■ Classes and routines changed by the fix

■ Number of lines of code affected by the defect

■ Hours to find the defect

■ Hours to fix the defect

Once you collect the data, you can crunch a few numbers to determine whether your 
project is getting sicker or healthier:

KEY POINT
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■ Number of defects in each class, sorted from worst class to best, possibly nor-
malized by class size

■ Number of defects in each routine, sorted from worst routine to best, possibly 
normalized by routine size

■ Average number of testing hours per defect found

■ Average number of defects found per test case

■ Average number of programming hours per defect fixed

■ Percentage of code covered by test cases

■ Number of outstanding defects in each severity classification

Personal Test Records

In addition to project-level test records, you might find it useful to keep track of your 
personal test records. These records can include both a checklist of the errors you 
most commonly make as well as a record of the amount of time you spend writing 
code, testing code, and correcting errors.

Additional Resources
cc2e.com/2203 Federal truth-in-advising statutes compel me to disclose that several other books cover 

testing in more depth than this chapter does. Books that are devoted to testing discuss 
system and black-box testing, which haven’t been discussed in this chapter. They also 
go into more depth on developer topics. They discuss formal approaches such as cause-
effect graphing and the ins and outs of establishing an independent test organization.

Testing

Kaner, Cem, Jack Falk, and Hung Q. Nguyen. Testing Computer Software, 2d ed. New 
York, NY: John Wiley & Sons, 1999. This is probably the best current book on soft-
ware testing. It is most applicable to testing applications that will be distributed to a 
widespread customer base, such as high-volume websites and shrink-wrap applica-
tions, but it is also generally useful.

Kaner, Cem, James Bach, and Bret Pettichord. Lessons Learned in Software Testing. New 
York, NY: John Wiley & Sons, 2002. This book is a good supplement to Testing Com-
puter Software, 2d ed. It’s organized into 11 chapters that enumerate 250 lessons 
learned by the authors.

Tamre, Louise. Introducing Software Testing. Boston, MA: Addison-Wesley, 2002. This is 
an accessible testing book targeted at developers who need to understand testing. 
Belying the title, the book goes into some depth on testing details that are useful even 
to experienced testers. 
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Whittaker, James A. How to Break Software: A Practical Guide to Testing. Boston, MA: 
Addison-Wesley, 2002. This book lists 23 attacks testers can use to make software fail 
and presents examples for each attack using popular software packages. You can use 
this book as a primary source of information about testing or, because its approach is 
distinctive, you can use it to supplement other testing books.

Whittaker, James A. “What Is Software Testing? And Why Is It So Hard?” IEEE Soft-
ware, January 2000, pp. 70–79. This article is a good introduction to software testing 
issues and explains some of the challenges associated with effectively testing software.

Myers, Glenford J. The Art of Software Testing. New York, NY: John Wiley, 1979. This is 
the classic book on software testing and is still in print (though quite expensive). The 
contents of the book are straightforward: A Self-Assessment Test; The Psychology and 
Economics of Program Testing; Program Inspections, Walkthroughs, and Reviews; 
Test-Case Design; Class Testing; Higher-Order Testing; Debugging; Test Tools and 
Other Techniques. It’s short (177 pages) and readable. The quiz at the beginning gets 
you started thinking like a tester and demonstrates how many ways a piece of code 
can be broken.

Test Scaffolding

Bentley, Jon. “A Small Matter of Programming” in Programming Pearls, 2d ed. Boston, MA: 
Addison-Wesley, 2000. This essay includes several good examples of test scaffolding.

Mackinnon, Tim, Steve Freeman, and Philip Craig. “Endo-Testing: Unit Testing with 
Mock Objects,” eXtreme Programming and Flexible Processes Software Engineering - 
XP2000” Conference, 2000. This is the original paper to discuss the use of mock 
objects to support developer testing.

Thomas, Dave and Andy Hunt. “Mock Objects,” IEEE Software, May/June 2002. This is 
a highly readable introduction to using mock objects to support developer testing.

cc2e.com/2217 www.junit.org. This site provides support for developers using JUnit. Similar resources 
are provided at cppunit.sourceforge.net and nunit.sourceforge.net.

Test First Development

Beck, Kent. Test-Driven Development: By Example. Boston, MA: Addison-Wesley, 2003. 
Beck describes the ins and outs of “test-driven development,” a development 
approach that’s characterized by writing test cases first and then writing the code to 
satisfy the test cases. Despite Beck’s sometimes-evangelical tone, the advice is sound, 
and the book is short and to the point. The book has an extensive running example 
with real code.
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Relevant Standards

IEEE Std 1008-1987 (R1993), Standard for Software Unit Testing

IEEE Std 829-1998, Standard for Software Test Documentation

IEEE Std 730-2002, Standard for Software Quality Assurance Plans

cc2e.com/2210 CHECKLIST: Test Cases
❑ Does each requirement that applies to the class or routine have its own test 

case?

❑ Does each element from the design that applies to the class or routine 
have its own test case?

❑ Has each line of code been tested with at least one test case? Has this been 
verified by computing the minimum number of tests necessary to exercise 
each line of code?

❑ Have all defined-used data-flow paths been tested with at least one test 
case?

❑ Has the code been checked for data-flow patterns that are unlikely to be 
correct, such as defined-defined, defined-exited, and defined-killed?

❑ Has a list of common errors been used to write test cases to detect errors 
that have occurred frequently in the past?

❑ Have all simple boundaries been tested: maximum, minimum, and off-by-
one boundaries?

❑ Have compound boundaries been tested—that is, combinations of input 
data that might result in a computed variable that’s too small or too large?

❑ Do test cases check for the wrong kind of data—for example, a negative 
number of employees in a payroll program?

❑ Are representative, middle-of-the-road values tested?

❑ Is the minimum normal configuration tested?

❑ Is the maximum normal configuration tested?

❑ Is compatibility with old data tested? And are old hardware, old versions 
of the operating system, and interfaces with old versions of other software 
tested?

❑ Do the test cases make hand-checks easy?
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Key Points
■ Testing by the developer is a key part of a full testing strategy. Independent test-

ing is also important but is outside the scope of this book.

■ Writing test cases before the code takes the same amount of time and effort as 
writing the test cases after the code, but it shortens defect-detection-debug-cor-
rection cycles.

■ Even considering the numerous kinds of testing available, testing is only one 
part of a good software-quality program. High-quality development methods, 
including minimizing defects in requirements and design, are at least as impor-
tant. Collaborative development practices are also at least as effective at detect-
ing errors as testing, and these practices detect different kinds of errors.

■ You can generate many test cases deterministically by using basis testing, data-
flow analysis, boundary analysis, classes of bad data, and classes of good data. 
You can generate additional test cases with error guessing.

■ Errors tend to cluster in a few error-prone classes and routines. Find that error-
prone code, redesign it, and rewrite it.

■ Test data tends to have a higher error density than the code being tested. 
Because hunting for such errors wastes time without improving the code, test-
data errors are more aggravating than programming errors. Avoid them by 
developing your tests as carefully as your code.

■ Automated testing is useful in general and is essential for regression testing.

■ In the long run, the best way to improve your testing process is to make it regu-
lar, measure it, and use what you learn to improve it.
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Chapter 23

Debugging
cc2e.com/2361 Contents

■ 23.1 Overview of Debugging Issues: page 535

■ 23.2 Finding a Defect: page 540

■ 23.3 Fixing a Defect: page 550

■ 23.4 Psychological Considerations in Debugging: page 554

■ 23.5 Debugging Tools—Obvious and Not-So-Obvious: page 556

Related Topics

■ The software-quality landscape: Chapter 20

■ Developer testing: Chapter 22

■ Refactoring: Chapter 24

Debugging is twice as hard 
as writing the code in the 
first place. Therefore, if you 
write the code as cleverly as 
possible, you are, by defini-
tion, not smart enough to 
debug it.
—Brian W. Kernighan

Debugging is the process of identifying the root cause of an error and correcting it. It 
contrasts with testing, which is the process of detecting the error initially. On some 
projects, debugging occupies as much as 50 percent of the total development time. 
For many programmers, debugging is the hardest part of programming.

Debugging doesn’t have to be the hardest part. If you follow the advice in this book, 
you’ll have fewer errors to debug. Most of the defects you’ll have will be minor over-
sights and typos, easily found by looking at a source-code listing or stepping through 
the code in a debugger. For the remaining harder bugs, this chapter describes how to 
make debugging much easier than it usually is.

23.1 Overview of Debugging Issues
The late Rear Admiral Grace Hopper, co-inventor of COBOL, always said that the 
word “bug” in software dated back to the first large-scale digital computer, the Mark I 
(IEEE 1992). Programmers traced a circuit malfunction to the presence of a large 
moth that had found its way into the computer, and from that time on, computer 
problems were blamed on “bugs.” Outside software, the word “bug” dates back at 
least to Thomas Edison, who is quoted as using it as early as 1878 (Tenner 1997). 

The word “bug” is a cute word and conjures up images like this one:
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The reality of software defects, however, is that bugs aren’t organisms that sneak into 
your code when you forget to spray it with pesticide. They are errors. A bug in software 
means that a programmer made a mistake. The result of the mistake isn’t like the cute 
picture shown above. It’s more likely a note like this one:

In the context of this book, technical accuracy requires that mistakes in the code be 
called “errors,” “defects,” or “faults.”

Role of Debugging in Software Quality

Like testing, debugging isn’t a way to improve the quality of your software per se; it’s 
a way to diagnose defects. Software quality must be built in from the start. The best 
way to build a quality product is to develop requirements carefully, design well, and 
use high-quality coding practices. Debugging is a last resort.

Variations in Debugging Performance

Why talk about debugging? Doesn’t everyone know how to debug?

No, not everyone knows how to debug. Studies of experienced programmers have 
found roughly a 20-to-1 difference in the time it takes experienced programmers to 
find the same set of defects found by by inexperienced programmers. Moreover, some 
programmers find more defects and make corrections more accurately. Here are the 

From:
To:
Re:
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results of a classic study that examined how effectively professional programmers 
with at least four years of experience debugged a program with 12 defects:

The three programmers who were best at debugging were able to find the defects in 
about one-third the time and inserted only about two-fifths as many new defects as 
the three who were the worst. The best programmer found all the defects and didn’t 
insert any new defects in correcting them. The worst missed 4 of the 12 defects and 
inserted 11 new defects in correcting the 8 defects he found. 

But this study doesn’t really tell the whole story. After the first round of debugging, the 
fastest three programmers still have 3.7 defects left in their code and the slowest still 
have 9.4 defects. Neither group is done debugging yet. I wondered what would happen 
if I applied the same find-and-bad-fix ratios to additional debugging cycles. My results 
aren’t statistically valid, but they’re still interesting. When I applied the same find-and-
bad-fix ratios to successive debugging cycles until each group had less than half a defect 
remaining, the fastest group required a total of three debugging cycles, whereas the 
slowest group required 14 debugging cycles. Bearing in mind that each cycle of the 
slower group takes almost three times as long as each cycle of the fastest group, the 
slowest group would take about 13 times as long to fully debug its programs as the fast-
est group, according to my nonscientific extrapolation of this study. This wide variation 
has been confirmed by other studies (Gilb 1977, Curtis 1981).

Cross-Reference For details 
on the relationship between 
quality and cost, see Section 
20.5, “The General Principle 
of Software Quality.”

In addition to providing insight into debugging, the evidence supports the General 
Principle of Software Quality: improving quality reduces development costs. The best 
programmers found the most defects, found the defects most quickly, and made cor-
rect modifications most often. You don’t have to choose between quality, cost, and 
time—they all go hand in hand.

Defects as Opportunities

What does having a defect mean? Assuming that you don’t want the program to have 
a defect, it means that you don’t fully understand what the program does. The idea of 
not understanding what the program does is unsettling. After all, if you created the 
program, it should do your bidding. If you don’t know exactly what you’re telling the 
computer to do, you’re only a small step away from merely trying different things until 

Fastest Three 
Programmers

Slowest Three 
Programmers

Average debug time (minutes) 5.0 14.1

Average number of defects not found 0.7 1.7

Average number of defects made correcting 
defects

3.0 7.7

Source: “Some Psychological Evidence on How People Debug Computer Programs” (Gould 1975)
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something seems to work—that is, programming by trial and error. And if you’re pro-
gramming by trial and error, defects are guaranteed. You don’t need to learn how to fix 
defects; you need to learn how to avoid them in the first place.

Most people are somewhat fallible, however, and you might be an excellent program-
mer who has simply made a modest oversight. If this is the case, an error in your pro-
gram provides a powerful opportunity for you to learn many things. You can:

Learn about the program you’re working on You have something to learn about the 
program because if you already knew it perfectly, it wouldn’t have a defect. You would 
have corrected it already.

Further Reading For details 
on practices that will help 
you learn about the kinds of 
errors you are personally 
prone to, see A Discipline 
for Software Engineering 
(Humphrey 1995).

Learn about the kinds of mistakes you make If you wrote the program, you inserted 
the defect. It’s not every day that a spotlight exposes a weakness with glaring clarity, 
but such a day is an opportunity, so take advantage of it. Once you find the mistake, 
ask yourself how and why you made it. How could you have found it more quickly? 
How could you have prevented it? Does the code have other mistakes just like it? Can 
you correct them before they cause problems of their own?

Learn about the quality of your code from the point of view of someone who has to read 
it You’ll have to read your code to find the defect. This is an opportunity to look crit-
ically at the quality of your code. Is it easy to read? How could it be better? Use your 
discoveries to refactor your current code or to improve the code you write next.

Learn about how you solve problems Does your approach to solving debugging prob-
lems give you confidence? Does your approach work? Do you find defects quickly? Or is 
your approach to debugging weak? Do you feel anguish and frustration? Do you guess 
randomly? Do you need to improve? Considering the amount of time many projects 
spend on debugging, you definitely won’t waste time if you observe how you debug. 
Taking time to analyze and change the way you debug might be the quickest way to 
decrease the total amount of time it takes you to develop a program.

Learn about how you fix defects In addition to learning how you find defects, you 
can learn about how you fix them. Do you make the easiest possible correction by 
applying goto bandages and special-case makeup that changes the symptom but not 
the problem? Or do you make systemic corrections, demanding an accurate diagnosis 
and prescribing treatment for the heart of the problem?

All things considered, debugging is an extraordinarily rich soil in which to plant the 
seeds of your own improvement. It’s where all construction roads cross: readability, 
design, code quality—you name it. This is where building good code pays off, espe-
cially if you do it well enough that you don’t have to debug very often.
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An Ineffective Approach

Unfortunately, programming classes in colleges and universities hardly ever offer 
instruction in debugging. If you studied programming in college, you might have had 
a lecture devoted to debugging. Although my computer-science education was excel-
lent, the extent of the debugging advice I received was to “put print statements in the 
program to find the defect.” This is not adequate. If other programmers’ educational 
experiences are like mine, a great many programmers are being forced to reinvent 
debugging concepts on their own. What a waste!

The Devil’s Guide to Debugging

Programmers do not always 
use available data to con-
strain their reasoning. They 
carry out minor and irratio-
nal repairs, and they often 
don’t undo the incorrect 
repairs.
—Iris Vessey

In Dante’s vision of hell, the lowest circle is reserved for Satan himself. In modern 
times, Old Scratch has agreed to share the lowest circle with programmers who don’t 
learn to debug effectively. He tortures programmers by making them use these com-
mon debugging approaches:

Find the defect by guessing To find the defect, scatter print statements randomly 
throughout a program. Examine the output to see where the defect is. If you can’t find 
the defect with print statements, try changing things in the program until something 
seems to work. Don’t back up the original version of the program, and don’t keep a 
record of the changes you’ve made. Programming is more exciting when you’re not 
quite sure what the program is doing. Stock up on cola and candy because you’re in 
for a long night in front of the terminal.

Don’t waste time trying to understand the problem It’s likely that the problem is 
trivial, and you don’t need to understand it completely to fix it. Simply finding it is 
enough.

Fix the error with the most obvious fix It’s usually good just to fix the specific prob-
lem you see, rather than wasting a lot of time making some big, ambitious correction 
that’s going to affect the whole program. This is a perfect example:

x = Compute( y )

if ( y = 17 )

   x = $25.15      -- Compute() doesn't work for y = 17, so fix it

Who needs to dig all the way into Compute() for an obscure problem with the value of 
17 when you can just write a special case for it in the obvious place? 

Debugging by Superstition

Satan has leased part of hell to programmers who debug by superstition. Every group 
has one programmer who has endless problems with demon machines, mysterious 
compiler defects, hidden language defects that appear when the moon is full, bad 
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data, losing important changes, a possessed editor that saves programs incorrectly—
you name it. This is “programming by superstition.”

If you have a problem with a program you’ve written, it’s your fault. It’s not the com-
puter’s fault, and it’s not the compiler’s fault. The program doesn’t do something dif-
ferent every time. It didn’t write itself; you wrote it, so take responsibility for it.

Even if an error at first appears not to be your fault, it’s strongly in your interest to 
assume that it is. That assumption helps you debug. It’s hard enough to find a defect 
in your code when you’re looking for it; it’s even harder when you assume your code 
is error-free. Assuming the error is your fault also improves your credibility. If you 
claim that an error arose from someone else’s code, other programmers will believe 
that you have checked out the problem carefully. If you assume the error is yours, you 
avoid the embarrassment of having to recant publicly later when you find out that it 
was your defect after all.

23.2 Finding a Defect
Debugging consists of finding the defect and fixing it. Finding the defect—and under-
standing it—is usually 90 percent of the work.

Fortunately, you don’t have to make a pact with Satan to find an approach to debug-
ging that’s better than random guessing. Debugging by thinking about the problem is 
much more effective and interesting than debugging with an eye of a newt and the 
dust of a frog’s ear.

Suppose you were asked to solve a murder mystery. Which would be more interesting: 
going door to door throughout the county, checking every person’s alibi for the night of 
October 17, or finding a few clues and deducing the murderer’s identity? Most people 
would rather deduce the person’s identity, and most programmers find the intellectual 
approach to debugging more satisfying. Even better, the effective programmers who 
debug in one-twentieth the time used by the ineffective programmers aren’t randomly 
guessing about how to fix the program. They’re using the scientific method—that is, the 
process of discovery and demonstration necessary for scientific investigation.

The Scientific Method of Debugging

Here are the steps you go through when you use the classic scientific method:

1. Gather data through repeatable experiments.

2. Form a hypothesis that accounts for the relevant data.

3. Design an experiment to prove or disprove the hypothesis.

KEY POINT
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4. Prove or disprove the hypothesis.

5. Repeat as needed.

The scientific method has many parallels in debugging. Here’s an effective approach 
for finding a defect:

1. Stabilize the error.

2. Locate the source of the error (the “fault”).

a. Gather the data that produces the defect.

b. Analyze the data that has been gathered, and form a hypothesis about the 
defect.

c. Determine how to prove or disprove the hypothesis, either by testing the 
program or by examining the code. 

d. Prove or disprove the hypothesis by using the procedure identified in 2(c). 

3. Fix the defect.

4. Test the fix.

5. Look for similar errors.

The first step is similar to the scientific method’s first step in that it relies on repeat-
ability. The defect is easier to diagnose if you can stabilize it—that is, make it occur reli-
ably. The second step uses the steps of the scientific method. You gather the test data 
that divulged the defect, analyze the data that has been produced, and form a hypoth-
esis about the source of the error. You then design a test case or an inspection to eval-
uate the hypothesis, and you either declare success (regarding proving your 
hypothesis) or renew your efforts, as appropriate. When you have proven your 
hypothesis, you fix the defect, test the fix, and search your code for similar errors.

Let’s look at each of the steps in conjunction with an example. Assume that you have 
an employee database program that has an intermittent error. The program is sup-
posed to print a list of employees and their income-tax withholdings in alphabetical 
order. Here’s part of the output:

Formatting, Fred Freeform     $5,877

Global, Gary                  $1,666

Modula, Mildred              $10,788

Many-Loop, Mavis              $8,889

Statement, Sue Switch         $4,000

Whileloop, Wendy              $7,860

The error is that Many-Loop, Mavis and Modula, Mildred are out of order.

KEY POINT
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Stabilize the Error

If a defect doesn’t occur reliably, it’s almost impossible to diagnose. Making an inter-
mittent defect occur predictably is one of the most challenging tasks in debugging.

Cross-Reference For details 
on using pointers safely, see 
Section 13.2, “Pointers.”

An error that doesn’t occur predictably is usually an initialization error, a timing issue, 
or a dangling-pointer problem. If the calculation of a sum is right sometimes and 
wrong sometimes, a variable involved in the calculation probably isn’t being initial-
ized properly—most of the time it just happens to start at 0. If the problem is a strange 
and unpredictable phenomenon and you’re using pointers, you almost certainly have 
an uninitialized pointer or are using a pointer after the memory that it points to has 
been deallocated.

Stabilizing an error usually requires more than finding a test case that produces the 
error. It includes narrowing the test case to the simplest one that still produces the 
error. The goal of simplifying the test case is to make it so simple that changing any 
aspect of it changes the behavior of the error. Then, by changing the test case carefully 
and watching the program’s behavior under controlled conditions, you can diagnose 
the problem. If you work in an organization that has an independent test team, some-
times it’s the team’s job to make the test cases simple. Most of the time, it’s your job.

To simplify the test case, you bring the scientific method into play again. Suppose you 
have 10 factors that, used in combination, produce the error. Form a hypothesis about 
which factors were irrelevant to producing the error. Change the supposedly irrele-
vant factors, and rerun the test case. If you still get the error, you can eliminate those 
factors and you’ve simplified the test. Then you can try to simplify the test further. If 
you don’t get the error, you’ve disproved that specific hypothesis and you know more 
than you did before. It might be that some subtly different change would still produce 
the error, but you know at least one specific change that does not.

In the employee withholdings example, when the program is run initially, Many-Loop, 
Mavis is listed after Modula, Mildred. When the program is run a second time, how-
ever, the list is fine:

Formatting, Fred Freeform     $5,877

Global, Gary                  $1,666

Many-Loop, Mavis              $8,889

Modula, Mildred              $10,788

Statement, Sue Switch         $4,000

Whileloop, Wendy              $7,860

It isn’t until Fruit-Loop, Frita is entered and shows up in an incorrect position that you 
remember that Modula, Mildred had been entered just prior to showing up in the 
wrong spot too. What’s odd about both cases is that they were entered singly. Usually, 
employees are entered in groups.
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You hypothesize: the problem has something to do with entering a single new 
employee. If this is true, running the program again should put Fruit-Loop, Frita in the 
right position. Here’s the result of a second run:

Formatting, Fred Freeform     $5,877

Fruit-Loop, Frita             $5,771

Global, Gary                  $1,666

Many-Loop, Mavis              $8,889

Modula, Mildred              $10,788

Statement, Sue Switch         $4,000

Whileloop, Wendy              $7,860

This successful run supports the hypothesis. To confirm it, you want to try adding a 
few new employees, one at a time, to see whether they show up in the wrong order 
and whether the order changes on the second run.

Locate the Source of the Error

Locating the source of the error also calls for using the scientific method. You might 
suspect that the defect is a result of a specific problem, say an off-by-one error. You 
could then vary the parameter you suspect is causing the problem—one below the 
boundary, on the boundary, and one above the boundary—and determine whether 
your hypothesis is correct.

In the running example, the source of the problem could be an off-by-one defect that 
occurs when you add one new employee but not when you add two or more. Examin-
ing the code, you don’t find an obvious off-by-one defect. Resorting to Plan B, you run 
a test case with a single new employee to see whether that’s the problem. You add 
Hardcase, Henry as a single employee and hypothesize that his record will be out of 
order. Here’s what you find:

Formatting, Fred Freeform     $5,877

Fruit-Loop, Frita             $5,771

Global, Gary                  $1,666

Hardcase, Henry                 $493

Many-Loop, Mavis              $8,889

Modula, Mildred              $10,788

Statement, Sue Switch         $4,000

Whileloop, Wendy              $7,860

The line for Hardcase, Henry is exactly where it should be, which means that your first 
hypothesis is false. The problem isn’t caused simply by adding one employee at a time. 
It’s either a more complicated problem or something completely different.

Examining the test-run output again, you notice that Fruit-Loop, Frita and Many-Loop, 
Mavis are the only names containing hyphens. Fruit-Loop was out of order when she was 
first entered, but Many-Loop wasn’t, was she? Although you don’t have a printout from 
the original entry, in the original error Modula, Mildred appeared to be out of order, but 
she was next to Many-Loop. Maybe Many-Loop was out of order and Modula was all right.
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You hypothesize again: the problem arises from names with hyphens, not names that 
are entered singly.

But how does that account for the fact that the problem shows up only the first time 
an employee is entered? You look at the code and find that two different sorting rou-
tines are used. One is used when an employee is entered, and another is used when 
the data is saved. A closer look at the routine used when an employee is first entered 
shows that it isn’t supposed to sort the data completely. It only puts the data in 
approximate order to speed up the save routine’s sorting. Thus, the problem is that 
the data is printed before it’s sorted. The problem with hyphenated names arises 
because the rough-sort routine doesn’t handle niceties such as punctuation charac-
ters. Now, you can refine the hypothesis even further.

You hypothesize one last time: names with punctuation characters aren’t sorted cor-
rectly until they’re saved.

You later confirm this hypothesis with additional test cases.

Tips for Finding Defects

Once you’ve stabilized an error and refined the test case that produces it, finding its 
source can be either trivial or challenging, depending on how well you’ve written your 
code. If you’re having a hard time finding a defect, it could be because the code isn’t 
well written. You might not want to hear that, but it’s true. If you’re having trouble, 
consider these tips:

Use all the data available to make your hypothesis When creating a hypothesis 
about the source of a defect, account for as much of the data as you can in your 
hypothesis. In the example, you might have noticed that Fruit-Loop, Frita was out of 
order and created a hypothesis that names beginning with an “F” are sorted incor-
rectly. That’s a poor hypothesis because it doesn’t account for the fact that Modula, 
Mildred was out of order or that names are sorted correctly the second time around. If 
the data doesn’t fit the hypothesis, don’t discard the data—ask why it doesn’t fit, and 
create a new hypothesis.

The second hypothesis in the example—that the problem arises from names with 
hyphens, not names that are entered singly—didn’t seem initially to account for the 
fact that names were sorted correctly the second time around either. In this case, how-
ever, the second hypothesis led to a more refined hypothesis that proved to be correct. 
It’s all right that the hypothesis doesn’t account for all of the data at first as long as you 
keep refining the hypothesis so that it does eventually.

Refine the test cases that produce the error If you can’t find the source of an error, 
try to refine the test cases further than you already have. You might be able to vary one 
parameter more than you had assumed, and focusing on one of the parameters might 
provide the crucial breakthrough.
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Cross-Reference For more 
on unit test frameworks, see 
“Plug unit tests into a test 
framework” in Section 22.4.

Exercise the code in your unit test suite Defects tend to be easier to find in small 
fragments of code than in large integrated programs. Use your unit tests to test the 
code in isolation. 

Use available tools Numerous tools are available to support debugging sessions: 
interactive debuggers, picky compilers, memory checkers, syntax-directed editors, 
and so on. The right tool can make a difficult job easy. With one tough-to-find error, 
for example, one part of the program was overwriting another part’s memory. This 
error was difficult to diagnose using conventional debugging practices because the 
programmer couldn’t determine the specific point at which the program was incor-
rectly overwriting memory. The programmer used a memory breakpoint to set a 
watch on a specific memory address. When the program wrote to that memory loca-
tion, the debugger stopped the code and the guilty code was exposed. 

This is an example of a problem that’s difficult to diagnose analytically but that 
becomes quite simple when the right tool is applied.

Reproduce the error several different ways Sometimes trying cases that are similar to 
the error-producing case but not exactly the same is instructive. Think of this 
approach as triangulating the defect. If you can get a fix on it from one point and a fix 
on it from another, you can better determine exactly where it is.

As illustrated by Figure 23-1, reproducing an error several different ways helps diag-
nose the cause of the error. Once you think you’ve identified the defect, run a case 
that’s close to the cases that produce errors but that should not produce an error 
itself. If it does produce an error, you don’t completely understand the problem yet. 
Errors often arise from combinations of factors, and trying to diagnose the problem 
with only one test case often doesn’t diagnose the root problem.

Figure 23-1 Try to reproduce an error several different ways to determine its exact cause.

Program
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Defect

Program

Second test

Defect

Program

Third test

Defect

Program
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Defect
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Generate more data to generate more hypotheses Choose test cases that are different 
from the test cases you already know to be erroneous or correct. Run them to generate 
more data, and use the new data to add to your list of possible hypotheses.

Use the results of negative tests Suppose you create a hypothesis and run a test case 
to prove it. Suppose further that the test case disproves the hypothesis, so you still 
don’t know the source of the error. You do know something you didn’t before—
namely, that the defect is not in the area you thought it was. That narrows your search 
field and the set of remaining possible hypotheses.

Brainstorm for possible hypotheses Rather than limiting yourself to the first hypothe-
sis you think of, try to come up with several. Don’t analyze them at first—just come up 
with as many as you can in a few minutes. Then look at each hypothesis and think about 
test cases that would prove or disprove it. This mental exercise is helpful in breaking the 
debugging logjam that results from concentrating too hard on a single line of reasoning.

Keep a notepad by your desk, and make a list of things to try One reason program-
mers get stuck during debugging sessions is that they go too far down dead-end 
paths. Make a list of things to try, and if one approach isn’t working, move on to the 
next approach. 

Narrow the suspicious region of the code If you’ve been testing the whole program 
or a whole class or routine, test a smaller part instead. Use print statements, logging, 
or tracing to identify which section of code is producing the error. 

If you need a more powerful technique to narrow the suspicious region of the code, 
systematically remove parts of the program and see whether the error still occurs. If it 
doesn’t, you know it’s in the part you took away. If it does, you know it’s in the part 
you’ve kept.

Rather than removing regions haphazardly, divide and conquer. Use a binary search 
algorithm to focus your search. Try to remove about half the code the first time. Deter-
mine the half the defect is in, and then divide that section. Again, determine which 
half contains the defect, and again, chop that section in half. Continue until you find 
the defect.

If you use many small routines, you’ll be able to chop out sections of code simply by 
commenting out calls to the routines. Otherwise, you can use comments or preproces-
sor commands to remove code.

If you’re using a debugger, you don’t necessarily have to remove pieces of code. You 
can set a breakpoint partway through the program and check for the defect that way 
instead. If your debugger allows you to skip calls to routines, eliminate suspects by 
skipping the execution of certain routines and seeing whether the error still occurs. 
The process with a debugger is otherwise similar to the one in which pieces of a pro-
gram are physically removed.
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Cross-Reference For more 
details on error-prone code, 
see “Target error-prone 
modules” in Section 24.5.

Be suspicious of classes and routines that have had defects before Classes that have 
had defects before are likely to continue to have defects. A class that has been trouble-
some in the past is more likely to contain a new defect than a class that has been 
defect-free. Reexamine error-prone classes and routines. 

Check code that’s changed recently If you have a new error that’s hard to diagnose, 
it’s usually related to code that’s changed recently. It could be in completely new code 
or in changes to old code. If you can’t find a defect, run an old version of the program 
to see whether the error occurs. If it doesn’t, you know the error’s in the new version 
or is caused by an interaction with the new version. Scrutinize the differences between 
the old and new versions. Check the version control log to see what code has changed 
recently. If that’s not possible, use a diff tool to compare changes in the old, working 
source code to the new, broken source code. 

Expand the suspicious region of the code It’s easy to focus on a small section of code, 
sure that “the defect must be in this section.” If you don’t find it in the section, con-
sider the possibility that the defect isn’t in the section. Expand the area of code you 
suspect, and then focus on pieces of it by using the binary search technique described 
earlier.

Cross-Reference For a full 
discussion of integration, see 
Chapter 29, “Integration.”

Integrate incrementally Debugging is easy if you add pieces to a system one at a 
time. If you add a piece to a system and encounter a new error, remove the piece and 
test it separately. 

Check for common defects Use code-quality checklists to stimulate your thinking 
about possible defects. If you’re following the inspection practices described in Sec-
tion 21.3, “Formal Inspections,” you’ll have your own fine-tuned checklist of the 
common problems in your environment. You can also use the checklists that 
appear throughout this book. See the “List of Checklists” following the book’s 
table of contents.

Cross-Reference For details 
on how involving other 
developers can put a benefi-
cial distance between you 
and the problem, see Section 
21.1, “Overview of Collabora-
tive Development Practices.”

Talk to someone else about the problem Some people call this “confessional debug-
ging.” You often discover your own defect in the act of explaining it to another person. 
For example, if you were explaining the problem in the salary example, you might 
sound like this:

Hey, Jennifer, have you got a minute? I’m having a problem. I’ve got this list of 
employee salaries that’s supposed to be sorted, but some names are out of order. 
They’re sorted all right the second time I print them out but not the first. I 
checked to see if it was new names, but I tried some that worked. I know they 
should be sorted the first time I print them because the program sorts all the 
names as they’re entered and again when they’re saved—wait a minute—no, it 
doesn’t sort them when they’re entered. That’s right. It only orders them 
roughly. Thanks, Jennifer. You’ve been a big help.
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Jennifer didn’t say a word, and you solved your problem. This result is typical, and this 
approach is a potent tool for solving difficult defects.

Take a break from the problem Sometimes you concentrate so hard you can’t think. 
How many times have you paused for a cup of coffee and figured out the problem on 
your way to the coffee machine? Or in the middle of lunch? Or on the way home? Or 
in the shower the next morning? If you’re debugging and making no progress, once 
you’ve tried all the options, let it rest. Go for a walk. Work on something else. Go 
home for the day. Let your subconscious mind tease a solution out of the problem.

The auxiliary benefit of giving up temporarily is that it reduces the anxiety associated 
with debugging. The onset of anxiety is a clear sign that it’s time to take a break.

Brute-Force Debugging

Brute force is an often-overlooked approach to debugging software problems. By 
“brute force,” I’m referring to a technique that might be tedious, arduous, and time-
consuming but that is guaranteed to solve the problem. Which specific techniques 
are guaranteed to solve a problem are context-dependent, but here are some general 
candidates:

■ Perform a full design and/or code review on the broken code.

■ Throw away the section of code and redesign/recode it from scratch.

■ Throw away the whole program and redesign/recode it from scratch.

■ Compile code with full debugging information.

■ Compile code at pickiest warning level and fix all the picky compiler warnings.

■ Strap on a unit test harness and test the new code in isolation.

■ Create an automated test suite and run it all night.

■ Step through a big loop in the debugger manually until you get to the error 
condition.

■ Instrument the code with print, display, or other logging statements.

■ Compile the code with a different compiler.

■ Compile and run the program in a different environment.

■ Link or run the code against special libraries or execution environments that 
produce warnings when code is used incorrectly.

■ Replicate the end-user’s full machine configuration.

■ Integrate new code in small pieces, fully testing each piece as it’s integrated.
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Set a maximum time for quick and dirty debugging For each brute-force technique, 
your reaction might well be, “I can’t do that—it’s too much work!” The point is that it’s 
only too much work if it takes more time than what I call “quick and dirty debugging.” 
It’s always tempting to try for a quick guess rather than systematically instrumenting 
the code and giving the defect no place to hide. The gambler in each of us would 
rather use a risky approach that might find the defect in five minutes than the sure-fire 
approach that will find the defect in half an hour. The risk is that if the five-minute 
approach doesn’t work, you get stubborn. Finding the defect the “easy” way becomes 
a matter of principle, and hours pass unproductively, as do days, weeks, months.... 
How often have you spent two hours debugging code that took only 30 minutes to 
write? That’s a bad distribution of labor, and you would have been better off to rewrite 
the code than to debug bad code. 

When you decide to go for the quick victory, set a maximum time limit for trying the 
quick way. If you go past the time limit, resign yourself to the idea that the defect is 
going to be harder to diagnose than you originally thought, and flush it out the hard 
way. This approach allows you to get the easy defects right away and the hard defects 
after a bit longer.

Make a list of brute-force techniques Before you begin debugging a difficult error, 
ask yourself, “If I get stuck debugging this problem, is there some way that I am guar-
anteed to be able to fix the problem?” If you can identify at least one brute-force tech-
nique that will fix the problem—including rewriting the code in question—it’s less 
likely that you’ll waste hours or days when there’s a quicker alternative. 

Syntax Errors

Syntax-error problems are going the way of the woolly mammoth and the saber-
toothed tiger. Compilers are getting better at diagnostic messages, and the days when 
you had to spend two hours finding a misplaced semicolon in a Pascal listing are 
almost gone. Here’s a list of guidelines you can use to hasten the extinction of this 
endangered species:

Don’t trust line numbers in compiler messages When your compiler reports a myste-
rious syntax error, look immediately before and immediately after the error—the com-
piler could have misunderstood the problem or could simply have poor diagnostics. 
Once you find the real defect, try to determine the reason the compiler put the mes-
sage on the wrong statement. Understanding your compiler better can help you find 
future defects.

Don’t trust compiler messages Compilers try to tell you exactly what’s wrong, but 
compilers are dissembling little rascals, and you often have to read between the lines 
to know what one really means. For example, in UNIX C, you can get a message that 
says “floating exception” for an integer divide-by-0. With C++’s Standard Template 
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Library, you can get a pair of error messages: the first message is the real error in the 
use of the STL; the second message is a message from the compiler saying, “Error mes-
sage too long for printer to print; message truncated.” You can probably come up with 
many examples of your own.

Don’t trust the compiler’s second message Some compilers are better than others at 
detecting multiple errors. Some compilers get so excited after detecting the first error 
that they become giddy and overconfident; they prattle on with dozens of error mes-
sages that don’t mean anything. Other compilers are more levelheaded, and although 
they must feel a sense of accomplishment when they detect an error, they refrain from 
spewing out inaccurate messages. When your compiler generates a series of cascading 
error messages, don’t worry if you can’t quickly find the source of the second or third 
error message. Fix the first one and recompile.

Divide and conquer The idea of dividing the program into sections to help detect 
defects works especially well for syntax errors. If you have a troublesome syntax error, 
remove part of the code and compile again. You’ll either get no error (because the 
error’s in the part you removed), get the same error (meaning you need to remove a 
different part), or get a different error (because you’ll have tricked the compiler into 
producing a message that makes more sense).

Cross-Reference The avail-
ability of syntax-directed 
editors is one characteristic 
of early-wave vs. mature-
wave programming environ-
ments. For details, see Sec-
tion 4.3, “Your Location on 
the Technology Wave.”

Find misplaced comments and quotation marks Many programming text editors 
automatically format comments, string literals, and other syntactical elements. In 
more primitive environments, a misplaced comment or quotation mark can trip up 
the compiler. To find the extra comment or quotation mark, insert the following 
sequence into your code in C, C++, and Java:

/*"/**/

This code phrase will terminate either a comment or string, which is useful in narrow-
ing the space in which the unterminated comment or string is hiding.

23.3 Fixing a Defect
The hard part of debugging is finding the defect. Fixing the defect is the easy part. But as 
with many easy tasks, the fact that it's easy makes it especially error-prone. At least one 
study found that defect corrections have more than a 50 percent chance of being wrong 
the first time (Yourdon 1986b). Here are a few guidelines for reducing the chance of error:

Understand the problem before you fix it “The Devil’s Guide to Debugging” is right: 
the best way to make your life difficult and corrode the quality of your program is to fix 
problems without really understanding them. Before you fix a problem, make sure you 
understand it to the core. Triangulate the defect both with cases that should reproduce 
the error and with cases that shouldn’t reproduce the error. Keep at it until you under-
stand the problem well enough to predict its occurrence correctly every time.

KEY POINT



23.3 Fixing a Defect 551

Understand the program, not just the problem If you understand the context in 
which a problem occurs, you’re more likely to solve the problem completely rather 
than only one aspect of it. A study done with short programs found that programmers 
who achieve a global understanding of program behavior have a better chance of 
modifying it successfully than programmers who focus on local behavior, learning 
about the program only as they need to (Littman et al. 1986). Because the program in 
this study was small (280 lines), it doesn’t prove that you should try to understand a 
50,000-line program completely before you fix a defect. It does suggest that you 
should understand at least the code in the vicinity of the defect correction—the “vicin-
ity” being not a few lines but a few hundred.

Confirm the defect diagnosis Before you rush to fix a defect, make sure that you’ve 
diagnosed the problem correctly. Take the time to run test cases that prove your 
hypothesis and disprove competing hypotheses. If you’ve proven only that the error 
could be the result of one of several causes, you don’t yet have enough evidence to 
work on the one cause; rule out the others first.

Never debug standing up. 
—Gerald Weinberg

Relax A programmer was ready for a ski trip. His product was ready to ship, he was 
already late, and he had only one more defect to correct. He changed the source file 
and checked it into version control. He didn’t recompile the program and didn’t verify 
that the change was correct.

In fact, the change was not correct, and his manager was outraged. How could he 
change code in a product that was ready to ship without checking it? What could be 
worse? Isn’t this the pinnacle of professional recklessness?

If this isn’t the height of recklessness, it’s close and it’s common. Hurrying to solve a 
problem is one of the most time-ineffective things you can do. It leads to rushed judg-
ments, incomplete defect diagnosis, and incomplete corrections. Wishful thinking 
can lead you to see solutions where there are none. The pressure—often self-imposed—
encourages haphazard trial-and-error solutions and the assumption that a solution 
works without verification that it does.

In striking contrast, during the final days of Microsoft Windows 2000 development, a 
developer needed to fix a defect that was the last remaining defect before a Release 
Candidate could be created. The developer changed the code, checked his fix, and 
tested his fix on his local build. But he didn’t check the fix into version control at that 
point. Instead, he went to play basketball. He said, “I’m feeling too stressed right now 
to be sure that I’ve considered everything I should consider. I’m going to clear my 
mind for an hour, and then I’ll come back and check in the code—once I’ve convinced 
myself that the fix is really correct.” 

Relax long enough to make sure your solution is right. Don’t be tempted to take short-
cuts. It might take more time, but it’ll probably take less. If nothing else, you’ll fix the 
problem correctly and your manager won’t call you back from your ski trip.
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Cross-Reference General 
issues involved in changing 
code are discussed in depth 
in Chapter 24, “Refactoring.”

Save the original source code Before you begin fixing the defect, be sure to archive a 
version of the code that you can return to later. It’s easy to forget which change in a 
group of changes is the significant one. If you have the original source code, at least 
you can compare the old and the new files and see where the changes are. 

Fix the problem, not the symptom You should fix the symptom too, but the focus 
should be on fixing the underlying problem rather than wrapping it in programming 
duct tape. If you don’t thoroughly understand the problem, you’re not fixing the code. 
You’re fixing the symptom and making the code worse. Suppose you have this code:

Java Example of Code That Needs to Be Fixed
for ( claimNumber = 0; claimNumber < numClaims[ client ]; claimNumber++ ) {

   sum[ client ] = sum[ client ] + claimAmount[ claimNumber ];

}

Further suppose that when client equals 45, sum turns out to be wrong by $3.45. 
Here’s the wrong way to fix the problem:

Java Example of Making the Code Worse by “Fixing” It
for ( claimNumber = 0; claimNumber < numClaims[ client ]; claimNumber++ ) {

   sum[ client ] = sum[ client ] + claimAmount[ claimNumber ];

}

Here’s the “fix.” 
if ( client == 45 ) {

   sum[ 45 ] = sum[ 45 ] + 3.45;

}

Now suppose that when client equals 37 and the number of claims for the client is 0, 
you’re not getting 0. Here’s the wrong way to fix the problem:

Java Example of Making the Code Worse by “Fixing” It (continued)
for ( claimNumber = 0; claimNumber < numClaims[ client ]; claimNumber++ ) {

   sum[ client ] = sum[ client ] + claimAmount[ claimNumber ];

}

if ( client == 45 ) {

   sum[ 45 ] = sum[ 45 ] + 3.45;

}

Here’s the second “fix.” else if ( ( client == 37 ) && ( numClaims[ client ] == 0 ) ) {

   sum[ 37 ] = 0.0;

}

If this doesn’t send a cold chill down your spine, you won’t be affected by anything 
else in this book either. It’s impossible to list all the problems with this approach in a 
book that’s only around 1000 pages long, but here are the top three:

CODING 
HORROR

CODING 
HORROR
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■ The fixes won’t work most of the time. The problems look as though they’re the 
result of initialization defects. Initialization defects are, by definition, unpredict-
able, so the fact that the sum for client 45 is off by $3.45 today doesn’t tell you 
anything about tomorrow. It could be off by $10,000.02, or it could be correct. 
That’s the nature of initialization defects.

■ It’s unmaintainable. When code is special-cased to work around errors, the spe-
cial cases become the code’s most prominent feature. The $3.45 won’t always be 
$3.45, and another error will show up later. The code will be modified again to 
handle the new special case, and the special case for $3.45 won’t be removed. 
The code will become increasingly barnacled with special cases. Eventually the 
barnacles will be too heavy for the code to support, and the code will sink to the 
bottom of the ocean—a fitting place for it.

■ It uses the computer for something that’s better done by hand. Computers are 
good at predictable, systematic calculations, but humans are better at fudging 
data creatively. You’d be wiser to treat the output with whiteout and a typewriter 
than to monkey with the code.

Change the code only for good reason Related to fixing symptoms is the technique 
of changing code at random until it seems to work. The typical line of reasoning goes 
like this: “This loop seems to contain a defect. It’s probably an off-by-one error, so I’ll 
just put a -1 here and try it. OK. That didn’t work, so I’ll just put a +1 in instead. OK. 
That seems to work. I’ll say it’s fixed.”

As popular as this practice is, it isn’t effective. Making changes to code randomly is like 
rotating a Pontiac Aztek’s tires to fix an engine problem. You’re not learning anything; 
you’re just goofing around. By changing the program randomly, you say in effect, “I 
don’t know what’s happening here, but I’ll try this change and hope it works.” Don’t 
change code randomly. That’s voodoo programming. The more different you make it 
without understanding it, the less confidence you’ll have that it works correctly.

Before you make a change, be confident that it will work. Being wrong about a change 
should leave you astonished. It should cause self-doubt, personal reevaluation, and 
deep soul-searching. It should happen rarely.

Make one change at a time Changes are tricky enough when they’re done one at a 
time. When done two at a time, they can introduce subtle errors that look like the orig-
inal errors. Then you’re in the awkward position of not knowing whether you didn’t 
correct the error, whether you corrected the error but introduced a new one that looks 
similar, or whether you didn’t correct the error and you introduced a similar new 
error. Keep it simple: make just one change at a time.

Cross-Reference For details 
on automated regression 
testing, see “Retesting 
(Regression Testing)” in Sec-
tion 22.6.

Check your fix Check the program yourself, have someone else check it for you, or 
walk through it with someone else. Run the same triangulation test cases you used to 
diagnose the problem to make sure that all aspects of the problem have been resolved. 
If you’ve solved only part of the problem, you’ll find out that you still have work to do.
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Rerun the whole program to check for side effects of your changes. The easiest and 
most effective way to check for side effects is to run the program through an auto-
mated suite of regression tests in JUnit, CppUnit, or equivalent. 

Add a unit test that exposes the defect When you encounter an error that wasn’t 
exposed by your test suite, add a test case to expose the error so that it won’t be rein-
troduced later.  

Look for similar defects When you find one defect, look for others that are similar. 
Defects tend to occur in groups, and one of the values of paying attention to the kinds 
of defects you make is that you can correct all the defects of that kind. Looking for sim-
ilar defects requires you to have a thorough understanding of the problem. Watch for 
the warning sign: if you can’t figure out how to look for similar defects, that’s a sign 
that you don’t yet completely understand the problem.

23.4 Psychological Considerations in Debugging
Further Reading For an 
excellent discussion of psy-
chological issues in debug-
ging, as well as many other 
areas of software develop-
ment, see The Psychology of 
Computer Programming 
(Weinberg 1998).

Debugging is as intellectually demanding as any other software-development activity. 
Your ego tells you that your code is good and doesn’t have a defect even when you’ve 
seen that it has one. You have to think precisely—forming hypotheses, collecting data, 
analyzing hypotheses, and methodically rejecting them—with a formality that’s unnat-
ural to many people. If you’re both building code and debugging it, you have to switch 
quickly between the fluid, creative thinking that goes with design and the rigidly crit-
ical thinking that goes with debugging. As you read your code, you have to battle the 
code’s familiarity and guard against seeing what you expect to see.

How “Psychological Set” Contributes to Debugging Blindness

When you see a token in a program that says Num, what do you see? Do you see a mis-
spelling of the word “Numb”? Or do you see the abbreviation for “Number”? Most 
likely, you see the abbreviation for “Number.” This is the phenomenon of “psycholog-
ical set”—seeing what you expect to see. What does this sign say?

In this classic puzzle, people often see only one “the.” People see what they expect to 
see. Consider the following:

■ Students learning while loops often expect a loop to be continuously evaluated; 
that is, they expect the loop to terminate as soon as the while condition becomes 

Paris in the 
the Spring



23.4 Psychological Considerations in Debugging 555

false, rather than only at the top or bottom (Curtis et al. 1986). They expect a 
while loop to act as “while” does in natural language.

■ A programmer who unintentionally used both the variable SYSTSTS and the 
variable SYSSTSTS thought he was using a single variable. He didn’t discover the 
problem until the program had been run hundreds of times and a book was 
written containing the erroneous results (Weinberg 1998).

■ A programmer looking at code like this code:

if ( x < y ) 

   swap = x;

   x = y;

   y = swap;

sometimes sees code like this code:

if ( x < y ) {

   swap = x;

   x = y;

   y = swap;

}

People expect a new phenomenon to resemble similar phenomena they’ve seen 
before. They expect a new control construct to work the same as old constructs; pro-
gramming-langauge while statements to work the same as real-life “while” statements; 
and variable names to be the same as they’ve been before. You see what you expect to 
see and thus overlook differences, like the misspelling of the word “language” in the 
previous sentence.

What does psychological set have to do with debugging? First, it speaks to the impor-
tance of good programming practices. Good formatting, commenting, variable names, 
routine names, and other elements of programming style help structure the program-
ming background so that likely defects appear as variations and stand out.

The second impact of psychological set is in selecting parts of the program to examine 
when an error is found. Research has shown that the programmers who debug most 
effectively mentally slice away parts of the program that aren’t relevant during debug-
ging (Basili, Selby, and Hutchens 1986). In general, the practice allows excellent pro-
grammers to narrow their search fields and find defects more quickly. Sometimes, 
however, the part of the program that contains the defect is mistakenly sliced away. 
You spend time scouring a section of code for a defect, and you ignore the section that 
contains the defect. You took a wrong turn at the fork in the road and need to back up 
before you can go forward again. Some of the suggestions in Section 23.2’s discussion 
of tips for finding defects are designed to overcome this “debugging blindness.”

1
2
3
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How “Psychological Distance” Can Help
Cross-Reference For details 
on creating variable names 
that won’t be confusing, see 
Section 11.7, “Kinds of 
Names to Avoid.”

Psychological distance can be defined as the ease with which two items can be differ-
entiated. If you are looking at a long list of words and have been told that they’re all 
about ducks, you could easily mistake “Queck” for “Quack” because the two words 
look similar. The psychological distance between the words is small. You would be 
much less likely to mistake “Tuack” for “Quack” even though the difference is only 
one letter again. “Tuack” is less like “Quack” than “Queck” is because the first letter in 
a word is more prominent than the one in the middle.

Table 23-1 lists examples of psychological distances between variable names:

As you debug, be ready for the problems caused by insufficient psychological distance 
between similar variable names and between similar routine names. As you construct 
code, choose names with large differences so that you avoid the problem.

23.5 Debugging Tools—Obvious and Not-So-Obvious 
Cross-Reference The line 
between testing and debug-
ging tools is fuzzy. See Section 
22.5 for more on testing tools 
and Chapter 30 for more on 
software-development tools. 

You can do much of the detailed, brain-busting work of debugging with debugging 
tools that are readily available. The tool that will drive the final stake through the heart 
of the defect vampire isn’t yet available, but each year brings an incremental improve-
ment in available capabilities.

Source-Code Comparators

A source-code comparator such as Diff is useful when you’re modifying a program in 
response to errors. If you make several changes and need to remove some that you 
can’t quite remember, a comparator can pinpoint the differences and jog your mem-
ory. If you discover a defect in a new version that you don’t remember in an older ver-
sion, you can compare the files to determine what changed.

Table 23-1 Examples of Psychological Distance Between Variable Names

First Variable Second Variable Psychological Distance

stoppt stcppt Almost invisible

shiftrn shiftrm Almost none

dcount bcount Small

claims1 claims2 Small

product sum Large
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Compiler Warning Messages

One of the simplest and most effective debugging tools is your own compiler.

Set your compiler’s warning level to the highest, pickiest level possible, and fix the 
errors it reports It’s sloppy to ignore compiler errors. It’s even sloppier to turn off 
the warnings so that you can’t even see them. Children sometimes think that if they 
close their eyes and can’t see you, they’ve made you go away. Setting a switch on the 
compiler to turn off warnings just means you can’t see the errors. It doesn’t make 
them go away any more than closing your eyes makes an adult go away.

Assume that the people who wrote the compiler know a great deal more about your 
language than you do. If they’re warning you about something, it usually means you 
have an opportunity to learn something new about your language. Make the effort to 
understand what the warning really means.

Treat warnings as errors Some compilers let you treat warnings as errors. One rea-
son to use the feature is that it elevates the apparent importance of a warning. Just as 
setting your watch five minutes fast tricks you into thinking it’s five minutes later than 
it is, setting your compiler to treat warnings as errors tricks you into taking them more 
seriously. Another reason to treat warnings as errors is that they often affect how your 
program compiles. When you compile and link a program, warnings typically won’t 
stop the program from linking, but errors typically will. If you want to check warnings 
before you link, set the compiler switch that treats warnings as errors.

Initiate projectwide standards for compile-time settings Set a standard that requires 
everyone on your team to compile code using the same compiler settings. Otherwise, 
when you try to integrate code compiled by different people with different settings, 
you’ll get a flood of error messages and an integration nightmare. This is easy to 
enforce if you use a project-standard make file or build script. 

Extended Syntax and Logic Checking

You can use additional tools to check your code more thoroughly than your compiler 
does. For example, for C programmers, the lint utility painstakingly checks for use of 
uninitialized variables (writing = when you mean = =) and similarly subtle problems.

Execution Profilers

You might not think of an execution profiler as a debugging tool, but a few minutes 
spent studying a program profile can uncover some surprising (and hidden) defects.

For example, I had suspected that a memory-management routine in one of my pro-
grams was a performance bottleneck. Memory management had originally been a 
small component using a linearly ordered array of pointers to memory. I replaced the 

KEY POINT
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linearly ordered array with a hash table in the expectation that execution time would 
drop by at least half. But after profiling the code, I found no change in performance at 
all. I examined the code more closely and found a defect that was wasting a huge 
amount of time in the allocation algorithm. The bottleneck hadn’t been the linear-
search technique; it was the defect. I hadn’t needed to optimize the search after all. 
Examine the output of an execution profiler to satisfy yourself that your program 
spends a reasonable amount of time in each area.

Test Frameworks/Scaffolding
Cross-Reference For details 
on scaffolding, see “Building 
Scaffolding to Test Individual 
Classes” in Section 22.5.

As mentioned in Section 23.2 on finding defects, pulling out a troublesome piece of 
code, writing code to test it, and executing it by itself is often the most effective way to 
exorcise the demons from an error-prone program.

Debuggers

Commercially available debuggers have advanced steadily over the years, and the capa-
bilities available today can change the way you program. Good debuggers allow you to 
set breakpoints to break when execution reaches a specific line, or the nth time it 
reaches a specific line, or when a global variable changes, or when a variable is assigned 
a specific value. They allow you to step through code line by line, stepping through or 
over routines. They allow the program to be executed backwards, stepping back to the 
point where a defect originated. They allow you to log the execution of specific state-
ments—similar to scattering “I’m here!” print statements throughout a program.

Good debuggers allow full examination of data, including structured and dynamically 
allocated data. They make it easy to view the contents of a linked list of pointers or a 
dynamically allocated array. They’re intelligent about user-defined data types. They 
allow you to make ad hoc queries about data, assign new values, and continue pro-
gram execution.

You can look at the high-level language or the assembly language generated by your 
compiler. If you’re using several languages, the debugger automatically displays the 
correct language for each section of code. You can look at a chain of calls to routines 
and quickly view the source code of any routine. You can change parameters to a pro-
gram within the debugger environment. 

The best of today’s debuggers also remember debugging parameters (breakpoints, 
variables being watched, and so on) for each individual program so that you don’t 
have to re-create them for each program you debug.

System debuggers operate at the systems level rather than the applications level so 
that they don’t interfere with the execution of the program being debugged. They’re 
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essential when you are debugging programs that are sensitive to timing or the amount 
of memory available.

An interactive debugger is an 
outstanding example of what 
is not needed—it encour-
ages trial-and-error hacking 
rather than systematic 
design, and also hides mar-
ginal people barely qualified 
for precision programming.
—Harlan Mills

Given the enormous power offered by modern debuggers, you might be surprised 
that anyone would criticize them. But some of the most respected people in computer 
science recommend not using them. They recommend using your brain and avoiding 
debugging tools altogether. Their argument is that debugging tools are a crutch and 
that you find problems faster and more accurately by thinking about them than by 
relying on tools. They argue that you, rather than the debugger, should mentally exe-
cute the program to flush out defects.

Regardless of the empirical evidence, the basic argument against debuggers isn’t valid. 
The fact that a tool can be misused doesn’t imply that it should be rejected. You 
wouldn’t avoid taking aspirin merely because it’s possible to overdose. You wouldn’t 
avoid mowing your lawn with a power mower just because it’s possible to cut yourself. 
Any other powerful tool can be used or abused, and so can a debugger.

The debugger isn’t a substitute for good thinking. But, in some cases, thinking isn’t a 
substitute for a good debugger either. The most effective combination is good think-
ing and a good debugger.

cc2e.com/2368 CHECKLISTS: Debugging Reminders
Techniques for Finding Defects

❑ Use all the data available to make your hypothesis.

❑ Refine the test cases that produce the error.

❑ Exercise the code in your unit test suite.

❑ Use available tools.

❑ Reproduce the error several different ways.

❑ Generate more data to generate more hypotheses.

❑ Use the results of negative tests.

❑ Brainstorm for possible hypotheses.

❑ Keep a notepad by your desk, and make a list of things to try.

❑ Narrow the suspicious region of the code.

❑ Be suspicious of classes and routines that have had defects before.

❑ Check code that’s changed recently.

❑ Expand the suspicious region of the code.

KEY POINT
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❑ Integrate incrementally.

❑ Check for common defects.

❑ Talk to someone else about the problem.

❑ Take a break from the problem.

❑ Set a maximum time for quick and dirty debugging.

❑ Make a list of brute-force techniques, and use them.

Techniques for Syntax Errors
❑ Don’t trust line numbers in compiler messages.

❑ Don’t trust compiler messages.

❑ Don’t trust the compiler’s second message.

❑ Divide and conquer.

❑ Use a syntax-directed editor to find misplaced comments and quotation 
marks.

Techniques for Fixing Defects
❑ Understand the problem before you fix it.

❑ Understand the program, not just the problem.

❑ Confirm the defect diagnosis.

❑ Relax.

❑ Save the original source code.

❑ Fix the problem, not the symptom.

❑ Change the code only for good reason.

❑ Make one change at a time.

❑ Check your fix.

❑ Add a unit test that exposes the defect.

❑ Look for similar defects.

General Approach to Debugging
❑ Do you use debugging as an opportunity to learn more about your pro-

gram, mistakes, code quality, and problem-solving approach?

❑ Do you avoid the trial-and-error, superstitious approach to debugging?
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❑ Do you assume that errors are your fault?

❑ Do you use the scientific method to stabilize intermittent errors?

❑ Do you use the scientific method to find defects?

❑ Rather than using the same approach every time, do you use several differ-
ent techniques to find defects?

❑ Do you verify that the fix is correct?

❑ Do you use compiler warning messages, execution profiling, a test frame-
work, scaffolding, and interactive debugging?

Additional Resources
cc2e.com/2375 The following resources also address debugging:

Agans, David J. Debugging: The Nine Indispensable Rules for Finding Even the Most Elu-
sive Software and Hardware Problems. Amacom, 2003. This book provides general 
debugging principles that can be applied in any language or environment. 

Myers, Glenford J. The Art of Software Testing. New York, NY: John Wiley & Sons, 1979. 
Chapter 7 of this classic book is devoted to debugging.

Allen, Eric. Bug Patterns In Java. Berkeley, CA: Apress, 2002. This book lays out an 
approach to debugging Java programs that is conceptually very similar to what is 
described in this chapter, including “The Scientific Method of Debugging,” distin-
guishing between debugging and testing, and identifying common bug patterns. 

The following two books are similar in that their titles suggest they are applicable only 
to Microsoft Windows and .NET programs, but they both contain discussions of 
debugging in general, use of assertions, and coding practices that help to avoid bugs 
in the first place:

Robbins, John. Debugging Applications for Microsoft .NET and Microsoft Windows. Red-
mond, WA: Microsoft Press, 2003. 

McKay, Everett N. and Mike Woodring. Debugging Windows Programs: Strategies, Tools, 
and Techniques for Visual C++ Programmers. Boston, MA: Addison-Wesley, 2000. 
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Key Points
■ Debugging is a make-or-break aspect of software development. The best 

approach is to use other techniques described in this book to avoid defects in 
the first place. It’s still worth your time to improve your debugging skills, how-
ever, because the difference between good and poor debugging performance is 
at least 10 to 1.

■ A systematic approach to finding and fixing errors is critical to success. Focus 
your debugging so that each test moves you a step forward. Use the Scientific 
Method of Debugging. 

■ Understand the root problem before you fix the program. Random guesses 
about the sources of errors and random corrections will leave the program in 
worse condition than when you started.

■ Set your compiler warning to the pickiest level possible, and fix the errors it 
reports. It’s hard to fix subtle errors if you ignore the obvious ones.

■ Debugging tools are powerful aids to software development. Find them and use 
them, and remember to use your brain at the same time.
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Chapter 24

Refactoring
cc2e.com/2436 Contents

■ 24.1 Kinds of Software Evolution: page 564

■ 24.2 Introduction to Refactoring: page 565

■ 24.3 Specific Refactorings: page 571

■ 24.4 Refactoring Safely: page 579

■ 24.5 Refactoring Strategies: page 582

Related Topics

■ Tips for fixing defects: Section 23.3

■ Code-tuning approach: Section 25.6

■ Design in construction: Chapter 5

■ Working classes: Chapter 6

■ High-quality routines: Chapter 7

■ Collaborative construction: Chapter 21

■ Developer testing: Chapter 22

■ Areas likely to change: “Identify Areas Likely to Change” in Section 5.3

All successful software gets 
changed.
—Fred Brooks

Myth: a well-managed software project conducts methodical requirements development 
and defines a stable list of the program’s responsibilities. Design follows requirements, 
and it is done carefully so that coding can proceed linearly, from start to finish, implying 
that most of the code can be written once, tested, and forgotten. According to the myth, 
the only time that the code is significantly modified is during the software-maintenance 
phase, something that happens only after the initial version of a system has been delivered.

Reality: code evolves substantially during its initial development. Many of the changes 
seen during initial coding are at least as dramatic as changes seen during mainte-
nance. Coding, debugging, and unit testing consume between 30 to 65 percent of the 
effort on a typical project, depending on the project’s size. (See Chapter 27, “How Pro-
gram Size Affects Construction,” for details.) If coding and unit testing were straight-
forward processes, they would consume no more than 20–30 percent of the total 
effort on a project. Even on well-managed projects, however, requirements change by 
about one to four percent per month (Jones 2000). Requirements changes invariably 
cause corresponding code changes—sometimes substantial code changes.

1
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Another reality: modern development practices increase the potential for code 
changes during construction. In older life cycles, the focus—successful or not—was on 
avoiding code changes. More modern approaches move away from coding predictabil-
ity. Current approaches are more code-centered, and over the life of a project, you can 
expect code to evolve more than ever.

24.1 Kinds of Software Evolution
Software evolution is like biological evolution in that some mutations are beneficial 
and many mutations are not. Good software evolution produces code whose develop-
ment mimics the ascent from monkeys to Neanderthals to our current exalted state as 
software developers. Evolutionary forces sometimes beat on a program the other way, 
however, knocking the program into a deevolutionary spiral.

The key distinction between kinds of software evolution is whether the program’s 
quality improves or degrades under modification. If you fix errors with logical duct 
tape and superstition, quality degrades. If you treat modifications as opportunities to 
tighten up the original design of the program, quality improves. If you see that pro-
gram quality is degrading, that’s like that silent canary in a mine shaft I’ve mentioned 
before. It’s a warning that the program is evolving in the wrong direction.

A second distinction in the kinds of software evolution is the one between changes 
made during construction and those made during maintenance. These two kinds of 
evolution differ in several ways. Construction changes are usually made by the origi-
nal developers, usually before the program has been completely forgotten. The system 
isn’t yet on line, so the pressure to finish changes is only schedule pressure—it’s not 
500 angry users wondering why their system is down. For the same reason, changes 
during construction can be more freewheeling—the system is in a more dynamic state, 
and the penalty for making mistakes is low. These circumstances imply a style of soft-
ware evolution that’s different from what you’d find during software maintenance.

Philosophy of Software Evolution
There is no code so big, 
twisted, or complex that 
maintenance can’t make it 
worse.
—Gerald Weinberg

A common weakness in programmers’ approaches to software evolution is that it goes 
on as an unselfconscious process. If you recognize that evolution during development 
is an inevitable and important phenomenon and plan for it, you can use it to your 
advantage.

Evolution is at once hazardous and an opportunity to approach perfection. When you 
have to make a change, strive to improve the code so that future changes are easier. 
You never know as much when you begin writing a program as you do afterward. 
When you have a chance to revise a program, use what you’ve learned to improve it. 
Make both your initial code and your changes with further change in mind.

KEY POINT

KEY POINT
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The Cardinal Rule of Software Evolution is that evolution should improve the internal 
quality of the program. The following sections describe how to accomplish this. 

24.2 Introduction to Refactoring
The key strategy in achieving The Cardinal Rule of Software Evolution is refactoring, 
which Martin Fowler defines as “a change made to the internal structure of the soft-
ware to make it easier to understand and cheaper to modify without changing its 
observable behavior” (Fowler 1999). The word “refactoring” in modern programming 
grew out of Larry Constantine’s original use of the word “factoring” in structured pro-
gramming, which referred to decomposing a program into its constituent parts as 
much as possible (Yourdon and Constantine 1979). 

Reasons to Refactor

Sometimes code degenerates under maintenance, and sometimes the code just wasn’t 
very good in the first place. In either case, here are some warning signs —sometimes 
called “smells” (Fowler 1999)—that indicate where refactorings are needed: 

Code is duplicated Duplicated code almost always represents a failure to fully factor 
the design in the first place. Duplicate code sets you up to make parallel modifica-
tions—whenever you make changes in one place, you have to make parallel changes in 
another place. It also violates what Andrew Hunt and Dave Thomas refer to as the 
“DRY principle”: Don’t Repeat Yourself (2000). I think David Parnas says it best: 
“Copy and paste is a design error” (McConnell 1998b). 

A routine is too long In object-oriented programming, routines longer than a screen 
are rarely needed and usually represent the attempt to force-fit a structured program-
ming foot into an object-oriented shoe. 

One of my clients was assigned the task of breaking up a legacy system’s longest rou-
tine, which was more than 12,000 lines long. With effort, he was able to reduce the 
size of the largest routine to only about 4,000 lines. 

One way to improve a system is to increase its modularity—increase the number of 
well-defined, well-named routines that do one thing and do it well. When changes 
lead you to revisit a section of code, take the opportunity to check the modularity of 
the routines in that section. If a routine would be cleaner if part of it were made into a 
separate routine, create a separate routine. 

A loop is too long or too deeply nested Loop innards tend to be good candidates for 
being converted into routines, which helps to better factor the code and to reduce the 
loop’s complexity. 

KEY POINT
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A class has poor cohesion If you find a class that takes ownership for a hodgepodge 
of unrelated responsibilities, that class should be broken up into multiple classes, 
each of which has responsibility for a cohesive set of responsibilities. 

A class interface does not provide a consistent level of abstraction Even classes that 
begin life with a cohesive interface can lose their original consistency. Class interfaces 
tend to morph over time as a result of modifications that are made in the heat of the 
moment and that favor expediency to interface integrity. Eventually the class interface 
becomes a Frankensteinian maintenance monster that does little to improve the intel-
lectual manageability of the program. 

A parameter list has too many parameters Well-factored programs tend to have 
many small, well-defined routines that don’t need large parameter lists. A long param-
eter list is a warning that the abstraction of the routine interface has not been well 
thought out. 

Changes within a class tend to be compartmentalized Sometimes a class has two or 
more distinct responsibilities. When that happens you find yourself changing either 
one part of the class or another part of the class—but few changes affect both parts of 
the class. That’s a sign that the class should be cleaved into multiple classes along the 
lines of the separate responsibilities. 

Changes require parallel modifications to multiple classes I saw one project that had 
a checklist of about 15 classes that had to be modified whenever a new kind of output 
was added. When you find yourself routinely making changes to the same set of 
classes, that suggests the code in those classes could be rearranged so that changes 
affect only one class. In my experience, this is a hard ideal to accomplish, but it’s none-
theless a good goal. 

Inheritance hierarchies have to be modified in parallel Finding yourself making a 
subclass of one class every time you make a subclass of another class is a special kind 
of parallel modification and should be addressed. 

case statements have to be modified in parallel Although case statements are not 
inherently bad, if you find yourself making parallel modifications to similar case state-
ments in multiple parts of the program, you should ask whether inheritance might be 
a better approach. 

Related data items that are used together are not organized into classes If you find 
yourself repeatedly manipulating the same set of data items, you should ask whether 
those manipulations should be combined into a class of their own. 

A routine uses more features of another class than of its own class This suggests that 
the routine should be moved into the other class and then invoked by its old class. 
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A primitive data type is overloaded Primitive data types can be used to represent an 
infinite number of real-world entities. If your program uses a primitive data type like 
an integer to represent a common entity such as money, consider creating a simple 
Money class so that the compiler can perform type checking on Money variables, so 
that you can add safety checks on the values assigned to money, and so on. If both 
Money and Temperature are integers, the compiler won’t warn you about erroneous 
assignments like bankBalance = recordLowTemperature. 

A class doesn’t do very much Sometimes the result of refactoring code is that an old 
class doesn’t have much to do. If a class doesn’t seem to be carrying its weight, ask if 
you should assign all of that class’s responsibilities to other classes and eliminate the 
class altogether. 

A chain of routines passes tramp data Finding yourself passing data to one routine 
just so that routine can pass it to another routine is called “tramp data” (Page-Jones 
1988). This might be OK, but ask yourself whether passing the specific data in ques-
tion is consistent with the abstraction presented by each of the routine interfaces. If 
the abstraction for each routine is OK, passing the data is OK. If not, find some way to 
make each routine’s interface more consistent. 

A middleman object isn’t doing anything If you find that most of the code in a class 
is just passing off calls to routines in other classes, consider whether you should elim-
inate the middleman and call those other classes directly. 

One class is overly intimate with another Encapsulation (information hiding) is 
probably the strongest tool you have to make your program intellectually manageable 
and to minimize ripple effects of code changes. Anytime you see one class that knows 
more about another class than it should—including derived classes knowing too much 
about their parents—err on the side of stronger encapsulation rather than weaker. 

A routine has a poor name If a routine has a poor name, change the name of the 
routine where it’s defined, change the name in all places it’s called, and then recom-
pile. As hard as it might be to do this now, it will be even harder later, so do it as soon 
as you notice it’s a problem. 

Data members are public Public data members are, in my view, always a bad idea. 
They blur the line between interface and implementation, and they inherently violate 
encapsulation and limit future flexibility. Strongly consider hiding public data mem-
bers behind access routines. 

A subclass uses only a small percentage of its parents’ routines Typically this indi-
cates that that subclass has been created because a parent class happened to contain 
the routines it needed, not because the subclass is logically a descendent of the super-
class. Consider achieving better encapsulation by switching the subclass’s relation-
ship to its superclass from an is-a relationship to a has-a relationship; convert the 
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superclass to member data of the former subclass, and expose only the routines in the 
former subclass that are really needed. 

Comments are used to explain difficult code Comments have an important role to 
play, but they should not be used as a crutch to explain bad code. The age-old wisdom 
is dead-on: “Don’t document bad code—rewrite it” (Kernighan and Plauger 1978).

Cross-Reference For guide-
lines on the use of global 
variables, see Section 13.3, 
“Global Data.” For an expla-
nation of the differences 
between global data and 
class data, see “Class data 
mistaken for global data” in 
Section 5.3.

Global variables are used When you revisit a section of code that uses global vari-
ables, take time to reexamine them. You might have thought of a way to avoid using 
global variables since the last time you visited that part of the code. Because you’re 
less familiar with the code than when you first wrote it, you might now find the global 
variables sufficiently confusing that you’re willing to develop a cleaner approach. You 
might also have a better sense of how to isolate global variables in access routines and 
a keener sense of the pain caused by not doing so. Bite the bullet and make the bene-
ficial modifications. The initial coding will be far enough in the past that you can be 
objective about your work yet close enough that you will remember most of what you 
need to make the revisions correctly. The time during early revisions is the perfect 
time to improve the code.

A routine uses setup code before a routine call or takedown code after a routine call 
Code like this should be a warning to you:

Bad C++ Example of Setup and Takedown Code for a Routine Call
This setup code is a 
warning.

WithdrawalTransaction withdrawal;

withdrawal.SetCustomerId( customerId );

withdrawal.SetBalance( balance );

withdrawal.SetWithdrawalAmount( withdrawalAmount );

withdrawal.SetWithdrawalDate( withdrawalDate );

ProcessWithdrawal( withdrawal );

This takedown code is 
another warning.

customerId = withdrawal.GetCustomerId();

balance = withdrawal.GetBalance();

withdrawalAmount = withdrawal.GetWithdrawalAmount();

withdrawalDate = withdrawal.GetWithdrawalDate();

A similar warning sign is when you find yourself creating a special constructor for the 
WithdrawalTransaction class that takes a subset of its normal initialization data so that 
you can write code like this:

Bad C++ Example of Setup and Takedown Code for a Method Call
withdrawal = new WithdrawalTransaction( customerId, balance, 

   withdrawalAmount, withdrawalDate );

withdrawal.ProcessWithdrawal();

delete withdrawal; 
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Anytime you see code that sets up for a call to a routine or takes down after a call to a 
routine, ask whether the routine interface is presenting the right abstraction. In this 
case, perhaps the parameter list of ProcessWithdrawal should be modified to support 
code like this:

Good C++ Example of a Routine That Doesn’t Require Setup or Takedown Code
ProcessWithdrawal( customerId, balance, withdrawalAmount, withdrawalDate );

Note that the converse of this example presents a similar problem. If you find yourself 
usually having a WithdrawalTransaction object in hand but needing to pass several of 
its values to a routine like the one shown here, you should also consider refactoring 
the ProcessWithdrawal interface so that it requires the WithdrawalTransaction object 
rather than its individual fields:

C++ Example of Code That Requires Several Method Calls
ProcessWithdrawal( withdrawal.GetCustomerId(), withdrawal.GetBalance(), 

   withdrawal.GetWithdrawalAmount(), withdrawal.GetWithdrawalDate() );

Any of these approaches can be right, and any can be wrong—it depends on whether 
the ProcessWithdrawal() interface’s abstraction is that it expects to have four distinct 
pieces of data or expects to have a WithdrawalTransaction object. 

A program contains code that seems like it might be needed someday Programmers 
are notoriously bad at guessing what functionality might be needed someday. 
“Designing ahead” is subject to numerous predictable problems:

■ Requirements for the “design ahead” code haven’t been fully developed, which 
means the programmer will likely guess wrong about those future require-
ments. The “code ahead” work will ultimately be thrown away. 

■ If the programmer’s guess about the future requirement is pretty close, the pro-
grammer still will not generally anticipate all the intricacies of the future require-
ment. These intricacies undermine the programmer’s basic design assumptions, 
which means the “design ahead” work will have to be thrown away. 

■ Future programmers who use the “design ahead” code don’t know that it was 
“design ahead” code, or they assume the code works better than it does. They 
assume that the code has been coded, tested, and reviewed to the same level as 
the other code. They waste a lot of time building code that uses the “design 
ahead” code, only to discover ultimately that the “design ahead” code doesn’t 
actually work. 

■ The additional “design ahead” code creates additional complexity, which calls 
for additional testing, additional defect correction, and so on. The overall effect 
is to slow down the project.
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Experts agree that the best way to prepare for future requirements is not to write spec-
ulative code; it’s to make the currently required code as clear and straightforward as 
possible so that future programmers will know what it does and does not do and will 
make their changes accordingly (Fowler 1999, Beck 2000). 

cc2e.com/2443 CHECKLIST: Reasons to Refactor
❑ Code is duplicated.

❑ A routine is too long.

❑ A loop is too long or too deeply nested. 

❑ A class has poor cohesion.

❑ A class interface does not provide a consistent level of abstraction. 

❑ A parameter list has too many parameters. 

❑ Changes within a class tend to be compartmentalized.

❑ Changes require parallel modifications to multiple classes.

❑ Inheritance hierarchies have to be modified in parallel. 

❑ case statements have to be modified in parallel. 

❑ Related data items that are used together are not organized into classes.

❑ A routine uses more features of another class than of its own class.

❑ A primitive data type is overloaded.

❑ A class doesn’t do very much.

❑ A chain of routines passes tramp data.

❑ A middleman object isn’t doing anything.

❑ One class is overly intimate with another.

❑ A routine has a poor name. 

❑ Data members are public. 

❑ A subclass uses only a small percentage of its parents’ routines.

❑ Comments are used to explain difficult code. 

❑ Global variables are used.

❑ A routine uses setup code before a routine call or takedown code after a 
routine call.

❑ A program contains code that seems like it might be needed someday.
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Reasons Not to Refactor

In common parlance, “refactoring” is used loosely to refer to fixing defects, adding 
functionality, modifying the design—essentially as a synonym for making any change to 
the code whatsoever. This common dilution of the term’s meaning is unfortunate. 
Change in itself is not a virtue, but purposeful change, applied with a teaspoonful of dis-
cipline, can be the key strategy that supports steady improvement in a program’s quality 
under maintenance and prevents the all-too-familiar software-entropy death spiral.

24.3 Specific Refactorings
In this section, I present a catalog of refactorings, many of which I describe by summa-
rizing the more detailed descriptions presented in Refactoring (Fowler 1999). I have 
not, however, attempted to make this catalog exhaustive. In a sense, every case in this 
book that shows a “bad code” example and a “good code” example is a candidate for 
becoming a refactoring. In the interest of space, I’ve focused on the refactorings I per-
sonally have found most useful. 

Data-Level Refactorings

Here are refactorings that improve the use of variables and other kinds of data.

Replace a magic number with a named constant If you’re using a numeric or string 
literal like 3.14, replace that literal with a named constant like PI. 

Rename a variable with a clearer or more informative name If a variable’s name 
isn’t clear, change it to a better name. The same advice applies to renaming constants, 
classes, and routines, of course. 

Move an expression inline Replace an intermediate variable that was assigned the 
result of an expression with the expression itself. 

Replace an expression with a routine Replace an expression with a routine (usually 
so that the expression isn’t duplicated in the code). 

Introduce an intermediate variable Assign an expression to an intermediate vari-
able whose name summarizes the purpose of the expression. 

Convert a multiuse variable to multiple single-use variables If a variable is used for 
more than one purpose—common culprits are i, j, temp, and x—create separate vari-
ables for each usage, each of which has a more specific name. 

Use a local variable for local purposes rather than a parameter If an input-only 
routine parameter is being used as a local variable, create a local variable and use that 
instead.
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Convert a data primitive to a class If a data primitive needs additional behavior 
(including stricter type checking) or additional data, convert the data to an object and 
add the behavior you need. This can apply to simple numeric types like Money and Tem-
perature. It can also apply to enumerated types like Color, Shape, Country, or OutputType.

Convert a set of type codes to a class or an enumeration In older programs, it’s com-
mon to see associations like

const int SCREEN = 0;

const int PRINTER = 1;

const int FILE = 2;

Rather than defining standalone constants, create a class so that you can receive the 
benefits of stricter type checking and set yourself up to provide richer semantics for 
OutputType if you ever need to. Creating an enumeration is sometimes a good alterna-
tive to creating a class. 

Convert a set of type codes to a class with subclasses If the different elements asso-
ciated with different types might have different behavior, consider creating a base class 
for the type with subclasses for each type code. For the OutputType base class, you 
might create subclasses like Screen, Printer, and File. 

Change an array to an object If you’re using an array in which different elements are 
different types, create an object that has a field for each former element of the array.

Encapsulate a collection If a class returns a collection, having multiple instances of 
the collection floating around can create synchronization difficulties. Consider having 
the class return a read-only collection, and provide routines to add and remove ele-
ments from the collection. 

Replace a traditional record with a data class Create a class that contains the mem-
bers of the record. Creating a class allows you to centralize error checking, persis-
tence, and other operations that concern the record. 

Statement-Level Refactorings

Here are refactorings that improve the use of individual statements.

Decompose a boolean expression Simplify a boolean expression by introducing well-
named intermediate variables that help document the meaning of the expression. 

Move a complex boolean expression into a well-named boolean function If the 
expression is complicated enough, this refactoring can improve readability. If the 
expression is used more than once, it eliminates the need for parallel modifications 
and reduces the chance of error in using the expression.
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Consolidate fragments that are duplicated within different parts of a conditional If 
you have the same lines of code repeated at the end of an else block that you have at 
the end of the if block, move those lines of code so that they occur after the entire if-
then-else block. 

Use break or return instead of a loop control variable If you have a variable within a 
loop like done that’s used to control the loop, use break or return to exit the loop instead.

Return as soon as you know the answer instead of assigning a return value within 
nested if-then-else statements Code is often easiest to read and least error-prone if 
you exit a routine as soon as you know the return value. The alternative of setting a 
return value and then unwinding your way through a lot of logic can be harder to follow. 

Replace conditionals (especially repeated case statements) with polymorphism
Much of the logic that used to be contained in case statements in structured programs 
can instead be baked into the inheritance hierarchy and accomplished through poly-
morphic routine calls.

Create and use null objects instead of testing for null values Sometimes a null object 
will have generic behavior or data associated with it, such as referring to a resident 
whose name is not known as “occupant.” In this case, consider moving the responsi-
bility for handling null values out of the client code and into the class—that is, have the 
Customer class define the unknown resident as “occupant” instead of having Cus-
tomer’s client code repeatedly test for whether the customer’s name is known and sub-
stitute “occupant” if not. 

Routine-Level Refactorings

Here are refactorings that improve code at the individual-routine level.

Extract routine/extract method Remove inline code from one routine, and turn it into 
its own routine.

Move a routine’s code inline Take code from a routine whose body is simple and 
self-explanatory, and move that routine’s code inline where it is used. 

Convert a long routine to a class If a routine is too long, sometimes turning it into a 
class and then further factoring the former routine into multiple routines will improve 
readability. 

Substitute a simple algorithm for a complex algorithm Replace a complicated algo-
rithm with a simpler algorithm. 

Add a parameter If a routine needs more information from its caller, add a parame-
ter so that that information can be provided. 

Remove a parameter If a routine no longer uses a parameter, remove it. 
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Separate query operations from modification operations Normally, query opera-
tions don’t change an object’s state. If an operation like GetTotals() changes an object’s 
state, separate the query functionality from the state-changing functionality and pro-
vide two separate routines. 

Combine similar routines by parameterizing them Two similar routines might differ 
only with respect to a constant value that’s used within the routine. Combine the rou-
tines into one routine, and pass in the value to be used as a parameter. 

Separate routines whose behavior depends on parameters passed in If a routine exe-
cutes different code depending on the value of an input parameter, consider breaking 
the routine into separate routines that can be called separately, without passing in that 
particular input parameter. 

Pass a whole object rather than specific fields If you find yourself passing several 
values from the same object into a routine, consider changing the routine’s interface 
so that it takes the whole object instead. 

Pass specific fields rather than a whole object If you find yourself creating an object 
just so that you can pass it to a routine, consider modifying the routine so that it takes 
specific fields rather than a whole object. 

Encapsulate downcasting If a routine returns an object, it normally should return 
the most specific type of object it knows about. This is particularly applicable to rou-
tines that return iterators, collections, elements of collections, and so on. 

Class Implementation Refactorings

Here are refactorings that improve at the class level.

Change value objects to reference objects If you find yourself creating and maintain-
ing numerous copies of large or complex objects, change your usage of those objects 
so that only one master copy exists (the value object) and the rest of the code uses ref-
erences to that object (reference objects). 

Change reference objects to value objects If you find yourself performing a lot of ref-
erence housekeeping for small or simple objects, change your usage of those objects 
so that all objects are value objects. 

Replace virtual routines with data initialization If you have a set of subclasses that 
vary only according to constant values they return, rather than overriding member 
routines in the derived classes, have the derived classes initialize the class with appro-
priate constant values, and then have generic code in the base class that works with 
those values. 
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Change member routine or data placement Consider making several general 
changes in an inheritance hierarchy. These changes are normally performed to elimi-
nate duplication in derived classes:

■ Pull a routine up into its superclass. 

■ Pull a field up into its superclass.

■ Pull a constructor body up into its superclass.

Several other changes are normally made to support specialization in derived 
classes:

■ Push a routine down into its derived classes.

■ Push a field down into its derived classes.

■ Push a constructor body down into its derived classes.

Extract specialized code into a subclass If a class has code that’s used by only a sub-
set of its instances, move that specialized code into its own subclass. 

Combine similar code into a superclass If two subclasses have similar code, com-
bine that code and move it into the superclass. 

Class Interface Refactorings

Here are refactorings that make for better class interfaces.

Move a routine to another class Create a new routine in the target class, and move 
the body of the routine from the source class into the target class. You can then call 
the new routine from the old routine. 

Convert one class to two If a class has two or more distinct areas of responsibility, 
break the class into multiple classes, each of which has a clearly defined responsibility. 

Eliminate a class If a class isn’t doing much, move its code into other classes that 
are more cohesive and eliminate the class. 

Hide a delegate Sometimes Class A calls Class B and Class C, when really Class A 
should call only Class B and Class B should call Class C. Ask yourself what the right 
abstraction is for A’s interaction with B. If B should be responsible for calling C, have 
B call C.

Remove a middleman If Class A calls Class B and Class B calls Class C, sometimes it 
works better to have Class A call Class C directly. The question of whether you should 
delegate to Class B depends on what will best maintain the integrity of Class B’s interface. 



576 Chapter 24: Refactoring

Replace inheritance with delegation If a class needs to use another class but wants 
more control over its interface, make the superclass a field of the former subclass and 
then expose a set of routines that will provide a cohesive abstraction. 

Replace delegation with inheritance If a class exposes every public routine of a dele-
gate class (member class), inherit from the delegate class instead of just using the class.

Introduce a foreign routine If a class needs an additional routine and you can’t mod-
ify the class to provide it, you can create a new routine within the client class that pro-
vides that functionality. 

Introduce an extension class If a class needs several additional routines and you 
can’t modify the class, you can create a new class that combines the unmodifiable 
class’s functionality with the additional functionality. You can do that either by sub-
classing the original class and adding new routines or by wrapping the class and 
exposing the routines you need. 

Encapsulate an exposed member variable If member data is public, change the 
member data to private and expose the member data’s value through a routine instead.

Remove Set() routines for fields that cannot be changed If a field is supposed to be 
set at object creation time and not changed afterward, initialize that field in the 
object’s constructor rather than providing a misleading Set() routine. 

Hide routines that are not intended to be used outside the class If the class interface 
would be more coherent without a routine, hide the routine. 

Encapsulate unused routines If you find yourself routinely using only a portion of a 
class’s interface, create a new interface to the class that exposes only those necessary 
routines. Be sure that the new interface provides a coherent abstraction. 

Collapse a superclass and subclass if their implementations are very similar If the 
subclass doesn’t provide much specialization, combine it into its superclass. 

System-Level Refactorings

Here are refactorings that improve code at the whole-system level.

Create a definitive reference source for data you can’t control Sometimes you have 
data maintained by the system that you can’t conveniently or consistently access from 
other objects that need to know about that data. A common example is data main-
tained in a GUI control. In such a case, you can create a class that mirrors the data in 
the GUI control, and then have both the GUI control and the other code treat that 
class as the definitive source of that data. 
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Change unidirectional class association to bidirectional class association If you 
have two classes that need to use each other’s features but only one class can know 
about the other class, change the classes so that they both know about each other. 

Change bidirectional class association to unidirectional class association If you have 
two classes that know about each other’s features but only one class that really needs 
to know about the other, change the classes so that one knows about the other but not 
vice versa.

Provide a factory method rather than a simple constructor Use a factory method 
(routine) when you need to create objects based on a type code or when you want to 
work with reference objects rather than value objects. 

Replace error codes with exceptions or vice versa Depending on your error-han-
dling strategy, make sure the code is using the standard approach. 

cc2e.com/2450 CHECKLIST: Summary of Refactorings
Data-Level Refactorings

❑ Replace a magic number with a named constant. 

❑ Rename a variable with a clearer or more informative name. 

❑ Move an expression inline. 

❑ Replace an expression with a routine. 

❑ Introduce an intermediate variable. 

❑ Convert a multiuse variable to a multiple single-use variables. 

❑ Use a local variable for local purposes rather than a parameter. 

❑ Convert a data primitive to a class. 

❑ Convert a set of type codes to a class or an enumeration. 

❑ Convert a set of type codes to a class with subclasses. 

❑ Change an array to an object. 

❑ Encapsulate a collection. 

❑ Replace a traditional record with a  data class. 

Statement-Level Refactorings
❑ Decompose a boolean expression. 

❑ Move a complex boolean expression into a well-named boolean function. 
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❑ Consolidate fragments that are duplicated within different parts of a 
conditional.

❑ Use break or return instead of a loop control variable.

❑ Return as soon as you know the answer instead of assigning a return value 
within nested if-then-else statements.

❑ Replace conditionals (especially repeated case statements) with polymor-
phism. 

❑ Create and use null objects instead of testing for null values. 

Routine-Level Refactorings
❑ Extract a routine. 

❑ Move a routine’s code inline.

❑ Convert a long routine to a class. 

❑ Substitute a simple algorithm for a complex algorithm. 

❑ Add a parameter. 

❑ Remove a parameter. 

❑ Separate query operations from modification operations. 

❑ Combine similar routines by parameterizing them. 

❑ Separate routines whose behavior depends on parameters passed in. 

❑ Pass a whole object rather than specific fields. 

❑ Pass specific fields rather than a whole object. 

❑ Encapsulate downcasting. 

Class Implementation Refactorings
❑ Change value objects to reference objects. 

❑ Change reference objects to value objects. 

❑ Replace virtual routines with data initialization. 

❑ Change member routine or data placement. 

❑ Extract specialized code into a subclass. 

❑ Combine similar code into a superclass. 
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Class Interface Refactorings
❑ Move a routine to another class. 

❑ Convert one class to two. 

❑ Eliminate a class. 

❑ Hide a delegate.

❑ Remove a middleman.

❑ Replace inheritance with delegation.

❑ Replace delegation with inheritance.

❑ Introduce a foreign routine. 

❑ Introduce an extension class.

❑ Encapsulate an exposed member variable.

❑ Remove Set() routines for fields that cannot be changed. 

❑ Hide routines that are not intended to be used outside the class. 

❑ Encapsulate unused routines.

❑ Collapse a superclass and subclass if their implementations are very 
similar. 

System-Level Refactorings
❑ Create a definitive reference source for data you can’t control. 

❑ Change unidirectional class association to bidirectional class association. 

❑ Change bidirectional class association to unidirectional class association.

❑ Provide a factory routine rather than a simple constructor. 

❑ Replace error codes with exceptions or vice versa. 

24.4 Refactoring Safely
Opening up a working sys-
tem is more like opening up 
a human brain and replacing 
a nerve than opening up a 
sink and replacing a washer. 
Would maintenance be eas-
ier if it was called “Software 
Brain Surgery?” 
—Gerald Weinberg

Refactoring is a powerful technique for improving code quality. Like all powerful 
tools, refactoring can cause more harm than good if misused. A few simple guidelines 
can prevent refactoring missteps. 

Save the code you start with Before you begin refactoring, make sure you can get 
back to the code you started with. Save a version in your revision control system, or 
copy the correct files to a backup directory. 



580 Chapter 24: Refactoring

Keep refactorings small Some refactorings are larger than others, and exactly what 
constitutes “one refactoring” can be a little fuzzy. Keep the refactorings small so that you 
fully understand all the impacts of the changes you make. The detailed refactorings 
described in Refactoring (Fowler 1999) provide many good examples of how to do this.

Do refactorings one at a time Some refactorings are more complicated than others. 
For all but the simplest refactorings, do the refactorings one at a time, recompiling and 
retesting after a refactoring before doing the next one. 

Make a list of steps you intend to take A natural extension of the Pseudocode Pro-
gramming Process is to make a list of the refactorings that will get you from Point A to 
Point B. Making a list helps you keep each change in context. 

Make a parking lot When you’re midway through one refactoring, you’ll some-
times find that you need another refactoring. Midway through that refactoring, you 
find a third refactoring that would be beneficial. For changes that aren’t needed imme-
diately, make a “parking lot,” a list of the changes that you’d like to make at some point 
but that don’t need to be made right now. 

Make frequent checkpoints It’s easy to find the code suddenly going sideways while 
you’re refactoring. In addition to saving the code you started with, save checkpoints at 
various steps in a refactoring session so that you can get back to a working program if 
you code yourself into a dead end. 

Use your compiler warnings It’s easy to make small errors that slip past the com-
piler. Setting your compiler to the pickiest warning level possible will help catch many 
errors almost as soon as you type them. 

Retest Reviews of changed code should be complemented by retests. Of course, this 
is dependent on having a good set of test cases in the first place. Regression testing 
and other test topics are described in more detail in Chapter 22, “Developer Testing.” 

Add test cases In addition to retesting with your old tests, add new unit tests to 
exercise the new code. Remove any test cases that have been made obsolete by the 
refactorings. 

Cross-Reference For details 
on reviews, see Chapter 21, 
“Collaborative Construction.”

Review the changes If reviews are important the first time through, they are even 
more important during subsequent modifications. Ed Yourdon reports that program-
mers typically have more than a 50 percent chance of making an error on their first 
attempt to make a change (Yourdon 1986b). Interestingly, if programmers work with 
a substantial portion of the code, rather than just a few lines, the chance of making a 



24.4 Refactoring Safely 581

correct modification improves, as shown in Figure 24-1. Specifically, as the number of 
lines changed increases from one to five lines, the chance of making a bad change 
increases. After that, the chance of making a bad change decreases.

Figure 24-1 Small changes tend to be more error-prone than larger changes 
(Weinberg 1983).

Programmers treat small changes casually. They don’t desk-check them, they don’t 
have others review them, and they sometimes don’t even run the code to verify that 
the fix works properly.

The moral is simple: treat simple changes as if they were complicated. One organiza-
tion that introduced reviews for one-line changes found that its error rate went from 
55 percent before reviews to 2 percent afterward (Freedman and Weinberg 1982). A 
telecommunications organization went from 86 percent correct before reviewing code 
changes to 99.6 percent afterward (Perrott 2004). 

Adjust your approach depending on the risk level of the refactoring Some refactor-
ings are riskier than others. A refactoring like “Replace a magic number with a named 
constant” is relatively risk-free. Refactorings that involve class or routine interface 
changes, database schema changes, or changes to boolean tests, among others, tend to 
be more risky. For easier refactorings, you might streamline your refactoring process 
to do more than one refactoring at a time and to simply retest, without going through 
an official review.

For riskier refactorings, err on the side of caution. Do the refactorings one at a time. 
Have someone else review the refactoring or use pair programming for that refactor-
ing, in addition to the normal compiler checking and unit tests. 
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Bad Times to Refactor

Refactoring is a powerful technique, but it isn’t a panacea and it’s subject to a few spe-
cific kinds of abuse. 

Do not partially write a fea-
ture with the intent of refac-
toring to get it complete 
later.
—John Manzo

Don’t use refactoring as a cover for code and fix The worst problem with refactor-
ing is how it’s misused. Programmers will sometimes say they’re refactoring, when 
all they’re really doing is tweaking the code, hoping to find a way to make it work. 
Refactoring refers to changes in working code that do not affect the program’s behavior. 
Programmers who are tweaking broken code aren’t refactoring; they’re hacking. 

A big refactoring is a recipe 
for disaster.
—Kent Beck

Avoid refactoring instead of rewriting Sometimes code doesn’t need small 
changes—it needs to be tossed out so that you can start over. If you find yourself in a 
major refactoring session, ask yourself whether instead you should be redesigning 
and reimplementing that section of code from the ground up. 

24.5 Refactoring Strategies
The number of refactorings that would be beneficial to any specific program is essen-
tially infinite. Refactoring is subject to the same law of diminishing returns as other 
programming activities, and the 80/20 rule applies. Spend your time on the 20 per-
cent of the refactorings that provide 80 percent of the benefit. Consider the following 
guidelines when deciding which refactorings are most important: 

Refactor when you add a routine When you add a routine, check whether related 
routines are well organized. If not, refactor them. 

Refactor when you add a class Adding a class often brings issues with existing code 
to the fore. Use this time as an opportunity to refactor other classes that are closely 
related to the class you’re adding. 

Refactor when you fix a defect Use the understanding you gain from fixing a bug to 
improve other code that might be prone to similar defects. 

Cross-Reference For more 
on error-prone code, see 
"Which Classes Contain the 
Most Errors?" in Section 22.4.

Target error-prone modules Some modules are more error-prone and brittle than 
others. Is there a section of code that you and everyone else on your team is afraid of? 
That’s probably an error-prone module. Although most people’s natural tendency is 
to avoid these  challenging sections of code, targeting these sections for refactoring 
can be one of the more effective strategies (Jones 2000). 
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Target high-complexity modules Another approach is to focus on modules that have 
the highest complexity ratings. (See “How to Measure Complexity” in Section 19.6 for 
details on these metrics.) One classic study found that program quality improved dra-
matically when maintenance programmers focused their improvement efforts on the 
modules that had the highest complexity (Henry and Kafura 1984). 

In a maintenance environment, improve the parts you touch Code that is never 
modified doesn’t need to be refactored. But when you do touch a section of code, be 
sure you leave it better than you found it. 

Define an interface between clean code and ugly code, and then move code across the 
interface The “real world” is often messier than you’d like. The messiness might 
come from complicated business rules, hardware interfaces, or software interfaces. A 
common problem with geriatric systems is poorly written production code that must 
remain operational at all times. 

An effective strategy for rejuvenating geriatric production systems is to designate some 
code as being in the messy real world, some code as being in an idealized new world, 
and some code as being the interface between the two. Figure 24-2 illustrates this idea. 

Figure 24-2 Your code doesn’t have to be messy just because the real world is messy. 
Conceive your system as a combination of ideal code, interfaces from the ideal code to the 
messy real world, and the messy real world. 

Interface to Messy Real World

Nice Tidy Ideal World

Messy Real World
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As you work with the system, you can begin moving code across the “real world inter-
face” into a more organized ideal world. When you begin working with a legacy sys-
tem, the poorly written legacy code might make up nearly all the system. One policy 
that works well is that anytime you touch a section of messy code, you are required to 
bring it up to current coding standards, give it clear variable names, and so on—effec-
tively moving it into the ideal world. Over time this can provide for a rapid improve-
ment in a code base, as shown in Figure 24-3. 

Figure 24-3 One strategy for improving production code is to refactor poorly written leg-
acy code as you touch it, so as to move it to the other side of the “interface to the messy real 
world.” 

cc2e.com/2457 CHECKLIST: Refactoring Safely
❑ Is each change part of a systematic change strategy?

❑ Did you save the code you started with before beginning refactoring?

❑ Are you keeping each refactoring small? 

❑ Are you doing refactorings one at a time?

❑ Have you made a list of steps you intend to take during your refactoring?

❑ Do you have a parking lot so that you can remember ideas that occur to 
you mid-refactoring?

❑ Have you retested after each refactoring?

❑ Have changes been reviewed if they are complicated or if they affect mis-
sion-critical code? 

❑ Have you considered the riskiness of the specific refactoring and adjusted 
your approach accordingly? 

❑ Does the change enhance the program’s internal quality rather than 
degrade it?

❑ Have you avoided using refactoring as a cover for code and fix or as an 
excuse for not rewriting bad code? 

Initial State 
Mostly Poorly-Written Legacy Code

 Target State
Mostly Well-Written Refactored Code
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Additional Resources
cc2e.com/2464 The process of refactoring has a lot in common with the process of fixing defects. For 

more on fixing defects, see Section 23.3, “Fixing a Defect.” The risks associated with 
refactoring are similar to the risks associated with code tuning. For more on managing 
code-tuning risks, see Section 25.6, “Summary of the Approach to Code Tuning.” 

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addi-
son Wesley, 1999. This is the definitive guide to refactoring. It contains detailed dis-
cussions of many of the specific refactorings summarized in this chapter, as well as a 
handful of other refactorings not summarized here. Fowler provides numerous code 
samples to illustrate how each refactoring is performed step by step. 

Key Points
■ Program changes are a fact of life both during initial development and after ini-

tial release. 

■ Software can either improve or degrade as it’s changed. The Cardinal Rule of 
Software Evolution is that internal quality should improve with code evolution. 

■ One key to success in refactoring is learning to pay attention to the numerous 
warning signs or smells that indicate a need to refactor. 

■ Another key to refactoring success is learning numerous specific refactorings. 

■ A final key to success is having a strategy for refactoring safely. Some refactoring 
approaches are better than others. 

■ Refactoring during development is the best chance you’ll get to improve your 
program, to make all the changes you’ll wish you’d made the first time. Take 
advantage of these opportunities during development!
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Chapter 25

Code-Tuning Strategies
cc2e.com/2578 Contents

■ 25.1 Performance Overview: page 588
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■ 25.6 Summary of the Approach to Code Tuning: page 606

Related Topics

■ Code-tuning techniques: Chapter 26

■ Software architecture: Section 3.5

This chapter discusses the question of performance tuning—historically, a controver-
sial issue. Computer resources were severely limited in the 1960s, and efficiency was 
a paramount concern. As computers became more powerful in the 1970s, program-
mers realized how much their focus on performance had hurt readability and main-
tainability and code tuning received less attention. The return of performance 
limitations with the microcomputer revolution of the 1980s again brought efficiency 
to the fore, which then waned throughout the 1990s. In the 2000s, memory limita-
tions in embedded software for devices such as telephones and PDAs and the execu-
tion time of interpreted code have once again made efficiency a key topic.

You can address performance concerns at two levels: strategic and tactical. This chap-
ter addresses strategic performance issues: what performance is, how important it is, 
and the general approach to achieving it. If you already have a good grip on perfor-
mance strategies and are looking for specific code-level techniques that improve per-
formance, move on to Chapter 26, “Code-Tuning Techniques.” Before you begin any 
major performance work, however, at least skim the information in this chapter so 
that you don’t waste time optimizing when you should be doing other kinds of work.
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25.1 Performance Overview
Code tuning is one way of improving a program’s performance. You can often find 
other ways to improve performance more—and in less time and with less harm to the 
code—than by code tuning. This section describes the options.

Quality Characteristics and Performance
More computing sins are 
committed in the name of 
efficiency (without necessarily 
achieving it) than for any 
other single reason—
including blind stupidity. 
—W. A. Wulf

Some people look at the world through rose-colored glasses. Programmers like you 
and me tend to look at the world through code-colored glasses. We assume that the 
better we make the code, the more our clients and customers will like our software.

This point of view might have a mailing address somewhere in reality, but it doesn’t 
have a street number and it certainly doesn’t own any real estate. Users are more inter-
ested in tangible program characteristics than they are in code quality. Sometimes 
users are interested in raw performance, but only when it affects their work. Users 
tend to be more interested in program throughput than raw performance. Delivering 
software on time, providing a clean user interface, and avoiding downtime are often 
more significant.

Here’s an illustration. I take at least 50 pictures a week on my digital camera. To 
upload the pictures to my computer, the software that came with the camera requires 
me to select each picture one by one, viewing them in a window that shows only six 
pictures at a time. Uploading 50 pictures is a tedious process that requires dozens of 
mouse clicks and lots of navigation through the six-picture window. After putting up 
with this for a few months, I bought a memory-card reader that plugs directly into my 
computer and that my computer thinks is a disk drive. Now I can use Windows 
Explorer to copy the pictures to my computer. What used to take dozens of mouse 
clicks and lots of waiting now requires about two mouse clicks, a Ctrl+A, and a drag 
and drop. I really don’t care whether the memory card reader transfers each file in half 
the time or twice the time as the other software, because my throughput is faster. 
Regardless of whether the memory card reader’s code is faster or slower, its perfor-
mance is better.

Performance is only loosely related to code speed. To the extent that you work on your 
code’s speed, you’re not working on other quality characteristics. Be wary of sacrific-
ing other characteristics to make your code faster. Your work on speed might hurt 
overall performance rather than help it.

Performance and Code Tuning

Once you’ve chosen efficiency as a priority, whether its emphasis is on speed or on 
size, you should consider several options before choosing to improve either speed or 
size at the code level. Think about efficiency from each of these viewpoints:

KEY POINT
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■ Program requirements

■ Program design

■ Class and routine design

■ Operating-system interactions

■ Code compilation

■ Hardware

■ Code tuning

Program Requirements

Performance is stated as a requirement far more often than it actually is a requirement. 
Barry Boehm tells the story of a system at TRW that initially required subsecond 
response time. This requirement led to a highly complex design and an estimated cost 
of $100 million. Further analysis determined that users would be satisfied with four-
second responses 90 percent of the time. Modifying the response-time requirement 
reduced overall system cost by about $70 million. (Boehm 2000b).

Before you invest time solving a performance problem, make sure that you’re solving 
a problem that needs to be solved. 

Program Design

Cross-Reference For details 
on designing performance 
into a program, see the 
“Additional Resources” sec-
tion at the end of this chapter.

Program design includes the major strokes of the design for a single program, mainly 
the way in which a program is divided into classes. Some program designs make it dif-
ficult to write a high-performance system. Others make it hard not to.

Consider the example of a real-world data-acquisition program for which the high-
level design had identified measurement throughput as a key product attribute. Each 
measurement included time to make an electrical measurement, calibrate the value, 
scale the value, and convert it from sensor data units (such as millivolts) into engi-
neering data units (such as degrees Celsius).

In this case, without addressing the risk in the high-level design, the programmers 
would have found themselves trying to optimize the math to evaluate a 13th-order 
polynomial in software—that is, a polynomial with 14 terms, including variables raised 
to the 13th power. Instead, they addressed the problem with different hardware and a 
high-level design that used dozens of 3rd-order polynomials. This change could not 
have been effected through code tuning, and it’s unlikely that any amount of code 
tuning would have solved the problem. This is an example of a problem that had to be 
addressed at the program-design level.

Quratek
Typewritten Text
V413HAV
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Cross-Reference For details 
on the way programmers 
work toward objectives, see 
“Setting Objectives” in Sec-
tion 20.2.

If you know that a program’s size and speed are important, design the program’s 
architecture so that you can reasonably meet your size and speed goals. Design a per-
formance-oriented architecture, and then set resource goals for individual sub-
systems, features, and classes. This will help in several ways:

■ Setting individual resource goals makes the system’s ultimate performance pre-
dictable. If each feature meets its resource goals, the whole system will meet its 
goals. You can identify subsystems that have trouble meeting their goals early 
and target them for redesign or code tuning.

■ The mere act of making goals explicit improves the likelihood that they’ll be 
achieved. Programmers work to objectives when they know what they are; the 
more explicit the objectives, the easier they are to work to.

■ You can set goals that don’t achieve efficiency directly but promote efficiency in 
the long run. Efficiency is often best treated in the context of other issues. For 
example, achieving a high degree of modifiability can provide a better basis for 
meeting efficiency goals than explicitly setting an efficiency target. With a highly 
modular, modifiable design, you can easily swap less-efficient components for 
more-efficient ones.

Class and Routine Design

Cross-Reference For more 
information about data 
types and algorithms, see 
the “Additional Resources” 
section at the end of the 
chapter.

Designing the internals of classes and routines presents another opportunity to 
design for performance. One performance key that comes into play at this level is the 
choice of data types and algorithms, which usually affect both the program’s memory 
use and execution speed. This is the level at which you can choose quicksort rather 
than bubblesort or a binary search instead of a linear search. 

Operating-System Interactions

Cross-Reference For code-
level strategies that address 
slow or fat operating-system 
routines, see Chapter 26, 
“Code-Tuning Techniques.”

If your program works with external files, dynamic memory, or output devices, it’s prob-
ably interacting with the operating system. If performance isn’t good, it might be because 
the operating-system routines are slow or fat. You might not be aware that the program is 
interacting with the operating system; sometimes your compiler generates system calls or 
your libraries invoke system calls you would never dream of. More on this later. 

Code Compilation

Good compilers turn clear, high-level language code into optimized machine code. If 
you choose the right compiler, you might not need to think about optimizing speed 
any further. 

The optimization results reported in Chapter 26 provide numerous examples of com-
piler optimizations that produce more efficient code than manual code tuning does.

KEY POINT
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Hardware

Sometimes the cheapest and best way to improve a program’s performance is to buy 
new hardware. If you’re distributing a program for nationwide use by hundreds of 
thousands of customers, buying new hardware isn’t a realistic option. But if you’re 
developing custom software for a few in-house users, a hardware upgrade might be 
the cheapest option. It saves the cost of initial performance work. It saves the cost of 
future maintenance problems caused by performance work. It improves the perfor-
mance of every other program that runs on that hardware, too. 

Code Tuning

Code tuning is the practice of modifying correct code in ways that make it run more 
efficiently, and it’s the subject of the rest of this chapter. “Tuning” refers to small-scale 
changes that affect a single class, a single routine, or, more commonly, a few lines of 
code. “Tuning” does not refer to large-scale design changes or other higher-level 
means of improving performance.

You can make dramatic improvements at each level from system design through code 
tuning. Jon Bentley cites an argument that in some systems the improvements at each 
level can be multiplied (1982). Because you can achieve a 10-fold improvement in each 
of six levels, that implies a potential performance improvement of a million fold. 
Although such a multiplication of improvements requires a program in which gains at 
one level are independent of gains at other levels, which is rare, the potential is inspiring.

25.2 Introduction to Code Tuning
What is code tuning’s appeal? It’s not the most effective way to improve performance—
program architecture, class design, and algorithm selection usually produce more dra-
matic improvements. Nor is it the easiest way to improve performance—buying new 
hardware or a compiler with a better optimizer is easier. And it’s not the cheapest way 
to improve performance either—it takes more time to hand-tune code initially, and 
hand-tuned code is harder to maintain later.

Code tuning is appealing for several reasons. One attraction is that it seems to defy the 
laws of nature. It’s incredibly satisfying to take a routine that executes in 20 microsec-
onds, tweak a few lines, and reduce the execution speed to 2 microseconds.

It’s also appealing because mastering the art of writing efficient code is a rite of pas-
sage to becoming a serious programmer. In tennis, you don’t get any game points for 
the way you pick up a tennis ball, but you still need to learn the right way to do it. You 
can’t just lean over and pick it up with your hand. If you’re good, you whack it with 
the head of your racket until it bounces waist high and then you catch it. Whacking it 
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more than three times, even not bouncing it the first time, is a serious failing. Despite 
its seeming unimportance, the way you pick up the ball carries a certain cachet within 
tennis culture. Similarly, no one but you and other programmers usually cares how 
tight your code is. Nonetheless, within the programming culture, writing microeffi-
cient code proves you’re cool.

The problem with code tuning is that efficient code isn’t necessarily “better” code. 
That’s the subject of the next few sections.

The Pareto Principle

The Pareto Principle, also known as the 80/20 rule, states that you can get 80 percent 
of the result with 20 percent of the effort. The principle applies to a lot of areas other 
than programming, but it definitely applies to program optimization.

Barry Boehm reports that 20 percent of a program’s routines consume 80 percent of 
its execution time (1987b). In his classic paper “An Empirical Study of Fortran Pro-
grams,” Donald Knuth found that less than four percent of a program usually 
accounts for more than 50 percent of its run time (1971).

Knuth used a line-count profiler to discover this surprising relationship, and the 
implications for optimization are clear. You should measure the code to find the hot 
spots and then put your resources into optimizing the few percent that are used the 
most. Knuth profiled his line-count program and found that it was spending half its 
execution time in two loops. He changed a few lines of code and doubled the speed of 
the profiler in less than an hour.

Jon Bentley describes a case in which a 1000-line program spent 80 percent of its time 
in a five-line square-root routine. By tripling the speed of the square-root routine, he 
doubled the speed of the program (1988). The Pareto Principle is also the source of 
the advice to write most of the code in an interpreted language like Python and then 
rewrite the hot spots in a faster compiled language like C.

Bentley also reports the case of a team that discovered half an operating system’s time 
being spent in a small loop. They rewrote the loop in microcode and made the loop 10 
times faster, but it didn’t change the system’s performance—they had rewritten the sys-
tem’s idle loop!

The team who designed the ALGOL language—the granddaddy of most modern lan-
guages and one of the most influential languages ever—received the following advice: 
“The best is the enemy of the good.” Working toward perfection might prevent com-
pletion. Complete it first, and then perfect it. The part that needs to be perfect is usu-
ally small.

KEY POINT
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Old Wives’ Tales

Much of what you’ve heard about code tuning is false, including the following com-
mon misapprehensions:

Reducing the lines of code in a high-level language improves the speed or size of the 
resulting machine code—false! Many programmers cling tenaciously to the belief 
that if they can write code in one or two lines, it will be the most efficient possible. 
Consider the following code that initializes a 10-element array:

for i = 1 to 10 

   a[ i ] = i

end for 

Would you guess that these lines are faster or slower than the following 10 lines that 
do the same job?

a[ 1 ] = 1

a[ 2 ] = 2

a[ 3 ] = 3

a[ 4 ] = 4

a[ 5 ] = 5

a[ 6 ] = 6

a[ 7 ] = 7

a[ 8 ] = 8

a[ 9 ] = 9

a[ 10 ] = 10

If you follow the old “fewer lines are faster” dogma, you’ll guess that the first code is 
faster. But tests in Microsoft Visual Basic and Java have shown that the second frag-
ment is at least 60 percent faster than the first. Here are the numbers:

Note (1) Times in this and the following tables in this chapter are given in seconds 
and are meaningful only for comparisons across rows in each table. Actual times will 
vary according to the compiler, compiler options used, and the environment in which 
each test is run. (2) Benchmark results are typically made up of several thousand to many 
million executions of the code fragments to smooth out sample-to-sample fluctuations 
in the results. (3) Specific brands and versions of compilers aren’t indicated. Performance 
characteristics vary significantly from brand to brand and from version to version. 
(4) Comparisons among results from different languages aren’t always meaningful 
because compilers for different languages don’t always offer comparable code-genera-
tion options. (5) The results shown for interpreted languages (PHP and Python) are 
typically based on less than 1% of the test runs used for the other languages. (6) Some of 
the “time savings” percentages might not be exactly reproducible from the data in these 
tables due to rounding of the “straight time” and “code-tuned time” entries.

Language
for-Loop 
Time

Straight-Code 
Time Time Savings Performance Ratio

Visual Basic 8.47 3.16 63% 2.5:1

Java 12.6 3.23 74% 4:1
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This certainly doesn’t imply that increasing the number of lines of high-level language 
code always improves speed or reduces size. It does imply that regardless of the aes-
thetic appeal of writing something with the fewest lines of code, no predictable rela-
tionship exists between the number of lines of code in a high-level language and a 
program’s ultimate size and speed.

Certain operations are probably faster or smaller than others—false! There’s no 
room for “probably” when you’re talking about performance. You must always mea-
sure performance to know whether your changes helped or hurt your program. The 
rules of the game change every time you change languages, compilers, versions of 
compilers, libraries, versions of libraries, processor, amount of memory on the 
machine, color of shirt you’re wearing (OK, not this one), and so on. What was true 
on one machine with one set of tools can easily be false on another machine with a dif-
ferent set of tools.

This phenomenon suggests several reasons not to improve performance by code tuning. 
If you want your program to be portable, techniques that improve performance in one 
environment can degrade it in others. If you change compilers or upgrade, the new com-
piler might automatically optimize code the way you were hand-tuning it and your work 
will have been wasted. Even worse, your code tuning might defeat more powerful com-
piler optimizations that have been designed to work with straightforward code.

When you tune code, you’re implicitly signing up to reprofile each optimization 
every time you change your compiler brand, compiler version, library version, and 
so on. If you don’t reprofile, an optimization that improves performance under one 
version of a compiler or library might well degrade performance when you change 
the build environment.

We should forget about small 
efficiencies, say about 97% of 
the time: premature optimi-
zation is the root of all evil.
—Donald Knuth

You should optimize as you go—false! One theory is that if you strive to write the fast-
est and smallest possible code as you write each routine, your program will be fast and 
small. This approach creates a forest-for-the-trees situation in which programmers 
ignore significant global optimizations because they’re too busy with micro-optimiza-
tions. Here are the main problems with optimizing as you go along:

■ It’s almost impossible to identify performance bottlenecks before a program is 
working completely. Programmers are very bad at guessing which four percent 
of the code accounts for 50 percent of the execution time, and so programmers 
who optimize as they go will, on average, spend 96 percent of their time optimiz-
ing code that doesn’t need to be optimized. That leaves little time to optimize 
the four percent that really counts. 

■ In the rare case in which developers identify the bottlenecks correctly, they over-
kill the bottlenecks they’ve identified and allow others to become critical. Again, 
the ultimate effect is a reduction in performance. Optimizations done after a sys-
tem is complete can identify each problem area and its relative importance so 
that optimization time is allocated effectively.
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■ Focusing on optimization during initial development detracts from achieving 
other program objectives. Developers immerse themselves in algorithm analysis 
and arcane debates that in the end don’t contribute much value to the user. Con-
cerns such as correctness, information hiding, and readability become second-
ary goals, even though performance is easier to improve later than these other 
concerns are. Post hoc performance work typically affects less than five percent 
of a program’s code. Would you rather go back and do performance work on 
five percent of the code or readability work on 100 percent?

In short, premature optimization’s primary drawback is its lack of perspective. Its vic-
tims include final code speed, performance attributes that are more important than 
code speed, program quality, and ultimately the software’s users. If the development 
time saved by implementing the simplest program is devoted to optimizing the run-
ning program, the result will always be a program that runs faster than one developed 
with indiscriminate optimization efforts (Stevens 1981).

Occasionally, post hoc optimization won’t be sufficient to meet performance goals 
and you’ll have to make major changes in the completed code. In those cases, small, 
localized optimizations wouldn’t have provided the gains needed anyway. The prob-
lem in such cases isn’t inadequate code quality—it’s inadequate software architecture.

If you need to optimize before a program is complete, minimize the risks by building 
perspective into your process. One way is to specify size and speed goals for features and 
then optimize to meet the goals as you go along. Setting such goals in a specification is 
a way to keep one eye on the forest while you figure out how big your particular tree is.

Further Reading For many 
other entertaining and 
enlightening anecdotes, see 
Gerald Weinberg’s Psychol-
ogy of Computer Program-
ming (1998).

A fast program is just as important as a correct one—false! It’s hardly ever true that 
programs need to be fast or small before they need to be correct. Gerald Weinberg 
tells the story of a programmer who was flown to Detroit to help debug a troubled 
program. The programmer worked with the team who had developed the program 
and concluded after several days that the situation was hopeless.

On the flight home, he mulled over the situation and realized what the problem was. By 
the end of the flight, he had an outline for the new code. He tested the code for several 
days and was about to return to Detroit when he got a telegram saying that the project 
had been cancelled because the program was impossible to write. He headed back to 
Detroit anyway and convinced the executives that the project could be completed.

Then he had to convince the project’s original programmers. They listened to his pre-
sentation, and when he’d finished, the creator of the old system asked, “And how long 
does your program take?”

“That varies, but about ten seconds per input.”
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“Aha! But my program takes only one second per input.” The veteran leaned back, sat-
isfied that he’d stumped the upstart. The other programmers seemed to agree, but the 
new programmer wasn’t intimidated.

“Yes, but your program doesn’t work. If mine doesn’t have to work, I can make it run 
instantly.”

For a certain class of projects, speed or size is a major concern. This class is the minor-
ity, is much smaller than most people think, and is getting smaller all the time. For 
these projects, the performance risks must be addressed by up-front design. For other 
projects, early optimization poses a significant threat to overall software quality, 
including performance.

When to Tune
Jackson’s Rules of Optimiza-
tion: Rule 1. Don’t do it. Rule 
2 (for experts only). Don’t do 
it yet—that is, not until you 
have a perfectly clear and 
unoptimized solution. 
—M. A. Jackson

Use a high-quality design. Make the program right. Make it modular and easily modi-
fiable so that it’s easy to work on later. When it’s complete and correct, check the per-
formance. If the program lumbers, make it fast and small. Don’t optimize until you 
know you need to.

A few years ago I worked on a C++ project that produced graphical outputs to analyze 
investment data. After my team got the first graph working, testing reported that the 
program took about 45 minutes to draw the graph, which was clearly not acceptable. 
We held a team meeting to decide what to do about it. One of the developers became 
irate and shouted, “If we want to have any chance of releasing an acceptable product, 
we’ve got to start rewriting the whole code base in assembler right now.” I responded 
that I didn’t think so—that four percent of the code probably accounted for 50 percent 
or more of the performance bottleneck. It would be best to address that four percent 
toward the end of the project. After a bit more shouting, our manager assigned me to 
do some initial performance work (which was really a case of “Oh no! Please don’t 
throw me into that briar patch!”).

As is often the case, a day’s work identified a couple of glaring bottlenecks in the code. 
A small number of code-tuning changes reduced the drawing time from 45 minutes to 
less than 30 seconds. Far less than one percent of the code accounted for 90 percent 
of the run time. By the time we released the software months later, several additional 
code-tuning changes reduced that drawing time to a little more than 1 second. 

Compiler Optimizations

Modern compiler optimizations might be more powerful than you expect. In the case 
I described earlier, my compiler did as good a job of optimizing a nested loop as I was 
able to do by rewriting the code in a supposedly more efficient style. When shopping 
for a compiler, compare the performance of each compiler on your program. Each 



25.3 Kinds of Fat and Molasses 597

compiler has different strengths and weaknesses, and some will be better suited to 
your program than others.

Optimizing compilers are better at optimizing straightforward code than they are at 
optimizing tricky code. If you do “clever” things like fooling around with loop 
indexes, your compiler has a harder time doing its job and your program suffers. See 
“Using Only One Statement Per Line” in Section 31.5 for an example in which a 
straightforward approach resulted in compiler-optimized code that was 11 percent 
faster than comparable “tricky” code.

With a good optimizing compiler, your code speed can improve 40 percent or more 
across the board. Many of the techniques described in the next chapter produce gains 
of only 15–30 percent. Why not just write clear code and let the compiler do the 
work? Here are the results of a few tests to check how much an optimizer speeded up 
an insertion-sort routine:

The only difference between versions of the routine was that compiler optimizations 
were turned off for the first compile and turned on for the second. Clearly, some com-
pilers optimize better than others, and some are better without optimizations in the 
first place. Some Java Virtual Machines (JVMs) are also clearly better than others. 
You’ll have to check your own compiler, JVM, or both to measure the effect. 

25.3 Kinds of Fat and Molasses
In code tuning you find the parts of a program that are as slow as molasses in winter 
and as big as Godzilla and change them so that they are as fast as greased lightning 
and so skinny they can hide in the cracks between the other bytes in RAM. You always 
have to profile the program to know with any confidence which parts are slow and fat, 
but some operations have a long history of laziness and obesity, and you can start by 
investigating them.

Language

Time Without 
Compiler 
Optimizations

Time with 
Compiler 
Optimizations Time Savings

Performance
Ratio

C++ compiler 1 2.21 1.05 52% 2:1

C++ compiler 2 2.78 1.15 59% 2.5:1

C++ compiler 3 2.43 1.25 49% 2:1

C# compiler 1.55 1.55 0% 1:1

Visual Basic 1.78 1.78 0% 1:1

Java VM 1 2.77 2.77 0% 1:1

Java VM 2 1.39 1.38 <1% 1:1

Java VM 3 2.63 2.63 0% 1:1
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Common Sources of Inefficiency

Here are several common sources of inefficiency:

Input/output operations One of the most significant sources of inefficiency is unnec-
essary input/output (I/O). If you have a choice of working with a file in memory vs. on 
disk, in a database, or across a network, use an in-memory data structure unless space 
is critical.

Here’s a performance comparison between code that accesses random elements in a 
100-element in-memory array and code that accesses random elements of the same 
size in a 100-record disk file:

According to this data, in-memory access is on the order of 1000 times faster than 
accessing data in an external file. Indeed with the C++ compiler I used, the time 
required for in-memory access wasn’t measurable.

The performance comparison for a similar test of sequential access times is similar:

If the test had used a slower medium for external access—for example, a hard disk 
across a network connection—the difference would have been even greater. The perfor-
mance looks like this when a similar random-access test is performed on a network 
location instead of on the local machine:

Of course, these results can vary dramatically depending on the speed of your net-
work, network loading, distance of the local machine from the networked disk drive, 
speed of the networked disk drive compared to the speed of the local drive, current 
phase of the moon, and other factors.

Language External File 
Time

In-Memory 
Data Time

Time Savings Performance 
Ratio

C++ 6.04 0.000 100% n/a

C# 12.8 0.010 100% 1000:1

Language External File 
Time

In-Memory 
Data Time

Time Savings Performance 
Ratio

C++ 3.29 0.021 99% 150:1

C# 2.60 0.030 99% 85:1
Note: The tests for sequential access were run with 13 times the data volume of the tests for random access, 
so the results are not comparable across the two types of tests.

Language Local File Time Network File Time Time Savings

C++ 6.04 6.64 -10%

C# 12.8 14.1 -10%
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Overall, the effect of in-memory access is significant enough to make you think twice 
about having I/O in a speed-critical part of a program.

Paging An operation that causes the operating system to swap pages of memory is 
much slower than an operation that works on only one page of memory. Sometimes a 
simple change makes a huge difference. In the next example, one programmer wrote 
an initialization loop that produced many page faults on a system that used 4K pages.

Java Example of an Initialization Loop That Causes Many Page Faults
for ( column = 0; column < MAX_COLUMNS; column++ ) {

   for ( row = 0; row < MAX_ROWS; row++ ) {

      table[ row ][ column ] = BlankTableElement();

   }

}

This is a nicely formatted loop with good variable names, so what’s the problem? The 
problem is that each element of table is about 4000 bytes long. If table has too many 
rows, every time the program accesses a different row, the operating system will have 
to switch memory pages. The way the loop is structured, every single array access 
switches rows, which means that every single array access causes paging to disk.

The programmer restructured the loop this way:

Java Example of an Initialization Loop That Causes Few Page Faults
for ( row = 0; row < MAX_ROWS; row++ ) {

   for ( column = 0; column < MAX_COLUMNS; column++ ) {

      table[ row ][ column ] = BlankTableElement();

   }

}

This code still causes a page fault every time it switches rows, but it switches rows only 
MAX_ROWS times instead of MAX_ROWS * MAX_COLUMNS times.

The specific performance penalty varies significantly. On a machine with limited 
memory, I measured the second code sample to be about 1000 times faster than the 
first code sample. On machines with more memory, I’ve measured the difference to be 
as small as a factor of 2, and it doesn’t show up at all except for very large values of 
MAX_ROWS  and MAX_COLUMNS. 

System calls Calls to system routines are often expensive. They often involve a con-
text switch—saving the program’s state, recovering the kernel’s state, and the reverse. 
System routines include input/output operations to disk, keyboard, screen, printer, or 
other device; memory-management routines; and certain utility routines. If perfor-
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mance is an issue, find out how expensive your system calls are. If they’re expensive, 
consider these options:

■ Write your own services. Sometimes you need only a small part of the function-
ality offered by a system routine and can build your own from lower-level system 
routines. Writing your own replacement gives you something that’s faster, 
smaller, and better suited to your needs.

■ Avoid going to the system.

■ Work with the system vendor to make the call faster. Most vendors want to 
improve their products and are glad to learn about parts of their systems with 
weak performance. (They might seem a little grouchy about it at first, but they 
really are interested.)

In the code-tuning effort I described in “When to Tune” in Section 25.2, the program 
used an AppTime class that was derived from a commercially available BaseTime class. 
(These names have been changed to protect the guilty.) The AppTime object was the 
most common object in this application, and we instantiated tens of thousands of 
AppTime objects. After several months, we discovered that BaseTime was initializing 
itself to the system time in its constructor. For our purposes, the system time was irrel-
evant, which meant we were needlessly generating thousands of system-level calls. 
Simply overriding BaseTime’s constructor and initializing the time field to 0 instead of 
to the system time gave us about as much performance improvement as all the other 
changes we made put together.

Interpreted languages Interpreted languages tend to exact significant performance 
penalties because they must process each programming-language instruction before 
creating and executing machine code. In the performance benchmarking I performed 
for this chapter and Chapter 26, I observed the approximate relationships in perfor-
mance among different languages that are described in Table 25-1.

As you can see, C++, Visual Basic, and C# are all comparable. Java is close but tends to 
be slower than the other languages. PHP and Python are interpreted languages, and 
code in those languages tended to run a factor of 100 or more slower than code in 
C++, Visual Basic, C#, and Java. The general numbers presented in this table must be 
viewed cautiously. For any particular piece of code, C++, Visual Basic, C#, or Java 

Table 25-1 Relative Execution Time of Programming Languages 

Language Type of Language Execution Time Relative to C++

C++ Compiled 1:1

Visual Basic Compiled 1:1

C# Compiled 1:1

Java Byte code 1.5:1

PHP Interpreted >100:1

Python Interpreted >100:1
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might be twice as fast or half as fast as the other languages. (You can see this for your-
self in the detailed examples in Chapter 26.)

Errors A final source of performance problems is errors in the code. Errors can 
include leaving debugging code turned on (such as logging trace information to a 
file), forgetting to deallocate memory, improperly designing database tables, polling 
nonexistent devices until they time out, and so on.

A version 1.0 application I worked on had a particular operation that was much 
slower than other similar operations. A great deal of project mythology grew up to 
explain the slowness of this operation. We released version 1.0 without ever fully 
understanding why this particular operation was so slow. While working on the ver-
sion 1.1 release, however, I discovered that the database table used by the operation 
wasn’t indexed! Simply indexing the table improved performance by a factor of 30 for 
some operations. Defining an index on a commonly used table is not optimization; it’s 
just good programming practice. 

Relative Performance Costs of Common Operations

Although you can’t count on some operations being more expensive than others with-
out measuring them, certain operations tend to be more expensive. When you look 
for the molasses in your program, use Table 25-2 to help make some initial guesses 
about the sticky parts of your program.

Table 25-2 Costs of Common Operations

Relative Time Consumed

Operation Example C++ Java

Baseline (integer assignment) i = j 1 1

Routine Calls

Call routine with no parameters foo() 1 n/a

Call private routine with no 
parameters

this.foo() 1 0.5

Call private routine with 1 
parameter

this.foo( i ) 1.5 0.5

Call private routine with 2 
parameters

this.foo( i, j ) 2 0.5

Object routine call bar.foo() 2 1

Derived routine call derivedBar.foo() 2 1

Polymorphic routine call abstractBar.foo() 2.5 2

Object References

Level 1 object dereference i = obj.num 1 1

Level 2 object dereference i = obj1.obj2. num 1 1

Each additional dereference i = obj1.obj2.obj3... not 
measurable

not 
measurable
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Integer Operations

Integer assignment (local) i = j 1 1

Integer assignment (inherited) i = j 1 1

Integer addition i = j + k 1 1

Integer subtraction i = j - k 1 1

Integer multiplication i = j * k 1 1

Integer division i = j \ k 5 1.5

Floating-Point Operations

Floating-point assignment x = y 1 1

Floating-point addition x = y + z 1 1

Floating-point subtraction x = y - z 1 1

Floating-point multiplication x = y * z 1 1

Floating-point division x = y / z 4 1

Transcendental Functions

Floating-point square root x = sqrt( y ) 15 4

Floating-point sine x = sin( y ) 25 20

Floating-point logarithm x = log( y ) 25 20

Floating-point ey x = exp( y ) 50 20

Arrays

Access integer array with con-
stant subscript

i = a[ 5 ] 1 1

Access integer array with variable 
subscript

i = a[ j ] 1 1

Access two-dimensional integer 
array with constant subscripts

i = a[ 3, 5 ] 1 1

Access two-dimensional integer 
array with variable subscripts

i = a[ j, k ] 1 1

Access floating-point array with 
constant subscript

x = z[ 5 ] 1 1

Access floating-point array with 
integer-variable subscript

x = z[ j ] 1 1

Access two-dimensional, float-
ing-point array with constant 
subscripts

x = z[ 3, 5 ] 1 1

Access two-dimensional, float-
ing-point array with integer-vari-
able subscripts

x = z[ j, k ] 1 1

Note: Measurements in this table are highly sensitive to local machine environment, compiler optimizations, 
and code generated by specific compilers. Measurements between C++ and Java are not directly 
comparable.

Table 25-2 Costs of Common Operations

Relative Time Consumed

Operation Example C++ Java
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The relative performance of these operations has changed significantly since the first 
edition of Code Complete, so if you’re approaching code tuning with 10-year-old ideas 
about performance, you might need to update your thinking.

Most of the common operations are about the same price—routine calls, assignments, 
integer arithmetic, and floating-point arithmetic are all roughly equal. Transcendental 
math functions are extremely expensive. Polymorphic routine calls are a bit more 
expensive than other kinds of routine calls.

Table 25-2, or a similar one that you make, is the key that unlocks all the speed 
improvements described in Chapter 26. In every case, improving speed comes from 
replacing an expensive operation with a cheaper one. Chapter 26 provides examples 
of how to do so.

25.4 Measurement
Because small parts of a program usually consume a disproportionate share of the run 
time, measure your code to find the hot spots. Once you’ve found the hot spots and 
optimized them, measure the code again to assess how much you’ve improved it. 
Many aspects of performance are counterintuitive. The earlier case in this chapter, in 
which 10 lines of code were significantly faster and smaller than one line, is one exam-
ple of the ways that code can surprise you.

Experience doesn’t help much with optimization either. A person’s experience might 
have come from an old machine, language, or compiler—when any of those things 
changes, all bets are off. You can never be sure about the effect of an optimization until 
you measure the effect.

Many years ago now I wrote a program that summed the elements in a matrix. The 
original code looked like this:

C++ Example of Straightforward Code to Sum the Elements in a Matrix
sum = 0;

for ( row = 0; row < rowCount; row++ ) {

   for ( column = 0; column < columnCount; column++ ) {

      sum = sum + matrix[ row ][ column ];

   }

}

This code was straightforward, but performance of the matrix-summation routine was 
critical, and I knew that all the array accesses and loop tests had to be expensive. I 
knew from computer-science classes that every time the code accessed a two-dimen-
sional array, it performed expensive multiplications and additions. For a 100-by-100 
matrix, that totaled 10,000 multiplications and additions, plus the loop overhead. By 

KEY POINT
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converting to pointer notation, I reasoned, I could increment a pointer and replace 
10,000 expensive multiplications with 10,000 relatively cheap increment operations. I 
carefully converted the code to pointer notation and got this:

Further Reading Jon Bentley 
reported a similar experience 
in which converting to point-
ers hurt performance by 
about 10 percent. The same 
conversion had—in another 
setting—improved perfor-
mance more than 50 percent. 
See “Software Exploratorium: 
Writing Efficient C Programs” 
(Bentley 1991).

C++ Example of an Attempt to Tune Code to Sum the Elements in a Matrix
sum = 0;

elementPointer = matrix;

lastElementPointer = matrix[ rowCount - 1 ][ columnCount - 1 ] + 1;

while ( elementPointer < lastElementPointer ) {

   sum = sum + *elementPointer++;

}

Even though the code wasn’t as readable as the first code, especially to programmers 
who aren’t C++ experts, I was magnificently pleased with myself. For a 100-by-100 
matrix, I calculated that I had saved 10,000 multiplications and a lot of loop overhead. 
I was so pleased that I decided to measure the speed improvement, something I didn’t 
always do back then, so that I could pat myself on the back more quantitatively.

No programmer has ever 
been able to predict or ana-
lyze where performance bot-
tlenecks are without data. 
No matter where you think 
it’s going, you will be sur-
prised to discover that it is 
going somewhere else.
—Joseph M. Newcomer

Do you know what I found? No improvement whatsoever. Not with a 100-by-100 
matrix. Not with a 10-by-10 matrix. Not with any size matrix. I was so disappointed 
that I dug into the assembly code generated by the compiler to see why my optimiza-
tion hadn’t worked. To my surprise, it turned out that I was not the first programmer 
who ever needed to iterate through the elements of an array—the compiler’s optimizer 
was already converting the array accesses to pointers. I learned that the only result of 
optimization you can usually be sure of without measuring performance is that you’ve 
made your code harder to read. If it’s not worth measuring to know that it’s more effi-
cient, it’s not worth sacrificing clarity for a performance gamble.

Measurements Need to Be Precise
Cross-Reference For a dis-
cussion of profiling tools, see 
“Code Tuning” in Section 
30.3.

Performance measurements need to be precise. Timing your program with a stop-
watch or by counting “one elephant, two elephant, three elephant” isn’t precise. Pro-
filing tools are useful, or you can use your system’s clock and routines that record the 
elapsed times for computing operations.

Whether you use someone else’s tool or write your own code to make the measure-
ments, make sure that you’re measuring only the execution time of the code you’re tun-
ing. Use the number of CPU clock ticks allocated to your program rather than the time 
of day. Otherwise, when the system switches from your program to another program, 
one of your routines will be penalized for the time spent executing another program. 
Likewise, try to factor out measurement overhead and program-startup overhead so that 
neither the original code nor the tuning attempt is unfairly penalized.
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25.5 Iteration
Once you’ve identified a performance bottleneck, you’ll be amazed at how much you 
can improve performance by code tuning. You’ll rarely get a 10-fold improvement 
from one technique, but you can effectively combine techniques; so keep trying, even 
after you find one that works.

I once wrote a software implementation of the Data Encryption Standard (DES). Actu-
ally, I didn’t write it once—I wrote it about 30 times. Encryption according to DES 
encodes digital data so that it can’t be unscrambled without a password. The encryp-
tion algorithm is so convoluted that it seems like it’s been used on itself. The perfor-
mance goal for my DES implementation was to encrypt an 18K file in 37 seconds on 
an original IBM PC. My first implementation executed in 21 minutes and 40 seconds, 
so I had a long row to hoe.

Even though most individual optimizations were small, cumulatively they were signifi-
cant. To judge from the percentage improvements, no three or even four optimizations 
would have met my performance goal. But the final combination was effective. The 
moral of the story is that if you dig deep enough, you can make some surprising gains.

Cross-Reference The tech-
niques listed in this table are 
described in Chapter 26, 
“Code-Tuning Techniques.”

The code tuning I did in this case is the most aggressive code tuning I’ve ever done. At 
the same time, the final code is the most unreadable, unmaintainable code I’ve ever 
written. The initial algorithm is complicated. The code resulting from the high-level 
language transformation was barely readable. The translation to assembler produced 
a single 500-line routine that I’m afraid to look at. In general, this relationship between 
code tuning and code quality holds true. Here’s a table that shows a history of the 
optimizations:

Optimization Benchmark Time Improvement

Implement initially—straightforward 21:40 —

Convert from bit fields to arrays 7:30 65%

Unroll innermost for loop 6:00 20%

Remove final permutation 5:24 10%

Combine two variables 5:06 5%

Use a logical identity to combine the 
first two steps of the DES algorithm

4:30 12%

Make two variables share the same 
memory to reduce data shuttling in 
inner loop

3:36 20%

Make two variables share the same 
memory to reduce data shuttling in 
outer loop

3:09 13%

Unfold all loops and use literal array 
subscripts

1:36 49%
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25.6 Summary of the Approach to Code Tuning
You should take the following steps as you consider whether code tuning can help 
you improve the performance of a program:

1. Develop the software by using well-designed code that’s easy to understand and 
modify.

2. If performance is poor, 

a. Save a working version of the code so that you can get back to the “last 
known good state.” 

b. Measure the system to find hot spots.

c. Determine whether the weak performance comes from inadequate design, 
data types, or algorithms and whether code tuning is appropriate. If code 
tuning isn’t appropriate, go back to step 1.

d. Tune the bottleneck identified in step (c). 

e. Measure each improvement one at a time. 

f. If an improvement doesn’t improve the code, revert to the code saved in 
step (a). (Typically, more than half the attempted tunings will produce 
only a negligible improvement in performance or degrade performance.)

3. Repeat from step 2.

Additional Resources
cc2e.com/2585 This section contains resources releated to performance improvement in general. For 

additional resources that discuss specific code-tuning techniques, see the “Additional 
Resources” section at the end of Chapter 26.

Performance

Smith, Connie U. and Lloyd G. Williams. Performance Solutions: A Practical Guide to 
Creating Responsive, Scalable Software. Boston, MA: Addison-Wesley, 2002. This book 
covers software performance engineering, an approach for building performance into 

Remove routine calls and put all the 
code in line

0:45 53%

Rewrite the whole routine in assem-
bler

0:22 51%

Final 0:22 98%
Note: The steady progress of optimizations in this table doesn’t imply that all optimizations work. I haven’t 
shown all the things I tried that doubled the run time. At least two-thirds of the optimizations I tried didn’t 
work.
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software systems at all stages of development. It makes extensive use of examples and 
case studies for several kinds of programs. It includes specific recommendations for 
Web applications and pays special attention to scalability.

cc2e.com/2592 Newcomer, Joseph M. “Optimization: Your Worst Enemy.” May 2000, www.floun-
der.com/optimization.htm. Newcomer is an experienced systems programmer who 
describes the various pitfalls of ineffective optimization strategies in graphic detail. 

Algorithms and Data Types
cc2e.com/2599 Knuth, Donald. The Art of Computer Programming, vol. 1, Fundamental Algorithms, 3d 

ed. Reading, MA: Addison-Wesley, 1997.

Knuth, Donald. The Art of Computer Programming, vol. 2, Seminumerical Algorithms, 3d 
ed. Reading, MA: Addison-Wesley, 1997.

Knuth, Donald. The Art of Computer Programming, vol. 3, Sorting and Searching, 2d ed. 
Reading, MA: Addison-Wesley, 1998.

These are the first three volumes of a series that was originally intended to grow to 
seven volumes. They can be somewhat intimidating. In addition to the English 
description of the algorithms, they’re described in mathematical notation or MIX, an 
assembly language for the imaginary MIX computer. The books contain exhaustive 
details on a huge number of topics, and if you have an intense interest in a particular 
algorithm, you won’t find a better reference.

Sedgewick, Robert. Algorithms in Java, Parts 1-4, 3d ed. Boston, MA: Addison-Wesley, 
2002. This book’s four parts contain a survey of the best methods of solving a wide 
variety of problems. Its subject areas include fundamentals, sorting, searching, 
abstract data type implementation, and advanced topics. Sedgewick’s Algorithms in 
Java, Part 5, 3d ed. (2003) covers graph algorithms. Sedgewick’s Algorithms in C++, 
Parts 1-4, 3d ed. (1998), Algorithms in C++, Part 5, 3d ed. (2002), Algorithms in C, Parts 
1-4, 3d ed. (1997), and Algorithms in C, Part 5, 3d ed. (2001) are similarly organized. 
Sedgewick was a Ph.D. student of Knuth’s.

cc2e.com/2506 CHECKLIST: Code-Tuning Strategies
Overall Program Performance

❑ Have you considered improving performance by changing the program 
requirements? 

❑ Have you considered improving performance by modifying the program’s 
design? 

❑ Have you considered improving performance by modifying the class 
design? 
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❑ Have you considered improving performance by avoiding operating sys-
tem interactions? 

❑ Have you considered improving performance by avoiding I/O? 

❑ Have you considered improving performance by using a compiled 
language instead of an interpreted language? 

❑ Have you considered improving performance by using compiler 
optimizations? 

❑ Have you considered improving performance by switching to different 
hardware? 

❑ Have you considered code tuning only as a last resort? 

Code-Tuning Approach
❑ Is your program fully correct before you begin code tuning?

❑ Have you measured performance bottlenecks before beginning code tuning? 

❑ Have you measured the effect of each code-tuning change?

❑ Have you backed out the code-tuning changes that didn’t produce the 
intended improvement? 

❑ Have you tried more than one change to improve performance of each bot-
tleneck—that is, iterated? 

Key Points
■ Performance is only one aspect of overall software quality, and it’s usually not 

the most important. Finely tuned code is only one aspect of overall perfor-
mance, and it’s usually not the most significant. Program architecture, detailed 
design, and data-structure and algorithm selection usually have more influence 
on a program’s execution speed and size than the efficiency of its code does.

■ Quantitative measurement is a key to maximizing performance. It’s needed to find 
the areas in which performance improvements will really count, and it’s needed 
again to verify that optimizations improve rather than degrade the software.

■ Most programs spend most of their time in a small fraction of their code. You 
won’t know which code that is until you measure it.

■ Multiple iterations are usually needed to achieve desired performance improve-
ments through code tuning.

■ The best way to prepare for performance work during initial coding is to write 
clean code that’s easy to understand and modify.
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Chapter 26

Code-Tuning Techniques
cc2e.com/2665 Contents

■ 26.1 Logic: page 610

■ 26.2 Loops: page 616

■ 26.3 Data Transformations: page 624

■ 26.4 Expressions: page 630

■ 26.5 Routines: page 639

■ 26.6 Recoding in a Low-Level Language: page 640

■ 26.7 The More Things Change, the More They Stay the Same: page 643

Related Topics

■ Code-tuning strategies: Chapter 25

■ Refactoring: Chapter 24

Code tuning has been a popular topic during most of the history of computer program-
ming. Consequently, once you’ve decided that you need to improve performance and 
that you want to do it at the code level (bearing in mind the warnings from Chapter 25, 
“Code-Tuning Strategies”), you have a rich set of techniques at your disposal.

This chapter focuses on improving speed and includes a few tips for making code 
smaller. Performance usually refers to both speed and size, but size reductions tend to 
come more from redesigning classes and data than from tuning code. Code tuning 
refers to small-scale changes rather than changes in larger-scale designs.

Few of the techniques in this chapter are so generally applicable that you’ll be able to 
copy the example code directly into your programs. The main purpose of the discus-
sion here is to illustrate a handful of code tunings that you can adapt to your situation.

The code-tuning changes described in this chapter might seem cosmetically similar to 
the refactorings described in Chapter 24, but refactorings are changes that improve a 
program’s internal structure (Fowler 1999). The changes in this chapter might better 
be called “anti-refactorings.” Far from “improving the internal structure,” these 
changes degrade the internal structure in exchange for gains in performance. This is 
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true by definition. If the changes didn’t degrade the internal structure, we wouldn’t 
consider them to be optimizations; we would use them by default and consider them 
to be standard coding practice.

Cross-Reference Code tun-
ings are heuristics. For more 
on heuristics, see Section 
5.3, “Design Building Blocks: 
Heuristics.”

Some books present code-tuning techniques as “rules of thumb” or cite research that 
suggests that a specific tuning will produce the desired effect. As you’ll soon see, the 
“rules of thumb” concept applies poorly to code tuning. The only reliable rule of 
thumb is to measure the effect of each tuning in your environment. Thus, this chapter 
presents a catalog of “things to try,” many of which won’t work in your environment 
but some of which will work very well indeed.

26.1 Logic
Cross-Reference For other 
details on using statement 
logic, see Chapters 14–19.

Much of programming consists of manipulating logic. This section describes how to 
manipulate logical expressions to your advantage.

Stop Testing When You Know the Answer
Suppose you have a statement like

if ( 5 < x ) and ( x < 10 ) then ...

Once you’ve determined that x is not greater than 5, you don’t need to perform the 
second half of the test.

Cross-Reference For more 
on short-circuit evaluation, 
see “Knowing How Boolean 
Expressions Are Evaluated” 
in Section 19.1.

Some languages provide a form of expression evaluation known as “short-circuit eval-
uation,” which means that the compiler generates code that automatically stops test-
ing as soon as it knows the answer. Short-circuit evaluation is part of C++’s standard 
operators and Java’s “conditional” operators.

If your language doesn’t support short-circuit evaluation natively, you have to avoid 
using and and or, adding logic instead. With short-circuit evaluation, the code above 
changes to this:

if ( 5 < x ) then

   if ( x < 10 ) then ...

The principle of not testing after you know the answer is a good one for many other 
kinds of cases as well. A search loop is a common case. If you’re scanning an array of 
input numbers for a negative value and you simply need to know whether a negative 
value is present, one approach is to check every value, setting a negativeFound variable 
when you find one. Here’s how the search loop would look:
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C++ Example of Not Stopping After You Know the Answer
negativeInputFound = false;

for ( i = 0; i < count; i++ ) {

   if ( input[ i ] < 0 ) {

      negativeInputFound = true;

   }

}

A better approach would be to stop scanning as soon as you find a negative value. Any 
of these approaches would solve the problem:

■ Add a break statement after the negativeInputFound = true line.

■ If your language doesn’t have break, emulate a break with a goto that goes to the 
first statement after the loop.

■ Change the for loop to a while loop, and check for negativeInputFound as well as 
for incrementing the loop counter past count.

■ Change the for loop to a while loop, put a sentinel value in the first array element 
after the last value entry, and simply check for a negative value in the while test. 
After the loop terminates, see whether the position of the first found value is in the 
array or one past the end. Sentinels are discussed in more detail later in the chapter.

Here are the results of using the break keyword in C++ and Java:

Note  (1) Times in this and the following tables in this chapter are given in seconds 
and are meaningful only for comparisons across rows of each table. Actual times will 
vary according to the compiler, compiler options used, and the environment in which 
each test is run. (2) Benchmark results are typically made up of several thousand to 
many million executions of the code fragments to smooth out the sample-to-sample 
fluctuations in the results. (3) Specific brands and versions of compilers aren’t indi-
cated. Performance characteristics vary significantly from brand to brand and version 
to version. (4) Comparisons among results from different languages aren’t always 
meaningful because compilers for different languages don’t always offer comparable 
code-generation options. (5) The results shown for interpreted languages (PHP and 
Python) are typically based on less than 1% of the test runs used for the other lan-
guages. (6) Some of the “time savings” percentages  might not be exactly reproducible 
from the data in these tables due to rounding of the “straight time” and “code-tuned 
time” entries.

The impact of this change varies a great deal depending on how many values you have 
and how often you expect to find a negative value. This test assumed an average of 100 
values and assumed that a negative value would be found 50 percent of the time.

Language Straight Time Code-Tuned Time Time Savings

C++ 4.27 3.68 14%

Java 4.85 3.46 29%
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Order Tests by Frequency

Arrange tests so that the one that’s fastest and most likely to be true is performed first. 
It should be easy to drop through the normal case, and if there are inefficiencies, they 
should be in processing the uncommon cases. This principle applies to case state-
ments and to chains of if-then-elses.

Here’s a Select-Case statement that responds to keyboard input in a word processor:

Visual Basic Example of a Poorly Ordered Logical Test
Select inputCharacter

   Case "+", "="

      ProcessMathSymbol( inputCharacter )

   Case "0" To "9"

      ProcessDigit( inputCharacter )

   Case ",", ".", ":", ";", "!", "?"

      ProcessPunctuation( inputCharacter )

   Case " "

      ProcessSpace( inputCharacter )

   Case "A" To "Z", "a" To "z"

      ProcessAlpha( inputCharacter )

   Case Else

      ProcessError( inputCharacter )

End Select

The cases in this case statement are ordered in something close to the ASCII sort order. In 
a case statement, however, the effect is often the same as if you had written a big set of if-
then-elses, so if you get an "a" as an input character, the program tests whether it’s a math 
symbol, a punctuation mark, a digit, or a space before determining that it’s an alphabetic 
character. If you know the likely frequency of your input characters, you can put the most 
common cases first. Here’s the reordered case statement:

Visual Basic Example of a Well-Ordered Logical Test
Select inputCharacter

   Case "A" To "Z", "a" To "z"

      ProcessAlpha( inputCharacter )

   Case " "

      ProcessSpace( inputCharacter )

   Case ",", ".", ":", ";", "!", "?"

      ProcessPunctuation( inputCharacter )

   Case "0" To "9"

      ProcessDigit( inputCharacter )

   Case "+", "="

      ProcessMathSymbol( inputCharacter )

   Case Else

      ProcessError( inputCharacter )

End Select
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Because the most common case is usually found sooner in the optimized code, the net 
effect will be the performance of fewer tests. Following are the results of this optimi-
zation with a typical mix of characters:

The Microsoft Visual Basic results are as expected, but the Java and C# results are not as 
expected. Apparently that’s because of the way switch-case statements are structured in 
C# and Java—because each value must be enumerated individually rather than in ranges, 
the C# and Java code doesn’t benefit from the optimization as the Visual Basic code does. 
This result underscores the importance of not following any optimization advice 
blindly—specific compiler implementations will significantly affect the results.

You might assume that the code generated by the Visual Basic compiler for a set of if-
then-elses that perform the same test as the case statement would be similar. Take a 
look at those results:

The results are quite different. For the same number of tests, the Visual Basic compiler 
takes about five times as long in the unoptimized case, four times in the optimized 
case. This suggests that the compiler is generating different code for the case approach 
than for the if-then-else approach.

The improvement with if-then-elses is more consistent than it was with the case state-
ments, but that’s a mixed blessing. In C# and Visual Basic, both versions of the case 
statement approach are faster than both versions of the if-then-else approach, whereas 
in Java both versions are slower. This variation in results suggests a third possible opti-
mization, described in the next section.

Language Straight Time Code-Tuned Time Time Savings
C# 0.220 0.260 -18%
Java 2.56 2.56 0%
Visual Basic 0.280 0.260 7%
Note: Benchmarked with an input mix of 78 percent alphabetic characters, 17 percent spaces, and 5 percent 
punctuation symbols.

Language Straight Time Code-Tuned Time Time Savings
C# 0.630 0.330 48%
Java 0.922 0.460 50%
Visual Basic 1.36 1.00 26%
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Compare Performance of Similar Logic Structures
The test described above could be performed using either a case statement or if-then-
elses. Depending on the environment, either approach might work better. Here is the 
data from the preceding two tables reformatted to present the “code-tuned” times 
comparing if-then-else and case performance:

These results defy any logical explanation. In one of the languages, case is dramatically 
superior to if-then-else, and in another, if-then-else is dramatically superior to case. In 
the third language, the difference is relatively small. You might think that because C# 
and Java share similar syntax for case statements, their results would be similar, but in 
fact their results are opposite each other.

This example clearly illustrates the difficulty of performing any sort of “rule of thumb” 
or “logic” to code tuning—there is simply no reliable substitute for measuring results.

Substitute Table Lookups for Complicated Expressions
Cross-Reference For details 
on using table lookups to 
replace complicated logic, 
see Chapter 18, “Table-
Driven Methods.”

In some circumstances, a table lookup might be quicker than traversing a complicated 
chain of logic. The point of a complicated chain is usually to categorize something and 
then to take an action based on its category. As an abstract example, suppose you 
want to assign a category number to something based on which of three groups—
Groups A, B, and C—it falls into:

Language case if-then-else Time Savings Performance Ratio
C# 0.260 0.330 -27% 1:1
Java 2.56 0.460 82% 6:1
Visual Basic 0.260 1.00 -258% 1:4

A

1

211

22

B

C
0 3
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This complicated logic chain assigns the category numbers:

C++ Example of a Complicated Chain of Logic
if ( ( a && !c ) || ( a && b && c ) ) {

   category = 1;

}

else if ( ( b && !a ) || ( a && c && !b ) ) {

   category = 2;

}

else if ( c && !a && !b ) {

   category = 3;

}

else {

   category = 0;

}

You can replace this test with a more modifiable and higher-performance lookup table:

C++ Example of Using a Table Lookup to Replace Complicated Logic
// define categoryTable

This table definition is 
somewhat difficult to 
understand. Any comment-
ing you can do to make 
table definitions readable 
helps.

static int categoryTable[ 2 ][ 2 ][ 2 ] = {

   // !b!c  !bc  b!c  bc

       0,   3,   2,   2,   //   !a

       1,   2,   1,   1    //    a

};

...

category = categoryTable[ a ][ b ][ c ];

Although the definition of the table is hard to read, if it’s well documented it won’t be 
any harder to read than the code for the complicated chain of logic was. If the defini-
tion changes, the table will be much easier to maintain than the earlier logic would 
have been. Here are the performance results:

Use Lazy Evaluation

One of my former roommates was a great procrastinator. He justified his laziness by 
saying that many of the things people feel rushed to do simply don’t need to be done. 
If he waited long enough, he claimed, the things that weren’t important would be pro-
crastinated into oblivion and he wouldn’t waste his time doing them.

Lazy evaluation is based on the principle my roommate used. If a program uses lazy 
evaluation, it avoids doing any work until the work is needed. Lazy evaluation is sim-
ilar to just-in-time strategies that do the work closest to when it’s needed.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 5.04 3.39 33% 1.5:1

Visual Basic 5.21 2.60 50% 2:1
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Suppose, for example, that your program contains a table of 5000 values, generates 
the whole table at startup time, and then uses it as the program executes. If the pro-
gram uses only a small percentage of the entries in the table, it might make more sense 
to compute them as they’re needed rather than all at once. Once an entry is com-
puted, it can still be stored for future reference (otherwise known as “cached”).

26.2 Loops
Cross-Reference For other 
details on loops, see Chapter 
16, “Controlling Loops.”

Because loops are executed many times, the hot spots in a program are often inside 
loops. The techniques in this section make the loop itself faster.

Unswitching

Switching refers to making a decision inside a loop every time it’s executed. If the deci-
sion doesn’t change while the loop is executing, you can unswitch the loop by making 
the decision outside the loop. Usually this requires turning the loop inside out, put-
ting loops inside the conditional rather than putting the conditional inside the loop. 
Here’s an example of a loop before unswitching:

C++ Example of a Switched Loop
for ( i = 0; i < count; i++ ) {

   if ( sumType == SUMTYPE_NET ) {

      netSum = netSum + amount[ i ];

   }

   else { 

      grossSum = grossSum + amount[ i ];

   }

}

In this code, the test if ( sumType == SUMTYPE_NET ) is repeated through each itera-
tion, even though it’ll be the same each time through the loop. You can rewrite the 
code for a speed gain this way:

C++ Example of an Unswitched Loop
if ( sumType == SUMTYPE_NET ) {

   for ( i = 0; i < count; i++ ) {

      netSum = netSum + amount[ i ];

   }

}

else { 

   for ( i = 0; i < count; i++ ) {

      grossSum = grossSum + amount[ i ];

   }

}

CODING 
HORROR
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Note This code fragment violates several rules of good programming. Readability 
and maintenance are usually more important than execution speed or size, but in this 
chapter the topic is performance, and that implies a tradeoff with the other objectives. 
As in the last chapter, you’ll see examples of coding practices here that aren’t recom-
mended in other parts of this book.

This is good for about a 20 percent time savings:

A hazard distinct to this case is that the two loops have to be maintained in parallel. If 
count changes to clientCount, you have to remember to change it in both places, which 
is an annoyance for you and a maintenance headache for anyone else who has to work 
with the code.

This example also illustrates a key challenge in code tuning: the effect of any specific 
code tuning is not predictable. The code tuning produced significant improvements 
in three of the four languages but not in Visual Basic. To perform this specific optimi-
zation in this specific version of Visual Basic would produce less maintainable code 
without any offsetting gain in performance. The general lesson is that you must mea-
sure the effect of each specific optimization to be sure of its effect—no exceptions.

Jamming

Jamming, or “fusion,” is the result of combining two loops that operate on the same 
set of elements. The gain lies in cutting the loop overhead from two loops to one. 
Here’s a candidate for loop jamming:

Visual Basic Example of Separate Loops That Could Be Jammed
For i = 0 to employeeCount - 1

   employeeName( i ) = ""

Next

...

For i = 0 to employeeCount - 1

   employeeEarnings( i ) = 0

Next

When you jam loops, you find code in two loops that you can combine into one. Usu-
ally, that means the loop counters have to be the same. In this example, both loops 
run from 0 to employeeCount - 1, so you can jam them:

Language Straight Time Code-Tuned Time Time Savings

C++ 2.81 2.27 19%

Java 3.97 3.12 21%

Visual Basic 2.78 2.77 <1%

Python 8.14 5.87 28%
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Visual Basic Example of a Jammed Loop
For i = 0 to employeeCount - 1

   employeeName( i ) = "" 

   employeeEarnings( i ) = 0

Next

Here are the savings:

As before, the results vary significantly among languages.

Loop jamming has two main hazards. First, the indexes for the two parts that have 
been jammed might change so that they’re no longer compatible. Second, you might 
not be able to combine the loops easily. Before you combine the loops, make sure 
they’ll still be in the right order with respect to the rest of the code.

Unrolling

The goal of loop unrolling is to reduce the amount of loop housekeeping. In Chapter 
25, a loop was completely unrolled and 10 lines of code were shown to be faster than 
3. In that case, the loop that went from 3 to 10 lines was unrolled so that all 10 array 
accesses were done individually.

Although completely unrolling a loop is a fast solution and works well when you’re 
dealing with a small number of elements, it’s not practical when you have a large num-
ber of elements or when you don’t know in advance how many elements you’ll have. 
Here’s an example of a general loop:

Java Example of a Loop That Can Be Unrolled
Normally, you’d probably use 
a for loop for a job like this, 
but to optimize, you’d have 
to convert to a while loop. 
For clarity, a while loop is 
shown here.

i = 0;

while ( i < count ) {

   a[ i ] = i;

   i = i + 1;

}

To unroll the loop partially, you handle two or more cases in each pass through the 
loop instead of one. This unrolling hurts readability but doesn’t hurt the generality of 
the loop. Here’s the loop unrolled once:

Language Straight Time Code-Tuned Time Time Savings

C++ 3.68 2.65 28%

PHP 3.97 2.42 32%

Visual Basic 3.75 3.56 4%
Note: Benchmarked for the case in which employeeCount equals 100.
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Java Example of a Loop That’s Been Unrolled Once

These lines pick up the case 
that might fall through the 
cracks if the loop went by 
twos instead of by ones.

i = 0;

while ( i < count - 1 ) {

   a[ i ] = i;

   a[ i + 1 ] = i + 1;

   i = i + 2;

}

if ( i == count - 1) {

   a[ count - 1 ] = count - 1;

}

The technique replaced the original a[ i ] = i line with two lines, and i is incremented 
by 2 rather than by 1. The extra code after the while loop is needed when count is odd 
and the loop has one iteration left after the loop terminates.

When five lines of straightforward code expand to nine lines of tricky code, the code 
becomes harder to read and maintain. Except for the gain in speed, its quality is poor. 
Part of any design discipline, however, is making necessary tradeoffs. So, even though 
a particular technique generally represents poor coding practice, specific circum-
stances might make it the best one to use.

Here are the results of unrolling the loop:

A gain of 16 to 43 percent is respectable, although again you have to watch out for 
hurting performance, as the Python benchmark shows. The main hazard of loop 
unrolling is an off-by-one error in the code after the loop that picks up the last case.

What if you unroll the loop even further, going for two or more unrollings? Do you get 
more benefit if you unroll a loop twice?

Java Example of a Loop That’s Been Unrolled Twice
i = 0;

while ( i < count - 2 ) {

   a[ i ] = i;

   a[ i + 1 ] = i+1;

   a[ i + 2 ] = i+2;

   i = i + 3;

}

CODING 
HORROR

Language Straight Time Code-Tuned Time Time Savings
C++ 1.75 1.15 34%
Java 1.01 0.581 43%
PHP 5.33 4.49 16%
Python 2.51 3.21 -27%
Note: Benchmarked for the case in which count equals 100.

CODING 
HORROR
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if ( i <= count - 1 ) {

    a[ count - 1 ] = count - 1;

}

if ( i == count - 2 ) {

    a[ count -2 ] = count - 2;

}

Here are the results of unrolling the loop the second time:

The results indicate that further loop unrolling can result in further time savings, but 
not necessarily so, as the Java measurement shows. The main concern is how Byzantine 
your code becomes. When you look at the previous code, you might not think it looks 
incredibly complicated, but when you realize that it started life a couple of pages ago as 
a five-line loop, you can appreciate the tradeoff between performance and readability.

Minimizing the Work Inside Loops

One key to writing effective loops is to minimize the work done inside a loop. If you 
can evaluate a statement or part of a statement outside a loop so that only the result is 
used inside the loop, do so. It’s good programming practice, and in some cases it 
improves readability.

Suppose you have a complicated pointer expression inside a hot loop that looks like this:

C++ Example of a Complicated Pointer Expression Inside a Loop
for ( i = 0; i < rateCount; i++ ) {

   netRate[ i ] = baseRate[ i ] * rates->discounts->factors->net;

}

In this case, assigning the complicated pointer expression to a well-named variable 
improves readability and often improves performance.

C++ Example of Simplifying a Complicated Pointer Expression
quantityDiscount = rates->discounts->factors->net;

for ( i = 0; i < rateCount; i++ ) {

   netRate[ i ] = baseRate[ i ] * quantityDiscount;

}

Language Straight Time
Double Unrolled 
Time Time Savings

C++ 1.75 1.01 42%

Java 1.01 0.581 43%

PHP 5.33 3.70 31%

Python 2.51 2.79 -12%
Note: Benchmarked for the case in which count equals 100.
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The extra variable, quantityDiscount, makes it clear that the baseRate array is being 
multiplied by a quantity-discount factor to compute the net rate. That wasn’t at all 
clear from the original expression in the loop. Putting the complicated pointer expres-
sion into a variable outside the loop also saves the pointer from being dereferenced 
three times for each pass through the loop, resulting in the following savings:

Except for the Java compiler, the savings aren’t anything to crow about, implying that 
during initial coding you can use whichever technique is more readable without wor-
rying about the speed of the code until later.

Sentinel Values

When you have a loop with a compound test, you can often save time by simplifying 
the test. If the loop is a search loop, one way to simplify the test is to use a sentinel 
value, a value that you put just past the end of the search range and that’s guaranteed 
to terminate the search.

The classic example of a compound test that can be improved by use of a sentinel is 
the search loop that checks both whether it has found the value it’s seeking and 
whether it has run out of values. Here’s the code:

C# Example of Compound Tests in a Search Loop
found = FALSE;

i = 0;

Here’s the compound test. while ( ( !found ) && ( i < count ) ) {

   if ( item[ i ] == testValue ) {

      found = TRUE;

   } 

   else {

      i++;

   }

}

if ( found ) {

   ...

In this code, each iteration of the loop tests for !found and for i < count. The purpose of 
the !found test is to determine when the desired element has been found. The purpose 

Language Straight Time Code-Tuned Time Time Savings

C++ 3.69 2.97 19%

C# 2.27 1.97 13%

Java 4.13 2.35 43%
Note: Benchmarked for the case in which rateCount equals 100.
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of the i < count test is to avoid running past the end of the array. Inside the loop, each 
value of item[] is tested individually, so the loop really has three tests for each iteration.

In this kind of search loop, you can combine the three tests so that you test only once 
per iteration by putting a “sentinel” at the end of the search range to stop the loop. In 
this case, you can simply assign the value you’re looking for to the element just 
beyond the end of the search range. (Remember to leave space for that element when 
you declare the array.) You then check each element, and if you don’t find the element 
until you find the one you stuck at the end, you know that the value you’re looking for 
isn’t really there. Here’s the code:

C# Example of Using a Sentinel Value to Speed Up a Loop
// set sentinel value, preserving the original value

initialValue = item[ count ];

Remember to allow space 
for the sentinel value at the 
end of the array.

item[ count ] = testValue;

i = 0;

while ( item[ i ] != testValue ) {

   i++;

}

// check if value was found

if ( i < count ) {

   ...

When item is an array of integers, the savings can be dramatic:

The Visual Basic results are particularly dramatic, but all the results are good. When 
the kind of array changes, however, the results also change. When item is an array of 
single-precision floating-point numbers, the results are as follows:

As usual, the results vary significantly.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C# 0.771 0.590 23% 1.3:1

Java 1.63 0.912 44% 2:1

Visual Basic 1.34 0.470 65% 3:1
Note: Search is of a 100-element array of integers.

Language Straight Time Code-Tuned Time Time Savings

C# 1.351 1.021 24%

Java 1.923 1.282 33%

Visual Basic 1.752 1.011 42%
Note: Search is of a 100-element array of 4-byte floating-point numbers.
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The sentinel technique can be applied to virtually any situation in which you use a lin-
ear search—to linked lists as well as arrays. The only caveats are that you must choose 
the sentinel value carefully and that you must be careful about how you put the senti-
nel value into the data structure.

Putting the Busiest Loop on the Inside

When you have nested loops, think about which loop you want on the outside and 
which you want on the inside. Following is an example of a nested loop that can be 
improved:

Java Example of a Nested Loop That Can Be Improved
for ( column = 0; column < 100; column++ ) {

   for ( row = 0; row < 5; row++ ) {

      sum = sum + table[ row ][ column ];

   }

}

The key to improving the loop is that the outer loop executes much more often than the 
inner loop. Each time the loop executes, it has to initialize the loop index, increment it 
on each pass through the loop, and check it after each pass. The total number of loop 
executions is 100 for the outer loop and 100 * 5 = 500 for the inner loop, for a total of 
600 iterations. By merely switching the inner and outer loops, you can change the total 
number of iterations to 5 for the outer loop and 5 * 100 = 500 for the inner loop, for a 
total of 505 iterations. Analytically, you’d expect to save about (600 – 505) / 600 = 16 
percent by switching the loops. Here’s the measured difference in performance:

The results vary significantly, which shows once again that you have to measure the 
effect in your particular environment before you can be sure your optimization will help.

Strength Reduction

Reducing strength means replacing an expensive operation such as multiplication 
with a cheaper operation such as addition. Sometimes you’ll have an expression 
inside a loop that depends on multiplying the loop index by a factor. Addition is usu-
ally faster than multiplication, and if you can compute the same number by adding 
the amount on each iteration of the loop rather than by multiplying, the code will typ-
ically run faster. Here’s an example of code that uses multiplication:

Language Straight Time Code-Tuned Time Time Savings

C++ 4.75 3.19 33%

Java 5.39 3.56 34%

PHP 4.16 3.65 12%

Python 3.48 3.33 4%
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Visual Basic Example of Multiplying a Loop Index
For i = 0 to saleCount - 1

   commission( i ) = (i + 1) * revenue * baseCommission * discount

Next

This code is straightforward but expensive. You can rewrite the loop so that you accu-
mulate multiples rather than computing them each time. This reduces the strength of 
the operations from multiplication to addition.

Visual Basic Example of Adding Rather Than Multiplying
incrementalCommission = revenue * baseCommission * discount

cumulativeCommission = incrementalCommission

For i = 0 to saleCount - 1

   commission( i ) = cumulativeCommission

   cumulativeCommission = cumulativeCommission + incrementalCommission

Next

Multiplication is expensive, and this kind of change is like a manufacturer’s coupon 
that gives you a discount on the cost of the loop. The original code incremented i each 
time and multiplied it by revenue * baseCommission * discount—first by 1, then by 2, 
then by 3, and so on. The optimized code sets incrementalCommission equal to revenue 
* baseCommission * discount. It then adds incrementalCommission to cumulativeCommis-
sion on each pass through the loop. On the first pass, it’s been added once; on the sec-
ond pass, it’s been added twice; on the third pass, it’s been added three times; and so 
on. The effect is the same as multiplying incrementalCommission by 1, then by 2, then 
by 3, and so on, but it’s cheaper.

The key is that the original multiplication has to depend on the loop index. In this 
case, the loop index was the only part of the expression that varied, so the expression 
could be recoded more economically. Here’s how much the rewrite helped in some 
test cases:

26.3 Data Transformations
Changes in data types can be a powerful aid in reducing program size and improving 
execution speed. Data-structure design is outside the scope of this book, but modest 
changes in the implementation of a specific data type can also improve performance. 
Here are a few ways to tune your data types.

Language Straight Time Code-Tuned Time Time Savings

C++ 4.33 3.80 12%

Visual Basic 3.54 1.80 49%
Note: Benchmark performed with saleCount equals 20. All computed variables are floating point.
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Use Integers Rather Than Floating-Point Numbers
Cross-Reference For details 
on using integers and float-
ing point, see Chapter 12, 
“Fundamental Data Types.”

Integer addition and multiplication tend to be faster than floating point. Changing a 
loop index from a floating point to an integer, for example, can save time:

Visual Basic Example of a Loop That Uses a Time-Consuming Floating-Point 
Loop Index
Dim x As Single

For x = 0 to 99

   a( x ) = 0

Next

Contrast this with a similar Visual Basic loop that explicitly uses the integer type:

Visual Basic Example of a Loop That Uses a Timesaving Integer Loop Index
Dim i As Integer

For i = 0 to 99

   a( i ) = 0

Next

How much difference does it make? Here are the results for this Visual Basic code and 
for similar code in C++ and PHP:

Use the Fewest Array Dimensions Possible
Cross-Reference For details 
on arrays, see Section 12.8, 
“Arrays.”

Conventional wisdom maintains that multiple dimensions on arrays are expensive. If 
you can structure your data so that it’s in a one-dimensional array rather than a two-
dimensional or three-dimensional array, you might be able to save some time. Sup-
pose you have initialization code like this:

Java Example of a Standard, Two-Dimensional Array Initialization
for ( row = 0; row < numRows; row++ ) {

   for ( column = 0; column < numColumns; column++ ) {

      matrix[ row ][ column ] = 0;

   }

}

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 2.80 0.801 71% 3.5:1

PHP 5.01 4.65 7% 1:1

Visual Basic 6.84 0.280 96% 25:1

CODING 
HORROR
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When this code is run with 50 rows and 20 columns, it takes twice as long with my 
current Java compiler as when the array is restructured so that it’s one-dimensional. 
Here’s how the revised code would look:

Java Example of a One-Dimensional Representation of an Array
for ( entry = 0; entry < numRows * numColumns; entry++ ) {

   matrix[ entry ] = 0;

}

And here’s a summary of the results, with the addition of comparable results in sev-
eral other languages:

The results of this optimization are excellent in Visual Basic and Java, good in PHP 
and Python, but mediocre in C++ and C#. Of course, the C# compiler’s unoptimized 
time was easily the best of the group, so you can’t be too hard on it.

This wide range of results again shows the hazard of following any code-tuning advice 
blindly. You can never be sure until you try the advice in your specific circumstances.

Minimize Array References

In addition to minimizing accesses to doubly or triply dimensioned arrays, it’s often 
advantageous to minimize array accesses, period. A loop that repeatedly uses one ele-
ment of an array is a good candidate for the application of this technique. Here’s an 
example of an unnecessary array access:

C++ Example of Unnecessarily Referencing an Array Inside a Loop
for ( discountType = 0; discountType < typeCount; discountType++ ) {

   for ( discountLevel = 0; discountLevel < levelCount; discountLevel++ ) {

      rate[ discountLevel ] = rate[ discountLevel ] * discount[ discountType ];

   }

}

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 8.75 7.82 11% 1:1

C# 3.28 2.99 9% 1:1

Java 7.78 4.14 47% 2:1

PHP 6.24 4.10 34% 1.5:1

Python 3.31 2.23 32% 1.5:1

Visual Basic 9.43 3.22 66% 3:1
Note: Times for Python and PHP aren’t directly comparable to times for the other languages because they 
were run <1% as many iterations as the other languages.
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The reference to discount[ discountType ] doesn’t change when discountLevel changes in 
the inner loop. Consequently, you can move it out of the inner loop so that you’ll have 
only one array access per execution of the outer loop rather than one for each execu-
tion of the inner loop. The next example shows the revised code.

C++ Example of Moving an Array Reference Outside a Loop
for ( discountType = 0; discountType < typeCount; discountType++ ) {

   thisDiscount = discount[ discountType ];

   for ( discountLevel = 0; discountLevel < levelCount; discountLevel++ ) {

      rate[ discountLevel ] = rate[ discountLevel ] * thisDiscount;

   }

}

Here are the results:

As usual, the results vary significantly from compiler to compiler.

Use Supplementary Indexes

Using a supplementary index means adding related data that makes accessing a data 
type more efficient. You can add the related data to the main data type, or you can 
store it in a parallel structure.

String-Length Index

One example of using a supplementary index can be found in the different string-stor-
age strategies. In C, strings are terminated by a byte that’s set to 0. In Visual Basic 
string format, a length byte hidden at the beginning of each string indicates how long 
the string is. To determine the length of a string in C, a program has to start at the 
beginning of the string and count each byte until it finds the byte that’s set to 0. To 
determine the length of a Visual Basic string, the program just looks at the length 
byte. Visual Basic length byte is an example of augmenting a data type with an index 
to make certain operations—like computing the length of a string—faster.

You can apply the idea of indexing for length to any variable-length data type. It’s 
often more efficient to keep track of the length of the structure rather than computing 
the length each time you need it.

Language Straight Time Code-Tuned Time Time Savings

C++ 32.1 34.5 -7%

C# 18.3 17.0 7%

Visual Basic 23.2 18.4 20%
Note: Benchmark times were computed for the case in which typeCount equals 10 and levelCount equals 100.
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Independent, Parallel Index Structure

Sometimes it’s more efficient to manipulate an index to a data type than it is to manip-
ulate the data type itself. If the items in the data type are big or hard to move (on disk, 
perhaps), sorting and searching index references is faster than working with the data 
directly. If each data item is large, you can create an auxiliary structure that consists of 
key values and pointers to the detailed information. If the difference in size between 
the data-structure item and the auxiliary-structure item is great enough, sometimes 
you can store the key item in memory even when the data item has to be stored exter-
nally. All searching and sorting is done in memory, and you have to access the disk 
only once, when you know the exact location of the item you want.

Use Caching

Caching means saving a few values in such a way that you can retrieve the most com-
monly used values more easily than the less commonly used values. If a program ran-
domly reads records from a disk, for example, a routine might use a cache to save the 
records read most frequently. When the routine receives a request for a record, it 
checks the cache to see whether it has the record. If it does, the record is returned 
directly from memory rather than from disk.

In addition to caching records on disk, you can apply caching in other areas. In a 
Microsoft Windows font-proofing program, the performance bottleneck was in 
retrieving the width of each character as it was displayed. Caching the most recently 
used character width roughly doubled the display speed.

You can cache the results of time-consuming computations too—especially if the 
parameters to the calculation are simple. Suppose, for example, that you need to com-
pute the length of the hypotenuse of a right triangle, given the lengths of the other two 
sides. The straightforward implementation of the routine would look like this:

Java Example of a Routine That’s Conducive to Caching
double Hypotenuse(

   double sideA,

   double sideB

   ) {

   return Math.sqrt( ( sideA * sideA ) + ( sideB * sideB ) );

}

If you know that the same values tend to be requested repeatedly, you can cache val-
ues this way:
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Java Example of Caching to Avoid an Expensive Computation
private double cachedHypotenuse = 0;

private double cachedSideA = 0;

private double cachedSideB = 0;

public double Hypotenuse(

   double sideA,

   double sideB

   ) {

   // check to see if the triangle is already in the cache

   if ( ( sideA == cachedSideA ) && ( sideB == cachedSideB ) ) {

      return cachedHypotenuse;

   }

   // compute new hypotenuse and cache it

   cachedHypotenuse = Math.sqrt( ( sideA * sideA ) + ( sideB * sideB ) );

   cachedSideA = sideA;

   cachedSideB = sideB;

   return cachedHypotenuse;

}

The second version of the routine is more complicated than the first and takes up 
more space, so speed has to be at a premium to justify it. Many caching schemes cache 
more than one element, so they have even more overhead. Here’s the speed difference 
between these two versions:

The success of the cache depends on the relative costs of accessing a cached element, 
creating an uncached element, and saving a new element in the cache. Success also 
depends on how often the cached information is requested. In some cases, success 
might also depend on caching done by the hardware. Generally, the more it costs to 
generate a new element and the more times the same information is requested, the 
more valuable a cache is. The cheaper it is to access a cached element and save new 
elements in the cache, the more valuable a cache is. As with other optimization tech-
niques, caching adds complexity and tends to be error-prone.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 4.06 1.05 74% 4:1

Java 2.54 1.40 45% 2:1

Python 8.16 4.17 49% 2:1

Visual Basic 24.0 12.9 47% 2:1
Note: The results shown assume that the cache is hit twice for each time it’s set.
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26.4 Expressions
Cross-Reference For more 
information on expressions, 
see Section 19.1, “Boolean 
Expressions.”

Much of the work in a program is done inside mathematical or logical expressions. 
Complicated expressions tend to be expensive, so this section looks at ways to make 
them cheaper.

Exploit Algebraic Identities

You can use algebraic identities to replace costly operations with cheaper ones. For 
example, the following expressions are logically equivalent:

not a and not b

not (a or b)

If you choose the second expression instead of the first, you can save a not operation.

Although the savings from avoiding a single not operation are probably inconsequen-
tial, the general principle is powerful. Jon Bentley describes a program that tested 
whether sqrt(x) < sqrt(y) (1982). Since sqrt(x) is less than sqrt(y) only when x is less 
than y, you can replace the first test with x < y. Given the cost of the sqrt() routine, 
you’d expect the savings to be dramatic, and they are. Here are the results:

Use Strength Reduction

As mentioned earlier, strength reduction means replacing an expensive operation 
with a cheaper one. Here are some possible substitutions:

■ Replace multiplication with addition.

■ Replace exponentiation with multiplication.

■ Replace trigonometric routines with their trigonometric identities.

■ Replace longlong integers with longs or ints (but watch for performance issues 
associated with using native-length vs. non-native-length integers)

■ Replace floating-point numbers with fixed-point numbers or integers.

■ Replace double-precision floating points with single-precision numbers.

■ Replace integer multiplication-by-two and division-by-two with shift operations.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 7.43 0.010 99.9% 750:1

Visual Basic 4.59 0.220 95% 20:1

Python 4.21 0.401 90% 10:1
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Suppose you have to evaluate a polynomial. If you’re rusty on polynomials, they’re the 
things that look like Ax2 + Bx + C. The letters A, B, and C are coefficients, and x is a 
variable. General code to evaluate an nth-order polynomial looks like this:

Visual Basic Example of Evaluating a Polynomial
value = coefficient( 0 )

For power = 1 To order

   value = value + coefficient( power ) * x^power

Next 

If you’re thinking about strength reduction, you’ll look at the exponentiation operator 
with a jaundiced eye. One solution would be to replace the exponentiation with a mul-
tiplication on each pass through the loop, which is analogous to the strength-reduc-
tion case a few sections ago in which a multiplication was replaced with an addition. 
Here’s how the reduced-strength polynomial evaluation would look:

Visual Basic Example of a Reduced-Strength Method of Evaluating a Polynomial
value = coefficient( 0 )

powerOfX = x

For power = 1 to order

   value = value + coefficient( power ) * powerOfX

   powerOfX = powerOfX * x

Next 

This produces a noticeable advantage if you’re working with second-order polynomi-
als—that is, polynomials in which the highest-power term is squared—or higher-order 
polynomials:

If you’re serious about strength reduction, you still won’t care for those two floating-
point multiplications. The strength-reduction principle suggests that you can further 
reduce the strength of the operations in the loop by accumulating powers rather than 
multiplying them each time:

Visual Basic Example of Further Reducing the Strength Required to Evaluate 
a Polynomial
value = 0

For power = order to 1 Step -1

   value = ( value + coefficient( power ) ) * x

Next 

value = value + coefficient( 0 )

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

Python 3.24 2.60 20% 1:1

Visual Basic 6.26 0.160 97% 40:1
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This method eliminates the extra powerOfX variable and replaces the two multiplica-
tions in each pass through the loop with one. The results: 

This is a good example of theory not holding up very well to practice. The code with 
reduced strength seems like it should be faster, but it isn’t. One possibility is that dec-
rementing a loop by 1 instead of incrementing it by 1 in Visual Basic hurts perfor-
mance, but you’d have to measure that hypothesis to be sure.

Initialize at Compile Time

If you’re using a named constant or a magic number in a routine call and it’s the only 
argument, that’s a clue that you could precompute the number, put it into a constant, 
and avoid the routine call. The same principle applies to multiplications, divisions, 
additions, and other operations.

I once needed to compute the base-two logarithm of an integer, truncated to the near-
est integer. The system didn’t have a log-base-two routine, so I wrote my own. The 
quick and easy approach was to use this fact:

log(x)base = log(x) / log(base)

Given this identity, I could write a routine like this one:

Cross-Reference For details 
on binding variables to their 
values, see Section 10.6, 
“Binding Time.”

C++ Example of a Log-Base-Two Routine Based on System Routines
unsigned int Log2( unsigned int x ) {

   return (unsigned int) ( log( x ) / log( 2 ) );

}

This routine was really slow, and because the value of log(2) never changed, I replaced 
log(2) with its computed value, 0.69314718, like this:

C++ Example of a Log-Base-Two Routine Based on a System Routine and a Constant
const double LOG2 = 0.69314718;

...

unsigned int Log2( unsigned int x ) {

   return (unsigned int) ( log( x ) / LOG2 );

}

Language Straight Time
First 
Optimization 

Second 
Optimization

Savings 
over First 
Optimization

Python 3.24 2.60 2.53 3%

Visual Basic 6.26 0.16 0.31 -94%
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Since log() tends to be an expensive routine—much more expensive than type conver-
sions or division—you’d expect that cutting the calls to the log() function by half 
would cut the time required for the routine by about half. Here are the measured 
results:

In this case, the educated guess about the relative importance of the division and type 
conversions and the estimate of 50 percent were pretty close. Considering the predict-
ability of the results described in this chapter, the accuracy of my prediction in this 
case proves only that even a blind squirrel finds a nut occasionally.

Be Wary of System Routines

System routines are expensive and provide accuracy that’s often wasted. Typical sys-
tem math routines, for example, are designed to put an astronaut on the moon within 
±2 feet of the target. If you don’t need that degree of accuracy, you don’t need to spend 
the time to compute it either.

In the previous example, the Log2() routine returned an integer value but used a float-
ing-point log() routine to compute it. That was overkill for an integer result, so after my 
first attempt, I wrote a series of integer tests that were perfectly accurate for calculating 
an integer log2. Here’s the code:

C++ Example of a Log-Base-Two Routine Based on Integers
unsigned int Log2( unsigned int x ) {

   if ( x < 2 ) return 0 ;

   if ( x < 4 ) return 1 ;

   if ( x < 8 ) return 2 ;

   if ( x < 16 ) return 3 ;

   if ( x < 32 ) return 4 ;

   if ( x < 64 ) return 5 ;

   if ( x < 128 ) return 6 ;

   if ( x < 256 ) return 7 ;

   if ( x < 512 ) return 8 ;

   if ( x < 1024 ) return 9 ;

   ...

   if ( x < 2147483648 ) return 30;

   return 31 ;

}

Language Straight Time Code-Tuned Time Time Savings

C++ 9.66 5.97 38%

Java 17.0 12.3 28%

PHP 2.45 1.50 39%
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This routine uses integer operations, never converts to floating point, and blows the 
doors off both floating-point versions:

Most of the so-called “transcendental” functions are designed for the worst case—that 
is, they convert to double-precision floating point internally even if you give them an 
integer argument. If you find one in a tight section of code and don’t need that much 
accuracy, give it your immediate attention.

Another option is to take advantage of the fact that a right-shift operation is the same 
as dividing by two. The number of times you can divide a number by two and still have 
a nonzero value is the same as the log2 of that number. Here’s how code based on that 
observation looks:

C++ Example of an Alternative Log-Base-Two Routine Based on the 
Right-Shift Operator
unsigned int Log2( unsigned int x ) {

   unsigned int i = 0;

   while ( ( x = ( x >> 1 ) ) != 0 ) {

      i++;

   }

   return i ;

}

To non-C++ programmers, this code is particularly hard to read. The complicated 
expression in the while condition is an example of a coding practice you should avoid 
unless you have a good reason to use it.

This routine takes about 350 percent longer than the longer version above, executing 
in 2.4 seconds rather than 0.66 seconds. But it’s faster than the first approach, and it 
adapts easily to 32-bit, 64-bit, and other environments.

This example highlights the value of not stopping after one successful optimization. 
The first optimization earned a respectable 30–40 percent savings but had nowhere 
near the impact of the second or third optimizations.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 9.66 0.662 93% 15:1

Java 17.0 0.882 95% 20:1

PHP 2.45 3.45 -41% 2:3

CODING 
HORROR

KEY POINT
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Use the Correct Type of Constants

Use named constants and literals that are the same type as the variables they’re assigned 
to. When a constant and its related variable are different types, the compiler has to do a 
type conversion to assign the constant to the variable. A good compiler does the type 
conversion at compile time so that it doesn’t affect run-time performance.

A less advanced compiler or an interpreter generates code for a run-time conversion, 
so you might be stuck. Here are some differences in performance between the initial-
izations of a floating-point variable x and an integer variable i in two cases. In the first 
case, the initializations look like this:

x = 5

i = 3.14

and require type conversions, assuming x is a floating point variable and i is an inte-
ger. In the second case, they look like this:

x = 3.14

i = 5

and don’t require type conversions. Here are the results, and the variation among 
compilers is once again notable:

Precompute Results

A common low-level design decision is the choice of whether to compute results on 
the fly or compute them once, save them, and look them up as needed. If the results 
are used many times, it’s often cheaper to compute them once and look them up the 
rest of the time.

This choice manifests itself in several ways. At the simplest level, you might compute 
part of an expression outside a loop rather than inside. An example of this appeared 
earlier in the chapter. At a more complicated level, you might compute a lookup table 
once when program execution begins, using it every time thereafter, or you might 
store results in a data file or embed them in a program.

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

C++ 1.11 0.000 100% not measurable

C# 1.49 1.48 <1% 1:1

Java 1.66 1.11 33% 1.5:1

Visual Basic 0.721 0.000 100% not measurable

PHP 0.872 0.847 3% 1:1

 



636 Chapter 26: Code-Tuning Techniques

Cross-Reference For more 
on using data in tables 
instead of complex logic, see 
Chapter 18, “Table-Driven 
Methods.”

In a space-wars video game, for example, the programmers initially computed gravity 
coefficients for different distances from the sun. The computation for the gravity coef-
ficients was expensive and affected performance. The program recognized relatively 
few distinct distances from the sun, however, so the programmers were able to pre-
compute the gravity coefficients and store them in a 10-element array. The array 
lookup was much faster than the expensive computation.

Suppose you have a routine that computes payment amounts on automobile loans. 
The code for such a routine would look like this:

Java Example of a Complex Computation That Could Be Precomputed
double ComputePayment(

   long loanAmount,

   int months,

   double interestRate

   ) {

   return loanAmount /

      (

      ( 1.0 - Math.pow( ( 1.0 + ( interestRate / 12.0 ) ), -months ) ) /

      ( interestRate / 12.0 )

      );

}

The formula for computing loan payments is complicated and fairly expensive. Put-
ting the information into a table instead of computing it each time would probably be 
cheaper.

How big would the table be? The widest-ranging variable is loanAmount. The variable 
interestRate might range from 5 percent through 20 percent by quarter points, but that’s 
only 61 distinct rates. months might range from 12 through 72, but that’s only 61 dis-
tinct periods. loanAmount could conceivably range from $1000 through $100,000, 
which is more entries than you’d generally want to handle in a lookup table.

Most of the computation doesn’t depend on loanAmount, however, so you can put the 
really ugly part of the computation (the denominator of the larger expression) into a 
table that’s indexed by interestRate and months. You recompute the loanAmount part 
each time:

Java Example of Precomputing a Complex Computation
double ComputePayment(

   long loanAmount,

   int months,

   double interestRate

   ) {

The new variable interest-
Index is created to provide a 
subscript into the 
loanDivisor array.

   int interestIndex =

      Math.round( ( interestRate - LOWEST_RATE ) * GRANULARITY * 100.00 );

   return loanAmount / loanDivisor[ interestIndex ][ months ];

}
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In this code, the hairy calculation has been replaced with the computation of an array 
index and a single array access. Here are the results of that change:

Depending on your circumstances, you would need to precompute the loanDivisor array 
at program initialization time or read it from a disk file. Alternatively, you could initialize 
it to 0, compute each element the first time it’s requested, store it, and look it up each 
time it’s requested subsequently. That would be a form of caching, discussed earlier.

You don’t have to create a table to take advantage of the performance gains you can 
achieve by precomputing an expression. Code similar to the code in the previous 
examples raises the possibility of a different kind of precomputation. Suppose you 
have code that computes payments for many loan amounts, as shown here:

Java Example of a Second Complex Computation That Could Be Precomputed
double ComputePayments(

   int months,

   double interestRate

   ) {

   for ( long loanAmount = MIN_LOAN_AMOUNT; loanAmount < MAX_LOAN_AMOUNT;     

      loanAmount++ ) {

      payment = loanAmount / (

         ( 1.0 – Math.pow( 1.0+(interestRate/12.0), - months ) ) /

         ( interestRate/12.0 )

         );

The following code would do 
something with payment 
here; for this example’s 
point, it doesn’t matter what.

      ...

   }

}

Even without precomputing a table, you can precompute the complicated part of the 
expression outside the loop and use it inside the loop. Here’s how it would look:

Java Example of Precomputing the Second Complex Computation
double ComputePayments(

   int months,

   double interestRate

   ) {

Here’s the part that’s 
precomputed.

   long loanAmount;

   double divisor = ( 1.0 – Math.pow( 1.0+(interestRate/12.0). - months ) ) /

      ( interestRate/12.0 );

   for ( long loanAmount = MIN_LOAN_AMOUNT; loanAmount <= MAX_LOAN_AMOUNT;

      loanAmount++ ) {

      payment = loanAmount / divisor;

      ...

   }

}

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

Java 2.97 0.251 92% 10:1

Python 3.86 4.63 -20% 1:1
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This is similar to the techniques suggested earlier of putting array references and 
pointer dereferences outside a loop. The results for Java in this case are comparable to 
the results of using the precomputed table in the first optimization:

Python improved here, but not in the first optimization attempt. Many times when 
one optimization does not produce the desired results, a seemingly similar optimiza-
tion will work as expected.

Optimizing a program by precomputation can take several forms:

■ Computing results before the program executes, and wiring them into constants 
that are assigned at compile time

■ Computing results before the program executes, and hard-coding them into 
variables used at run time

■ Computing results before the program executes, and putting them into a file 
that’s loaded at run time

■ Computing results once, at program startup, and then referencing them each 
time they’re needed

■ Computing as much as possible before a loop begins, minimizing the work done 
inside the loop

■ Computing results the first time they’re needed, and storing them so that you 
can retrieve them when they’re needed again

Eliminate Common Subexpressions

If you find an expression that’s repeated several times, assign it to a variable and refer 
to the variable rather than recomputing the expression in several places. The loan-cal-
culation example has a common subexpression that you could eliminate. This is the 
original code:

Java Example of a Common Subexpression
payment = loanAmount / (

      ( 1.0 – Math.pow( 1.0 + ( interestRate / 12.0 ), -months ) ) /

      ( interestRate / 12.0 )

   );

Language Straight Time
Code-Tuned 
Time

Time 
Savings Performance Ratio

Java 7.43 0.24 97% 30:1

Python 5.00 1.69 66% 3:1



26.5 Routines 639

In this sample, you can assign interestRate/12.0 to a variable that is then referenced 
twice rather than computing the expression twice. If you have chosen the variable 
name well, this optimization can improve the code’s readability at the same time that 
it improves performance. This is the revised code:

Java Example of Eliminating a Common Subexpression
monthlyInterest = interestRate / 12.0;

payment = loanAmount / (

      ( 1.0 – Math.pow( 1.0 + monthlyInterest, -months ) ) /

      monthlyInterest

   );

The savings in this case don’t seem impressive:

It appears that the Math.pow() routine is so costly that it overshadows the savings 
from subexpression elimination. Or possibly the subexpression is already being elim-
inated by the compiler. If the subexpression were a bigger part of the cost of the whole 
expression or if the compiler optimizer were less effective, the optimization might 
have more impact.

26.5 Routines
Cross-Reference For details 
on working with routines, 
see Chapter 7, “High-Quality 
Routines.”

One of the most powerful tools in code tuning is a good routine decomposition. 
Small, well-defined routines save space because they take the place of doing jobs sep-
arately in multiple places. They make a program easy to optimize because you can 
refactor code in one routine and thus improve every routine that calls it. Small rou-
tines are relatively easy to rewrite in a low-level language. Long, tortuous routines are 
hard enough to understand on their own; in a low-level language like assembler, 
they’re impossible.

Rewrite Routines Inline

In the early days of computer programming, some machines imposed prohibitive per-
formance penalties for calling a routine. A call to a routine meant that the operating 
system had to swap out the program, swap in a directory of routines, swap in the par-
ticular routine, execute the routine, swap out the routine, and swap the calling routine 
back in. All this swapping chewed up resources and made the program slow.

Language Straight Time Code-Tuned Time Time Savings

Java 2.94 2.83 4%

Python 3.91 3.94 -1%
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Modern computers collect a far smaller toll for calling a routine. Here are the results of 
putting a string-copy routine inline:

In some cases, you might be able to save a few nanoseconds by putting the code from a 
routine into the program directly where it’s needed via a language feature like C++’s inline 
keyword. If you’re working in a language that doesn’t support inline directly but that does 
have a macro preprocessor, you can use a macro to put the code in, switching it in and 
out as needed. But modern machines—and “modern” means any machine you’re ever 
likely to work on—impose virtually no penalty for calling a routine. As the example 
shows, you’re as likely to degrade performance by keeping code inline as to optimize it.

26.6 Recoding in a Low-Level Language
One long-standing piece of conventional wisdom that shouldn’t be left unmentioned 
is the advice that when you run into a performance bottleneck, you should recode in 
a low-level language. If you’re coding in C++, the low-level language might be assem-
bler. If you’re coding in Python, the low-level language might be C. Recoding in a low-
level language tends to improve both speed and code size. Here is a typical approach 
to optimizing with a low-level language:

1. Write 100 percent of an application in a high-level language.

2. Fully test the application, and verify that it’s correct.

Cross-Reference For details 
on the phenomenon of a 
small percentage of a pro-
gram accounting for most of 
its run time, see “The Pareto 
Principle” in Section 25.2.

3. If performance improvements are needed after that, profile the application to 
identify hot spots. Since about 5 percent of a program usually accounts for 
about 50 percent of the running time, you can usually identify small pieces of 
the program as hot spots.

4. Recode a few small pieces in a low-level language to improve overall performance.

Whether you follow this well-beaten path depends on how comfortable you are with 
low-level languages, how well-suited the problem is to low-level languages, and on your 
level of desperation. I got my first exposure to this technique on the Data Encryption 
Standard program I mentioned in the previous chapter. I had tried every optimization 
I’d ever heard of, and the program was still twice as slow as the speed goal. Recoding 
part of the program in assembler was the only remaining option. As an assembler nov-
ice, about all I could do was make a straight translation from a high-level language to 
assembler, but I got a 50 percent improvement even at that rudimentary level.

Suppose you have a routine that converts binary data to uppercase ASCII characters. 
The next example shows the Delphi code to do it:

Language Routine Time Inline-Code Time Time Savings

C++ 0.471 0.431 8%

Java 13.1 14.4 -10%
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Delphi Example of Code That’s Better Suited to Assembler
procedure HexExpand(

   var source: ByteArray;

   var target: WordArray;

   byteCount: word

);

var

   index: integer;

   targetIndex: integer;

begin

   targetIndex := 1;

   for index := 1 to byteCount do begin

      target[ targetIndex ] := ( (source[ index ] and $F0) shr 4 ) + $41;

      target[ targetIndex+1 ] := (source[ index ] and $0f) + $41;

      targetIndex := targetIndex + 2;

   end;

end;

Although it’s hard to see where the fat is in this code, it contains a lot of bit manipula-
tion, which isn’t exactly Delphi’s forte. Bit manipulation is assembler’s forte, however, 
so this code is a good candidate for recoding. Here’s the assembler code:

Example of a Routine Recoded in Assembler
procedure HexExpand(

   var source;

   var target;

   byteCount : Integer

);

    label

    EXPAND;

    asm

          MOV   ECX,byteCount      // load number of bytes to expand

          MOV   ESI,source         // source offset

          MOV   EDI,target         // target offset

          XOR   EAX,EAX            // zero out array offset

    EXPAND:

          MOV   EBX,EAX            // array offset

          MOV   DL,[ESI+EBX]       // get source byte

          MOV   DH,DL              // copy source byte

          AND   DH,$F              // get msbs

          ADD   DH,$41             // add 65 to make upper case

          SHR   DL,4               // move lsbs into position

          AND   DL,$F              // get lsbs

          ADD   DL,$41             // add 65 to make upper case

C26619670.fm  Page 641  Tuesday, April 12, 2011  3:22 PM
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          SHL   BX,1               // double offset for target array offset

          MOV   [EDI+EBX],DX       // put target word

          INC   EAX                // increment array offset

          LOOP  EXPAND             // repeat until finished

    end;

Rewriting in assembler in this case was profitable, resulting in a time savings of 41 per-
cent. It’s logical to assume that code in a language that’s more suited to bit manipulation—
C++, for instance—would have less to gain than Delphi code would. Here are the results:

The “before” picture in these measurements reflects the two languages’ strengths at bit 
manipulation. The “after” picture looks virtually identical, and it appears that the assem-
bler code has minimized the initial performance differences between Delphi and C++.

The assembler routine shows that rewriting in assembler doesn’t have to produce a 
huge, ugly routine. Such routines are often quite modest, as this one is. Sometimes 
assembler code is almost as compact as its high-level-language equivalent.

A relatively easy and effective strategy for recoding in assembler is to start with a com-
piler that generates assembler listings as a byproduct of compilation. Extract the 
assembler code for the routine you need to tune, and save it in a separate source file. 
Using the compiler’s assembler code as a base, hand-optimize the code, checking for 
correctness and measuring improvements at each step. Some compilers intersperse 
the high-level-language statements as comments in the assembler code. If yours does, 
you might keep them in the assembler code as documentation.

cc2e.com/2672 CHECKLIST: Code-Tuning Techniques
Improve Both Speed and Size

❑ Substitute table lookups for complicated logic.

❑ Jam loops.

❑ Use integer instead of floating-point variables.

❑ Initialize data at compile time.

❑ Use constants of the correct type.

❑ Precompute results.

❑ Eliminate common subexpressions.

❑ Translate key routines to a low-level language.

Language High-Level Time Assembler Time Time Savings

C++ 4.25 3.02 29%

Delphi 5.18 3.04 41%
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Improve Speed Only
❑ Stop testing when you know the answer.

❑ Order tests in case statements and if-then-else chains by frequency.

❑ Compare performance of similar logic structures.

❑ Use lazy evaluation.

❑ Unswitch loops that contain if tests.

❑ Unroll loops.

❑ Minimize work performed inside loops.

❑ Use sentinels in search loops.

❑ Put the busiest loop on the inside of nested loops.

❑ Reduce the strength of operations performed inside loops.

❑ Change multiple-dimension arrays to a single dimension.

❑ Minimize array references.

❑ Augment data types with indexes.

❑ Cache frequently used values.

❑ Exploit algebraic identities.

❑ Reduce strength in logical and mathematical expressions.

❑ Be wary of system routines.

❑ Rewrite routines inline.

26.7 The More Things Change, the More They Stay the Same
You might expect that performance attributes of systems would have changed some-
what in the 10 years since I wrote the first edition of Code Complete, and in some ways 
they have. Computers are dramatically faster and memory is more plentiful. In the 
first edition, I ran most of the tests in this chapter 10,000 to 50,000 times to get mean-
ingful, measurable results. For this edition I had to run most tests 1 million to 100 mil-
lion times. When you have to run a test 100 million times to get measurable results, 
you have to ask whether anyone will ever notice the impact in a real program. Com-
puters have become so powerful that for many common kinds of programs, the level 
of performance optimization discussed in this chapter has become irrelevant.
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In other ways, performance issues have hardly changed at all. People writing desktop 
applications may not need this information, but people writing software for embed-
ded systems, real-time systems, and other systems with strict speed or space restric-
tions can still benefit from it.

The need to measure the impact of each and every attempt at code tuning has been a 
constant since Donald Knuth published his study of Fortran programs in 1971. 
According to the measurements in this chapter, the effect of any specific optimization 
is actually less predictable than it was 10 years ago. The effect of each code tuning is 
affected by the programming language, compiler, compiler version, code libraries, 
library versions, and compiler settings, among other things.

Code tuning invariably involves tradeoffs among complexity, readability, simplicity, 
and maintainability on the one hand and a desire to improve performance on the 
other. It introduces a high degree of maintenance overhead because of all the reprofil-
ing that’s required.

I have found that insisting on measurable improvement is a good way to resist the temp-
tation to optimize prematurely and a good way to enforce a bias toward clear, straight-
forward code. If an optimization is important enough to haul out the profiler and 
measure the optimization’s effect, then it’s probably important enough to allow—as 
long as it works. But if an optimization isn’t important enough to haul out the profil-
ing machinery, it isn’t important enough to degrade readability, maintainability, and 
other code characteristics. The impact of unmeasured code tuning on performance is 
speculative at best, whereas the impact on readability is as certain as it is detrimental.

Additional Resources
cc2e.com/2679 My favorite reference on code tuning is Writing Efficient Programs (Bentley, Englewood 

Cliffs, NJ: Prentice Hall, 1982). The book is out of print but worth reading if you can 
find it. It’s an expert treatment of code tuning, broadly considered. Bentley describes 
techniques that trade time for space and space for time. He provides several examples 
of redesigning data types to reduce both space and time. His approach is a little more 
anecdotal than the one taken here, and his anecdotes are interesting. He takes a few 
routines through several optimization steps so that you can see the effects of first, sec-
ond, and third attempts on a single problem. Bentley strolls through the primary con-
tents of the book in 135 pages. The book has an unusually high signal-to-noise ratio—
it’s one of the rare gems that every practicing programmer should own.

Appendix 4 of Bentley’s Programming Pearls, 2d ed. (Boston, MA: Addison-Wesley, 
2000) contains a summary of the code-tuning rules from his earlier book.
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cc2e.com/2686 You can also find a full array of technology-specific optimization books. Several are 
listed below, and the Web link to the left contains an up-to-date list.  

Booth, Rick. Inner Loops: A Sourcebook for Fast 32-bit Software Development. Boston, 
MA: Addison-Wesley, 1997.

Gerber, Richard. Software Optimization Cookbook: High-Performance Recipes for the Intel 
Architecture. Intel Press, 2002.

Hasan, Jeffrey and Kenneth Tu. Performance Tuning and Optimizing ASP.NET Applica-
tions. Berkeley, CA: Apress, 2003.

Killelea, Patrick. Web Performance Tuning, 2d ed. Sebastopol, CA: O’Reilly & Associ-
ates, 2002.

Larman, Craig and Rhett Guthrie. Java 2 Performance and Idiom Guide. Englewood 
Cliffs, NJ: Prentice Hall, 2000.

Shirazi, Jack. Java Performance Tuning. Sebastopol, CA: O’Reilly & Associates, 2000.

Wilson, Steve and Jeff Kesselman. Java Platform Performance: Strategies and Tactics. Bos-
ton, MA: Addison-Wesley, 2000.

Key Points
■ Results of optimizations vary widely with different languages, compilers, and 

environments. Without measuring each specific optimization, you’ll have no 
idea whether it will help or hurt your program.

■ The first optimization is often not the best. Even after you find a good one, keep 
looking for one that’s better.

■ Code tuning is a little like nuclear energy. It’s a controversial, emotional topic. 
Some people think it’s so detrimental to reliability and maintainability that they 
won’t do it at all. Others think that with proper safeguards, it’s beneficial. If you 
decide to use the techniques in this chapter, apply them with care.
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Chapter 27

How Program Size Affects 
Construction

cc2e.com/2761 Contents

■ 27.1 Communication and Size: page 650

■ 27.2 Range of Project Sizes: page 651

■ 27.3 Effect of Project Size on Errors: page 651

■ 27.4 Effect of Project Size on Productivity: page 653

■ 27.5 Effect of Project Size on Development Activities: page 654

Related Topics

■ Prerequisites to construction: Chapter 3

■ Determining the kind of software you’re working on: Section 3.2

■ Managing construction: Chapter 28

Scaling up in software development isn’t a simple matter of taking a small project and 
making each part of it bigger. Suppose you wrote the 25,000-line Gigatron software 
package in 20 staff-months and found 500 errors in field testing. Suppose Gigatron 
1.0 is successful, as is Gigatron 2.0, and you start work on the Gigatron Deluxe, a 
greatly enhanced version of the program that’s expected to be 250,000 lines of code.

Even though it’s 10 times as large as the original Gigatron, the Gigatron Deluxe won’t 
take 10 times the effort to develop; it’ll take 30 times the effort. Moreover, 30 times the 
total effort doesn’t imply 30 times as much construction. It probably implies 25 times 
as much construction and 40 times as much architecture and system testing. You 
won’t have 10 times as many errors either; you’ll have 15 times as many—or more.

If you’ve been accustomed to working on small projects, your first medium-to-large 
project can rage riotously out of control, becoming an uncontrollable beast instead of 
the pleasant success you had envisioned. This chapter tells you what kind of beast to 
expect and where to find the whip and chair to tame it. In contrast, if you’re accus-
tomed to working on large projects, you might use approaches that are too formal on 
a small project. This chapter describes how you can economize to keep a small project 
from toppling under the weight of its own overhead.
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27.1 Communication and Size
If you’re the only person on a project, the only communication path is between you and 
the customer, unless you count the path across your corpus callosum, the path that con-
nects the left side of your brain to the right. As the number of people on a project 
increases, the number of communication paths increases, too. The number doesn’t 
increase additively as the number of people increases. It increases multiplicatively, pro-
portionally to the square of the number of people, as illustrated in Figure 27-1.

Figure 27-1 The number of communication paths increases proportionate to the square of 
the number of people on the team.

As you can see, a two-person project has only one path of communication. A five-per-
son project has 10 paths. A ten-person project has 45 paths, assuming that every per-
son talks to every other person. The 10 percent of projects that have 50 or more 
programmers have at least 1,200 potential paths. The more communication paths you 
have, the more time you spend communicating and the more opportunities are cre-
ated for communication mistakes. Larger-size projects demand organizational tech-
niques that streamline communication or limit it in a sensible way.

The typical approach taken to streamlining communication is to formalize it in docu-
ments. Instead of having 50 people talk to each other in every conceivable combina-
tion, 50 people read and write documents. Some are text documents; some are 
graphic. Some are printed on paper; others are kept in electronic form.

45

Communication paths 
with ten programmers

10

Communication path 
with two programmers

1

Communication paths 
with three programmers

3

Communication paths 
with four programmers

6

10

Communication paths 
with five programmers

KEY POINT
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27.2 Range of Project Sizes
Is the size of the project you’re working on typical? The wide range of project sizes 
means that you can’t consider any single size to be typical. One way of thinking about 
project size is to think about the size of a project team. Here’s a crude estimate of the 
percentages of all projects that are done by teams of various sizes:

One aspect of project size data that might not be immediately apparent is the differ-
ence between the percentages of projects of various sizes and the number of pro-
grammers who work on projects of each size. Because larger projects use more 
programmers on each project than do small ones, they employ a large percentage of 
all programmers. Here’s a rough estimate of the percentage of all programmers who 
work on projects of various sizes:

27.3 Effect of Project Size on Errors
Cross-Reference For more 
details on errors, see Section 
22.4, “Typical Errors.”

Both quantity and type of errors are affected by project size. You might not think that 
error type would be affected, but as project size increases, a larger percentage of errors can 
usually be attributed to mistakes in requirements and design, as shown in Figure 27-2.

Team Size Approximate Percentage of Projects

1–3 25%

4–10 30%

11–25 20%

26–50 15%

50+ 10%
Source: Adapted from “A Survey of Software Engineering Practice: Tools, Methods, and Results” (Beck and 
Perkins 1983), Agile Software Development Ecosystems (Highsmith 2002), and Balancing Agility and 
Discipline (Boehm and Turner 2003).

Team Size Approximate Percentage of Programmers 

1–3 5%

4–10 10%

11–25 15%

26–50 20%

50+ 50%
Source: Derived from data in “A Survey of Software Engineering Practice: Tools, Methods, and Results” (Beck 
and Perkins 1983), Agile Software Development Ecosystems (Highsmith 2002), and Balancing Agility and 
Discipline (Boehm and Turner 2003).
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Figure 27-2 As project size increases, errors usually come more from requirements and 
design.  Sometimes they still come primarily from construction (Boehm 1981, Grady 1987, 
Jones 1998).

On small projects, construction errors make up about 75 percent of all the errors 
found. Methodology has less influence on code quality, and the biggest influence on 
program quality is often the skill of the individual writing the program (Jones 1998).

On larger projects, construction errors can taper off to about 50 percent of the total 
errors; requirements and architecture errors make up the difference. Presumably this 
is related to the fact that more requirements development and architectural design are 
required on large projects, so the opportunity for errors arising out of those activities 
is proportionally larger. In some very large projects, however, the proportion of con-
struction errors remains high; sometimes even with 500,000 lines of code, up to 75 
percent of the errors can be attributed to construction (Grady 1987).

As the kinds of defects change with size, so do the numbers of defects. You would nat-
urally expect a project that’s twice as large as another to have twice as many errors. But 
the density of defects—the number of defects per 1000 lines of code—increases. The 
product that’s twice as large is likely to have more than twice as many errors. Table 27-1 
shows the range of defect densities you can expect on projects of various sizes.

Table 27-1 Project Size and Typical Error Density

Project Size (in Lines 
of Code) Typical Error Density

Smaller than 2K 0–25 errors per thousand lines of code (KLOC)

2K–16K 0–40 errors per KLOC

16K–64K 0.5–50 errors per KLOC

64K–512K 2–70 errors per KLOC

512K or more 4–100 errors per KLOC
Sources: “Program Quality and Programmer Productivity” (Jones 1977), Estimating Software Costs (Jones 
1998).
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Cross-Reference The data in 
this table represents average 
performance. A handful of 
organizations have reported 
better error rates than the 
minimums shown here. For 
examples, see “How Many 
Errors Should You Expect to 
Find?” in Section 22.4.

The data in this table was derived from specific projects, and the numbers might bear 
little resemblance to those for the projects you’ve worked on. As a snapshot of the 
industry, however, the data is illuminating. It indicates that the number of errors 
increases dramatically as project size increases, with very large projects having up to 
four times as many errors per thousand lines of code as small projects.  A large project 
will need to work harder than a small project to achieve the same error rate.

27.4 Effect of Project Size on Productivity
Productivity has a lot in common with software quality when it comes to project size. 
At small sizes (2000 lines of code or smaller), the single biggest influence on produc-
tivity is the skill of the individual programmer (Jones 1998). As project size increases, 
team size and organization become greater influences on productivity.

How big does a project need to be before team size begins to affect productivity? In 
“Prototyping Versus Specifying: a Multiproject Experiment,” Boehm, Gray, and See-
waldt reported that smaller teams completed their projects with 39 percent higher 
productivity than larger teams. The size of the teams? Two people for the small 
projects and three for the large (1984). Table 27-2 gives the inside scoop on the gen-
eral relationship between project size and productivity.

Productivity is substantially determined by the kind of software you’re working on, 
personnel quality, programming language, methodology, product complexity, pro-
gramming environment, tool support, how “lines of code” are counted, how nonpro-
grammer support effort is factored into the “lines of code per staff-year” figure, and 
many other factors, so the specific figures in Table 27-2 vary dramatically.

Realize, however, that the general trend the numbers show is significant. Productivity 
on small projects can be 2–3 times as high as productivity on large projects, and pro-
ductivity can vary by a factor of 5–10 from the smallest projects to the largest.

Table 27-2 Project Size and Productivity

Project Size (in Lines 
of Code)

Lines of Code per Staff-Year (Cocomo II Nominal in 
Parentheses)

1K 2,500–25,000 (4,000)

10K 2,000–25,000 (3,200)

100K 1,000–20,000 (2,600)

1,000K 700–10,000 (2,000)

10,000K 300–5,000 (1,600)
Source: Derived from data in Measures for Excellence (Putnam and Meyers 1992), Industrial Strength Software 
(Putnam and Meyers 1997), Software Cost Estimation with Cocomo II (Boehm et al. 2000), and “Software 
Development Worldwide: The State of the Practice” (Cusumano et al. 2003).
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27.5 Effect of Project Size on Development Activities
If you are working on a one-person project, the biggest influence on the project’s suc-
cess or failure is you. If you’re working on a 25-person project, it’s conceivable that 
you’re still the biggest influence, but it’s more likely that no one person will wear the 
medal for that distinction; your organization will be a stronger influence on the 
project’s success or failure.

Activity Proportions and Size

As project size increases and the need for formal communications increases, the kinds 
of activities a project needs change dramatically. Figure 27-3 shows the proportions of 
development activities for projects of different sizes.

Figure 27-3 Construction activities dominate small projects. Larger projects require more 
architecture, integration work, and system testing to succeed. Requirements work is not 
shown on this diagram because requirements effort is not as directly a function of program 
size as other activities are (Albrecht 1979; Glass 1982; Boehm, Gray, and Seewaldt 1984; 
Boddie 1987; Card 1987; McGarry, Waligora, and McDermott 1989; Brooks 1995; Jones 1998; 
Jones 2000; Boehm et al. 2000).

On a small project, construction is the most prominent activity by far, taking up as 
much as 65 percent of the total development time. On a medium-size project, con-
struction is still the dominant activity but its share of the total effort falls to about 50 
percent. On very large projects, architecture, integration, and system testing take up 
more time and construction becomes less dominant. In short, as project size 
increases, construction becomes a smaller part of the total effort. The chart looks as 
though you could extend it to the right and make construction disappear altogether, 
so in the interest of protecting my job, I’ve cut it off at 512K.

Construction becomes less predominant because as project size increases, the construc-
tion activities—detailed design, coding, debugging, and unit testing—scale up propor-
tionately but many other activities scale up faster. Figure 27-4 provides an illustration.

Architecture

2K 8K 32K 128K 512K
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Detailed design

Coding and debugging

Developer testing
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System testing

Project Size in Lines of Code
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Figure 27-4 The amount of software construction work is a near-linear function of project 
size. Other kinds of work increase nonlinearly as project size increases.

Projects that are close in size will perform similar activities, but as sizes diverge, the 
kinds of activities will diverge, too. As the introduction to this chapter described, 
when the Gigatron Deluxe comes out at 10 times the size of the original Gigatron, it 
will need 25 times more construction effort, 25–50 times the planning effort, 30 times 
the integration effort, and 40 times the architecture and system testing.

Proportions of activities vary because different activities become critical at different 
project sizes. Barry Boehm and Richard Turner found that spending about five per-
cent of total project costs on architecture and requirements produced the lowest cost 
for projects in the 10,000-lines-of-code range. But for projects in the 100,000-lines-of-
code range, spending 15–20 percent of project effort on architecture and require-
ments produced the best results (Boehm and Turner 2004).

Here’s a list of activities that grow at a more-than-linear rate as project size increases:

� Communication

� Planning

� Management

� Requirements development

� System functional design

� Interface design and specification

� Architecture

� Integration

� Defect removal

� System testing

� Document production

Regardless of the size of a project, a few techniques are always valuable: disciplined 
coding practices, design and code inspections by other developers, good tool support, 
and use of high-level languages. These techniques are valuable on small projects and 
invaluable on large projects.

Other 
activities

Construction

Size

Effort
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Programs, Products, Systems, and System Products
Further Reading For 
another explanation of this 
point, see Chapter 1 in The 
Mythical Man-Month 
(Brooks 1995).

Lines of code and team size aren’t the only influences on a project’s size. A more subtle 
influence is the quality and the complexity of the final software. The original Gigatron, 
the Gigatron Jr., might have taken only a month to write and debug. It was a single pro-
gram written, tested, and documented by a single person. If the 2,500-line Gigatron Jr. 
took one month, why did the full-fledged 25,000-line Gigatron take 20 months?

The simplest kind of software is a single “program” that’s used by itself by the person 
who developed it or, informally, by a few others.

A more sophisticated kind of program is a software “product,” a program that’s 
intended for use by people other than the original developer. A software product is 
used in environments that differ from the environment in which the product was cre-
ated. It’s extensively tested before it’s released, it’s documented, and it’s capable of 
being maintained by others. A software product costs about three times as much to 
develop as a software program.

Another level of sophistication is required to develop a group of programs that work 
together. Such a group is called a software “system.” Development of a system is more 
complicated than development of a simple program because of the complexity of 
developing interfaces among the pieces and the care needed to integrate the pieces. 
On the whole, a system also costs about three times as much as a simple program.

When a “system product” is developed, it has the polish of a product and the multiple 
parts of a system. System products cost about nine times as much as simple programs 
(Brooks 1995, Shull et al. 2002).

A failure to appreciate the differences in polish and complexity among programs, 
products, systems, and system products is a common cause of estimation errors. Pro-
grammers who use their experience in building a program to estimate the schedule 
for building a system product can underestimate by a factor of almost 10. As you con-
sider the following example, refer to the chart in Figure 27-3 (on page 654). If you 
used your experience in writing 2K lines of code to estimate the time it would take you 
to develop a 2K program, your estimate would be only 65 percent of the total time 
you’d actually need to perform all the activities that go into developing a program. 
Writing 2K lines of code doesn’t take as long as creating a whole program that con-
tains 2K lines of code. If you don’t consider the time it takes to do nonconstruction 
activities, development will take 50 percent more time than you estimate.

As you scale up, construction becomes a smaller part of the total effort in a project. If you 
base your estimates solely on construction experience, the estimation error increases. If 
you used your own 2K construction experience to estimate the time it would take to 
develop a 32K program, your estimate would be only 50 percent of the total time 
required; development would take 100 percent more time than you would estimate.
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The estimation error here would be completely attributable to your not understand-
ing the effect of size on developing larger programs. If in addition you failed to con-
sider the extra degree of polish required for a product rather than a mere program, the 
error could easily increase by a factor of three or more.

Methodology and Size

Methodologies are used on projects of all sizes. On small projects, methodologies 
tend to be casual and instinctive. On large projects, they tend to be rigorous and care-
fully planned.

Some methodologies can be so loose that programmers aren’t even aware that they’re 
using them. A few programmers argue that methodologies are too rigid and say that 
they won’t touch them. While it may be true that a programmer hasn’t selected a 
methodology consciously, any approach to programming constitutes a methodology, 
no matter how unconscious or primitive the approach is. Merely getting out of bed 
and going to work in the morning is a rudimentary methodology although not a very 
creative one. The programmer who insists on avoiding methodologies is really only 
avoiding choosing one explicitly—no one can avoid using them altogether.

Formal approaches aren’t always fun, and if they are misapplied, their overhead gob-
bles up their other savings. The greater complexity of larger projects, however, 
requires a greater conscious attention to methodology. Building a skyscraper requires 
a different approach than building a doghouse. Different sizes of software projects 
work the same way. On large projects, unconscious choices are inadequate to the task. 
Successful project planners choose their strategies for large projects explicitly.

In social settings, the more formal the event, the more uncomfortable your clothes 
have to be (high heels, neckties, and so on). In software development, the more formal 
the project, the more paper you have to generate to make sure you’ve done your home-
work. Capers Jones points out that a project of 1,000 lines of code will average about 
7 percent of its effort on paperwork, whereas a 100,000-lines-of-code project will aver-
age about 26 percent of its effort on paperwork (Jones 1998).

This paperwork isn’t created for the sheer joy of writing documents. It’s created as a 
direct result of the phenomenon illustrated in Figure 27-1: the more people’s brains 
you have to coordinate, the more formal documentation you need to coordinate them.

You don’t create any of this documentation for its own sake. The point of writing a 
configuration-management plan, for example, isn’t to exercise your writing muscles. 
The point of your writing the plan is to force you to think carefully about configura-
tion management and to explain your plan to everyone else. The documentation is a 
tangible side effect of the real work you do as you plan and construct a software sys-
tem. If you feel as though you’re going through the motions and writing generic doc-
uments, something is wrong.

KEY POINT



658 Chapter 27: How Program Size Affects Construction

 “More” is not better, as far as methodologies are concerned. In their review of agile vs. 
plan-driven methodologies, Barry Boehm and Richard Turner caution that you’ll usu-
ally do better if you start your methods small and scale up for a large project than if 
you start with an all-inclusive method and pare it down for a small project (Boehm 
and Turner 2004). Some software pundits talk about “lightweight” and “heavyweight” 
methodologies, but in practice the key is to consider your project’s specific size and 
type and then find the methodology that’s “right-weight.” 

Additional Resources
cc2e.com/2768 Use the following resources to investigate this chapter’s subject further: 

Boehm, Barry and Richard Turner. Balancing Agility and Discipline: A Guide for the Per-
plexed. Boston, MA: Addison-Wesley, 2004. Boehm and Turner describe how project 
size affects the use of agile and plan-driven methods, along with other agile and plan-
driven issues.

Cockburn, Alistair. Agile Software Development. Boston, MA: Addison-Wesley, 2002.  
Chapter 4 discusses issues involved in selecting appropriate project methodologies, 
including project size. Chapter 6 introduces Cockburn’s Crystal Methodologies, which 
are defined approaches for developing projects of various sizes and degrees of criticality.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall, 
1981. Boehm’s book is an extensive treatment of the cost, productivity, and quality 
ramifications of project size and other variables in the software-development process. 
It includes discussions of the effect of size on construction and other activities. Chap-
ter 11 is an excellent explanation of software’s diseconomies of scale. Other informa-
tion on project size is spread throughout the book. Boehm’s 2000 book Software Cost 
Estimation with Cocomo II contains much more up-to-date information on Boehm’s 
Cocomo estimating model, but the earlier book provides more in-depth background 
discussions that are still relevant.

Jones, Capers. Estimating Software Costs. New York, NY: McGraw-Hill, 1998. This book 
is packed with tables and graphs that dissect the sources of software development 
productivity. For the impact of project size specifically, Jones’s 1986 book, Program-
ming Productivity, contains an excellent discussion in the section titled “The Impact of 
Program Size” in Chapter 3.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engineering, Anni-
versary Edition (2d ed.). Reading, MA: Addison-Wesley, 1995. Brooks was the manager 
of IBM’s OS/360 development, a mammoth project that took 5000 staff-years. He dis-
cusses management issues pertaining to small and large teams and presents a partic-
ularly vivid account of chief-programmer teams in this engaging collection of essays.
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DeGrace, Peter, and Leslie Stahl. Wicked Problems, Righteous Solutions: A Catalogue of 
Modern Software Engineering Paradigms. Englewood Cliffs, NJ: Yourdon Press, 1990. As 
the title suggests, this book catalogs approaches to developing software. As noted 
throughout this chapter, your approach needs to vary as the size of the project varies, 
and DeGrace and Stahl make that point clearly. The section titled “Attenuating and 
Truncating” in Chapter 5 discusses customizing software-development processes based 
on project size and formality. The book includes descriptions of models from NASA and 
the Department of Defense and a remarkable number of edifying illustrations.

Jones, T. Capers. “Program Quality and Programmer Productivity.” IBM Technical 
Report TR 02.764 (January 1977): 42–78. Also available in Jones’s Tutorial: Program-
ming Productivity: Issues for the Eighties, 2d ed. Los Angeles, CA: IEEE Computer Soci-
ety Press, 1986. This paper contains the first in-depth analysis of the reasons large 
projects have different spending patterns than small ones. It’s a thorough discussion 
of the differences between large and small projects, including requirements and qual-
ity-assurance measures. It’s dated but still interesting.

Key Points
■ As project size increases, communication needs to be supported. The point of 

most methodologies is to reduce communications problems, and a methodol-
ogy should live or die on its merits as a communication facilitator.

■ All other things being equal, productivity will be lower on a large project than on 
a small one.

■ All other things being equal, a large project will have more errors per thousand 
lines of code than a small one.

■ Activities that are taken for granted on small projects must be carefully planned 
on larger ones. Construction becomes less predominant as project size 
increases.

■ Scaling up a lightweight methodology tends to work better than scaling down a 
heavyweight methodology. The most effective approach of all is using a “right-
weight” methodology.
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Chapter 28

Managing Construction
cc2e.com/2836 Contents

■ 28.1 Encouraging Good Coding: page 662

■ 28.2 Configuration Management: page 664

■ 28.3 Estimating a Construction Schedule: page 671

■ 28.4 Measurement: page 677

■ 28.5 Treating Programmers as People: page 680

■ 28.6 Managing Your Manager: page 686

Related Topics

■ Prerequisites to construction: Chapter 3

■ Determining the kind of software you’re working on: Section 3.2

■ Program size: Chapter 27

■ Software quality: Chapter 20

Managing software development has been a formidable challenge for the past several 
decades. As Figure 28-1 suggests, the general topic of software-project management 
extends beyond the scope of this book, but this chapter discusses a few specific man-
agement topics that apply directly to construction. If you’re a developer, this chapter 
will help you understand the issues that managers need to consider. If you’re a man-
ager, this chapter will help you understand how management looks to developers as 
well as how to manage construction effectively. Because the chapter covers a broad 
collection of topics, several of its sections also describe where you can go for more 
information.

Figure 28-1 This chapter covers the software-management topics related to construction.

Software 
management

General 
management

Management of
construction
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If you’re interested in software management, be sure to read Section 3.2, “Determine 
the Kind of Software You’re Working On,” to understand the difference between tra-
ditional sequential approaches to development and modern iterative approaches. Be 
sure also to read Chapter 20, “The Software-Quality Landscape,” and Chapter 27, 
“How Program Size Affects Construction.” Quality goals and the size of the project 
both significantly affect how a specific software project should be managed.

28.1 Encouraging Good Coding
Because code is the primary output of construction, a key question in managing con-
struction is “How do you encourage good coding practices?” In general, mandating a 
strict set of technical standards from the management position isn’t a good idea. Pro-
grammers tend to view managers as being at a lower level of technical evolution, 
somewhere between single-celled organisms and the woolly mammoths that died out 
during the Ice Age, and if there are going to be programming standards, programmers 
need to buy into them.

If someone on a project is going to define standards, have a respected architect define 
the standards rather than the manager. Software projects operate as much on an “exper-
tise hierarchy” as on an “authority hierarchy.” If the architect is regarded as the project’s 
thought leader, the project team will generally follow standards set by that person.

If you choose this approach, be sure the architect really is respected. Sometimes a 
project architect is just a senior person who has been around too long and is out of 
touch with production coding issues. Programmers will resent that kind of “architect” 
defining standards that are out of touch with the work they’re doing.

Considerations in Setting Standards

Standards are more useful in some organizations than in others. Some developers wel-
come standards because they reduce arbitrary variance in the project. If your group 
resists adopting strict standards, consider a few alternatives: flexible guidelines, a col-
lection of suggestions rather than guidelines, or a set of examples that embody the 
best practices.

Techniques for Encouraging Good Coding

This section describes several techniques for achieving good coding practices that are 
less heavy-handed than laying down rigid coding standards:

Cross-Reference For more 
details on pair program-
ming, see Section 21.2, “Pair 
Programming.”

Assign two people to every part of the project If two people have to work on each 
line of code, you’ll guarantee that at least two people think it works and is readable. 
The mechanisms for teaming two people can range from pair programming to mentor-
trainee pairs to buddy-system reviews.
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Cross-Reference For details 
on reviews, see Section 21.3, 
“Formal Inspections,” and 
Section 21.4, “Other Kinds of 
Collaborative Development 
Practices.”

Review every line of code A code review typically involves the programmer and at 
least two reviewers. That means that at least three people read every line of code. 
Another name for peer review is “peer pressure.” In addition to providing a safety net 
in case the original programmer leaves the project, reviews improve code quality 
because the programmer knows that the code will be read by others. Even if your 
shop hasn’t created explicit coding standards, reviews provide a subtle way of moving 
toward a group coding standard—decisions are made by the group during reviews, 
and over time the group derives its own standards.

Require code sign-offs In other fields, technical drawings are approved and signed 
by the managing engineer. The signature means that to the best of the engineer’s 
knowledge, the drawings are technically competent and error-free. Some companies 
treat code the same way. Before code is considered to be complete, senior technical 
personnel must sign the code listing.

Route good code examples for review A big part of good management is communi-
cating your objectives clearly. One way to communicate your objectives is to circulate 
good code to your programmers or post it for public display. In doing so, you provide 
a clear example of the quality you’re aiming for. Similarly, a coding-standards manual 
can consist mainly of a set of “best code listings.” Identifying certain listings as “best” 
sets an example for others to follow. Such a manual is easier to update than an 
English-language standards manual, and it effortlessly presents subtleties in coding 
style that are hard to capture point by point in prose descriptions.

Cross-Reference A large 
part of programming is com-
municating your work to 
other people. For details, see 
Section 33.5 and Section 34.3.

Emphasize that code listings are public assets Programmers sometimes feel that the 
code they’ve written is “their code,” as if it were private property. Although it is the 
result of their work, code is part of the project and should be freely available to anyone 
else on the project who needs it. It should be seen by others during reviews and main-
tenance, even if at no other time.

One of the most successful projects ever reported developed 83,000 lines of code in 
11 work-years of effort. Only one error that resulted in system failure was detected in 
the first 13 months of operation. This accomplishment is even more dramatic when 
you realize that the project was completed in the late 1960s, without online compila-
tion or interactive debugging. Productivity on the project—7500 lines of code per 
work-year in the late 1960s—is still impressive by today’s standards. The chief pro-
grammer on the project reported that one key to the project’s success was the identi-
fication of all computer runs (erroneous and otherwise) as public rather than private 
assets (Baker and Mills 1973). This idea has extended into modern contexts, includ-
ing Open Source Software (Raymond 2000) and Extreme Programming’s idea of col-
lective ownership (Beck 2000), as well as in other contexts.
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Reward good code Use your organization’s reward system to reinforce good coding 
practices. Keep these considerations in mind as you develop your reinforcement system:

■ The reward should be something that the programmer wants. (Many program-
mers find “attaboy” rewards distasteful, especially when they come from non-
technical managers.)

■ Code that receives an award should be exceptionally good. If you give an award 
to a programmer everyone else knows does bad work, you look like Homer 
Simpson trying to run a nuclear reactor. It doesn’t matter that the programmer 
has a cooperative attitude or always comes to work on time. You lose credibility 
if your reward doesn’t match the technical merits of the situation. If you’re not 
technically skilled enough to make the good-code judgment, don’t! Don’t make 
the award at all, or let your team choose the recipient.

One easy standard If you’re managing a programming project and you have a pro-
gramming background, an easy and effective technique for eliciting good work is to 
say “I must be able to read and understand any code written for the project.” That the 
manager isn’t the hottest technical hotshot can be an advantage in that it might dis-
courage “clever” or tricky code.

The Role of This Book

Most of this book is a discussion of good programming practices. It isn’t intended to be 
used to justify rigid standards, and it’s intended even less to be used as a set of rigid stan-
dards. Use this book as a basis for discussion, as a sourcebook of good programming 
practices, and for identifying practices that could be beneficial in your environment.

28.2 Configuration Management
A software project is dynamic. The code changes, the design changes, and the require-
ments change. What’s more, changes in the requirements lead to more changes in the 
design, and changes in the design lead to even more changes in the code and test cases.

What Is Configuration Management?

Configuration management is the practice of identifying project artifacts and handling 
changes systematically so that a system can maintain its integrity over time. Another 
name for it is “change control.” It includes techniques for evaluating proposed changes, 
tracking changes, and keeping copies of the system as it existed at various points in time.

If you don’t control changes to requirements, you can end up writing code for parts of 
the system that are eventually eliminated. You can write code that’s incompatible with 
new parts of the system. You might not detect many of the incompatibilities until 
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integration time, which will become finger-pointing time because nobody will really 
know what’s going on.

If changes to code aren’t controlled, you might change a routine that someone else is 
changing at the same time; successfully combining your changes with theirs will be prob-
lematic. Uncontrolled code changes can make code seem more tested than it is. The ver-
sion that’s been tested will probably be the old, unchanged version; the modified version 
might not have been tested. Without good change control, you can make changes to a 
routine, find new errors, and not be able to back up to the old, working routine.

The problems go on indefinitely. If changes aren’t handled systematically, you’re tak-
ing random steps in the fog rather than moving directly toward a clear destination. 
Without good change control, rather than developing code you’re wasting your time 
thrashing. Configuration management helps you use your time effectively.

In spite of the obvious need for configuration management, many programmers have 
been avoiding it for decades. A survey more than 20 years ago found that over a third 
of programmers weren’t even familiar with the idea (Beck and Perkins 1983), and 
there’s little indication that that has changed. A more recent study by the Software 
Engineering Institute found that, of organizations using informal software-develop-
ment practices, less than 20 percent had adequate configuration management (SEI 
2003).

Configuration management wasn’t invented by programmers, but because program-
ming projects are so volatile, it’s especially useful to programmers. Applied to software 
projects, configuration management is usually called “software configuration manage-
ment” (SCM). SCM focuses on a program’s requirements, source code, documenta-
tion, and test data.

The systemic problem with SCM is overcontrol. The surest way to stop car accidents is 
to prevent everyone from driving, and one sure way to prevent software-development 
problems is to stop all software development. Although that’s one way to control 
changes, it’s a terrible way to develop software. You have to plan SCM carefully so that 
it’s an asset rather than an albatross around your neck.

Cross-Reference For details 
on the effects of project size 
on construction, see Chapter 
27, “How Program Size 
Affects Construction.”

On a small, one-person project, you can probably do well with no SCM beyond plan-
ning for informal periodic backups. Nonetheless, configuration management is still 
useful (and, in fact, I used configuration management in creating this manuscript). 
On a large, 50-person project, you’ll probably need a full-blown SCM scheme, includ-
ing fairly formal procedures for backups, change control for requirements and design, 
and control over documents, source code, content, test cases, and other project arti-
facts. If your project is neither very large nor very small, you’ll have to settle on a 
degree of formality somewhere between the two extremes. The following subsections 
describe some of the options in implementing SCM.
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Requirements and Design Changes
Cross-Reference Some 
development approaches 
support changes better than 
others. For details, see Section 
3.2, “Determine the Kind of 
Software You’re Working On.”

During development, you’re bound to be bristling with ideas about how to improve the 
system. If you implement each change as it occurs to you, you’ll soon find yourself walk-
ing on a software treadmill—for all that the system will be changing, it won’t be moving 
closer to completion. Here are some guidelines for controlling design changes:

Follow a systematic change-control procedure As Section 3.4 noted, a systematic 
change-control procedure is a godsend when you have a lot of change requests. By 
establishing a systematic procedure, you make it clear that changes will be considered 
in the context of what’s best for the project overall.

Handle change requests in groups It’s tempting to implement easy changes as ideas 
arise. The problem with handling changes in this way is that good changes can get 
lost. If you think of a simple change 25 percent of the way through the project and 
you’re on schedule, you’ll make the change. If you think of another simple change 50 
percent of the way through the project and you’re already behind, you won’t. When 
you start to run out of time at the end of the project, it won’t matter that the second 
change is 10 times as good as the first—you won’t be in a position to make any nones-
sential changes. Some of the best changes can slip through the cracks merely because 
you thought of them later rather than sooner.

A solution to this problem is to write down all ideas and suggestions, no matter how 
easy they would be to implement, and save them until you have time to work on them. 
Then, viewing them as a group, choose the ones that will be the most beneficial.

Estimate the cost of each change Whenever your customer, your boss, or you are 
tempted to change the system, estimate the time it would take to make the change, 
including review of the code for the change and retesting the whole system. Include in 
your estimate time for dealing with the change’s ripple effect through requirements to 
design to code to test to changes in the user documentation. Let all the interested par-
ties know that software is intricately interwoven and that time estimation is necessary 
even if the change appears small at first glance.

Regardless of how optimistic you feel when the change is first suggested, refrain from giv-
ing an off-the-cuff estimate. Such estimates are often mistaken by a factor of 2 or more.

Cross-Reference For 
another angle on handling 
changes, see “Handling 
Requirements Changes Dur-
ing Construction” in Section 
3.4. For advice on handling 
code changes safely when 
they do occur, see Chapter 
24, “Refactoring.” 

Be wary of high change volumes While some degree of change is inevitable, a high 
volume of change requests is a key warning sign that requirements, architecture, or 
top-level designs weren’t done well enough to support effective construction. Backing 
up to work on requirements or architecture might seem expensive, but it won’t be 
nearly as expensive as constructing the software more than once or throwing away 
code for features that you really didn’t need.
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Establish a change-control board or its equivalent in a way that makes sense for your 
project The job of a change-control board is to separate the wheat from the chaff in 
change requests. Anyone who wants to propose a change submits the change request 
to the change-control board. The term “change request” refers to any request that 
would change the software: an idea for a new feature, a change to an existing feature, 
an “error report” that might or might not be reporting a real error, and so on. The 
board meets periodically to review proposed changes. It approves, disapproves, or 
defers each change. Change-control boards are considered a best practice for prioritiz-
ing and controlling requirements changes; however, they are still fairly uncommon in 
commercial settings (Jones 1998, Jones 2000).

Watch for bureaucracy, but don’t let the fear of bureaucracy preclude effective change 
control Lack of disciplined change control is one of the biggest management prob-
lems facing the software industry today. A significant percentage of the projects that 
are perceived to be late would actually be on time if they accounted for the impact of 
untracked but agreed-upon changes. Poor change control allows changes to accumu-
late off the books, which undermines status visibility, long-range predictability, 
project planning, risk management specifically, and project management generally.

Change control tends to drift toward bureaucracy, so it’s important to look for ways to 
streamline the change-control process. If you’d rather not use traditional change 
requests, set up a simple “ChangeBoard” e-mail alias and have people e-mail change 
requests to the address. Or have people present change proposals interactively at a 
change board meeting. An especially powerful approach is to log change requests as 
defects in your defect-tracking software. Purists will classify such changes as “require-
ments defects,” or you could classify them as changes rather than defects.

You can implement the Change-Control Board itself formally, or you can define a 
Product Planning Group or War Council that carries the traditional responsibilities of 
a change-control board. Or you can identify a single person to be the Change Czar. But 
whatever you call it, do it! 

I occasionally see projects suffering from ham-handed implementations of change 
control. But 10 times as often I see projects suffering from no meaningful change con-
trol at all. The substance of change control is what’s important, so don’t let fear of 
bureaucracy stop you from realizing its many benefits.

Software Code Changes

Another configuration-management issue is controlling source code. If you change the 
code and a new error surfaces that seems unrelated to the change you made, you’ll 
probably want to compare the new version of the code to the old in your search for the 
source of the error. If that doesn’t tell you anything, you might want to look at a ver-
sion that’s even older. This kind of excursion through history is easy if you have ver-
sion-control tools that keep track of multiple versions of source code.

KEY POINT
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Version-control software Good version-control software works so easily that you 
barely notice you’re using it. It’s especially helpful on team projects. One style of ver-
sion control locks source files so that only one person can modify a file at a time. Typ-
ically, when you need to work on source code in a particular file, you check the file out 
of version control. If someone else has already checked it out, you’re notified that you 
can’t check it out. When you can check the file out, you work on it just as you would 
without version control until you’re ready to check it in. Another style allows multiple 
people to work on files simultaneously and handles the issue of merging changes 
when the code is checked in. In either case, when you check the file in, version control 
asks why you changed it, and you type in a reason.

For this modest investment of effort, you get several big benefits:

■ You don’t step on anyone’s toes by working on a file while someone else is work-
ing on it (or at least you’ll know about it if you do).

■ You can easily update your copies of all the project’s files to the current versions, 
usually by issuing a single command.

■ You can backtrack to any version of any file that was ever checked into version 
control.

■ You can get a list of the changes made to any version of any file.

■ You don’t have to worry about personal backups because the version-control 
copy is a safety net.

Version control is indispensable on team projects. It becomes even more powerful 
when version control, defect tracking, and change management are integrated. The 
applications division of Microsoft found its proprietary version-control tool to be a 
“major competitive advantage” (Moore 1992).

Tool Versions

For some kinds of projects, it may be necessary to be able to reconstruct the exact 
environment used to create each specific version of the software, including compilers, 
linkers, code libraries, and so on. In that case, you should put all of those tools into 
version control, too.

Machine Configurations

Many companies (including my company) have experienced good results from creat-
ing standardized development machine configurations. A disk image is created of a 
standard developer workstation, including all the common developer tools, office 
applications, and so on. That image is loaded onto each developer’s machine. Having 
standardized configurations helps to avoid a raft of problems associated with slightly 
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different configuration settings, different versions of tools used, and so on. A stan-
dardized disk image also greatly streamlines setting up new machines compared to 
having to install each piece of software individually.

Backup Plan

A backup plan isn’t a dramatic new concept; it’s the idea of backing up your work peri-
odically. If you were writing a book by hand, you wouldn’t leave the pages in a pile on 
your porch. If you did, they might get rained on or blown away, or your neighbor’s dog 
might borrow them for a little bedtime reading. You’d put them somewhere safe. Soft-
ware is less tangible, so it’s easier to forget that you have something of enormous value 
on one machine.

Many things can happen to computerized data: a disk can fail; you or someone else can 
delete key files accidentally; an angry employee can sabotage your machine; or you 
could lose a machine to theft, flood, or fire. Take steps to safeguard your work. Your 
backup plan should include making backups on a periodic basis and periodic transfer 
of backups to off-site storage, and it should encompass all the important materials on 
your project—documents, graphics, and notes—in addition to source code.

One often-overlooked aspect of devising a backup plan is a test of your backup proce-
dure. Try doing a restore at some point to make sure that the backup contains every-
thing you need and that the recovery works.

When you finish a project, make a project archive. Save a copy of everything: source 
code, compilers, tools, requirements, design, documentation—everything you need to 
re-create the product. Keep it all in a safe place.

cc2e.com/2843 CHECKLIST: Configuration Management
General

❑ Is your software configuration management plan designed to help pro-
grammers and minimize overhead?

❑ Does your SCM approach avoid overcontrolling the project?

❑ Do you group change requests, either through informal means (such as a 
list of pending changes) or through a more systematic approach (such as 
a change-control board)?

❑ Do you systematically estimate the cost, schedule, and quality impact of 
each proposed change?

❑ Do you view major changes as a warning that requirements development 
isn’t yet complete?
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Tools
❑ Do you use version-control software to facilitate configuration management?

❑ Do you use version-control software to reduce coordination problems of 
working in teams?

Backup
❑ Do you back up all project materials periodically?

❑ Are project backups transferred to off-site storage periodically?

❑ Are all materials backed up, including source code, documents, graphics, 
and important notes?

❑ Have you tested the backup-recovery procedure?

Additional Resources on Configuration Management
cc2e.com/2850 Because this book is about construction, this section has focused on change control 

from a construction point of view. But changes affect projects at all levels, and a com-
prehensive change-control strategy needs to do the same.

Hass, Anne Mette Jonassen. Configuration Management Principles and Practices. Boston, 
MA: Addison-Wesley, 2003. This book provides the big-picture view of software config-
uration management and practical details on how to incorporate it into your software-
development process. It focuses on managing and controlling configuration items.

Berczuk, Stephen P. and Brad Appleton. Software Configuration Management Patterns: 
Effective Teamwork, Practical Integration. Boston, MA: Addison-Wesley, 2003. Like 
Hass’s book, this book provides a SCM overview and is practical. It complements 
Hass’s book by providing practical guidelines that allow teams of developers to isolate 
and coordinate their work.

cc2e.com/2857 SPMN. Little Book of Configuration Management. Arlington, VA: Software Program Man-
agers Network, 1998. This pamphlet is an introduction to configuration management 
activities and defines critical success factors. It’s available as a free download from the 
SPMN website at www.spmn.com/products_guidebooks.html.

Bays, Michael. Software Release Methodology. Englewood Cliffs, NJ: Prentice Hall, 1999. 
This book discusses software configuration management with an emphasis on releas-
ing software into production.

Bersoff, Edward H., and Alan M. Davis. “Impacts of Life Cycle Models on Software 
Configuration Management.” Communications of the ACM 34, no. 8 (August 1991): 
104–118. This article describes how SCM is affected by newer approaches to software 
development, especially prototyping approaches. The article is especially applicable 
in environments that are using agile development practices.
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28.3 Estimating a Construction Schedule
Managing a software project is one of the formidable challenges of the twenty-first cen-
tury, and estimating the size of a project and the effort required to complete it is one of 
the most challenging aspects of software-project management. The average large soft-
ware project is one year late and 100 percent over budget (Standish Group 1994, Jones 
1997, Johnson 1999). At the individual level, surveys of estimated vs. actual schedules 
have found that developers’ estimates tend to have an optimism factor of 20 to 30 per-
cent (van Genuchten 1991).This has as much to do with poor size and effort estimates 
as with poor development efforts. This section outlines the issues involved in estimating 
software projects and indicates where to look for more information.

Estimation Approaches
Further Reading For further 
reading on schedule-
estimation techniques, see 
Chapter 8 of Rapid Devel-
opment (McConnell 1996) 
and Software Cost Estima-
tion with Cocomo II (Boehm 
et al. 2000).

You can estimate the size of a project and the effort required to complete it in any of 
several ways:

■ Use estimating software.

■ Use an algorithmic approach, such as Cocomo II, Barry Boehm’s estimation 
model (Boehm et al. 2000).

■ Have outside estimation experts estimate the project.

■ Have a walk-through meeting for estimates.

■ Estimate pieces of the project, and then add the pieces together.

■ Have people estimate their own tasks, and then add the task estimates together.

■ Refer to experience on previous projects.

■ Keep previous estimates and see how accurate they were. Use them to adjust 
new estimates.

Pointers to more information on these approaches are given in “Additional Resources 
on Software Estimation” at the end of this section. Here’s a good approach to estimat-
ing a project:

Further Reading This 
approach is adapted from 
Software Engineering Eco-
nomics (Boehm 1981).

Establish objectives Why do you need an estimate? What are you estimating? Are 
you estimating only construction activities, or all of development? Are you estimating 
only the effort for your project, or your project plus vacations, holidays, training, and 
other nonproject activities? How accurate does the estimate need to be to meet your 
objectives? What degree of certainty needs to be associated with the estimate? Would 
an optimistic or a pessimistic estimate produce substantially different results?

Allow time for the estimate, and plan it Rushed estimates are inaccurate estimates. If 
you’re estimating a large project, treat estimation as a miniproject and take the time to 
miniplan the estimate so that you can do it well.

1
2
3

HARD DATA
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Cross-Reference For more 
information on software 
requirements, see Section 3.4, 
“Requirements Prerequisite.”

Spell out software requirements Just as an architect can’t estimate how much a 
“pretty big” house will cost, you can’t reliably estimate a “pretty big” software project. 
It’s unreasonable for anyone to expect you to be able to estimate the amount of work 
required to build something when “something” has not yet been defined. Define 
requirements or plan a preliminary exploration phase before making an estimate.

Estimate at a low level of detail Depending on the objectives you identified, base 
the estimate on a detailed examination of project activities. In general, the more 
detailed your examination is, the more accurate your estimate will be. The Law of 
Large Numbers says that a 10 percent error on one big piece will be 10 percent high or 
10 percent low. On 50 small pieces, some of the 10 percent errors in the pieces will be 
high and some will be low, and the errors will tend to cancel each other out.

Cross-Reference It’s hard to 
find an area of software 
development in which itera-
tion is not valuable. Estima-
tion is one case in which 
iteration is useful. For a 
summary of iterative tech-
niques, see Section 34.8, 
“Iterate, Repeatedly, Again 
and Again.”

Use several different estimation techniques, and compare the results The list of esti-
mation approaches at the beginning of the section identified several techniques. They 
won’t all produce the same results, so try several of them. Study the different results 
from the different approaches. Children learn early that if they ask each parent indi-
vidually for a third bowl of ice cream, they have a better chance of getting at least one 
“yes” than if they ask only one parent. Sometimes the parents wise up and give the 
same answer; sometimes they don’t. See what different answers you can get from dif-
ferent estimation techniques.

No approach is best in all circumstances, and the differences among them can be illu-
minating. For example, for the first edition of this book, my original eyeball estimate 
for the length of the book was 250–300 pages. When I finally did an in-depth esti-
mate, the estimate came out to 873 pages. “That can’t be right,” I thought. So I esti-
mated it using a completely different technique. The second estimate came out to 828 
pages. Considering that these estimates were within about five percent of each other, 
I concluded that the book was going to be much closer to 850 pages than to 250 
pages, and I was able to adjust my writing plans accordingly.

Reestimate periodically Factors on a software project change after the initial esti-
mate, so plan to update your estimates periodically. As Figure 28-2 illustrates, the 
accuracy of your estimates should improve as you move toward completing the 
project. From time to time, compare your actual results to your estimated results, and 
use that evaluation to refine estimates for the remainder of the project.
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cc2e.com/2864

Figure 28-2 Estimates created early in a project are inherently inaccurate. As the project 
progresses, estimates can become more accurate. Reestimate periodically throughout a 
project, and use what you learn during each activity to improve your estimate for the next 
activity.

Estimating the Amount of Construction
Cross-Reference For details 
on the amount of coding for 
projects of various sizes, see 
“Activity Proportions and 
Size” in Section 27.5.

The extent to which construction will be a major influence on a project’s schedule 
depends in part on the proportion of the project that will be devoted to construc-
tion—understood as detailed design, coding and debugging, and unit testing. Take 
another look at Figure 27-3 on page 654. As the figure shows, the proportion varies 
by project size. Until your company has project-history data of its own, the propor-
tion of time devoted to each activity shown in the figure is a good place to start esti-
mates for your projects.

The best answer to the question of how much construction a project will call for is that 
the proportion will vary from project to project and organization to organization. 
Keep records of your organization’s experience on projects, and use them to estimate 
the time future projects will take.
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Influences on Schedule
Cross-Reference The effect 
of a program’s size on pro-
ductivity and quality isn’t 
always intuitively apparent. 
See Chapter 27, “How Pro-
gram Size Affects Construc-
tion,” for an explanation of 
how size affects construction.

The largest influence on a software project’s schedule is the size of the program to be 
produced. But many other factors also influence a software-development schedule. 
Studies of commercial programs have quantified some of the factors, and they’re 
shown in Table 28-1.

Here are some of the less easily quantified factors that can influence a software-devel-
opment schedule. These factors are drawn from Barry Boehm’s Software Cost Estima-
tion with Cocomo II (2000) and Capers Jones’s Estimating Software Costs (1998).

■ Requirements developer experience and capability

■ Programmer experience and capability

Table 28-1 Factors That Influence Software-Project Effort

Factor

Potential 
Helpful 
Influence

Potential 
Harmful 
Influence

Co-located vs. multisite development -14% 22%

Database size -10% 28%

Documentation match to project needs -19% 23%

Flexibility allowed in interpreting requirements -9% 10%

How actively risks are addressed -12% 14%

Language and tools experience -16% 20%

Personnel continuity (turnover) -19% 29%

Platform volatility -13% 30%

Process maturity -13% 15%

Product complexity -27% 74%

Programmer capability -24% 34%

Reliability required -18% 26%

Requirements analyst capability -29% 42%

Reuse requirements -5% 24%

State-of-the-art application -11% 12%

Storage constraint (how much of available storage 
will be consumed)

0% 46%

Team cohesion -10% 11%

Team’s experience in the applications area -19% 22%

Team’s experience on the technology platform -15% 19%

Time constraint (of the application itself) 0% 63%

Use of software tools -22% 17%
Source: Software Cost Estimation with Cocomo II (Boehm et al. 2000).
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■ Team motivation

■ Management quality

■ Amount of code reused

■ Personnel turnover

■ Requirements volatility

■ Quality of relationship with customer

■ User participation in requirements

■ Customer experience with the type of application

■ Extent to which programmers participate in requirements development

■ Classified security environment for computer, programs, and data

■ Amount of documentation

■ Project objectives (schedule vs. quality vs. usability vs. the many other possible 
objectives)

Each of these factors can be significant, so consider them along with the factors 
shown in Table 28-1 (which includes some of these factors).

Estimation vs. Control
The important question is, 
do you want prediction, or 
do you want control? 
—Tom Gilb

Estimation is an important part of the planning needed to complete a software project 
on time. Once you have a delivery date and a product specification, the main problem 
is how to control the expenditure of human and technical resources for an on-time 
delivery of the product. In that sense, the accuracy of the initial estimate is much less 
important than your subsequent success at controlling resources to meet the sched-
ule.

What to Do If You’re Behind

The average project overruns its planned schedule by about 100 percent, as men-
tioned earlier in this chapter. When you’re behind, increasing the amount of time usu-
ally isn’t an option. If it is, do it. Otherwise, you can try one or more of these solutions:

Hope that you’ll catch up Hopeful optimism is a common response to a project’s 
falling behind schedule. The rationalization typically goes like this: “Requirements 
took a little longer than we expected, but now they’re solid, so we’re bound to save 
time later. We’ll make up the shortfall during coding and testing.” This is hardly ever 
the case. One survey of over 300 software projects concluded that delays and over-
runs generally increase toward the end of a project (van Genuchten 1991). Projects 
don’t make up lost time later; they fall further behind.

1
2
3

HARD DATA
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Expand the team According to Fred Brooks’s law, adding people to a late software 
project makes it later (Brooks 1995). It’s like adding gas to a fire. Brooks’s explanation 
is convincing: new people need time to familiarize themselves with a project before 
they can become productive. Their training takes up the time of the people who have 
already been trained. And merely increasing the number of people increases the com-
plexity and amount of project communication. Brooks points out that the fact that 
one woman can have a baby in nine months does not imply that nine women can have 
a baby in one month.

Undoubtedly the warning in Brooks’s law should be heeded more often than it is. It’s 
tempting to throw people at a project and hope that they’ll bring it in on time. Manag-
ers need to understand that developing software isn’t like riveting sheet metal: more 
workers working doesn’t necessarily mean more work will get done.

The simple statement that adding programmers to a late project makes it later, how-
ever, masks the fact that under some circumstances it’s possible to add people to a late 
project and speed it up. As Brooks points out in the analysis of his law, adding people 
to software projects in which the tasks can’t be divided and performed independently 
doesn’t help. But if a project’s tasks are partitionable, you can divide them further and 
assign them to different people, even to people who are added late in the project. 
Other researchers have formally identified circumstances under which you can add 
people to a late project without making it later (Abdel-Hamid 1989, McConnell 1999).

Further Reading For an 
argument in favor of build-
ing only the most-needed 
features, see Chapter 14, 
“Feature-Set Control,” in 
Rapid Development (McCon-
nell 1996).

Reduce the scope of the project The powerful technique of reducing the scope of the 
project is often overlooked. If you eliminate a feature, you eliminate the design, cod-
ing, debugging, testing, and documentation of that feature. You eliminate that fea-
ture’s interface to other features.

When you plan the product initially, partition the product’s capabilities into “must 
haves,” “nice to haves,” and “optionals.” If you fall behind, prioritize the “optionals” 
and “nice to haves” and drop the ones that are the least important.

Short of dropping a feature altogether, you can provide a cheaper version of the same 
functionality. You might provide a version that’s on time but that hasn’t been tuned 
for performance. You might provide a version in which the least important functional-
ity is implemented crudely. You might decide to back off on a speed requirement 
because it’s much easier to provide a slow version. You might back off on a space 
requirement because it’s easier to provide a memory-intensive version.

Reestimate development time for the least important features. What functionality can 
you provide in two hours, two days, or two weeks? What do you gain by building the 
two-week version rather than the two-day version, or the two-day version rather than 
the two-hour version?
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Additional Resources on Software Estimation
cc2e.com/2871 Here are some additional references about software estimation:

Boehm, Barry, et al. Software Cost Estimation with Cocomo II. Boston, MA: Addison-
Wesley, 2000. This book describes the ins and outs of the Cocomo II estimating 
model, which is undoubtedly the most popular model in use today.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall, 
1981. This older book contains an exhaustive treatment of software-project estimation 
considered more generally than in Boehm’s newer book.

Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA: Addison-
Wesley, 1995. Chapter 5 of this book describes Humphrey’s Probe method, which is 
a technique for estimating work at the individual developer level.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and Models. 
Menlo Park, CA: Benjamin/Cummings, 1986. Chapter 6 contains a good survey of 
estimation techniques, including a history of estimation, statistical models, theoreti-
cally based models, and composite models. The book also demonstrates the use of 
each estimation technique on a database of projects and compares the estimates to the 
projects’ actual lengths.

Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: 
Addison-Wesley, 1988. The title of Chapter 16, “Ten Principles for Estimating Soft-
ware Attributes,” is somewhat tongue-in-cheek. Gilb argues against project estima-
tion and in favor of project control. Pointing out that people don’t really want to predict 
accurately but do want to control final results, Gilb lays out 10 principles you can use 
to steer a project to meet a calendar deadline, a cost goal, or another project objective.

28.4 Measurement
Software projects can be measured in numerous ways. Here are two solid reasons to 
measure your process:

For any project attribute, it’s possible to measure that attribute in a way that’s superior 
to not measuring it at all The measurement might not be perfectly precise, it might 
be difficult to make, and it might need to be refined over time, but measurement will 
give you a handle on your software-development process that you don’t have with-
out it (Gilb 2004).

If data is to be used in a scientific experiment, it must be quantified. Can you imagine a 
scientist recommending a ban on a new food product because a group of white rats “just 
seemed to get sicker” than another group? That’s absurd. You’d demand a quantified 
reason, like “Rats that ate the new food product were sick 3.7 more days per month than 
rats that didn’t.” To evaluate software-development methods, you must measure them. 
Statements like “This new method seems more productive” aren’t good enough.

KEY POINT
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What gets measured, gets 
done. 
—Tom Peters

Be aware of measurement side effects Measurement has a motivational effect. People 
pay attention to whatever is measured, assuming that it’s used to evaluate them. 
Choose what you measure carefully. People tend to focus on work that’s measured 
and to ignore work that isn’t.

To argue against measurement is to argue that it’s better not to know what’s really 
happening on your project When you measure an aspect of a project, you know 
something about it that you didn’t know before. You can see whether the aspect gets 
bigger or smaller or stays the same. The measurement gives you a window into at least 
that aspect of your project. The window might be small and cloudy until you refine 
your measurements, but it will be better than no window at all. To argue against all 
measurements because some are inconclusive is to argue against windows because 
some happen to be cloudy.

You can measure virtually any aspect of the software-development process. Table 28-2 
lists some measurements that other practitioners have found to be useful.

Table 28-2 Useful Software-Development Measurements

Size Overall Quality

Total lines of code written
Total comment lines
Total number of classes or routines
Total data declarations
Total blank lines

Total number of defects
Number of defects in each class or routine
Average defects per thousand lines of code
Mean time between failures
Compiler-detected errors

Defect Tracking Maintainability

Severity of each defect
Location of each defect (class or routine)
Origin of each defect (requirements, design,

construction, test)
Way in which each defect is corrected
Person responsible for each defect
Number of lines affected by each defect correction
Work hours spent correcting each defect
Average time required to find a defect
Average time required to fix a defect
Number of attempts made to correct each defect
Number of new errors resulting from defect 

correction

Number of public routines on each class
Number of parameters passed to each routine
Number of private routines and/or variables on each 

class
Number of local variables used by each routine
Number of routines called by each class or routine
Number of decision points in each routine
Control-flow complexity in each routine
Lines of code in each class or routine
Lines of comments in each class or routine
Number of data declarations in each class or routine
Number of blank lines in each class or routine
Number of gotos in each class or routine
Number of input or output statements in each class 

or routine

Productivity

Work-hours spent on the project
Work-hours spent on each class or routine
Number of times each class or routine changed
Dollars spent on project
Dollars spent per line of code
Dollars spent per defect



28.4 Measurement 679

You can collect most of these measurements with software tools that are currently 
available. Discussions throughout the book indicate the reasons that each measure-
ment is useful. At this time, most of the measurements aren’t useful for making fine 
distinctions among programs, classes, and routines (Shepperd and Ince 1989). 
They’re useful mainly for identifying routines that are “outliers”; abnormal measure-
ments in a routine are a warning sign that you should reexamine that routine, check-
ing for unusually low quality.

Don’t start by collecting data on all possible measurements—you’ll bury yourself in 
data so complex that you won’t be able to figure out what any of it means. Start with 
a simple set of measurements, such as the number of defects, the number of work-
months, the total dollars, and the total lines of code. Standardize the measurements 
across your projects, and then refine them and add to them as your understanding of 
what you want to measure improves (Pietrasanta 1990).

Make sure you’re collecting data for a reason. Set goals, determine the questions you 
need to ask to meet the goals, and then measure to answer the questions (Basili and 
Weiss 1984). Be sure that you ask for only as much information as is feasible to obtain, 
and keep in mind that data collection will always take a back seat to deadlines (Basili 
et al. 2002).

Additional Resources on Software Measurement
cc2e.com/2878 Here are addtional resources:

Oman, Paul and Shari Lawrence Pfleeger, eds. Applying Software Metrics. Los Alamitos, 
CA: IEEE Computer Society Press, 1996. This volume collects more than 25 key 
papers on software measurement under one cover.

Jones, Capers. Applied Software Measurement: Assuring Productivity and Quality, 2d ed. 
New York, NY: McGraw-Hill, 1997. Jones is a leader in software measurement, and his 
book is an accumulation of knowledge in this area. It provides the definitive theory 
and practice of current measurement techniques and describes problems with tradi-
tional measurements. It lays out a full program for collecting “function-point metrics.” 
Jones has collected and analyzed a huge amount of quality and productivity data, and 
this book distills the results in one place—including a fascinating chapter on averages 
for U.S. software development.
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Grady, Robert B. Practical Software Metrics for Project Management and Process Improve-
ment. Englewood Cliffs, NJ: Prentice Hall PTR, 1992. Grady describes lessons learned 
from establishing a software-measurement program at Hewlett-Packard and tells you 
how to establish a software-measurement program in your organization.

Conte, S. D., H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and Models. 
Menlo Park, CA: Benjamin/Cummings, 1986. This book catalogs current knowledge 
of software measurement circa 1986, including commonly used measurements, 
experimental techniques, and criteria for evaluating experimental results.

Basili, Victor R., et al. 2002. “Lessons learned from 25 years of process improvement: 
The Rise and Fall of the NASA Software Engineering Laboratory,” Proceedings of the 
24th International Conference on Software Engineering. Orlando, FL, 2002. This paper 
catalogs lessons learned by one of the world’s most sophisticated software-develop-
ment organizations. The lessons focus on measurement topics.

cc2e.com/2892 NASA Software Engineering Laboratory. Software Measurement Guidebook, June 1995, 
NASA-GB-001-94. This guidebook of about 100 pages is probably the best source of 
practical information on how to set up and run a measurement program. It can be 
downloaded from NASA’s website.

cc2e.com/2899 Gilb, Tom. Competitive Engineering. Boston, MA: Addison-Wesley, 2004. This book pre-
sents a measurement-focused approach to defining requirements, evaluating designs, 
measuring quality, and, in general, managing projects. It can be downloaded from 
Gilb’s website.

28.5 Treating Programmers as People
The abstractness of the programming activity calls for an offsetting naturalness in the 
office environment and rich contacts among coworkers. Highly technical companies 
offer parklike corporate campuses, organic organizational structures, comfortable 
offices, and other “high-touch” environmental features to balance the intense, some-
times arid intellectuality of the work itself. The most successful technical companies 
combine elements of high-tech and high-touch (Naisbitt 1982). This section describes 
ways in which programmers are more than organic reflections of their silicon alter egos.

KEY POINT
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How Do Programmers Spend Their Time?

Programmers spend their time programming, but they also spend time in meetings, 
on training, on reading their mail, and on just thinking. A 1964 study at Bell Labora-
tories found that programmers spent their time this way as described in Table 28-3.

This data is based on a time-and-motion study of 70 programmers. The data is old, 
and the proportions of time spent in the different activities would vary among pro-
grammers, but the results are nonetheless thought-provoking. About 30 percent of a 
programmer’s time is spent in nontechnical activities that don’t directly help the 
project: walking, personal business, and so on. Programmers in this study spent six 
percent of their time walking; that’s about 2.5 hours a week, about 125 hours a year. 
That might not seem like much until you realize that programmers spend as much 
time each year walking as they spend in training, three times as much time as they 
spend reading technical manuals, and six times as much as they spend talking with 
their managers. I personally have not seen much change in this pattern today.

Variation in Performance and Quality

Talent and effort among individual programmers vary tremendously, as they do in all 
fields. One study found that in a variety of professions—writing, football, invention, 
police work, and aircraft piloting—the top 20 percent of the people produced about 50 
percent of the output (Augustine 1979). The results of the study are based on an anal-
ysis of productivity data, such as touchdowns, patents, solved cases, and so on. Since 
some people make no tangible contribution whatsoever and weren’t considered in the 
study (quarterbacks who make no touchdowns, inventors who own no patents, detec-
tives who don’t close cases, and so on), the data probably understates the actual vari-
ation in productivity.

Table 28-3 One View of How Programmers Spend Their Time

Activity
Source 
Code Business Personal Meetings Training

Mail/Misc. 
Documents

Technical 
Manuals

Operating 
Procedures, 

Misc.
Program 

Test Totals

Talk or listen 4% 17% 7% 3% 1% 32%

Talk with 
manager

1% 1%

Telephone 2% 1% 3%

Read 14% 2% 2% 18%

Write/record 13% 1% 14%

Away or out 4% 1% 4% 6% 15%

Walking 2% 2% 1% 1% 6%

Miscellaneous 2% 3% 3% 1% 1% 1% 11%

Totals 35% 29% 13% 7% 6% 5% 2% 2% 1% 100%

Source: “Research Studies of Programmers and Programming” (Bairdain 1964, reported in Boehm 1981).
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In programming specifically, many studies have shown order-of-magnitude differ-
ences in the quality of the programs written, the sizes of the programs written, and the 
productivity of programmers.

Individual Variation

The original study that showed huge variations in individual programming productiv-
ity was conducted in the late 1960s by Sackman, Erikson, and Grant (1968). They 
studied professional programmers with an average of 7 years’ experience and found 
that the ratio of initial coding time between the best and worst programmers was 
about 20 to 1, the ratio of debugging times over 25 to 1, of program size 5 to 1, and of 
program execution speed about 10 to 1. They found no relationship between a pro-
grammer’s amount of experience and code quality or productivity.

Although specific ratios such as 25 to 1 aren’t particularly meaningful, more general 
statements such as “There are order-of-magnitude differences among programmers” 
are meaningful and have been confirmed by many other studies of professional pro-
grammers (Curtis 1981, Mills 1983, DeMarco and Lister 1985, Curtis et al. 1986, Card 
1987, Boehm and Papaccio 1988, Valett and McGarry 1989, Boehm et al. 2000).

Team Variation

Programming teams also exhibit sizable differences in software quality and productiv-
ity. Good programmers tend to cluster, as do bad programmers, an observation that 
has been confirmed by a study of 166 professional programmers from 18 organiza-
tions (Demarco and Lister 1999).

In one study of seven identical projects, the efforts expended varied by a factor of 3.4 
to 1 and program sizes by a factor of 3 to 1 (Boehm, Gray, and Seewaldt 1984). In spite 
of the productivity range, the programmers in this study were not a diverse group. 
They were all professional programmers with several years of experience who were 
enrolled in a computer-science graduate program. It’s reasonable to assume that a 
study of a less homogeneous group would turn up even greater differences.

An earlier study of programming teams observed a 5-to-1 difference in program size 
and a 2.6-to-1 variation in the time required for a team to complete the same project 
(Weinberg and Schulman 1974).

After reviewing more than 20 years of data in constructing the Cocomo II estimation 
model, Barry Boehm and other researchers concluded that developing a program with 
a team in the 15th percentile of programmers ranked by ability typically requires about 
3.5 times as many work-months as developing a program with a team in the 90th per-
centile (Boehm et al. 2000). Boehm and other researchers have found that 80 percent of 
the contribution comes from 20 percent of the contributors (Boehm 1987b).
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The implication for recruiting and hiring is clear. If you have to pay more to get a top-10-
percent programmer rather than a bottom-10-percent programmer, jump at the chance. 
You’ll get an immediate payoff in the quality and productivity of the programmer you 
hire, and you’ll get a residual effect in the quality and productivity of the other program-
mers your organization is able to retain because good programmers tend to cluster.

Religious Issues

Managers of programming projects aren’t always aware that certain programming 
issues are matters of religion. If you’re a manager and you try to require compliance 
with certain programming practices, you’re inviting your programmers’ ire. Here’s a 
list of religious issues:

■ Programming language

■ Indentation style

■ Placing of braces

■ Choice of IDE 

■ Commenting style

■ Efficiency vs. readability tradeoffs

■ Choice of methodology—for example, Scrum vs. Extreme Programming vs. evo-
lutionary delivery

■ Programming utilities

■ Naming conventions

■ Use of gotos

■ Use of global variables

■ Measurements, especially productivity measures such as lines of code per day

The common denominator among these topics is that a programmer’s position on 
each is a reflection of personal style. If you think you need to control a programmer in 
any of these religious areas, consider these points:

Be aware that you’re dealing with a sensitive area Sound out the programmer on 
each emotional topic before jumping in with both feet.

Use “suggestions” or “guidelines” with respect to the area Avoid setting rigid “rules” 
or “standards.”

Finesse the issues you can by sidestepping explicit mandates To finesse indentation 
style or brace placement, require source code to be run through a pretty-printer for-
matter before it’s declared finished. Let the pretty printer do the formatting. To finesse 
commenting style, require that all code be reviewed and that unclear code be modi-
fied until it’s clear.
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Have your programmers develop their own standards As mentioned elsewhere, the 
details of a specific standard are often less important than the fact that some standard 
exists. Don’t set standards for your programmers, but do insist they standardize in the 
areas that are important to you.

Which of the religious topics are important enough to warrant going to the mat? Con-
formity in minor matters of style in any area probably won’t produce enough benefit 
to offset the effects of lower morale. If you find indiscriminate use of gotos or global 
variables, unreadable styles, or other practices that affect whole projects, be prepared 
to put up with some friction to improve code quality. If your programmers are consci-
entious, this is rarely a problem. The biggest battles tend to be over nuances of coding 
style, and you can stay out of those with no loss to the project.

Physical Environment

Here’s an experiment: go out to the country, find a farm, find a farmer, and ask how 
much money in equipment the farmer has for each worker. The farmer will look at the 
barn and see a few tractors, some wagons, a combine for wheat, and a peaviner for 
peas and will tell you that it’s over $100,000 per employee.

Next go to the city, find a programming shop, find a programming manager, and ask 
how much money in equipment the programming manager has for each worker. The 
programming manager will look at an office and see a desk, a chair, a few books, and 
a computer and will tell you that it’s under $25,000 per employee.

Physical environment makes a big difference in productivity. DeMarco and Lister asked 
166 programmers from 35 organizations about the quality of their physical environments. 
Most employees rated their workplaces as not acceptable. In a subsequent programming 
competition, the programmers who performed in the top 25 percent had bigger, quieter, 
more private offices and fewer interruptions from people and phone calls. Here’s a 
summary of the differences in office space between the best and worst performers:

Environmental Factor Top 25% Bottom 25%

Dedicated floor space 78 sq. ft. 46 sq. ft.

Acceptably quiet workspace 57% yes 29% yes

Acceptably private workspace 62% yes 19% yes

Ability to silence phone 52% yes 10% yes

Ability to divert calls 76% yes 19% yes

Frequent needless interruptions 38% yes 76% yes

Workspace that makes programmer 
feel appreciated 57% yes 29% yes

Source: Peopleware (DeMarco and Lister 1999).
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The data shows a strong correlation between productivity and the quality of the work-
place. Programmers in the top 25 percent were 2.6 times more productive than pro-
grammers in the bottom 25 percent. DeMarco and Lister thought that the better 
programmers might naturally have better offices because they had been promoted, but 
further examination revealed that this wasn’t the case. Programmers from the same 
organizations had similar facilities, regardless of differences in their performance.

Large software-intensive organizations have had similar experiences. Xerox, TRW, 
IBM, and Bell Labs have indicated that they realize significantly improved productivity 
with a $10,000 to $30,000 capital investment per person, sums that were more than 
recaptured in improved productivity (Boehm 1987a). With “productivity offices,” self-
reported estimates ranged from 39 to 47 percent improvement in productivity 
(Boehm et al. 1984).

In summary, if your workplace is a bottom-25 percent environment, you can realize 
about a 100 percent improvement in productivity by making it a top-25 percent envi-
ronment. If your workplace is average, you can still realize a productivity improvement 
of 40 percent or more by making it a top-25 percent environment.

Additional Resources on Programmers as Human Beings
cc2e.com/2806 Here are additional resources:

Weinberg, Gerald M. The Psychology of Computer Programming, 2d ed. New York, NY: 
Van Nostrand Reinhold, 1998. This is the first book to explicitly identify program-
mers as human beings, and it’s still the best on programming as a human activity. It’s 
crammed with acute observations about the human nature of programmers and its 
implications.

DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams, 2d ed. New 
York, NY: Dorset House, 1999. As the title suggests, this book also deals with the human 
factor in the programming equation. It’s filled with anecdotes about managing people, 
the office environment, hiring and developing the right people, growing teams, and 
enjoying work. The authors lean on the anecdotes to support some uncommon view-
points and their logic is thin in places, but the people-centered spirit of the book is 
what’s important and the authors deliver that message without faltering.

cc2e.com/2820 McCue, Gerald M. “IBM’s Santa Teresa Laboratory—Architectural Design for Pro-
gram Development,” IBM Systems Journal 17, no. 1 (1978): 4–25. McCue describes 
the process that IBM used to create its Santa Teresa office complex. IBM studied pro-
grammer needs, created architectural guidelines, and designed the facility with pro-
grammers in mind. Programmers participated throughout. The result is that in 
annual opinion surveys each year, the physical facilities at the Santa Teresa facility 
are rated the highest in the company.
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McConnell, Steve. Professional Software Development. Boston, MA: Addison-Wesley, 
2004. Chapter 7, “Orphans Preferred,” summarizes studies on programmer demo-
graphics, including personality types, educational backgrounds, and job prospects.

Carnegie, Dale. How to Win Friends and Influence People, Revised Edition. New York, 
NY: Pocket Books, 1981. When Dale Carnegie wrote the title for the first edition of this 
book in 1936, he couldn’t have realized the connotation it would carry today. It 
sounds like a book Machiavelli would have displayed on his shelf. The spirit of the 
book is diametrically opposed to Machiavellian manipulation, however, and one of 
Carnegie’s key points is the importance of developing a genuine interest in other peo-
ple. Carnegie has a keen insight into everyday relationships and explains how to work 
with other people by understanding them better. The book is filled with memorable 
anecdotes, sometimes two or three to a page. Anyone who works with people should 
read it at some point, and anyone who manages people should read it now.

28.6 Managing Your Manager
In software development, nontechnical managers are common, as are managers who 
have technical experience but who are 10 years behind the times. Technically compe-
tent, technically current managers are rare. If you work for one, do whatever you can 
to keep your job. It’s an unusual treat.

In a hierarchy, every 
employee tends to rise to his 
level of incompetence.
—The Peter Principle

If your manager is more typical, you’re faced with the unenviable task of managing 
your manager. “Managing your manager” means that you need to tell your manager 
what to do rather than the other way around. The trick is to do it in a way that allows 
your manager to continue believing that you are the one being managed. Here are 
some approaches to dealing with your manager:

■ Plant ideas for what you want to do, and then wait for your manager to have a 
brainstorm (your idea) about doing what you want to do.

■ Educate your manager about the right way to do things. This is an ongoing job 
because managers are often promoted, transferred, or fired.

■ Focus on your manager’s interests, doing what he or she really wants you to do, 
and don’t distract your manager with unnecessary implementation details. 
(Think of it as “encapsulation” of your job.)

■ Refuse to do what your manager tells you, and insist on doing your job the right 
way.

■ Find another job.

The best long-term solution is to try to educate your manager. That’s not always an 
easy task, but one way you can prepare for it is by reading Dale Carnegie’s How to Win 
Friends and Influence People.
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Additional Resources on Managing Construction
cc2e.com/2813 Here are a few books that cover issues of general concern in managing software projects:

Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: Addi-
son-Wesley, 1988. Gilb has charted his own course for thirty years, and most of the time 
he’s been ahead of the pack whether or not the pack realizes it. This book is a good 
example. This was one of the first books to discuss evolutionary development practices, 
risk management, and the use of formal inspections. Gilb is keenly aware of leading-
edge approaches; indeed, this book published more than 15 years ago contains most of 
the good practices currently flying under the “Agile” banner. Gilb is incredibly prag-
matic, and the book is still one of the best software-management books.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996. This 
book covers project-leadership and project-management issues from the perspective 
of projects that are experiencing significant schedule pressure, which in my experi-
ence is most projects.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software Engineering, Anni-
versary Edition (2d ed). Reading, MA: Addison-Wesley, 1995. This book is a hodge-
podge of metaphors and folklore related to managing programming projects. It’s 
entertaining, and it will give you many illuminating insights into your own projects. 
It’s based on Brooks’s challenges in developing the OS/360 operating system, which 
gives me some reservations. It’s full of advice along the lines of “We did this and it 
failed” and “We should have done this because it would have worked.” Brooks’s obser-
vations about techniques that failed are well grounded, but his claims that other tech-
niques would have worked are too speculative. Read the book critically to separate the 
observations from the speculations. This warning doesn’t diminish the book’s basic 
value. It’s still cited in computing literature more often than any other book, and even 
though it was originally published in 1975, it seems fresh today. It’s hard to read it 
without saying “Right on!” every couple of pages.

Relevant Standards

IEEE Std 1058-1998, Standard for Software Project Management Plans.

IEEE Std 12207-1997, Information Technology—Software Life Cycle Processes.

IEEE Std 1045-1992, Standard for Software Productivity Metrics.

IEEE Std 1062-1998, Recommended Practice for Software Acquisition.

IEEE Std 1540-2001, Standard for Software Life Cycle Processes—Risk Management.

IEEE Std 828-1998, Standard for Software Configuration Management Plans

IEEE Std 1490-1998, Guide—Adoption of PMI Standard—A Guide to the Project Management 
Body of Knowledge.
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Key Points
■ Good coding practices can be achieved either through enforced standards or 

through more light-handed approaches.

■ Configuration management, when properly applied, makes programmers’ jobs 
easier. This especially includes change control.

■ Good software estimation is a significant challenge. Keys to success are using 
multiple approaches, tightening down your estimates as you work your way into 
the project, and making use of data to create the estimates.

■ Measurement is a key to successful construction management. You can find 
ways to measure any aspect of a project that are better than not measuring it at 
all. Accurate measurement is a key to accurate scheduling, to quality control, 
and to improving your development process.

■ Programmers and managers are people, and they work best when treated as 
such.
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Integration
cc2e.com/2985 Contents

■ 29.1 Importance of the Integration Approach: page 689

■ 29.2 Integration Frequency—Phased or Incremental?: page 691

■ 29.3 Incremental Integration Strategies: page 694

■ 29.4 Daily Build and Smoke Test: page 702

Related Topics

■ Developer testing: Chapter 22

■ Debugging: Chapter 23

■ Managing construction: Chapter 28

The term “integration” refers to the software-development activity in which you com-
bine separate software components into a single system. On small projects, integra-
tion might consist of a morning spent hooking a handful of classes together. On large 
projects, it might consist of weeks or months of hooking sets of programs together. 
Regardless of the size of the task, common principles apply.

The topic of integration is intertwined with the topic of construction sequence. The 
order in which you build classes or components affects the order in which you can 
integrate them—you can’t integrate something that hasn’t been built yet. Both integra-
tion and construction sequence are important topics. This chapter addresses both 
topics from the integration point of view.

29.1 Importance of the Integration Approach
In engineering fields other than software, the importance of proper integration is well 
known. The Pacific Northwest, where I live, saw a dramatic illustration of the hazards 
of poor integration when the football stadium at the University of Washington col-
lapsed partway through construction, as shown in Figure 29-1.
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Figure 29-1 The football stadium add-on at the University of Washington collapsed 
because it wasn’t strong enough to support itself during construction. It likely would have 
been strong enough when completed, but it was constructed in the wrong order—an 
integration error.

It doesn’t matter that the stadium would have been strong enough by the time it was 
done; it needed to be strong enough at each step. If you construct and integrate soft-
ware in the wrong order, it’s harder to code, harder to test, and harder to debug. If 
none of it will work until all of it works, it can seem as though it will never be finished. 
It too can collapse under its own weight during construction—the bug count might 
seem insurmountable, progress might be invisible, or the complexity might be over-
whelming—even though the finished product would have worked.

Because it’s done after a developer has finished developer testing and in conjunction 
with system testing, integration is sometimes thought of as a testing activity. It’s com-
plex enough, however, that it should be viewed as an independent activity.

You can expect some of these benefits from careful integration:

■ Easier defect diagnosis

■ Fewer defects

■ Less scaffolding

■ Shorter time to first working product

■ Shorter overall development schedules

■ Better customer relations

■ Improved morale

■ Improved chance of project completion

■ More reliable schedule estimates

■ More accurate status reporting

■ Improved code quality

■ Less documentation

KEY POINT
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These might seem like elevated claims for system testing’s forgotten cousin, but the 
fact that it’s overlooked in spite of its importance is precisely the reason integration 
has its own chapter in this book.

29.2 Integration Frequency—Phased or Incremental?
Programs are integrated by means of either the phased or the incremental approach.

Phased Integration

Until a few years ago, phased integration was the norm. It follows these well-defined 
steps, or phases:

1. Design, code, test, and debug each class. This step is called “unit development.”

2. Combine the classes into one whopping-big system (“system integration”).

3. Test and debug the whole system. This is called “system dis-integration.” 
(Thanks to Meilir Page-Jones for this witty observation.)

One problem with phased integration is that when the classes in a system are put 
together for the first time, new problems inevitably surface and the causes of the prob-
lems could be anywhere. Since you have a large number of classes that have never 
worked together before, the culprit might be a poorly tested class, an error in the inter-
face between two classes, or an error caused by an interaction between two classes. All 
classes are suspect.

The uncertainty about the location of any of the specific problems is compounded 
by the fact that all the problems suddenly present themselves at once. This forces 
you to deal not only with problems caused by interactions between classes but with 
problems that are hard to diagnose because the problems themselves interact. For 
this reason, another name for phased integration is “big bang integration,” as shown 
in Figure 29-2.

Figure 29-2 Phased integration is also called “big bang” integration for a good reason!

Big Bang 
Integration

Poorly 
documented

interfaces
Weak 

encapsulation

Different error- 
handling  

assumptions

Global 
variables



692 Chapter 29: Integration

Phased integration can’t begin until late in the project, after all the classes have been 
developer-tested. When the classes are finally combined and errors surface by the 
score, programmers immediately go into panicky debugging mode rather than 
methodical error detection and correction.

For small programs—no, for tiny programs—phased integration might be the best 
approach. If the program has only two or three classes, phased integration might save 
you time, if you’re lucky. But in most cases, another approach is better.

Incremental Integration
Cross-Reference Metaphors 
appropriate for incremental 
integration are discussed in 
“Software Oyster Farming: 
System Accretion” and “Soft-
ware Construction: Building 
Software,” both in Section 2.3.

In incremental integration, you write and test a program in small pieces and then 
combine the pieces one at a time. In this one-piece-at-a-time approach to integration, 
you follow these steps:

1. Develop a small, functional part of the system. It can be the smallest functional 
part, the hardest part, a key part, or some combination. Thoroughly test and 
debug it. It will serve as a skeleton on which to hang the muscles, nerves, and 
skin that make up the remaining parts of the system.

2. Design, code, test, and debug a class.

3. Integrate the new class with the skeleton. Test and debug the combination of 
skeleton and new class. Make sure the combination works before you add any 
new classes. If work remains to be done, repeat the process starting at step 2.

Occasionally, you might want to integrate units larger than a single class. If a compo-
nent has been thoroughly tested, for example, and each of its classes put through a 
mini-integration, you can integrate the whole component and still be doing incremen-
tal integration. As you add pieces to it, the system grows and gains momentum in the 
same way that a snowball grows and gains momentum when it rolls down a hill, as 
shown in Figure 29-3.

Figure 29-3 Incremental integration helps a project build momentum, like a snowball 
going down a hill.

Incremental Integration
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Benefits of Incremental Integration
The incremental approach offers many advantages over the traditional phased 
approach regardless of which incremental strategy you use:

Errors are easy to locate When new problems surface during incremental integra-
tion, the new class is obviously involved. Either its interface to the rest of the program 
contains an error or its interaction with a previously integrated class produces an 
error. Either way, as suggested by Figure 29-4, you know exactly where to look. More-
over, simply because you have fewer problems at once, you reduce the risk that multi-
ple problems will interact or that one problem will mask another. The more interface 
errors you tend to have, the more this benefit of incremental integration will help your 
projects. An accounting of errors for one project revealed that 39 percent were inter-
module interface errors (Basili and Perricone 1984). Because developers on many 
projects spend up to 50 percent of their time debugging, maximizing debugging effec-
tiveness by making errors easy to locate provides benefits in quality and productivity.

Figure 29-4 In phased integration, you integrate so many components at once that it’s 
hard to know where the error is. It might be in any of the components or in any of their con-
nections. In incremental integration, the error is usually either in the new component or in 
the connection between the new component and the system.

The system succeeds early in the project When code is integrated and running, even 
if the system isn’t usable, it’s apparent that it soon will be. With incremental integra-
tion, programmers see early results from their work, so their morale is better than 
when they suspect that their project will never draw its first breath.

You get improved progress monitoring When you integrate frequently, the features 
that are present and not present are obvious. Management will have a better sense of 
progress from seeing 50 percent of a system’s capability working than from hearing 
that coding is “99 percent complete.”
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You’ll improve customer relations If frequent integration has an effect on developer 
morale, it also has an effect on customer morale. Customers like signs of progress, and 
incremental builds provide signs of progress frequently.

The units of the system are tested more fully Integration starts early in the project. 
You integrate each class as it’s developed, rather than waiting for one magnificent 
binge of integration at the end. Classes are developer-tested in both cases, but each 
class is exercised as a part of the overall system more often with incremental integra-
tion than it is with phased integration.

You can build the system with a shorter development schedule If integration is 
planned carefully, you can design part of the system while another part is being 
coded. This doesn’t reduce the total number of work-hours required to develop the 
complete design and code, but it allows some work to be done in parallel, an advan-
tage when calendar time is at a premium.

Incremental integration supports and encourages other incremental strategies. The 
advantages of incrementalism applied to integration are the tip of the iceberg.

29.3 Incremental Integration Strategies
With phased integration, you don’t have to plan the order in which project compo-
nents are built. All components are integrated at the same time, so you can build them 
in any order as long as they’re all ready by D-day.

With incremental integration, you have to plan more carefully. Most systems will call 
for the integration of some components before the integration of others. Planning for 
integration thus affects planning for construction; the order in which components are 
constructed has to support the order in which they will be integrated.

Integration-order strategies come in a variety of shapes and sizes, and none is best in 
every case. The best integration approach varies from project to project, and the best 
solution is always the one that you create to meet the specific demands of a specific 
project. Knowing the points on the methodological number line will give you insight 
into the possible solutions.

Top-Down Integration

In top-down integration, the class at the top of the hierarchy is written and integrated 
first. The top is the main window, the applications control loop, the object that con-
tains main() in Java, WinMain() for Microsoft Windows programming, or similar. 
Stubs have to be written to exercise the top class. Then, as classes are integrated from 
the top down, stub classes are replaced with real ones. This kind of integration pro-
ceeds as illustrated in Figure 29-5.
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Figure 29-5 In top-down integration, you add classes at the top first, at the bottom last.

An important aspect of top-down integration is that the interfaces between classes 
must be carefully specified. The most troublesome errors to debug are not the ones 
that affect single classes but those that arise from subtle interactions between classes. 
Careful interface specification can reduce the problem. Interface specification isn’t an 
integration activity, but making sure that the interfaces have been specified well is.

In addition to the advantages you get from any kind of incremental integration, an 
advantage of top-down integration is that the control logic of the system is tested rel-
atively early. All the classes at the top of the hierarchy are exercised a lot so that big, 
conceptual, design problems are exposed quickly.

Another advantage of top-down integration is that, if you plan it carefully, you can 
complete a partially working system early in the project. If the user-interface parts are 
at the top, you can get a basic interface working quickly and flesh out the details later. 
The morale of both users and programmers benefits from getting something visible 
working early.

Top-down incremental integration also allows you to begin coding before the low-
level design details are complete. Once the design has been driven down to a fairly low 
level of detail in all areas, you can begin implementing and integrating the classes at 
the higher levels without waiting to dot every “i” and cross every “t.”

In spite of these advantages, pure top-down integration usually involves disadvantages 
that are more troublesome than you’ll want to put up with. Pure top-down integration 
leaves exercising the tricky system interfaces until last. If system interfaces are buggy 
or a performance problem, you’d usually like to get to them long before the end of the 
project. It’s not unusual for a low-level problem to bubble its way to the top of the sys-
tem, causing high-level changes and reducing the benefit of earlier integration work. 
Minimize the bubbling problem through careful, early developer testing and perfor-
mance analysis of the classes that exercise system interfaces.

Start

Finish
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Another problem with pure top-down integration is that you need a dump truck full of 
stubs to integrate from the top down. Many low-level classes haven’t been integrated, 
which implies that a large number of stubs will be needed during intermediate steps 
in integration. Stubs are problematic in that, as test code, they’re more likely to con-
tain errors than the more carefully designed production code. Errors in the new stubs 
that support a new class defeat the purpose of incremental integration, which is to 
restrict the source of errors to one new class.

Cross-Reference Top-down 
integration is related to top-
down design in name only. 
For details on top-down 
design, see “Top-Down 
and Bottom-Up Design 
Approaches” in Section 5.4.

Top-down integration is also nearly impossible to implement purely. In top-down inte-
gration done by the book, you start at the top—call it Level 1—and then integrate all 
the classes at the next level (Level 2). When you’ve integrated all the classes from 
Level 2, and not before, you integrate the classes from Level 3. The rigidity in pure top-
down integration is completely arbitrary. It’s hard to imagine anyone going to the 
trouble of using pure top-down integration. Most people use a hybrid approach, such 
as integrating from the top down in sections instead.

Finally, you can’t use top-down integration if the collection of classes doesn’t have a 
top. In many interactive systems, the location of the “top” is subjective. In many sys-
tems, the user interface is the top. In other systems, main() is the top.

A good alternative to pure top-down integration is the vertical-slice approach shown 
in Figure 29-6. In this approach, the system is implemented top-down in sections, per-
haps fleshing out areas of functionality one by one and then moving to the next area.

Figure 29-6 As an alternative to proceeding strictly top to bottom, you can integrate from 
the top down in vertical slices.

Even though pure top-down integration isn’t workable, thinking about it will help you 
decide on a general approach. Some of the benefits and hazards that apply to a pure 
top-down approach apply, less obviously, to looser top-down approaches like vertical-
slice integration, so keep them in mind.

Start

FinishFinishFinish
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Bottom-Up Integration

In bottom-up integration, you write and integrate the classes at the bottom of the hier-
archy first. Adding the low-level classes one at a time rather than all at once is what 
makes bottom-up integration an incremental integration strategy. You write test driv-
ers to exercise the low-level classes initially and add classes to the test-driver scaffold-
ing as they’re developed. As you add higher-level classes, you replace driver classes 
with real ones. Figure 29-7 shows the order in which classes are integrated in the bot-
tom-up approach.

Figure 29-7 In bottom-up integration, you integrate classes at the bottom first, at the top 
last.

Bottom-up integration provides a limited set of incremental integration advantages. It 
restricts the possible sources of error to the single class being integrated, so errors are 
easy to locate. Integration can start early in the project. Bottom-up integration also 
exercises potentially troublesome system interfaces early. Since system limitations 
often determine whether you can meet the system’s goals, making sure the system has 
done a full set of calisthenics is worth the trouble.

The main problem with bottom-up integration is that it leaves integration of the 
major, high-level system interfaces until last. If the system has conceptual design prob-
lems at the higher levels, construction won’t find them until all the detailed work has 
been done. If the design must be changed significantly, some of the low-level work 
might have to be discarded.

Bottom-up integration requires you to complete the design of the whole system before 
you start integration. If you don’t, assumptions that needn’t have controlled the design 
might end up deeply embedded in low-level code, giving rise to the awkward situation 
in which you design high-level classes to work around problems in low-level ones. Let-
ting low-level details drive the design of higher-level classes contradicts principles of 
information hiding and object-oriented design. The problems of integrating higher-level 
classes are but a teardrop in a rainstorm compared to the problems you’ll have if you 
don’t complete the design of high-level classes before you begin low-level coding.

Start

Finish
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As with top-down integration, pure bottom-up integration is rare, and you can use a 
hybrid approach instead, including integrating in slices as shown in Figure 29-8.

Figure 29-8 As an alternative to proceeding purely bottom to top, you can integrate from 
the bottom up in sections. This blurs the line between bottom-up integration and feature-
oriented integration, which is described later in this chapter.

Sandwich Integration

The problems with pure top-down and pure bottom-up integration have led some 
experts to recommend a sandwich approach (Myers 1976). You first integrate the 
high-level business-object classes at the top of the hierarchy. Then you integrate the 
device-interface classes and widely used utility classes at the bottom. These high-level 
and low-level classes are the bread of the sandwich.

You leave the middle-level classes until later. These make up the meat, cheese, and toma-
toes of the sandwich. If you’re a vegetarian, they might make up the tofu and bean 
sprouts of the sandwich, but the author of sandwich integration is silent on this point—
maybe his mouth was full. Figure 29-9 offers an illustration of the sandwich approach.

Figure 29-9 In sandwich integration, you integrate top-level and widely used bottom-level 
classes first and you save middle-level classes for last.
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This approach avoids the rigidity of pure bottom-up or top-down integration. It inte-
grates the often-troublesome classes first and has the potential to minimize the 
amount of scaffolding you’ll need. It’s a realistic, practical approach. The next 
approach is similar but has a different emphasis.

Risk-Oriented Integration

Risk-oriented integration is also called “hard part first integration.” It’s like sandwich 
integration in that it seeks to avoid the problems inherent in pure top-down or pure 
bottom-up integration. Coincidentally, it also tends to integrate the classes at the top 
and the bottom first, saving the middle-level classes for last. The motivation, however, 
is different.

In risk-oriented integration, you identify the level of risk associated with each class. 
You decide which will be the most challenging parts to implement, and you imple-
ment them first. Experience indicates that top-level interfaces are risky, so they are 
often at the top of the risk list. System interfaces, usually at the bottom level of the 
hierarchy, are also risky, so they’re also at the top of the risk list. In addition, you might 
know of classes in the middle that will be challenging. Perhaps a class implements a 
poorly understood algorithm or has ambitious performance goals. Such classes can 
also be identified as high risks and integrated relatively early.

The remainder of the code, the easy stuff, can wait until later. Some of it will probably 
turn out to be harder than you thought, but that’s unavoidable. Figure 29-10 presents 
an illustration of risk-oriented integration.

Figure 29-10 In risk-oriented integration, you integrate classes that you expect to be most 
troublesome first; you implement easier classes later.

Most risk: 
do first.

Least risk: 
do last.
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Feature-Oriented Integration

Another approach is to integrate one feature at a time. The term “feature” doesn’t refer 
to anything fancy, just an identifiable function of the system you’re integrating. If 
you’re writing a word processor, a feature might be displaying underlining on the 
screen or reformatting the document automatically—something like that.

When the feature to be integrated is bigger than a single class, the “increment” in 
incremental integration is bigger than a single class. This diminishes the benefit of 
incrementalism a little in that it reduces your certainty about the source of new errors, 
but if you have thoroughly tested the classes that implement the new feature before 
you integrate them, that’s only a small disadvantage. You can use the incremental inte-
gration strategies recursively by integrating small pieces to form features and then 
incrementally integrating features to form a system.

You’ll usually want to start with a skeleton you’ve chosen for its ability to support the 
other features. In an interactive system, the first feature might be the interactive menu 
system. You can hang the rest of the features on the feature that you integrate first. Fig-
ure 29-11 shows how it looks graphically.

Figure 29-11 In feature-oriented integration, you integrate classes in groups that make up 
identifiable features—usually, but not always, multiple classes at a time.

Components are added in “feature trees,” hierarchical collections of classes that make 
up a feature. Integration is easier if each feature is relatively independent, perhaps call-
ing the same low-level library code as the classes for other features but having no calls 
to middle-level code in common with other features. (The shared, low-level library 
classes aren’t shown in Figure 29-11.)

Feature-oriented integration offers three main advantages. First, it eliminates scaffold-
ing for virtually everything except low-level library classes. The skeleton might need a 
little scaffolding, or some parts of the skeleton might simply not be operational until 
particular features have been added. When each feature has been hung on the struc-

Feature 2

Feature 1 skeleton 
(menus, perhaps)

Feature 3 Feature 4 Feature 5 Feature 6
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ture, however, no additional scaffolding is needed. Since each feature is self-contained, 
each feature contains all the support code it needs.

The second main advantage is that each newly integrated feature brings about an 
incremental addition in functionality. This provides evidence that the project is mov-
ing steadily forward. It also creates functional software that you can provide to your 
customers for evaluation or that you can release earlier and with less functionality 
than originally planned.

A third advantage is that feature-oriented integration works well with object-oriented 
design. Objects tend to map well to features, which makes feature-oriented integration 
a natural choice for object-oriented systems.

Pure feature-oriented integration is as difficult to pursue as pure top-down or bottom-
up integration. Usually some of the low-level code must be integrated before certain 
significant features can be.

T-Shaped Integration

A final approach that often addresses the problems associated with top-down and bot-
tom-up integration is called “T-shaped integration.” In this approach, one specific ver-
tical slice is selected for early development and integration. That slice should exercise 
the system end-to-end and should be capable of flushing out any major problems in 
the system’s design assumptions. Once that vertical slice has been implemented—and 
any associated problems have been corrected—the overall breadth of the system can 
be developed (such as the menu system in a desktop application). This approach, 
illustrated in Figure 29-12, is often combined with risk-oriented or feature-oriented 
integration.

Figure 29-12 In T-shaped integration, you build and integrate a deep slice of the system to 
verify architectural assumptions, and then you build and integrate the breadth of the system 
to provide a framework for developing the remaining functionality.

Start
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Summary of Integration Approaches

Bottom-up, top-down, sandwich, risk-oriented, feature-oriented, T-shaped—do you get the 
feeling that people are making these names up as they go along? They are. None of these 
approaches are robust procedures that you should follow methodically from step 1 to 
step 47 and then declare yourself to be done. Like software-design approaches, they are 
heuristics more than algorithms, and rather than following any procedure dogmatically, 
you come out ahead by making up a unique strategy tailored to your specific project.

29.4 Daily Build and Smoke Test
Further Reading Much of 
this discussion is adapted 
from Chapter 18 of Rapid 
Development (McConnell 
1996). If you’ve read that dis-
cussion, you might skip 
ahead to the “Continuous 
Integration” section.

Whatever integration strategy you select, a good approach to integrating the software 
is the “daily build and smoke test.” Every file is compiled, linked, and combined into 
an executable program every day, and the program is then put through a “smoke test,” 
a relatively simple check to see whether the product “smokes” when it runs.

This simple process produces several significant benefits. It reduces the risk of low 
quality, which is a risk related to the risk of unsuccessful or problematic integration. 
By smoke-testing all the code daily, quality problems are prevented from taking con-
trol of the project. You bring the system to a known, good state, and then you keep it 
there. You simply don’t allow it to deteriorate to the point where time-consuming 
quality problems can occur.

This process also supports easier defect diagnosis. When the product is built and 
tested every day, it’s easy to pinpoint why the product is broken on any given day. If 
the product worked on Day 17 and is broken on Day 18, something that happened 
between the two builds broke the product.

It improves morale. Seeing a product work provides an incredible boost to morale. It 
almost doesn’t matter what the product does. Developers can be excited just to see it 
display a rectangle! With daily builds, a bit more of the product works every day, and 
that keeps morale high.

One side effect of frequent integration is that it surfaces work that can otherwise accu-
mulate unseen until it appears unexpectedly at the end of the project. That accumula-
tion of unsurfaced work can turn into an end-of-project tar pit that takes weeks or 
months to struggle out of. Teams that haven’t used the daily build process sometimes 
feel that daily builds slow their progress to a snail’s crawl. What’s really happening is 
that daily builds amortize work more steadily throughout the project, and the project 
team is just getting a more accurate picture of how fast it’s been working all along.

Here are some of the ins and outs of using daily builds:

Build daily The most fundamental part of the daily build is the “daily” part. As Jim 
McCarthy says, treat the daily build as the heartbeat of the project (McCarthy 1995). 
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If there’s no heartbeat, the project is dead. A little less metaphorically, Michael 
Cusumano and Richard W. Selby describe the daily build as the sync pulse of a project 
(Cusumano and Selby 1995). Different developers’ code is allowed to get a little out of 
sync between these pulses, but every time there’s a sync pulse, the code has to come 
back into alignment. When you insist on keeping the pulses close together, you pre-
vent developers from getting out of sync entirely.

Some organizations build every week, rather than every day. The problem with this is 
that if the build is broken one week, you might go for several weeks before the next 
good build. When that happens, you lose virtually all of the benefit of frequent builds.

Check for broken builds For the daily-build process to work, the software that’s 
built has to work. If the software isn’t usable, the build is considered to be broken and 
fixing it becomes top priority.

Each project sets its own standard for what constitutes “breaking the build.” The stan-
dard needs to set a quality level that’s strict enough to keep showstopper defects out 
but lenient enough to disregard trivial defects, which can paralyze progress if given 
undue attention.

At a minimum, a “good” build should 

■ Compile all files, libraries, and other components successfully.

■ Link all files, libraries, and other components successfully.

■ Not contain any showstopper bugs that prevent the program from being 
launched or that make it hazardous to operate; in other words, a good build 
should pass the smoke test.

Smoke test daily The smoke test should exercise the entire system from end to end. 
It does not have to be exhaustive, but it should be capable of exposing major prob-
lems. The smoke test should be thorough enough that if the build passes, you can 
assume that it is stable enough to be tested more thoroughly.

The daily build has little value without the smoke test. The smoke test is the sentry 
that guards against deteriorating product quality and creeping integration problems. 
Without it, the daily build becomes just a time-wasting exercise in ensuring that you 
have a clean compile every day.

Keep the smoke test current The smoke test must evolve as the system evolves. At 
first, the smoke test will probably test something simple, such as whether the system 
can say “Hello, World.” As the system develops, the smoke test will become more 
thorough. The first test might take a matter of seconds to run; as the system grows, the 
smoke test can grow to 10 minutes, an hour, or more. If the smoke test isn’t kept cur-
rent, the daily build can become an exercise in self-deception, in which a fractional set 
of test cases creates a false sense of confidence in the product’s quality.
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Automate the daily build and smoke test Care and feeding of the build can become 
time-consuming. Automating the build and smoke test helps ensure that the code gets 
built and the smoke test gets run. It isn’t practical to build and smoke test daily with-
out automation.

Establish a build group On most projects, tending the daily build and keeping the 
smoke test up to date becomes a big enough task to be an explicit part of someone’s 
job. On large projects, it can become a full-time job for more than one person. On the 
first release of Microsoft Windows NT, for example, there were four full-time people in 
the build group (Zachary 1994).

Add revisions to the build only when it makes sense to do so... Individual developers 
usually don’t write code quickly enough to add meaningful increments to the system 
on a daily basis. They should work on a chunk of code and then integrate it when they 
have a collection of code in a consistent state—usually once every few days.

...but don’t wait too long to add a set of revisions Beware of checking in code infre-
quently. It’s possible for a developer to become so embroiled in a set of revisions that 
every file in the system seems to be involved. That undermines the value of the daily 
build. The rest of the team will continue to realize the benefit of incremental integra-
tion, but that particular developer will not. If a developer goes more than a couple of 
days without checking in a set of changes, consider that developer’s work to be at risk. 
As Kent Beck points out, frequent integration sometimes forces you to break the con-
struction of a single feature into multiple episodes. That overhead is an acceptable 
price to pay for the reduced integration risk, improved status visibility, improved test-
ability, and other benefits of frequent integration (Beck 2000).

Require developers to smoke test their code before adding it to the system Developers 
need to test their own code before they add it to the build. A developer can do this by cre-
ating a private build of the system on a personal machine, which the developer then tests 
individually. Or the developer can release a private build to a “testing buddy,” a tester 
who focuses on that developer’s code. The goal in either case is to be sure that the new 
code passes the smoke test before it’s allowed to influence other parts of the system.

Create a holding area for code that’s to be added to the build Part of the success of 
the daily build process depends on knowing which builds are good and which are not. 
In testing their own code, developers need to be able to rely on a known good system.

Most groups solve this problem by creating a holding area for code that developers 
think is ready to be added to the build. New code goes into the holding area, the 
new build is built, and if the build is acceptable, the new code is migrated into the 
master sources.

On small and medium-sized projects, a version-control system can serve this function. 
Developers check new code into the version-control system. Developers who want to 
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use a known good build simply set a date flag in their version-control options file that 
tells the system to retrieve files based on the date of the last-known good build.

On large projects or projects that use unsophisticated version-control software, the 
holding area function has to be handled manually. The author of a set of new code 
sends e-mail to the build group to tell them where to find the new files to be checked 
in. Or the group establishes a “check-in” area on a file server where developers put 
new versions of their source files. The build group then assumes responsibility for 
checking new code into version control after they have verified that the new code 
doesn’t break the build.

Create a penalty for breaking the build Most groups that use daily builds create a 
penalty for breaking the build. Make it clear from the beginning that keeping the build 
healthy is one of the project’s top priorities. A broken build should be the exception, 
not the rule. Insist that developers who have broken the build stop all other work 
until they’ve fixed it. If the build is broken too often, it’s hard to take seriously the job 
of not breaking the build.

A light-hearted penalty can help to emphasize this priority. Some groups give out lol-
lipops to each “sucker” who breaks the build. This developer then has to tape the 
sucker to his office door until he fixes the problem. Other groups have guilty develop-
ers wear goat horns or contribute $5 to a morale fund.

Some projects establish a penalty with more bite. Microsoft developers on high-profile 
projects such as Windows 2000 and Microsoft Office have taken to wearing beepers 
in the late stages of their projects. If they break the build, they get called in to fix it 
even if their defect is discovered at 3 a.m.

Release builds in the morning Some groups have found that they prefer to build over-
night, smoke test in the early morning, and release new builds in the morning rather than 
the afternoon. Smoke testing and releasing builds in the morning has several advantages.

First, if you release a build in the morning, testers can test with a fresh build that day. 
If you generally release builds in the afternoon, testers feel compelled to launch their 
automated tests before they leave for the day. When the build is delayed, which it 
often is, the testers have to stay late to launch their tests. Because it’s not their fault 
that they have to stay late, the build process becomes demoralizing.

When you complete the build in the morning, you have more reliable access to devel-
opers when there are problems with the build. During the day, developers are down 
the hall. During the evening, developers can be anywhere. Even when developers are 
given beepers, they’re not always easy to locate.

It might be more macho to start smoke testing at the end of the day and call people in 
the middle of the night when you find problems, but it’s harder on the team, it wastes 
time, and in the end you lose more than you gain.
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Build and smoke test even under pressure When schedule pressure becomes intense, 
the work required to maintain the daily build can seem like extravagant overhead. The 
opposite is true. Under stress, developers lose some of their discipline. They feel pres-
sure to take construction shortcuts that they would not take under less stressful circum-
stances. They review and test their own code less carefully than usual. The code tends 
toward a state of entropy more quickly than it does during less stressful times.

Against this backdrop, daily builds enforce discipline and keep pressure-cooker 
projects on track. The code still tends toward a state of entropy, but the build process 
brings that tendency to heel every day.

What Kinds of Projects Can Use the Daily Build Process? 

Some developers protest that it’s impractical to build every day because their projects 
are too large. But what was perhaps the most complex software project in recent his-
tory used daily builds successfully. By the time it was released, Microsoft Windows 
2000 consisted of about 50 million lines of code spread across tens of thousands of 
source files. A complete build took as many as 19 hours on several machines, but the  
Windows 2000 development team still managed to build every day. Far from being a 
nuisance, the Windows 2000 team attributed much of its success on that huge project 
to their daily builds. The larger the project, the more important incremental integra-
tion becomes.

A review of 104 projects in the U.S., India, Japan, and Europe found that only 20–25 
percent of projects used daily builds at either the beginning or middle of their projects 
(Cusumano et al. 2003), so this represents a significant opportunity for improvement.

Continuous Integration

Some software writers have taken daily builds as a jumping-off point and recommend 
integrating continuously (Beck 2000). Most of the published references to continuous 
integration use the word “continuous” to mean “at least daily” (Beck 2000), which I think 
is reasonable. But I occasionally encounter people who take the word “continuous” liter-
ally. They aim to integrate each change with the latest build every couple of hours. For 
most projects, I think literal continuous integration is too much of a good thing.

In my free time, I operate a discussion group consisting of the top technical executives 
from companies like Amazon.com, Boeing, Expedia, Microsoft, Nordstrom, and other 
Seattle-area companies. In a poll of these top technical executives, none of them 
thought that continuous integration was superior to daily integration. On medium-
sized and large projects, there is value in letting the code get out of sync for short peri-
ods. Developers frequently get out of sync when they make larger-scale changes. They 
can then resynchronize after a short time. Daily builds allow the project team rendez-
vous points that are frequently enough. As long as the team syncs up every day, they 
don’t need to rendezvous continuously.
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cc2e.com/2992 CHECKLIST: Integration
Integration Strategy

❑ Does the strategy identify the optimal order in which subsystems, classes, 
and routines should be integrated?

❑ Is the integration order coordinated with the construction order so that 
classes will be ready for integration at the right time? 

❑ Does the strategy lead to easy diagnosis of defects?

❑ Does the strategy keep scaffolding to a minimum?

❑ Is the strategy better than other approaches?

❑ Have the interfaces between components been specified well? (Specifying 
interfaces isn’t an integration task, but verifying that they have been spec-
ified well is.)

Daily Build and Smoke Test
❑ Is the project building frequently—ideally, daily—to support incremental 

integration?

❑ Is a smoke test run with each build so that you know whether the build 
works?

❑ Have you automated the build and the smoke test? 

❑ Do developers check in their code frequently—going no more than a day or 
two between check-ins? 

❑ Is the smoke test kept up to date with the code, expanding as the code 
expands? 

❑ Is a broken build a rare occurrence?

❑ Do you build and smoke test the software even when you’re under pres-
sure? 

Additional Resources
cc2e.com/2999 Following are additional resources related to this chapter’s subjects:

Integration

Lakos, John. Large-Scale C++ Software Design. Boston, MA: Addison-Wesley, 1996. 
Lakos argues that a system’s “physical design”—its hierarchy of files, directories, and 
libraries—significantly affects a development team’s ability to build software. If you 
don’t pay attention to the physical design, build times will become long enough to 
undermine frequent integration. Lakos’s discussion focuses on C++, but the insights 
related to “physical design” apply just as much to projects in other languages.
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Myers, Glenford J. The Art of Software Testing. New York, NY: John Wiley & Sons, 1979. 
This classic testing book discusses integration as a testing activity.

Incrementalism

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996. Chapter 
7, “Lifecycle Planning,” goes into much detail about the tradeoffs involved with more-
flexible and less-flexible life-cycle models. Chapters 20, 21, 35, and 36 discuss specific 
life-cycle models that support various degrees of incrementalism. Chapter 19 
describes “designing for change,” a key activity needed to support iterative and incre-
mental development models.

Boehm, Barry W. “A Spiral Model of Software Development and Enhancement.” Com-
puter, May 1988: 61–72. In this paper, Boehm describes his “spiral model” of soft-
ware development. He presents the model as an approach to managing risk in a 
software-development project, so the paper is about development generally rather 
than about integration specifically. Boehm is one of the world’s foremost experts on 
the big-picture issues of software development, and the clarity of his explanations 
reflects the quality of his understanding.

Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: 
Addison-Wesley, 1988. Chapters 7 and 15 contain thorough discussions of evolu-
tionary delivery, one of the first incremental development approaches.

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison-
Wesley, 2000. This book contains a more modern, more concise, and more evangeli-
cal presentation of many of the ideas in Gilb’s book. I personally prefer the depth of 
analysis presented in Gilb’s book, but some readers may find Beck’s presentation 
more accessible or more directly applicable to the kind of project they’re working on.

Key Points
■ The construction sequence and integration approach affect the order in which 

classes are designed, coded, and tested.

■ A well-thought-out integration order reduces testing effort and eases debugging.

■ Incremental integration comes in several varieties, and, unless the project is triv-
ial, any one of them is better than phased integration.

■ The best integration approach for any specific project is usually a combination 
of top-down, bottom-up, risk-oriented, and other integration approaches. T-
shaped integration and vertical-slice integration are two approaches that often 
work well.

■ Daily builds can reduce integration problems, improve developer morale, and 
provide useful project management information.



709

Chapter 30

Programming Tools
cc2e.com/3084 Contents

■ 30.1 Design Tools: page 710

■ 30.2 Source-Code Tools: page 710

■ 30.3 Executable-Code Tools: page 716

■ 30.4 Tool-Oriented Environments: page 720

■ 30.5 Building Your Own Programming Tools: page 721

■ 30.6 Tool Fantasyland: page 722

Related Topics

■ Version-control tools: in Section 28.2

■ Debugging tools: Section 23.5

■ Test-support tools: Section 22.5

Modern programming tools decrease the amount of time required for construction. 
Use of a leading-edge tool set—and familiarity with the tools used—can increase pro-
ductivity by 50 percent or more (Jones 2000; Boehm et al. 2000). Programming tools 
can also reduce the amount of tedious detail work that programming requires.

A dog might be man’s best friend, but a few good tools are a programmer’s best 
friends. As Barry Boehm discovered long ago, 20 percent of the tools tend to account 
for 80 percent of the tool usage (1987b). If you’re missing one of the more helpful 
tools, you’re missing something that you could use a lot.

This chapter is focused in two ways. First, it covers only construction tools. Require-
ments-specification, management, and end-to-end-development tools are outside the 
scope of the book. Refer to the “Additional Resources” section at the end of the chap-
ter for more information on tools for those aspects of software development. Second, 
this chapter covers kinds of tools rather than specific brands. A few tools are so com-
mon that they’re discussed by name, but specific versions, products, and companies 
change so quickly that information about most of them would be out of date before 
the ink on these pages was dry.

A programmer can work for many years without discovering some of the most valu-
able tools available. The mission of this chapter is to survey available tools and help 
you determine whether you’ve overlooked any tools that might be useful. If you’re a 
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tool expert, you won’t find much new information in this chapter. You might skim the 
earlier parts of the chapter, read Section 30.6 on “Tool Fantasyland,” and then move 
on to the next chapter.

30.1 Design Tools
Cross-Reference For details 
on design, see Chapters 5 
through 9.

Current design tools consist mainly of graphical tools that create design diagrams. 
Design tools are sometimes embedded in a computer-aided software engineering 
(CASE) tool with broader functions; some vendors advertise standalone design tools 
as CASE tools. Graphical design tools generally allow you to express a design in com-
mon graphical notations: UML, architecture block diagrams, hierarchy charts, entity 
relationship diagrams, or class diagrams. Some graphical design tools support only 
one notation. Others support a variety.

In one sense, these design tools are just fancy drawing packages. Using a simple 
graphics package or pencil and paper, you can draw everything that the tool can draw. 
But the tools offer valuable capabilities that a simple graphics package can’t. If you’ve 
drawn a bubble chart and you delete a bubble, a graphical design tool will automati-
cally rearrange the other bubbles, including connecting arrows and lower-level bub-
bles connected to the bubble. The tool takes care of the housekeeping when you add 
a bubble, too. A design tool can enable you to move between higher and lower levels 
of abstraction. A design tool will check the consistency of your design, and some tools 
can create code directly from your design.

30.2 Source-Code Tools
The tools available for working with source code are richer and more mature than the 
tools available for working with designs.

Editing

This group of tools relates to editing source code.

Integrated Development Environments (IDEs)

Some programmers estimate that they spend as much as 40 percent of their time edit-
ing source code (Parikh 1986, Ratliff 1987). If that’s the case, spending a few extra 
dollars for the best possible IDE is a good investment.

In addition to basic word-processing functions, good IDEs offer these features:

■ Compilation and error detection from within the editor

■ Integration with source-code control, build, test, and debugging tools
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■ Compressed or outline views of programs (class names only or logical struc-
tures without the contents, also known as “folding”) 

■ Jump to definitions of classes, routines, and variables

■ Jump to all places where a class, routine, or variable is used

■ Language-specific formatting

■ Interactive help for the language being edited

■ Brace (begin-end) matching

■ Templates for common language constructs (the editor completing the struc-
ture of a for loop after the programmer types for, for example)

■ Smart indenting (including easily changing the indentation of a block of state-
ments when logic changes)

■ Automated code transforms or refactorings

■ Macros programmable in a familiar programming language

■ Listing of search strings so that commonly used strings don’t need to be retyped

■ Regular expressions in search-and-replace

■ Search-and-replace across a group of files 

■ Editing multiple files simultaneously

■ Side-by-side diff comparisons

■ Multilevel undo

Considering some of the primitive editors still in use, you might be surprised to learn 
that several editors include all these capabilities.

Multiple-File String Searching and Replacing

If your editor doesn’t support search-and-replace across multiple files, you can still 
find supplementary tools to do that job. These tools are useful for search for all occur-
rences of a class name or routine name. When you find an error in your code, you can 
use such tools to check for similar errors in other files.

You can search for exact strings, similar strings (ignoring differences in capitalization), 
or regular expressions. Regular expressions are particularly powerful because they let 
you search for complex string patterns. If you wanted to find all the array references 
containing magic numbers (digits “0” through “9”), you could search for “[“, followed 
by zero or more spaces, followed by one or more digits, followed by zero or more 
spaces, followed by “]”. One widely available search tool is called “grep.” A grep query 
for magic numbers would look like this:

grep "\[ *[0–9]+ *\]" *.cpp
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You can make the search criteria more sophisticated to fine-tune the search.

It’s often helpful to be able to change strings across multiple files. For example, if you 
want to give a routine, constant, or global variable a better name, you might have to 
change the name in several files. Utilities that allow string changes across multiple 
files make that easy to do, which is good because you should have as few obstructions 
as possible to creating excellent class names, routine names, and constant names. 
Common tools for handling multiple-file string changes include Perl, AWK, and sed.

Diff Tools

Programmers often need to compare two files. If you make several attempts to correct 
an error and need to remove the unsuccessful attempts, a file comparator will make a 
comparison of the original and modified files and list the lines you’ve changed. If 
you’re working on a program with other people and want to see the changes they have 
made since the last time you worked on the code, a comparator tool such as Diff will 
make a comparison of the current version with the last version of the code you 
worked on and show the differences. If you discover a new defect that you don’t 
remember encountering in an older version of a program, rather than seeing a neurol-
ogist about amnesia, you can use a comparator to compare current and old versions of 
the source code, determine exactly what changed, and find the source of the problem. 
This functionality is often built into revision-control tools.

Merge Tools

One style of revision control locks source files so that only one person can modify a 
file at a time. Another style allows multiple people to work on files simultaneously and 
handles merging changes at check-in time. In this working mode, tools that merge 
changes are critical. These tools typically perform simple merges automatically and 
query the user for merges that conflict with other merges or that are more involved.

Source-Code Beautifiers

Cross-Reference For details 
on program layout, see 
Chapter 31, “Layout and 
Style.”

Source-code beautifiers spruce up your source code so that it looks consistent. They 
highlight class and routine names, standardize your indentation style, format comments 
consistently, and perform other similar functions. Some beautifiers can put each routine 
onto a separate Web page or printed page or perform even more dramatic formatting. 
Many beautifiers let you customize the way in which the code is beautified.

There are at least two classes of source-code beautifiers. One class takes the source 
code as input and produces much better looking output without changing the origi-
nal source code. Another kind of tool changes the source code itself—standardizing 
indentation, parameter list formatting, and so on. This capability is useful when work-
ing with large quantities of legacy code. The tool can do much of the tedious format-
ting work needed to make the legacy code conform to your coding style conventions.
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Interface Documentation Tools

Some tools extract detailed programmer-interface documentation from source-code 
files. The code inside the source file uses clues such as @tag fields to identify text that 
should be extracted. The interface documentation tool then extracts that tagged text 
and presents it with nice formatting. Javadoc is a prominent example of this kind of 
tool.

Templates

Templates help you exploit the simple idea of streamlining keyboarding tasks that you 
do often and want to do consistently. Suppose you want a standard comment prolog 
at the beginning of your routines. You could build a skeleton prolog with the correct 
syntax and places for all the items you want in the standard prolog. This skeleton 
would be a “template” you’d store in a file or a keyboard macro. When you created a 
new routine, you could easily insert the template into your source file. You can use the 
template technique for setting up larger entities, such as classes and files, or smaller 
entities, such as loops.

If you’re working on a group project, templates are an easy way to encourage consis-
tent coding and documentation styles. Make templates available to the whole team at 
the beginning of the project, and the team will use them because they make its job eas-
ier—you get the consistency as a side benefit.

Cross-Reference Tools

A cross-reference tool lists variables and routines and all the places in which they’re 
used—typically on Web pages.

Class Hierarchy Generators

A class-hierarchy generator produces information about inheritance trees. This is 
sometimes useful in debugging but is more often used for analyzing a program’s 
structure or modularizing a program into packages or subsystems. This functionality 
is also available in some IDEs.

Analyzing Code Quality

Tools in this category examine the static source code to assess its quality.

Picky Syntax and Semantics Checkers

Syntax and semantics checkers supplement your compiler by checking code more 
thoroughly than the compiler normally does. Your compiler might check for only 
rudimentary syntax errors. A picky syntax checker might use nuances of the language 
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to check for more subtle errors—things that aren’t wrong from a compiler’s point of 
view but that you probably didn’t intend to write. For example, in C++, the statement

while ( i = 0 ) ...

is a perfectly legal statement, but it’s usually meant to be

while ( i == 0 ) ...

The first line is syntactically correct, but switching = and == is a common mistake and 
the line is probably wrong. Lint is a picky syntax and semantics checker you can find 
in many C/C++ environments. Lint warns you about uninitialized variables, com-
pletely unused variables, variables that are assigned values and never used, parame-
ters of a routine that are passed out of the routine without being assigned a value, 
suspicious pointer operations, suspicious logical comparisons (like the one in the 
example just shown), inaccessible code, and many other common problems. Other 
languages offer similar tools.

Metrics Reporters

Cross-Reference For more 
information on metrics, see 
Section 28.4, “Measure-
ment.”

Some tools analyze your code and report on its quality. For example, you can obtain 
tools that report on the complexity of each routine so that you can target the most 
complicated routines for extra review, testing, or redesign. Some tools count lines of 
code, data declarations, comments, and blank lines in either entire programs or indi-
vidual routines. They track defects and associate them with the programmers who 
made them, the changes that correct them, and the programmers who make the cor-
rections. They count modifications to the software and note the routines that are mod-
ified the most often. Complexity analysis tools have been found to have about a 20 
percent positive impact on maintenance productivity (Jones 2000).

Refactoring Source Code

A few tools aid in converting source code from one format to another.

Refactorers

Cross-Reference For more 
on refactoring, see Chapter 
24, “Refactoring.”

A refactoring program supports common code refactorings either on a standalone 
basis or integrated into an IDE. Refactoring browsers allow you to change the name of 
a class across an entire code base easily. They allow you to extract a routine simply by 
highlighting the code you’d like to turn into a new routine, entering the new routine’s 
name, and ordering parameters in a parameter list. Refactorers make code changes 
quicker and less error-prone. They’re available for Java and Smalltalk and are becom-
ing available for other languages. For more about refactoring tools, see Chapter 14, 
“Refactoring Tools” in Refactoring (Fowler 1999).



30.2 Source-Code Tools 715

Restructurers

A restructurer will convert a plate of spaghetti code with gotos to a more nutritious 
entrée of better-structured code without gotos. Capers Jones reports that in mainte-
nance environments code restructuring tools can have a 25–30 percent positive 
impact on maintenance productivity (Jones 2000). A restructurer has to make a lot of 
assumptions when it converts code, and if the logic is terrible in the original, it will 
still be terrible in the converted version. If you’re doing a conversion manually, how-
ever, you can use a restructurer for the general case and hand-tune the hard cases. 
Alternatively, you can run the code through the restructurer and use it for inspiration 
for the hand conversion.

Code Translators

Some tools translate code from one language to another. A translator is useful when 
you have a large code base that you’re moving to another environment. The hazard in 
using a language translator is that if you start with bad code the translator simply 
translates the bad code into an unfamiliar language.

Version Control
Cross-Reference These tools 
and their benefits are 
described in “Software Code 
Changes” in Section 28.2.

You can deal with proliferating software versions by using version-control tools for

■ Source-code control

■ Dependency control like that offered by the make utility associated with UNIX

■ Project documentation versioning

■ Relating project artifacts like requirements, code, and test cases so that when a 
requirement changes, you can find the code and tests that are affected

Data Dictionaries

A data dictionary is a database that describes all the significant data in a project. In 
many cases, the data dictionary focuses primarily on database schemas. On large 
projects, a data dictionary is also useful for keeping track of the hundreds or thou-
sands of class definitions. On large team projects, it’s useful for avoiding naming 
clashes. A clash might be a direct, syntactic clash, in which the same name is used 
twice, or it might be a more subtle clash (or gap) in which different names are used to 
mean the same thing or the same name is used to mean subtly different things. For 
each data item (database table or class), the data dictionary contains the item’s name 
and description. The dictionary might also contain notes about how the item is used.
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30.3 Executable-Code Tools
Tools for working with executable code are as rich as the tools for working with 
source code.

Code Creation

The tools described in this section help with code creation.

Compilers and Linkers

Compilers convert source code to executable code. Most programs are written to be 
compiled, although some are still interpreted.

A standard linker links one or more object files, which the compiler has generated 
from your source files, with the standard code needed to make an executable pro-
gram. Linkers typically can link files from multiple languages, allowing you to choose 
the language that’s most appropriate for each part of your program without your hav-
ing to handle the integration details yourself.

An overlay linker helps you put 10 pounds in a five-pound sack by developing pro-
grams that execute in less memory than the total amount of space they consume. An 
overlay linker creates an executable file that loads only part of itself into memory at 
any one time, leaving the rest on a disk until it’s needed.

Build Tools

The purpose of a build tool is to minimize the time needed to build a program using cur-
rent versions of the program’s source files. For each target file in your project, you spec-
ify the source files that the target file depends on and how to make it. Build tools also 
eliminate errors related to sources being in inconsistent states; the build tool ensures 
they are all brought to a consistent state. Common build tools include the make utility 
that’s associated with UNIX and the ant tool that’s used for Java programs.

Suppose you have a target file named userface.obj. In the make file, you indicate that to 
make userface.obj, you have to compile the file userface.cpp. You also indicate that 
userface.cpp depends on userface.h, stdlib.h, and project.h. The concept of “depends on” 
simply means that if userface.h, stdlib.h, or project.h changes, userface.cpp needs to be 
recompiled.

When you build your program, the make tool checks all the dependencies you’ve 
described and determines the files that need to be recompiled. If five of your 250 
source files depend on data definitions in userface.h and it changes, make automati-
cally recompiles the five files that depend on it. It doesn’t recompile the 245 files that 
don’t depend on userface.h. Using make or ant beats the alternatives of recompiling all 
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250 files or recompiling each file manually, forgetting one, and getting weird out-of-
synch errors. Overall, build tools like make or ant substantially improve the time and 
reliability of the average compile-link-run cycle.

Some groups have found interesting alternatives to dependency-checking tools like 
make. For example, the Microsoft Word group found that simply rebuilding all source 
files was faster than performing extensive dependency checking with make as long as 
the source files themselves were optimized (header file contents and so on). With this 
approach, the average developer’s machine on the Word project could rebuild the 
entire Word executable—several million lines of code—in about 13 minutes.

Code Libraries

A good way to write high-quality code in a short amount of time is not to write it all 
but to find an open source version or buy it instead. You can find high-quality libraries 
in at least these areas:

■ Container classes

■ Credit card transaction services (e-commerce services)

■ Cross-platform development tools. You might write code that executes in 
Microsoft Windows, Apple Macintosh, and the X Window System just by recom-
piling for each environment.

■ Data compression tools

■ Data types and algorithms

■ Database operations and data-file manipulation tools

■ Diagramming, graphing, and charting tools

■ Imaging tools

■ License managers

■ Mathematical operations

■ Networking and internet communications tools

■ Report generators and report query builders

■ Security and encryption tools

■ Spreadsheet and grid tools

■ Text and spelling tools

■ Voice, phone, and fax tools
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Code-Generation Wizards

If you can’t find the code you want, how about getting someone else to write it 
instead? You don’t have to put on your yellow plaid jacket and slip into a car sales-
man’s patter to con someone else into writing your code. You can find tools that write 
code for you, and such tools are often integrated into IDEs.

Code-generating tools tend to focus on database applications, but that includes a lot 
of applications. Commonly available code generators write code for databases, user 
interfaces, and compilers. The code they generate is rarely as good as code generated 
by a human programmer, but many applications don’t require handcrafted code. It’s 
worth more to some users to have 10 working applications than to have one that 
works exceptionally well.

Code generators are also useful for making prototypes of production code. Using a 
code generator, you might be able to hack out a prototype in a few hours that demon-
strates key aspects of a user interface or you might be able to experiment with various 
design approaches. It might take you several weeks to hand-code as much functional-
ity. If you’re just experimenting, why not do it in the cheapest possible way?

The common drawback of code generators is that they tend to generate code that’s 
nearly unreadable. If you ever have to maintain such code, you can regret not writing 
it by hand in the first place.

Setup and Installation

Numerous vendors provide tools that support creation of setup programs. These tools 
typically support the creation of disks, CDs, or DVDs or installation over the Web. 
They check whether common library files already exist on the target installation 
machine, perform version checking, and so on.

Preprocessors

Cross-Reference For details 
on moving debugging aids 
in and out of the code, see 
“Plan to Remove Debugging 
Aids” in Section 8.6.

Preprocessors and preprocessor macro functions are useful for debugging because 
they make it easy to switch between development code and production code. During 
development, if you want to check memory fragmentation at the beginning of each 
routine, you can use a macro at the beginning of each routine. You might not want to 
leave the checks in production code, so for the production code you can redefine the 
macro so that it doesn’t generate any code at all. For similar reasons, preprocessor 
macros are good for writing code that’s targeted to be compiled in multiple environ-
ments—for example, in both Windows and Linux.
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If you use a language with primitive control constructs, such as assembler, you can 
write a control-flow preprocessor to emulate the structured constructs of if-then-else 
and while loops in your language.

cc2e.com/3091 If your language doesn’t have a preprocessor, you can use a standalone preprocessor 
as part of your build process. One readily available preprocessor is M4, available from 
www.gnu.org/software/m4/.

Debugging
Cross-Reference These tools 
and their benefits are 
described in Section 23.5, 
“Debugging Tools—Obvi-
ous and Not-So-Obvious.” 

These tools help in debugging:

■ Compiler warning messages

■ Test scaffolding

■ Diff tools (for comparing different versions of source-code files)

■ Execution profilers

■ Trace monitors

■ Interactive debuggers—both software and hardware

Testing tools, discussed next, are related to debugging tools.

Testing
Cross-Reference These tools 
and their benefits are 
described in Section 22.5, 
“Test-Support Tools.”

These features and tools can help you do effective testing:

■ Automated test frameworks like JUnit, NUnit, CppUnit, and so on

■ Automated test generators

■ Test-case record and playback utilities

■ Coverage monitors (logic analyzers and execution profilers)

■ Symbolic debuggers

■ System perturbers (memory fillers, memory shakers, selective memory failers, 
memory-access checkers)

■ Diff tools (for comparing data files, captured output, and screen images)

■ Scaffolding

■ Defect-injection tools

■ Defect-tracking software
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Code Tuning

These tools can help you fine-tune your code.

Execution Profilers

An execution profiler watches your code while it runs and tells you how many times each 
statement is executed or how much time the program spends on each statement or exe-
cution path. Profiling your code while it’s running is like having a doctor press a stetho-
scope to your chest and tell you to cough. It gives you insight into how your program 
works, where the hot spots are, and where you should focus your code-tuning efforts.

Assembler Listings and Disassemblers

Some day you might want to look at the assembler code generated by your high-level 
language. Some high-level-language compilers generate assembler listings. Others 
don’t, and you have to use a disassembler to re-create the assembler from the machine 
code that the compiler generates. Looking at the assembler code generated by your 
compiler shows you how efficiently your compiler translates high-level-language code 
into machine code. It can tell you why high-level code that looks fast runs slowly. In 
Chapter 26, “Code-Tuning Techniques,” several of the benchmark results are counter-
intuitive. While benchmarking that code, I frequently referred to the assembler list-
ings to better understand the results that didn’t make sense in the high-level language.

If you’re not comfortable with assembly language and you want an introduction, 
you won’t find a better one than comparing each high-level-language statement you 
write to the assembler instructions generated by the compiler. A first exposure to 
assembler is often a loss of innocence. When you see how much code the compiler 
creates—how much more than it needs to—you’ll never look at your compiler in quite 
the same way again.

Conversely, in some environments the compiler must generate extremely complex 
code. Studying the compiler output can foster an appreciation for just how much 
work would be required to program in a lower level language.

30.4 Tool-Oriented Environments
Some environments have proven to be better suited to tool-oriented programming 
than others.

The UNIX environment is famous for its collection of small tools with funny names 
that work well together: grep, diff, sort, make, crypt, tar, lint, ctags, sed, awk, vi, and 
others. The C and C++ languages, closely coupled with UNIX, embody the same phi-
losophy; the standard C++ library is composed of small functions that can easily be 
composed into larger functions because they work so well together.
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cc2e.com/3026 Some programmers work so productively in UNIX that they take it with them. They 
use UNIX work-alike tools to support their UNIX habits in Windows and other envi-
ronments. One tribute to the success of the UNIX paradigm is the availability of tools 
that put a UNIX costume on other machines. For example, cygwin provides UNIX-
equivalent tools that work under Windows (www.cygwin.com).

Eric Raymond’s The Art of Unix Programming (2004) contains an insightful discussion 
of the UNIX programming culture.

30.5 Building Your Own Programming Tools
Suppose you’re given five hours to do the job and you have a choice:

■ Do the job comfortably in five hours, or

■ Spend four hours and 45 minutes feverishly building a tool to do the job, and 
then have the tool do the job in 15 minutes.

Most good programmers would choose the first option one time out of a million and 
the second option in every other case. Building tools is part of the warp and woof of 
programming. Nearly all large organizations (organizations with more than 1000 pro-
grammers) have internal tool and support groups. Many have proprietary require-
ments and design tools that are superior to those on the market (Jones 2000).

You can write many of the tools described in this chapter. Doing so might not be cost-
effective, but there aren’t any mountainous technical barriers to doing it.

Project-Specific Tools

Most medium-sized and large projects need special tools unique to the project. For 
example, you might need tools to generate special kinds of test data, to verify the qual-
ity of data files, or to emulate hardware that isn’t yet available. Here are some exam-
ples of project-specific tool support:

■ An aerospace team was responsible for developing in-flight software to control an 
infrared sensor and analyze its data. To verify the performance of the software, an 
in-flight data recorder documented the actions of the in-flight software. Engineers 
wrote custom data-analysis tools to analyze the performance of the in-flight sys-
tems. After each flight, they used the custom tools to check the primary systems.

■ Microsoft planned to include a new font technology in a release of its Windows 
graphical environment. Since both the font data files and the software to display 
the fonts were new, errors could have arisen from either the data or the software. 
Microsoft developers wrote several custom tools to check for errors in the data 
files, which improved their ability to discriminate between font data errors and 
software errors.
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■ An insurance company developed an ambitious system to calculate its rate 
increases. Because the system was complicated and accuracy was essential, hun-
dreds of computed rates needed to be checked carefully, even though hand cal-
culating a single rate took several minutes. The company wrote a separate 
software tool to compute rates one at a time. With the tool, the company could 
compute a single rate in a few seconds and check rates from the main program 
in a small fraction of the time it would have taken to check the main program’s 
rates by hand.

Part of planning for a project should be thinking about the tools that might be needed 
and allocating time for building them.

Scripts

A script is a tool that automates a repetitive chore. In some systems, scripts are called 
batch files or macros. Scripts can be simple or complex, and some of the most useful 
are the easiest to write. For example, I keep a journal, and to protect my privacy, I 
encrypt it except when I’m writing in it. To make sure that I always encrypt and 
decrypt it properly, I have a script that decrypts my journal, executes the word proces-
sor, and then encrypts the journal. The script looks like this:

crypto c:\word\journal.* %1 /d /Es /s 

word c:\word\journal.doc 

crypto c:\word\journal.* %1 /Es /s

The %1 is the field for my password which, for obvious reasons, isn’t included in the 
script. The script saves me the work of typing (and mistyping) all the parameters and 
ensures that I always perform all the operations and perform them in the right order.

If you find yourself typing something longer than about five characters more than a 
few times a day, it’s a good candidate for a script or batch file. Examples include com-
pile/link sequences, backup commands, and any command with a lot of parameters.

30.6 Tool Fantasyland
Cross-Reference Tool avail-
ability depends partly on the 
maturity of the technical 
environment. For more on 
this, see Section 4.3, “Your 
Location on the Technology 
Wave.”

For decades, tool vendors and industry pundits have promised that the tools needed 
to eliminate programming are just over the horizon. The first, and perhaps most 
ironic, tool to receive this moniker was Fortran. Fortran or “Formula Translation Lan-
guage” was conceived so that scientists and engineers could simply type in formulas, 
thus supposedly eliminating the need for programmers.

Fortran did succeed in making it possible for scientists and engineers to write pro-
grams, but from our vantage point today, Fortran appears to be a comparatively low-
level programming language. It hardly eliminated the need for programmers, and 
what the industry experienced with Fortran is indicative of progress in the software 
industry as a whole.
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The software industry constantly develops new tools that reduce or eliminate some of 
the most tedious aspects of programming: details of laying out source statements; 
steps needed to edit, compile, link, and run a program; work needed to find mis-
matched braces; the number of steps needed to create standard message boxes; and 
so on. As each of these new tools begins to demonstrate incremental gains in produc-
tivity, pundits extrapolate those gains out to infinity, assuming that the gains will 
eventually “eliminate the need for programming.” But what’s happening in reality is 
that each new programming innovation arrives with a few blemishes. As time goes by, 
the blemishes are removed and that innovation’s full potential is realized. However, 
once the fundamental tool concept is realized, further gains are achieved by stripping 
away the accidental difficulties that were created as side effects of creating the new 
tool. Elimination of these accidental difficulties does not increase productivity per se; 
it simply eliminates the “one step back” from the typical “two steps forward, one step 
back” equation.

Over the past several decades, programmers have seen numerous tools that were sup-
posed to eliminate programming. First it was third-generation languages. Then it was 
fourth generation languages. Then it was automatic programming. Then it was CASE 
tools. Then it was visual programming. Each of these advances spun off valuable, incre-
mental improvements to computer programming—and collectively they have made pro-
gramming unrecognizable to anyone who learned programming before these advances. 
But none of these innovations succeeded in eliminating programming.

Cross-Reference  Reasons 
for the difficulty of program-
ming are described in 
“Accidental and Essential 
Difficulties” in Section 5.2.

The reason for this dynamic is that, at its essence, programming is fundamentally 
hard—even with good tool support.  No matter what tools are available, programmers 
will have to wrestle with the messy real world; we will have to think rigorously about 
sequences, dependencies, and exceptions; and we’ll have to deal with end users who 
can’t make up their minds. We will always have to wrestle with ill-defined interfaces to 
other software and hardware, and we’ll have to account for regulations, business 
rules, and other sources of complexity that arise from outside the world of computer 
programming.

We will always need people who can bridge the gap between the real-world problem 
to be solved and the computer that is supposed to be solving the problem. These peo-
ple will be called programmers regardless of whether we’re manipulating machine 
registers in assembler or dialog boxes in Microsoft Visual Basic. As long as we have 
computers, we’ll need people who tell the computers what to do, and that activity will 
be called programming.

When you hear a tool vendor claim “This new tool will eliminate computer program-
ming,” run! Or at least smile to yourself at the vendor’s naive optimism.
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Additional Resources
cc2e.com/3098 Take a look at these additional resources for more on programming tools:

cc2e.com/3005 www.sdmagazine.com/jolts. Software Development Magazine’s annual Jolt Productivity 
award website is a good source of information about the best current tools.

Hunt, Andrew and David Thomas. The Pragmatic Programmer. Boston, MA: Addison-
Wesley, 2000. Section 3 of this book provides an in-depth discussion of program-
ming tools, including editors, code generators, debuggers, source-code control, and 
related tools.

cc2e.com/3012 Vaughn-Nichols, Steven. “Building Better Software with Better Tools,” IEEE Computer, 
September 2003, pp. 12–14. This article surveys tool initiatives led by IBM, Microsoft 
Research, and Sun Research.

Glass, Robert L. Software Conflict: Essays on the Art and Science of Software Engineering. 
Englewood Cliffs, NJ: Yourdon Press, 1991. The chapter titled “Recommended: A Min-
imum Standard Software Toolset” provides a thoughtful counterpoint to the more-
tools-is-better view. Glass argues for the identification of a minimum set of tools that 
should be available to all developers and proposes a starting kit.

Jones, Capers. Estimating Software Costs. New York, NY: McGraw-Hill, 1998.

Boehm, Barry, et al. Software Cost Estimation with Cocomo II. Reading, MA: Addison-
Wesley, 2000. Both the Jones and the Boehm books devote sections to the impact of 
tool use on productivity.

cc2e.com/3019 Checklist: Programming Tools
❑ Do you have an effective IDE? 

❑ Does your IDE support integration with source-code control; build, test, 
and debugging tools; and other useful functions? 

❑ Do you have tools that automate common refactorings? 

❑ Are you using version control to manage source code, content, require-
ments, designs, project plans, and other project artifacts? 

❑ If you’re working on a very large project, are you using a data dictionary or 
some other central repository that contains authoritative descriptions of 
each class used in the system? 

❑ Have you considered code libraries as alternatives to writing custom code, 
where available? 



Key Points 725

❑ Are you making use of an interactive debugger?

❑ Do you use make or other dependency-control software to build programs 
efficiently and reliably?

❑ Does your test environment include an automated test framework, auto-
mated test generators, coverage monitors, system perturbers, diff tools, 
and defect-tracking software?

❑ Have you created any custom tools that would help support your specific 
project’s needs, especially tools that automate repetitive tasks? 

❑ Overall, does your environment benefit from adequate tool support? 

Key Points
■ Programmers sometimes overlook some of the most powerful tools for years 

before discovering them.

■ Good tools can make your life a lot easier.

■ Tools are readily available for editing, analyzing code quality, refactoring, ver-
sion control, debugging, testing, and code tuning.

■ You can make many of the special-purpose tools you need.

■ Good tools can reduce the more tedious aspects of software development, but 
they can’t eliminate the need for programming, although they will continue to 
reshape what we mean by “programming.” 
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Chapter 31

Layout and Style
cc2e.com/3187 Contents

■ 31.1 Layout Fundamentals: page 730

■ 31.2 Layout Techniques: page 736

■ 31.3 Layout Styles: page 738

■ 31.4 Laying Out Control Structures: page 745

■ 31.5 Laying Out Individual Statements: page 753

■ 31.6 Laying Out Comments: page 763

■ 31.7 Laying Out Routines: page 766

■ 31.8 Laying Out Classes: page 768

Related Topics

■ Self-documenting code: Chapter 32

■ Code formatting tools: “Editing” in Section 30.2

This chapter turns to an aesthetic aspect of computer programming: the layout of pro-
gram source code. The visual and intellectual enjoyment of well-formatted code is a plea-
sure that few nonprogrammers can appreciate. But programmers who take pride in their 
work derive great artistic satisfaction from polishing the visual structure of their code.

The techniques in this chapter don’t affect execution speed, memory use, or other 
aspects of a program that are visible from outside the program. They affect how easy it is 
to understand the code, review it, and revise it months after you write it. They also affect 
how easy it is for others to read, understand, and modify once you’re out of the picture.

This chapter is full of the picky details that people refer to when they talk about “atten-
tion to detail.” Over the life of a project, attention to such details makes a difference in the 
initial quality and the ultimate maintainability of the code you write. Such details are too 
integral to the coding process to be changed effectively later. If they’re to be done at all, 
they must be done during initial construction. If you’re working on a team project, have 
your team read this chapter and agree on a team style before you begin coding.

You might not agree with everything you read here, but my point is less to win your 
agreement than to convince you to consider the issues involved in formatting style. If 
you have high blood pressure, move on to the next chapter—it’s less controversial.
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31.1 Layout Fundamentals
This section explains the theory of good layout. The rest of the chapter explains the 
practice.

Layout Extremes

Consider the routine shown in Listing 31-1:

Listing 31-1 Java layout example #1.

/* Use the insertion sort technique to sort the "data" array in ascending order. 

This routine assumes that data[ firstElement ] is not the first element in data and 

that data[ firstElement-1 ] can be accessed. */ public void InsertionSort( int[] 

data, int firstElement, int lastElement ) { /* Replace element at lower boundary 

with an element guaranteed to be first in a sorted list. */ int lowerBoundary = 

data[ firstElement-1 ]; data[ firstElement-1 ] = SORT_MIN; /* The elements in 

positions firstElement through sortBoundary-1 are always sorted. In each pass 

through the loop, sortBoundary is increased, and the element at the position of the 

new sortBoundary probably isn't in its sorted place in the array, so it's inserted 

into the proper place somewhere between firstElement and sortBoundary. */ for ( 

int sortBoundary = firstElement+1; sortBoundary <= lastElement; sortBoundary++  ) 

{ int insertVal = data[ sortBoundary ]; int insertPos = sortBoundary; while ( 

insertVal < data[ insertPos-1 ] ) { data[ insertPos ] = data[ insertPos-1 ]; 

insertPos = insertPos-1; } data[ insertPos ] = insertVal; } /* Replace original 

lower-boundary element */ data[ firstElement-1 ] = lowerBoundary; }

The routine is syntactically correct. It’s thoroughly commented and has good variable 
names and clear logic. If you don’t believe that, read it and find a mistake! What the 
routine doesn’t have is good layout. This is an extreme example, headed toward “neg-
ative infinity” on the number line of bad-to-good layout. Listing 31-2 is a less extreme 
example:

Listing 31-2 Java layout example #2.

/* Use the insertion sort technique to sort the "data" array in ascending 

order. This routine assumes that data[ firstElement ] is not the  

first element in data and that data[ firstElement-1 ] can be accessed. */ 

public void InsertionSort( int[] data, int firstElement, int lastElement ) { 

/* Replace element at lower boundary with an element guaranteed to be first in a 

sorted list. */ 

int lowerBoundary = data[ firstElement-1 ]; 

data[ firstElement-1 ] = SORT_MIN; 

/* The elements in positions firstElement through sortBoundary-1 are  

always sorted. In each pass through the loop, sortBoundary  

is increased, and the element at the position of the  

new sortBoundary probably isn't in its sorted place in the  

array, so it's inserted into the proper place somewhere  

between firstElement and sortBoundary. */ 

for ( 

int sortBoundary = firstElement+1; 

sortBoundary <= lastElement;  

CODING 
HORROR

CODING 
HORROR
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sortBoundary++  

) { 

int insertVal = data[ sortBoundary ]; 

int insertPos = sortBoundary; 

while ( insertVal < data[ insertPos-1 ] ) { 

data[ insertPos ] = data[ insertPos-1 ]; 

insertPos = insertPos-1; 

} 

data[ insertPos ] = insertVal; 

} 

/* Replace original lower-boundary element */ 

data[ firstElement-1 ] = lowerBoundary; 

}

This code is the same as Listing 31-1’s. Although most people would agree that the 
code’s layout is much better than the first example’s, the code is still not very read-
able. The layout is still crowded and offers no clue to the routine’s logical organization. 
It’s at about 0 on the number line of bad-to-good layout. The first example was con-
trived, but the second one isn’t at all uncommon. I’ve seen programs several thousand 
lines long with layout at least as bad as this. With no documentation and bad variable 
names, overall readability was worse than in this example. This code is formatted for 
the computer; there’s no evidence that the author expected the code to be read by 
humans. Listing 31-3 is an improvement.

Listing 31-3 Java layout example #3.

/* Use the insertion sort technique to sort the "data" array in ascending 

order. This routine assumes that data[ firstElement ] is not the  

first element in data and that data[ firstElement-1 ] can be accessed.  

*/ 

 

public void InsertionSort( int[] data, int firstElement, int lastElement ) { 

   // Replace element at lower boundary with an element guaranteed to be  

   // first in a sorted list.  

   int lowerBoundary = data[ firstElement-1 ]; 

   data[ firstElement-1 ] = SORT_MIN; 

 

   /* The elements in positions firstElement through sortBoundary-1 are  

   always sorted. In each pass through the loop, sortBoundary  

   is increased, and the element at the position of the  

   new sortBoundary probably isn't in its sorted place in the  

   array, so it's inserted into the proper place somewhere  

   between firstElement and sortBoundary.  

   */ 

   for ( int sortBoundary = firstElement + 1; sortBoundary <= lastElement;  

      sortBoundary++ ) { 

      int insertVal = data[ sortBoundary ]; 

      int insertPos = sortBoundary; 

      while ( insertVal < data[ insertPos - 1 ] ) { 

         data[ insertPos ] = data[ insertPos - 1 ]; 

         insertPos = insertPos - 1; 

      } 
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      data[ insertPos ] = insertVal; 

   } 

    

   // Replace original lower-boundary element 

   data[ firstElement - 1 ] = lowerBoundary; 

}

This layout of the routine is a strong positive on the number line of bad-to-good layout. 
The routine is now laid out according to principles that are explained throughout this 
chapter. The routine has become much more readable, and the effort that has been put 
into documentation and good variable names is now evident. The variable names were 
just as good in the earlier examples, but the layout was so poor that they weren’t helpful.

The only difference between this example and the first two is the use of white space—
the code and comments are exactly the same. White space is of use only to human 
readers—your computer could interpret any of the three fragments with equal ease. 
Don’t feel bad if you can’t do as well as your computer!

The Fundamental Theorem of Formatting

The Fundamental Theorem of Formatting says that good visual layout shows the log-
ical structure of a program.

Making the code look pretty is worth something, but it’s worth less than showing the 
code’s structure. If one technique shows the structure better and another looks better, 
use the one that shows the structure better. This chapter presents numerous exam-
ples of formatting styles that look good but that misrepresent the code’s logical orga-
nization. In practice, prioritizing logical representation usually doesn’t create ugly 
code—unless the logic of the code is ugly. Techniques that make good code look good 
and bad code look bad are more useful than techniques that make all code look good.

Human and Computer Interpretations of a Program
Any fool can write code that 
a computer can understand. 
Good programmers write 
code that humans can 
understand.  
—Martin Fowler

Layout is a useful clue to the structure of a program. Whereas the computer might 
care exclusively about braces or begin and end, a human reader is apt to draw clues 
from the visual presentation of the code. Consider the code fragment in Listing 31-4, 
in which the indentation scheme makes it look to a human as if three statements are 
executed each time the loop is executed.

Listing 31-4 Java example of layout that tells different stories to humans and computers.

// swap left and right elements for whole array 

for ( i = 0; i < MAX_ELEMENTS; i++ ) 

   leftElement = left[ i ]; 

   left[ i ]   = right[ i ]; 

   right[ i ]  = leftElement;

KEY POINT
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If the code has no enclosing braces, the compiler will execute the first statement 
MAX_ELEMENTS times and the second and third statements one time each. The 
indentation makes it clear to you and me that the author of the code wanted all three 
statements to be executed together and intended to put braces around them. That 
won’t be clear to the compiler. Listing 31-5 is another example:

Listing 31-5 Another Java example of layout that tells different stories to humans and 
computers.

x = 3+4 * 2+7;

A human reader of this code would be inclined to interpret the statement to mean that 
x is assigned the value (3+4) * (2+7), or 63. The computer will ignore the white space 
and obey the rules of precedence, interpreting the expression as 3 + (4*2) + 7, or 18. The 
point is that a good layout scheme would make the visual structure of a program match 
the logical structure, or tell the same story to the human that it tells to the computer.

How Much Is Good Layout Worth?

Our studies support the claim that knowledge of programming plans and rules 
of programming discourse can have a significant impact on program compre-
hension. In their book called [The] Elements of [Programming] Style, Kernighan 
and Plauger also identify what we would call discourse rules. Our empirical 
results put teeth into these rules: It is not merely a matter of aesthetics that pro-
grams should be written in a particular style. Rather there is a psychological 
basis for writing programs in a conventional manner: programmers have strong 
expectations that other programmers will follow these discourse rules. If the 
rules are violated, then the utility afforded by the expectations that program-
mers have built up over time is effectively nullified. The results from the experi-
ments with novice and advanced student programmers and with professional 
programmers described in this paper provide clear support for these claims.

—Elliot Soloway and Kate Ehrlich

Cross-Reference Good lay-
out is one key to readability. 
For details on the value of 
readability, see Section 34.3, 
“Write Programs for People 
First, Computers Second.”

In layout, perhaps more than in any other aspect of programming, the difference 
between communicating with the computer and communicating with human readers 
comes into play. The smaller part of the job of programming is writing a program so that 
the computer can read it; the larger part is writing it so that other humans can read it.

In their classic paper “Perception in Chess,” Chase and Simon reported on a study 
that compared the abilities of experts and novices to remember the positions of pieces 
in chess (1973). When pieces were arranged on the board as they might be during 
a game, the experts’ memories were far superior to the novices’. When the pieces 
were arranged randomly, there was little difference between the memories of the 
experts and the novices. The traditional interpretation of this result is that an 
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expert’s memory is not inherently better than a novice’s but that the expert has a 
knowledge structure that helps him or her remember particular kinds of informa-
tion. When new information corresponds to the knowledge structure—in this case, 
the sensible placement of chess pieces—the expert can remember it easily. When 
new information doesn’t correspond to a knowledge structure—the chess pieces are 
randomly positioned—the expert can’t remember it any better than the novice.

A few years later, Ben Shneiderman duplicated Chase and Simon’s results in the com-
puter-programming arena and reported his results in a paper called “Exploratory Exper-
iments in Programmer Behavior” (1976). Shneiderman found that when program 
statements were arranged in a sensible order, experts were able to remember them bet-
ter than novices. When statements were shuffled, the experts’ superiority was reduced. 
Shneiderman’s results have been confirmed in other studies (McKeithen et al. 1981, 
Soloway and Ehrlich 1984). The basic concept has also been confirmed in the games Go 
and bridge and in electronics, music, and physics (McKeithen et al. 1981).

After I published the first edition of this book, Hank, one of the programmers who 
reviewed the manuscript, said “I was surprised that you didn’t argue more strongly in 
favor of a brace style that looks like this:

for ( ...) 

   { 

   }

“I was surprised that you even included the brace style that looked like this:

for ( ...) { 

}

“I thought that, with both Tony and me arguing for the first style, you’d prefer that.” 

I responded, “You mean you were arguing for the first style, and Tony was arguing for 
the second style, don’t you? Tony argued for the second style, not the first.” 

Hank responded, “That’s funny. The last project Tony and I worked on together, I pre-
ferred style #2, and Tony preferred style #1. We spent the whole project arguing about 
which style was best. I guess we talked one another into preferring each other’s 
styles!”

This experience, as well as the studies cited above, suggest that structure helps 
experts to perceive, comprehend, and remember important features of programs. 
Expert programmers often cling to their own styles tenaciously, even when they’re 
vastly different from other styles used by other expert programmers. The bottom line 
is that the details of a specific method of structuring a program are much less impor-
tant than the fact that the program is structured consistently.

KEY POINT
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Layout as Religion

The importance to comprehension and memory of structuring one’s environment in a 
familiar way has led some researchers to hypothesize that layout might harm an expert’s 
ability to read a program if the layout is different from the scheme the expert uses (Sheil 
1981, Soloway and Ehrlich 1984). That possibility, compounded by the fact that layout 
is an aesthetic as well as a logical exercise, means that debates about program formatting 
often sound more like religious wars than philosophical discussions.

Cross-Reference If you’re 
mixing software and reli-
gion, you might read Section 
34.9, “Thou Shalt Rend Soft-
ware and Religion Asunder” 
before reading the rest of 
this chapter.

At a coarse level, it’s clear that some forms of layout are better than others. The succes-
sively better layouts of the same code at the beginning of this chapter made that evi-
dent. This book won’t steer clear of the finer points of layout just because they’re 
controversial. Good programmers should be open-minded about their layout prac-
tices and accept practices proven to be better than the ones they’re used to, even if 
adjusting to a new method results in some initial discomfort.

Objectives of Good Layout
The results point out the fra-
gility of programming exper-
tise: advanced programmers 
have strong expectations 
about what programs should 
look like, and when those 
expectations are violated—
in seemingly innocuous 
ways—their performance 
drops drastically.  
—Elliot Soloway and 
Kate Ehrlich

Many decisions about layout details are a matter of subjective aesthetics; often, you 
can accomplish the same goal in many ways. You can make debates about subjective 
issues less subjective if you explicitly specify the criteria for your preferences. Explic-
itly, then, a good layout scheme should do the following:

Accurately represent the logical structure of the code That’s the Fundamental Theo-
rem of Formatting again: the primary purpose of good layout is to show the logical 
structure of the code. Typically, programmers use indentation and other white space 
to show the logical structure.

Consistently represent the logical structure of the code Some styles of layout have 
rules with so many exceptions that it’s hard to follow the rules consistently. A good 
style applies to most cases.

Improve readability An indentation strategy that’s logical but that makes the code 
harder to read is useless. A layout scheme that calls for spaces only where they are 
required by the compiler is logical but not readable. A good layout scheme makes 
code easier to read.
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Withstand modifications The best layout schemes hold up well under code modifi-
cation. Modifying one line of code shouldn’t require modifying several others.

In addition to these criteria, minimizing the number of lines of code needed to imple-
ment a simple statement or block is also sometimes considered.

How to Put the Layout Objectives to Use

You can use the criteria for a good layout scheme to ground a discussion of layout so 
that the subjective reasons for preferring one style over another are brought into the 
open.

Weighting the criteria in different ways might lead to different conclusions. For exam-
ple, if you feel strongly that minimizing the number of lines used on the screen is 
important—perhaps because you have a small computer screen—you might criticize 
one style because it uses two more lines for a routine parameter list than another.

31.2 Layout Techniques
You can achieve good layout by using a few layout tools in several different ways. This 
section describes each of them.

White Space

Usewhitespacetoenhancereadability. White space, including spaces, tabs, line breaks, 
and blank lines, is the main tool available to you for showing a program’s structure.

Cross-Reference Some 
researchers have explored 
the similarity between the 
structure of a book and the 
structure of a program. For 
information, see “The Book 
Paradigm for Program Doc-
umentation” in Section 32.5.

You wouldn’t think of writing a book with no spaces between words, no paragraph 
breaks, and no divisions into chapters. Such a book might be readable cover to cover, 
but it would be virtually impossible to skim it for a line of thought or to find an impor-
tant passage. Perhaps more important, the book’s layout wouldn’t show the reader 
how the author intended to organize the information. The author’s organization is an 
important clue to the topic’s logical organization.

Breaking a book into chapters, paragraphs, and sentences shows a reader how to men-
tally organize a topic. If the organization isn’t evident, the reader has to provide the 
organization, which puts a much greater burden on the reader and adds the possibil-
ity that the reader may never figure out how the topic is organized.

The information contained in a program is denser than the information contained 
in most books. Whereas you might read and understand a page of a book in a 
minute or two, most programmers can’t read and understand a naked program list-
ing at anything close to that rate. A program should give more organizational clues 
than a book, not fewer.

KEY POINT
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Grouping From the other side of the looking glass, white space is grouping, making 
sure that related statements are grouped together.

In writing, thoughts are grouped into paragraphs. A well-written paragraph contains 
only sentences that relate to a particular thought. It shouldn’t contain extraneous sen-
tences. Similarly, a paragraph of code should contain statements that accomplish a 
single task and that are related to each other.

Blank lines Just as it’s important to group related statements, it’s important to sepa-
rate unrelated statements from each other. The start of a new paragraph in English is 
identified with indentation or a blank line. The start of a new paragraph of code 
should be identified with a blank line.

Using blank lines is a way to indicate how a program is organized. You can use them 
to divide groups of related statements into paragraphs, to separate routines from one 
another, and to highlight comments.

Although this particular statistic may be hard to put to work, a study by Gorla, 
Benander, and Benander found that the optimal number of blank lines in a program 
is about 8 to 16 percent. Above 16 percent, debug time increases dramatically (1990).

Indentation Use indentation to show the logical structure of a program. As a rule, 
you should indent statements under the statement to which they are logically subor-
dinate.

Indentation has been shown to be correlated with increased programmer comprehen-
sion. The article “Program Indentation and Comprehensibility” reported that several 
studies found correlations between indentation and improved comprehension 
(Miaria et al. 1983). Subjects scored 20 to 30 percent higher on a test of comprehen-
sion when programs had a two-to-four-spaces indentation scheme than they did when 
programs had no indentation at all.

The same study found that it was important to neither underemphasize nor overem-
phasize a program’s logical structure. The lowest comprehension scores were 
achieved on programs that were not indented at all. The second lowest were achieved 
on programs that used six-space indentation. The study concluded that two-to-four-
space indentation was optimal. Interestingly, many subjects in the experiment felt that 
the six-space indentation was easier to use than the smaller indentations, even though 
their scores were lower. That’s probably because six-space indentation looks pleasing. 
But regardless of how pretty it looks, six-space indentation turns out to be less read-
able. This is an example of a collision between aesthetic appeal and readability.

1
2
3

HARD DATA

1
2
3

HARD DATA

1
2
3

HARD DATA
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Parentheses

Use more parentheses than you think you need. Use parentheses to clarify expres-
sions that involve more than two terms. They may not be needed, but they add clarity 
and they don’t cost you anything. For example, how are the following expressions 
evaluated?

C++ version: 12 + 4 % 3 * 7 / 8

Microsoft Visual Basic version: 12 + 4 mod 3 * 7 / 8

The key question is, did you have to think about how the expressions are evaluated? 
Can you be confident in your answer without checking some references? Even experi-
enced programmers don’t answer confidently, and that’s why you should use paren-
theses whenever there’s any doubt about how an expression is evaluated.

31.3 Layout Styles
Most layout issues have to do with laying out blocks, the groups of statements below 
control statements. A block is enclosed between braces or keywords: { and } in C++ 
and Java, if-then-endif in Visual Basic, and other similar structures in other languages. 
For simplicity, much of this discussion uses begin and end generically, assuming that 
you can figure out how the discussion applies to braces in C++ and Java or other 
blocking mechanisms in other languages. The following sections describe four general 
styles of layout:

■ Pure blocks

■ Emulating pure blocks

■ Using begin-end pairs (braces) to designate block boundaries

■ Endline layout

Pure Blocks

Much of the layout controversy stems from the inherent awkwardness of the more 
popular programming languages. A well-designed language has clear block structures 
that lend themselves to a natural indentation style. In Visual Basic, for example, each 
control construct has its own terminator and you can’t use a control construct with-
out using the terminator. Code is blocked naturally. Some examples in Visual Basic 
are shown in Listing 31-6, Listing 31-7, and Listing 31-8:
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Listing 31-6 Visual Basic example of a pure if block.

If pixelColor = Color_Red Then 

   statement1 

   statement2 

   ... 

End If

Listing 31-7 Visual Basic example of a pure while block.

While pixelColor = Color_Red 

   statement1 

   statement2 

   ... 

Wend

Listing 31-8 Visual Basic example of a pure case block.

Select Case pixelColor 

   Case Color_Red 

      statement1 

      statement2 

      ... 

   Case Color_Green 

      statement1 

      statement2 

      ... 

   Case Else 

      statement1 

      statement2 

      ... 

End Select

A control construct in Visual Basic always has a beginning statement—If-Then, While, 
and Select-Case in the examples—and it always has a corresponding End statement. 
Indenting the inside of the structure isn’t a controversial practice, and the options for 
aligning the other keywords are somewhat limited. Listing 31-9 is an abstract repre-
sentation of how this kind of formatting works:

Listing 31-9 Abstract example of the pure-block layout style.

A   XXXXXXXXXXXXXXXXXXXX 

B      XXXXXXXXXXXX 

C      XXXXXXXXXXXXXXX 

D   XXXX
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In this example, statement A begins the control construct and statement D ends the 
control construct. The alignment between the two provides solid visual closure.

The controversy about formatting control structures arises in part from the fact that 
some languages don’t require block structures. You can have an if-then followed by a 
single statement and not have a formal block. You have to add a begin-end pair or 
opening and closing braces to create a block rather than getting one automatically 
with each control construct. Uncoupling begin and end from the control structure—as 
languages like C++ and Java do with { and }—leads to questions about where to put the 
begin and end. Consequently, many indentation problems are problems only because 
you have to compensate for poorly designed language structures. Various ways to 
compensate are described in the following sections.

Emulating Pure Blocks

A good approach in languages that don’t have pure blocks is to view the begin and end 
keywords (or { and } tokens) as extensions of the control construct they’re used with. 
Then it’s sensible to try to emulate the Visual Basic formatting in your language. List-
ing 31-10 is an abstract view of the visual structure you’re trying to emulate:

Listing 31-10 Abstract example of the pure-block layout style.

A   XXXXXXXXXXXXXXXXXXXX 

B      XXXXXXXXXXXX 

C      XXXXXXXXXXXXXXX 

D   XXXX

In this style, the control structure opens the block in statement A and finishes the 
block in statement D. This implies that the begin should be at the end of statement A 
and the end should be statement D. In the abstract, to emulate pure blocks, you’d have 
to do something like Listing 31-11:

Listing 31-11 Abstract example of emulating the pure-block style.

A   XXXXXXXXXXXXXX{X 

B      XXXXXXXXXXXXXX 

C      XXXXXXXXXXXXXXXXX 

D   }X
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Some examples of how the style looks in C++ are shown in Listing 31-12, Listing 31-13, 
and Listing 31-14:

Listing 31-12 C++ example of emulating a pure if block.

if ( pixelColor == Color_Red ) { 

   statement1; 

   statement2; 

   ... 

}

Listing 31-13 C++ example of emulating a pure while block.

while ( pixelColor == Color_Red ) { 

   statement1; 

   statement2; 

   ... 

}

Listing 31-14 C++ example of emulating a pure switch/case block.

switch ( pixelColor ) { 

   case Color_Red: 

      statement1; 

      statement2; 

      ... 

   break; 

   case Color_Green: 

      statement1; 

      statement2; 

      ... 

   break; 

   default:  

      statement1; 

      statement2; 

      ... 

   break; 

}

This style of alignment works pretty well. It looks good, you can apply it consistently, 
and it’s maintainable. It supports the Fundamental Theorem of Formatting in that it 
helps to show the logical structure of the code. It’s a reasonable style choice. This style 
is standard in Java and common in C++.
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Using begin-end Pairs (Braces) to Designate Block Boundaries

A substitute for a pure-block structure is to view begin-end pairs as block boundaries. 
(The following discussion uses begin-end to refer generically to begin-end pairs, braces, 
and other equivalent language structures.) If you take that approach, you view the 
begin and the end as statements that follow the control construct rather than as frag-
ments that are part of it. Graphically, this is the ideal, just as it was with the pure-block 
emulation shown again in Listing 31-15:

Listing 31-15 Abstract example of the pure-block layout style.

A   XXXXXXXXXXXXXXXXXXX 

B      XXXXXXXXXXXX 

C      XXXXXXXXXXXXXX 

D   XXXX

But in this style, to treat the begin and the end as parts of the block structure rather 
than the control statement, you have to put the begin at the beginning of the block 
(rather than at the end of the control statement) and the end at the end of the block 
(rather than terminating the control statement). In the abstract, you’ll have to do 
something like what’s done in Listing 31-16:

Listing 31-16 Abstract example of using begin and end as block boundaries.

A   XXXXXXXXXXXXXXXXXXXX 

       {XXXXXXXXXXXXXXXX 

B      XXXXXXXXXXXXXXXXX 

C      XXXXXXXXXXXXXXXXX 

       }X

Some examples of how using begin and end as block boundaries looks in C++ are 
shown in Listing 31-17, Listing 31-18, and Listing 31-19:

Listing 31-17 C++ example of using begin and end as block boundaries in an if block.

if ( pixelColor == Color_Red )  

   { 

   statement1; 

   statement2; 

   ... 

   }

Listing 31-18 C++ example of using begin and end as block boundaries in a while block.

while ( pixelColor == Color_Red ) 

   { 

   statement1; 

   statement2; 

   ... 

   }
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Listing 31-19 C++ example of using begin and end as block boundaries in a switch/case 
block.

switch ( pixelColor )  

   { 

   case Color_Red: 

      statement1; 

      statement2; 

      ... 

      break; 

   case Color_Green: 

      statement1; 

      statement2; 

      ... 

      break; 

   default: 

      statement1; 

      statement2; 

      ... 

      break; 

   }

This alignment style works well; it supports the Fundamental Theorem of Formatting 
(once again, by exposing the code’s underlying logical structure). Its only limitation is 
that it can’t be applied literally in switch/case statements in C++ and Java, as shown by 
Listing 31-19. (The break keyword is a substitute for the closing brace, but there is no 
equivalent to the opening brace.)

Endline Layout

Another layout strategy is “endline layout,” which refers to a large group of layout 
strategies in which the code is indented to the middle or end of the line. The endline 
indentation is used to align a block with the keyword that began it, to make a routine’s 
subsequent parameters line up under its first parameter, to line up cases in a case 
statement, and for other similar purposes. Listing 31-20 is an abstract example:

Listing 31-20 Abstract example of the endline layout style.

A  XXXXXX  XXXXXXXXXXXXXXXXXXXXXXXXXXX 

B          XXXXXXXXXXXXXXX 

C          XXXXXXXXXXXXXXX 

D          XX

In this example, statement A begins the control construct and statement D ends it. State-
ments B, C, and D are aligned under the keyword that began the block in statement A. 
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The uniform indentation of B, C, and D shows that they’re grouped together. Listing 
31-21 is a less abstract example of code formatted using this strategy:

Listing 31-21 Visual Basic example of endline layout of a while block.

While ( pixelColor = Color_Red )  

        statement1; 

        statement2; 

        ... 

        Wend

In the example, the begin is placed at the end of the line rather than under the corre-
sponding keyword. Some people prefer to put begin under the keyword, but choosing 
between those two fine points is the least of this style’s problems.

The endline layout style works acceptably in a few cases. Listing 31-22 is an example 
in which it works:

Listing 31-22 A rare Visual Basic example in which endline layout seems appealing.

If ( soldCount > 1000 ) Then 

                             markdown = 0.10 

                             profit = 0.05

The else keyword is aligned 
with the then keyword 
above it.

                        Else  

                             markdown = 0.05 

                        End If

In this case, the Then, Else, and End If keywords are aligned and the code following 
them is also aligned. The visual effect is a clear logical structure.

If you look critically at the earlier case-statement example, you can probably predict the 
unraveling of this style. As the conditional expression becomes more complicated, the 
style will give useless or misleading clues about the logical structure. Listing 31-23 is an 
example of how the style breaks down when it’s used with a more complicated conditional:

Listing 31-23 A more typical Visual Basic example, in which endline layout breaks down.

If ( soldCount > 10 And prevMonthSales > 10 ) Then 

   If ( soldCount > 100 And prevMonthSales > 10 ) Then 

      If ( soldCount > 1000 ) Then 

                                 markdown = 0.1 

                                 profit = 0.05 

                              Else 

                                 markdown = 0.05 

                              End If 

                                                  Else 

                                                     markdown = 0.025 

                                                  End If 

                                              Else 

                                                 markdown = 0.0 

                                              End If

CODING 
HORROR
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What’s the reason for the bizarre formatting of the Else clauses at the end of the exam-
ple? They’re consistently indented under the corresponding keywords, but it’s hard to 
argue that their indentations clarify the logical structure. And if the code were modi-
fied so that the length of the first line changed, the endline style would require that 
the indentation of corresponding statements be changed. This poses a maintenance 
problem that pure block, pure-block emulation, and using begin-end to designate 
block boundaries do not.

You might think that these examples are contrived just to make a point, but this 
style has been persistent despite its drawbacks. Numerous textbooks and program-
ming references have recommended this style. The earliest book I saw that recom-
mended this style was published in the mid-1970s, and the most recent was 
published in 2003.

Overall, endline layout is inaccurate, hard to apply consistently, and hard to maintain. 
You’ll see other problems with endline layout throughout the chapter.

Which Style Is Best?

If you’re working in Visual Basic, use pure-block indentation. (The Visual Basic IDE 
makes it hard not to use this style anyway.)

In Java, standard practice is to use pure-block indentation.

In C++, you might simply choose the style you like or the one that is preferred by the 
majority of people on your team. Either pure-block emulation or begin-end block 
boundaries work equally well. The only study that has compared the two styles found 
no statistically significant difference between the two as far as understandability is 
concerned (Hansen and Yim 1987).

Neither of the styles is foolproof, and each requires an occasional “reasonable and obvi-
ous” compromise. You might prefer one or the other for aesthetic reasons. This book 
uses pure-block style in its code examples, so you can see many more illustrations of 
how that style works just by skimming through its examples. Once you’ve chosen a 
style, you reap the most benefit from good layout when you apply it consistently.

31.4 Laying Out Control Structures
Cross-Reference For details 
on documenting control 
structures, see “Commenting 
Control Structures” in Sec-
tion 32.5. For a discussion of 
other aspects of control 
structures, see Chapters 14 
through 19.

The layout of some program elements is primarily a matter of aesthetics. Layout of 
control structures, however, affects readability and comprehensibility and is therefore 
a practical priority.
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Fine Points of Formatting Control-Structure Blocks

Working with control-structure blocks requires attention to some fine details. Here 
are some guidelines:

Avoid unindented begin-end pairs In the style shown in Listing 31-24, the begin-end 
pair is aligned with the control structure, and the statements that begin and end 
enclose are indented under begin.

Listing 31-24 Java example of unindented begin-end pairs.

The begin is aligned with 
the for.

The statements are indented 
under begin.

The end is aligned with 
the for.

for ( int i = 0; i < MAX_LINES; i++ )  

{

   ReadLine( i ); 

   ProcessLine( i );

}

Although this approach looks fine, it violates the Fundamental Theorem of Formatting; 
it doesn’t show the logical structure of the code. Used this way, the begin and end aren’t 
part of the control construct, but they aren’t part of the statement(s) after it either.

Listing 31-25 is an abstract view of this approach:

Listing 31-25 Abstract example of misleading indentation.

A   XXXXXXXXXXXXXXXXXXXX 

B   XXXXXXX 

C      XXXXXXXX 

D      XXXXXXXXXXXXXX 

E   XXXX

In this example, is statement B subordinate to statement A? It doesn’t look like part of 
statement A, and it doesn’t look as if it’s subordinate to it either. If you have used this 
approach, change to one of the two layout styles described earlier and your formatting 
will be more consistent.

Avoid double indentation with begin and end A corollary to the rule against nonin-
dented begin-end pairs is the rule against doubly indented begin-end pairs. In this style, 
shown in Listing 31-26, begin and end are indented and the statements they enclose 
are indented again:

Listing 31-26 Java example of inappropriate double indentation of begin-end block.

for ( int i = 0; i < MAX_LINES; i++ ) 

   {

The statements below the 
begin are indented as if they 
were subordinate to it.

      ReadLine( i ); 

      ProcessLine( i ); 

   }

CODING 
HORROR
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This is another example of a style that looks fine but violates the Fundamental Theo-
rem of Formatting. One study showed no difference in comprehension between pro-
grams that are singly indented and programs that are doubly indented (Miaria et al. 
1983), but this style doesn’t accurately show the logical structure of the program. 
ReadLine() and ProcessLine() are shown as if they are logically subordinate to the begin-
end pair, and they aren’t.

The approach also exaggerates the complexity of a program’s logical structure. Which 
of the structures shown in Listing 31-27 and Listing 31-28 looks more complicated?

Listing 31-27 Abstract Structure 1.

XXXXXXXXXXXXXXXXXXXX 

   XXXXX 

      XXXXXXXXX 

      XXXXXXXXXXXX 

   XXXXX

Listing 31-28 Abstract Structure 2.

XXXXXXXXXXXXXXXXXXXX 

   XXXXX 

   XXXXXXXXXX 

   XXXXXXXXXXXXX 

   XXXXX

Both are abstract representations of the structure of the for loop. Abstract Structure 1 
looks more complicated even though it represents the same code as Abstract Struc-
ture 2. If you were to nest statements to two or three levels, double indentation would 
give you four or six levels of indentation. The layout that resulted would look more 
complicated than the actual code would be. Avoid the problem by using pure-block 
emulation or by using begin and end as block boundaries and aligning begin and end 
with the statements they enclose.

Other Considerations

Although indentation of blocks is the major issue in formatting control structures, 
you’ll run into a few other kinds of issues, so here are some more guidelines:

Use blank lines between paragraphs Some blocks of code aren’t demarcated with 
begin-end pairs. A logical block—a group of statements that belong together—should be 
treated the way paragraphs in English are. Separate them from one another with 
blank lines. Listing 31-29 shows an example of paragraphs that should be separated:
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Listing 31-29 C++ example of code that should be grouped and separated.

cursor.start = startingScanLine; 

cursor.end   = endingScanLine; 

window.title = editWindow.title; 

window.dimensions      = editWindow.dimensions; 

window.foregroundColor = userPreferences.foregroundColor; 

cursor.blinkRate       = editMode.blinkRate; 

window.backgroundColor = userPreferences.backgroundColor; 

SaveCursor( cursor ); 

SetCursor( cursor );

Cross-Reference If you use 
the Pseudocode Program-
ming Process, your blocks of 
code will be separated auto-
matically. For details, see 
Chapter 9, “The Pseudocode 
Programming Process.”

This code looks all right, but blank lines would improve it in two ways. First, when 
you have a group of statements that don’t have to be executed in any particular order, 
it’s tempting to lump them all together this way. You don’t need to further refine the 
statement order for the computer, but human readers appreciate more clues about 
which statements need to be performed in a specific order and which statements are 
just along for the ride. The discipline of putting blank lines throughout a program 
makes you think harder about which statements really belong together. The revised 
fragment in Listing 31-30 shows how this collection should really be organized.

Listing 31-30 C++ example of code that is appropriately grouped and separated.

These lines set up a text 
window.

These lines set up a cursor 
and should be separated 
from the preceding lines.

window.dimensions = editWindow.dimensions; 

window.title = editWindow.title; 

window.backgroundColor = userPreferences.backgroundColor; 

window.foregroundColor = userPreferences.foregroundColor; 

cursor.start = startingScanLine; 

cursor.end = endingScanLine; 

cursor.blinkRate = editMode.blinkRate; 

SaveCursor( cursor ); 

SetCursor( cursor );

The reorganized code shows that two things are happening. In the first example, the 
lack of statement organization and blank lines, and the old aligned–equals signs trick, 
make the statements look more related than they are.

The second way in which using blank lines tends to improve code is that it opens up 
natural spaces for comments. In Listing 31-30, a comment above each block would 
nicely supplement the improved layout.

Format single-statement blocks consistently A single-statement block is a single 
statement following a control structure, such as one statement following an if test. In 
such a case, begin and end aren’t needed for correct compilation and you have the 
three style options shown in Listing 31-31:
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Listing 31-31 Java example of style options for single-statement blocks.

Style 1 if ( expression )  

   one-statement; 

Style 2a if ( expression ) { 

   one-statement; 

} 

Style 2b if ( expression )  

   { 

   one-statement; 

   } 

Style 3 if ( expression ) one-statement;

There are arguments in favor of each of these approaches. Style 1 follows the indenta-
tion scheme used with blocks, so it’s consistent with other approaches. Style 2 (either 
2a or 2b) is also consistent, and the begin-end pair reduces the chance that you’ll add 
statements after the if test and forget to add begin and end. This would be a particularly 
subtle error because the indentation would tell you that everything is OK, but the 
indentation wouldn’t be interpreted the same way by the compiler. Style 3’s main 
advantage over Style 2 is that it’s easier to type. Its advantage over Style 1 is that if it’s 
copied to another place in the program, it’s more likely to be copied correctly. Its dis-
advantage is that in a line-oriented debugger, the debugger treats the line as one line 
and the debugger doesn’t show you whether it executes the statement after the if test.

I’ve used Style 1 and have been the victim of incorrect modification many times. I 
don’t like the exception to the indentation strategy caused by Style 3, so I avoid it alto-
gether. On a group project, I favor either variation of Style 2 for its consistency and 
safe modifiability. Regardless of the style you choose, use it consistently and use the 
same style for if tests and all loops.

For complicated expressions, put separate conditions on separate lines Put each part 
of a complicated expression on its own line. Listing 31-32 shows an expression that’s 
formatted without any attention to readability:

Listing 31-32 Java example of an essentially unformatted (and unreadable) complicated 
expression.

if ((('0' <= inChar) && (inChar <= '9')) || (('a' <= inChar) &&  

   (inChar <= 'z')) || (('A' <= inChar) && (inChar <= 'Z')))  

   ...

This is an example of formatting for the computer instead of for human readers. By break-
ing the expression into several lines, as in Listing 31-33, you can improve readability.
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Listing 31-33 Java example of a readable complicated expression.

Cross-Reference Another 
technique for making com-
plicated expressions read-
able is to put them into 
boolean functions. For 
details on that technique 
and other readability tech-
niques, see Section 19.1, 
“Boolean Expressions.”

if ( ( ( '0' <= inChar ) && ( inChar <= '9' ) ) || 

   ( ( 'a' <= inChar ) && ( inChar <= 'z' ) ) || 

   ( ( 'A' <= inChar ) && ( inChar <= 'Z' ) ) )  

   ...

The second fragment uses several formatting techniques—indentation, spacing, num-
ber-line ordering, and making each incomplete line obvious—and the result is a read-
able expression. Moreover, the intent of the test is clear. If the expression contained a 
minor error, such as using a z instead of a Z, it would be obvious in code formatted 
this way, whereas the error wouldn’t be clear with less careful formatting.

Cross-Reference For details 
on the use of gotos, see Sec-
tion 17.3, “goto.”

Avoid gotos The original reason to avoid gotos was that they made it difficult to 
prove that a program was correct. That’s a nice argument for all the people who want 
to prove their programs correct, which is practically no one. The more pressing prob-
lem for most programmers is that gotos make code hard to format. Do you indent all 
the code between the goto and the label it goes to? What if you have several gotos to the 
same label? Do you indent each new one under the previous one? Here’s some advice 
for formatting gotos:

Goto labels should be left-
aligned in all caps and 
should include the program-
mer’s name, home phone 
number, and credit card 
number.
—Abdul Nizar

■ Avoid gotos. This sidesteps the formatting problem altogether.

■ Use a name in all caps for the label the code goes to. This makes the label obvi-
ous.

■ Put the statement containing the goto on a line by itself. This makes the goto 
obvious.

■ Put the label the goto goes to on a line by itself. Surround it with blank lines. This 
makes the label obvious. Outdent the line containing the label to the left margin 
to make the label as obvious as possible.

Listing 31-34 shows these goto layout conventions at work.

Cross-Reference For other 
methods of addressing this 
problem, see “Error Process-
ing and gotos” in Section 
17.3.

Listing 31-34 C++ example of making the best of a bad situation (using goto).

void PurgeFiles( ErrorCode & errorCode ) { 

   FileList fileList; 

   int numFilesToPurge = 0; 

   MakePurgeFileList( fileList, numFilesToPurge ); 

 

   errorCode = FileError_Success; 

   int fileIndex = 0; 

   while ( fileIndex < numFilesToPurge ) { 

      DataFile fileToPurge; 

      if ( !FindFile( fileList[ fileIndex ], fileToPurge ) ) { 

         errorCode = FileError_NotFound;

Here’s a goto.          goto END_PROC; 

      } 
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      if ( !OpenFile( fileToPurge ) ) { 

         errorCode = FileError_NotOpen;

Here’s a goto.          goto END_PROC; 

      } 

 

      if ( !OverwriteFile( fileToPurge ) ) { 

         errorCode = FileError_CantOverwrite;

Here’s a goto.          goto END_PROC; 

      } 

 

      if ( !Erase( fileToPurge ) ) { 

         errorCode = FileError_CantErase;

Here’s a goto.          goto END_PROC; 

      } 

      fileIndex++; 

   } 

Here’s the goto label. The 
intent of the capitalization 
and layout is to make the 
label hard to miss.

END_PROC: 

 

   DeletePurgeFileList( fileList, numFilesToPurge ); 

}

Cross-Reference For details 
on using case statements, 
see Section 15.2, “case 
Statements.” 

The C++ example in Listing 31-34 is relatively long so that you can see a case in which 
an expert programmer might conscientiously decide that a goto is the best design 
choice. In such a case, the formatting shown is about the best you can do.

No endline exception for case statements One of the hazards of endline layout 
comes up in the formatting of case statements. A popular style of formatting cases is to 
indent them to the right of the description of each case, as shown in Listing 31-35. The 
big problem with this style is that it’s a maintenance headache.

Listing 31-35 C++ example of hard-to-maintain endline layout of a case statement.

switch ( ballColor ) { 

   case BallColor_Blue:             Rollout(); 

                                    break; 

   case BallColor_Orange:           SpinOnFinger(); 

                                    break; 

   case BallColor_FluorescentGreen: Spike(); 

                                    break; 

   case BallColor_White:            KnockCoverOff(); 

                                    break; 

   case BallColor_WhiteAndBlue:     if ( mainColor == BallColor_White ) { 

                                       KnockCoverOff(); 

                                    } 

                                    else if ( mainColor == BallColor_Blue ) { 

                                       RollOut(); 

                                    } 

                                    break; 

   default:                         FatalError( "Unrecognized kind of ball." ); 

                                    break; 

}
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If you add a case with a longer name than any of the existing names, you have to shift 
out all the cases and the code that goes with them. The large initial indentation makes 
it awkward to accommodate any more logic, as shown in the WhiteAndBlue case. The 
solution is to switch to your standard indentation increment. If you indent statements 
in a loop three spaces, indent cases in a case statement the same number of spaces, as 
in Listing 31-36:

Listing 31-36 C++ example of good standard indentation of a case statement.

switch ( ballColor ) { 

   case BallColor_Blue: 

      Rollout(); 

      break; 

   case BallColor_Orange: 

      SpinOnFinger(); 

      break; 

   case BallColor_FluorescentGreen: 

      Spike(); 

      break; 

   case BallColor_White: 

      KnockCoverOff(); 

      break; 

   case BallColor_WhiteAndBlue: 

      if ( mainColor == BallColor_White ) { 

         KnockCoverOff(); 

      } 

      else if ( mainColor == BallColor_Blue ) { 

         RollOut(); 

      } 

      break; 

   default: 

      FatalError( "Unrecognized kind of ball." ); 

      break; 

}

This is an instance in which many people might prefer the looks of the first example. 
For the ability to accommodate longer lines, consistency, and maintainability, how-
ever, the second approach wins hands down.

If you have a case statement in which all the cases are exactly parallel and all the 
actions are short, you could consider putting the case and action on the same line. In 
most instances, however, you’ll live to regret it. The formatting is a pain initially and 
breaks under modification, and it’s hard to keep the structure of all the cases parallel 
as some of the short actions become longer ones.
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31.5 Laying Out Individual Statements
This section explains many ways to improve individual statements in a program.

Statement Length
Cross-Reference For details 
on documenting individual 
statements, see “Comment-
ing Individual Lines” in Sec-
tion 32.5.

A common and somewhat outdated rule is to limit statement line length to 80 charac-
ters. Here are the reasons:

■ Lines longer than 80 characters are hard to read.

■ The 80-character limitation discourages deep nesting.

■ Lines longer than 80 characters often won’t fit on 8.5” x 11” paper, especially 
when code is printed “2 up” (2 pages of code to each physical printout page).

With larger screens, narrow typefaces, and landscape mode, the 80-character limit 
appears increasingly arbitrary. A single 90-character-long line is usually more readable 
than one that has been broken in two just to avoid spilling over the 80th column. 
With modern technology, it’s probably all right to exceed 80 columns occasionally.

Using Spaces for Clarity

Add white space within a statement for the sake of readability:

Use spaces to make logical expressions readable The expression

while(pathName[startPath+position]<>';') and 

   ((startPath+position)<length(pathName)) do

is about as readable as Idareyoutoreadthis.

As a rule, you should separate identifiers from other identifiers with spaces. If you use 
this rule, the while expression looks like this:

while ( pathName[ startPath+position ] <> ';' ) and 

   (( startPath + position ) < length( pathName )) do

Some software artists might recommend enhancing this particular expression with 
additional spaces to emphasize its logical structure, this way:

while ( pathName[ startPath + position ] <> ';' ) and 

   ( ( startPath + position ) < length( pathName ) ) do

This is fine, although the first use of spaces was sufficient to ensure readability. Extra 
spaces hardly ever hurt, however, so be generous with them.
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Use spaces to make array references readable The expression

grossRate[census[groupId].gender,census[groupId].ageGroup]

is no more readable than the earlier dense while expression. Use spaces around each 
index in the array to make the indexes readable. If you use this rule, the expression 
looks like this:

grossRate[ census[ groupId ].gender, census[ groupId ].ageGroup ]

Use spaces to make routine arguments readable What is the fourth argument to the 
following routine?

ReadEmployeeData(maxEmps,empData,inputFile,empCount,inputError);

Now, what is the fourth argument to the following routine?

GetCensus( inputFile, empCount, empData, maxEmps, inputError );

Which one was easier to find? This is a realistic, worthwhile question because argu-
ment positions are significant in all major procedural languages. It’s common to have 
a routine specification on one half of your screen and the call to the routine on the 
other half, and to compare each formal parameter with each actual parameter.

Formatting Continuation Lines
One of the most vexing problems of program layout is deciding what to do with the 
part of a statement that spills over to the next line. Do you indent it by the normal 
indentation amount? Do you align it under the keyword? What about assignments?

Here’s a sensible, consistent approach that’s particularly useful in Java, C, C++, Visual 
Basic, and other languages that encourage long variable names:

Make the incompleteness of a statement obvi   . Sometimes a statement must be 
broken across lines, either because it’s longer than programming standards allow or 
because it’s too absurdly long to put on one line. Make it obvious that the part of the 
statement on the first line is only part of a statement. The easiest way to do that is to 
break up the statement so that the part on the first line is blatantly incorrect syntacti-
cally if it stands alone. Some examples are shown in Listing 31-37:

Listing 31-37 Java examples of obviously incomplete statements.

The && signals that the 
statement isn’t complete.

while ( pathName[ startPath + position ] != ';' ) && 

   ( ( startPath + position ) <= pathName.length() ) 

... 

The plus sign (+) signals that 
the statement isn’t complete.

totalBill = totalBill + customerPurchases[ customerID ] + 

   SalesTax( customerPurchases[ customerID ] ); 

... 

The comma (,) signals that 
the statement isn’t complete.

DrawLine( window.north, window.south, window.east, window.west, 

   currentWidth, currentAttribute ); 

...
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In addition to telling the reader that the statement isn’t complete on the first line, the 
break helps prevent incorrect modifications. If the continuation of the statement were 
deleted, the first line wouldn’t look as if you had merely forgotten a parenthesis or 
semicolon—it would clearly need something more.

An alternative approach that also works well is to put the continuation character at the 
beginning of the continuation line, as shown in Listing 31-38.

Listing 31-38 Java examples of obviously incomplete statements—alternate style.

while ( pathName[ startPath + position ] != ';' ) 

   && ( ( startPath + position ) <= pathName.length() ) 

... 

 

totalBill = totalBill + customerPurchases[ customerID ] 

   + SalesTax( customerPurchases[ customerID ] );

While this style won’t induce a syntax error with a hanging && or +, it does make it 
easier to scan for operators at the left edge of the column, where the text is aligned, 
than at the right edge, where it’s ragged. It has the additional advantage of illuminat-
ing the structure of operations, as illustrated in Listing 31-39.

Listing 31-39  Java example of a style that illuminates complex operations.

totalBill = totalBill 

   + customerPurchases[ customerID ] 

   + CitySalesTax( customerPurchases[ customerID ] ) 

   + StateSalesTax( customerPurchases[ customerID ] ) 

   + FootballStadiumTax() 

   - SalesTaxExemption( customerPurchases[ customerID ] );

Keep closely related elements together When you break a line, keep things together 
that belong together: array references, arguments to a routine, and so on. The example 
shown in Listing 31-40 is poor form:

Listing 31-40 Java example of breaking a line poorly.

customerBill = PreviousBalance( paymentHistory[ customerID ] ) + LateCharge( 

   paymentHistory[ customerID ] );

Admittedly, this line break follows the guideline of making the incompleteness of the 
statement obvious, but it does so in a way that makes the statement unnecessarily 
hard to read. You might find a case in which the break is necessary, but in this case it 
isn’t. It’s better to keep the array references all on one line. Listing 31-41 shows better 
formatting:

CODING 
HORROR
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Listing 31-41  Java example of breaking a line well.

customerBill = PreviousBalance( paymentHistory[ customerID ] ) + 

   LateCharge( paymentHistory[ customerID ] );

Indent routine-call continuation lines the standard amount If you normally indent 
three spaces for statements in a loop or a conditional, indent the continuation lines 
for a routine by three spaces. Some examples are shown in Listing 31-42:

Listing 31-42  Java examples of indenting routine-call continuation lines using the stan-
dard indentation increment.

DrawLine( window.north, window.south, window.east, window.west, 

   currentWidth, currentAttribute ); 

SetFontAttributes( faceName[ fontId ], size[ fontId ], bold[ fontId ],  

   italic[ fontId ], syntheticAttribute[ fontId ].underline, 

   syntheticAttribute[ fontId ].strikeout );

One alternative to this approach is to line up the continuation lines under the first 
argument to the routine, as shown in Listing 31-43:

Listing 31-43  Java examples of indenting a routine-call continuation line to emphasize 
routine names.

DrawLine( window.north, window.south, window.east, window.west, 

          currentWidth, currentAttribute ); 

SetFontAttributes( faceName[ fontId ], size[ fontId ], bold[ fontId ],  

                   italic[ fontId ], syntheticAttribute[ fontId ].underline, 

                   syntheticAttribute[ fontId ].strikeout );

From an aesthetic point of view, this looks a little ragged compared to the first approach. 
It is also difficult to maintain as routine names change, argument names change, and so 
on. Most programmers tend to gravitate toward the first style over time.

Make it easy to find the end of a continuation line One problem with the approach 
shown above is that you can’t easily find the end of each line. Another alternative is to 
put each argument on a line of its own and indicate the end of the group with a clos-
ing parenthesis. Listing 31-44 shows how it looks.

Listing 31-44 Java examples of formatting routine-call continuation lines one argument to 
a line.

DrawLine( 

   window.north, 

   window.south, 

   window.east, 

   window.west, 

   currentWidth, 
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   currentAttribute 

); 

 

SetFontAttributes( 

   faceName[ fontId ], 

   size[ fontId ], 

   bold[ fontId ], 

   italic[ fontId ], 

   syntheticAttribute[ fontId ].underline, 

   syntheticAttribute[ fontId ].strikeout 

);

Obviously, this approach takes up a lot of real estate. If the arguments to a routine are 
long object-field references or pointer names, however, as the last two are, using one 
argument per line improves readability substantially. The ); at the end of the block 
makes the end of the call clear. You also don’t have to reformat when you add a param-
eter; you just add a new line.

In practice, usually only a few routines need to be broken into multiple lines. You can 
handle others on one line. Any of the three options for formatting multiple-line rou-
tine calls works all right if you use it consistently.

Indent control-statement continuation lines the standard amount If you run out of 
room for a for loop, a while loop, or an if statement, indent the continuation line by the 
same amount of space that you indent statements in a loop or after an if statement. 
Two examples are shown in Listing 31-45:

Listing 31-45 Java examples of indenting control-statement continuation lines.

while ( ( pathName[ startPath + position ] != ';' ) &&

This continuation line is 
indented the standard 
number of spaces...

   ( ( startPath + position ) <= pathName.length() ) ) { 

   ... 

} 

 

for ( int employeeNum = employee.first + employee.offset;

...as is this one.    employeeNum < employee.first + employee.offset + employee.total; 

   employeeNum++ ) { 

   ... 

}

Cross-Reference Some-
times the best solution to a 
complicated test is to put it 
into a boolean function. For 
examples, see “Making 
Complicated Expressions 
Simple” in Section 19.1.

This meets the criteria set earlier in the chapter. The continuation part of the state-
ment is done logically—it’s always indented underneath the statement it continues. 
The indentation can be done consistently—it uses only a few more spaces than the 
original line. It’s as readable as anything else, and it’s as maintainable as anything else. 
In some cases you might be able to improve readability by fine-tuning the indentation 
or spacing, but be sure to keep the maintainability tradeoff in mind when you con-
sider fine-tuning.
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Do not align right sides of assignment statements In the first edition of this book I 
recommended aligning the right sides of statements containing assignments as 
shown in Listing 31-46: 

Listing 31-46 Java example of endline layout used for assignment-statement continua-
tion—bad practice.

customerPurchases = customerPurchases + CustomerSales( CustomerID ); 

customerBill      = customerBill + customerPurchases; 

totalCustomerBill = customerBill + PreviousBalance( customerID ) +  

                    LateCharge( customerID ); 

customerRating    = Rating( customerID, totalCustomerBill );

With the benefit of 10 years’ hindsight, I have found that, while this indentation style 
might look attractive, it becomes a headache to maintain the alignment of the equals 
signs as variable names change and code is run through tools that substitute tabs for 
spaces and spaces for tabs. It is also hard to maintain as lines are moved among differ-
ent parts of the program that have different levels of indentation.

For consistency with the other indentation guidelines as well as maintainability, treat 
groups of statements containing assignment operations just as you would treat other 
statements, as Listing 31-47 shows:

Listing 31-47 Java example of standard indentation for assignment-statement continua-
tion—good practice.

customerPurchases = customerPurchases + CustomerSales( CustomerID ); 

customerBill = customerBill + customerPurchases; 

totalCustomerBill = customerBill + PreviousBalance( customerID ) +  

   LateCharge( customerID ); 

customerRating = Rating( customerID, totalCustomerBill );

Indent assignment-statement continuation lines the standard amount In Listing 31-47, 
the continuation line for the third assignment statement is indented the standard 
amount. This is done for the same reasons that assignment statements in general are 
not formatted in any special way: general readability and maintainability.

Using Only One Statement Per Line
Modern languages such as C++ and Java allow multiple statements per line. The 
power of free formatting is a mixed blessing, however, when it comes to putting mul-
tiple statements on a line. This line contains several statements that could logically be 
separated onto lines of their own:

i = 0; j = 0; k = 0; DestroyBadLoopNames( i, j, k );
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One argument in favor of putting several statements on one line is that it requires 
fewer lines of screen space or printer paper, which allows more of the code to be 
viewed at once. It’s also a way to group related statements, and some programmers 
believe that it provides optimization clues to the compiler.

These are good reasons, but the reasons to limit yourself to one statement per line are 
more compelling:

■ Putting each statement on a line of its own provides an accurate view of a pro-
gram’s complexity. It doesn’t hide complexity by making complex statements 
look trivial. Statements that are complex look complex. Statements that are easy 
look easy.

Cross-Reference Code-level 
performance optimizations 
are discussed in Chapter 25, 
“Code-Tuning Strategies,” 
and Chapter 26, “Code-Tun-
ing Techniques.”

■ Putting several statements on one line doesn’t provide optimization clues to 
modern compilers. Today’s optimizing compilers don’t depend on formatting 
clues to do their optimizations. This is illustrated later in this section.

■ With statements on their own lines, the code reads from top to bottom, instead 
of top to bottom and left to right. When you’re looking for a specific line of code, 
your eye should be able to follow the left margin of the code. It shouldn’t have to 
dip into each and every line just because a single line might contain two state-
ments.

■ With statements on their own lines, it’s easy to find syntax errors when your 
compiler provides only the line numbers of the errors. If you have multiple state-
ments on a line, the line number doesn’t tell you which statement is in error.

■ With one statement to a line, it’s easy to step through the code with line-ori-
ented debuggers. If you have several statements on a line, the debugger executes 
them all at once and you have to switch to assembler to step through individual 
statements.

■ With one to a line, it’s easy to edit individual statements—to delete a line or tem-
porarily convert a line to a comment. If you have multiple statements on a line, 
you have to do your editing between other statements.

In C++, avoid using multiple operations per line (side effects) Side effects are conse-
quences of a statement other than its main consequence. In C++, the ++ operator on a 
line that contains other operations is a side effect. Likewise, assigning a value to a vari-
able and using the left side of the assignment in a conditional is a side effect.

Side effects tend to make code difficult to read. For example, if n equals 4, what is the 
printout of the statement shown in Listing 31-48?

Listing 31-48 C++ example of an unpredictable side effect.

PrintMessage( ++n, n + 2 );
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Is it 4 and 6? Is it 5 and 7? Is it 5 and 6? The answer is “None of the above.” The first 
argument, ++n, is 5. But the C++ language does not define the order in which terms in 
an expression or arguments to a routine are evaluated. So the compiler can evaluate 
the second argument, n + 2, either before or after the first argument; the result might 
be either 6 or 7, depending on the compiler. Listing 31-49 shows how you should 
rewrite the statement so that the intent is clear:

Listing 31-49  C++ example of avoiding an unpredictable side effect.

++n; 

PrintMessage( n, n + 2 );

If you’re still not convinced that you should put side effects on lines by themselves, try 
to figure out what the routine shown in Listing 31-50 does:

Listing 31-50 C example of too many operations on a line.

strcpy( char * t, char * s ) { 

   while ( *++t = *++s ) 

      ; 

}

Some experienced C programmers don’t see the complexity in that example because it’s 
a familiar function. They look at it and say, “That’s strcpy().” In this case, however, it’s not 
quite strcpy(). It contains an error. If you said, “That’s strcpy()” when you saw the code, 
you were recognizing the code, not reading it. This is exactly the situation you’re in 
when you debug a program: the code that you overlook because you “recognize” it 
rather than read it can contain the error that’s harder to find than it needs to be.

The fragment shown in Listing 31-51 is functionally identical to the first and is more 
readable:

Listing 31-51 C example of a readable number of operations on each line.

strcpy( char * t, char * s ) { 

   do { 

      ++t; 

      ++s; 

      *t = *s; 

    } 

   while ( *t != '\0' ); 

}

In the reformatted code, the error is apparent. Clearly, t and s are incremented before 
*s is copied to *t. The first character is missed.

The second example looks more elaborate than the first, even though the operations 
performed in the second example are identical. The reason it looks more elaborate is 
that it doesn’t hide the complexity of the operations.
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Cross-Reference For details 
on code tuning, see Chapter 
25, “Code-Tuning Strate-
gies,” and Chapter 26, 
“Code-Tuning Techniques.”

Improved performance doesn’t justify putting multiple operations on the same line 
either. Because the two strcpy() routines are logically equivalent, you would expect the 
compiler to generate identical code for them. When both versions of the routine were 
profiled, however, the first version took 4.81 seconds to copy 5,000,000 strings and 
the second took 4.35 seconds.

In this case, the “clever” version carries an 11 percent speed penalty, which makes it 
look a lot less clever. The results vary from compiler to compiler, but in general they 
suggest that until you’ve measured performance gains, you’re better off striving for 
clarity and correctness first, performance second.

Even if you read statements with side effects easily, take pity on other people who will 
read your code. Most good programmers need to think twice to understand expres-
sions with side effects. Let them use their brain cells to understand the larger ques-
tions of how your code works rather than the syntactic details of a specific expression.

Laying Out Data Declarations
Cross-Reference For details 
on documenting data decla-
rations, see “Commenting 
Data Declarations” in Section 
32.5. For aspects of data use, 
see Chapters 10 through 13.

Use only one data declaration per line As shown in the previous examples, you 
should give each data declaration its own line. It’s easier to put a comment next to 
each declaration if each one is on its own line. It’s easier to modify declarations 
because each declaration is self-contained. It’s easier to find specific variables because 
you can scan a single column rather than reading each line. It’s easier to find and fix 
syntax errors because the line number the compiler gives you has only one declara-
tion on it.

Quickly—in the data declaration in Listing 31-52, what type of variable is currentBot-
tom?

Listing 31-52 C++ example of crowding more than one variable declaration onto a line.

int rowIndex, columnIdx; Color previousColor, currentColor, nextColor; Point 

previousTop, previousBottom, currentTop, currentBottom, nextTop, nextBottom; Font 

previousTypeface, currentTypeface, nextTypeface; Color choices[ NUM_COLORS ];

This is an extreme example, but it’s not too far removed from a much more common 
style shown in Listing 31-53: 

Listing 31-53 C++ example of crowding more than one variable declaration onto a line.

int rowIndex, columnIdx;  

Color previousColor, currentColor, nextColor; 

Point previousTop, previousBottom, currentTop, currentBottom, nextTop, 

nextBottom;  

Font previousTypeface, currentTypeface, nextTypeface; 

Color choices[ NUM_COLORS ];

CODING 
HORROR

CODING 
HORROR
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This is not an uncommon style of declaring variables, and the variable is still hard to 
find because all the declarations are jammed together. The variable’s type is hard to 
find, too. Now, what is nextColor’s type in Listing 31-54?

Listing 31-54 C++ example of readability achieved by putting only one variable declara-
tion on each line.

int rowIndex;  

int columnIdx;  

Color previousColor;  

Color currentColor;  

Color nextColor; 

Point previousTop;  

Point previousBottom;  

Point currentTop;  

Point currentBottom;  

Point nextTop;  

Point nextBottom;  

Font previousTypeface;  

Font currentTypeface;  

Font nextTypeface; 

Color choices[ NUM_COLORS ];

The variable nextColor was probably easier to find than nextTypeface was in Listing 31-
53. This style is characterized by one declaration per line and a complete declaration, 
including the variable type, on each line.

Admittedly, this style chews up a lot of screen space—20 lines instead of the three in 
the first example, although those three lines were pretty ugly. I can’t point to any stud-
ies that show that this style leads to fewer bugs or greater comprehension. If Sally Pro-
grammer, Jr., asked me to review her code, however, and her data declarations looked 
like the first example, I’d say “No way—too hard to read.” If they looked like the sec-
ond example, I’d say “Uh...maybe I’ll get back to you.” If they looked like the final 
example, I would say “Certainly—it’s a pleasure.”

Declare variables close to where they’re first used A style that’s preferable to declar-
ing all variables in a big block is to declare each variable close to where it’s first used. 
This reduces “span” and “live time” and facilitates refactoring code into smaller rou-
tines when necessary. For more details, see “Keep Variables ‘Live’ for as Short a Time 
as Possible” in Section 10.4.

Order declarations sensibly In Listing 31-54, the declarations are grouped by types. 
Grouping by types is usually sensible since variables of the same type tend to be used 
in related operations. In other cases, you might choose to order them alphabetically 
by variable name. Although alphabetical ordering has many advocates, my feeling is 
that it’s too much work for what it’s worth. If your list of variables is so long that alpha-
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betical ordering helps, your routine is probably too big. Break it up so that you have 
smaller routines with fewer variables.

In C++, put the asterisk next to the variable name in pointer declarations or declare 
pointer types It’s common to see pointer declarations that put the asterisk next to 
the type, as in Listing 31-55:

Listing 31-55 C++ example of asterisks in pointer declarations.

EmployeeList* employees; 

File* inputFile;

The problem with putting the asterisk next to the type name rather than the variable 
name is that, when you put more than one declaration on a line, the asterisk will apply 
only to the first variable even though the visual formatting suggests it applies to all 
variables on the line. You can avoid this problem by putting the asterisk next to the 
variable name rather than the type name, as in Listing 31-56:

Listing 31-56 C++ example of using asterisks in pointer declarations.

EmployeeList *employees; 

File *inputFile;

This approach has the weakness of suggesting that the asterisk is part of the variable 
name, which it isn’t. The variable can be used either with or without the asterisk.

The best approach is to declare a type for the pointer and use that instead. An example 
is shown in Listing 31-57:

Listing 31-57 C++ example of good uses of a pointer type in declarations.

EmployeeListPointer employees; 

FilePointer inputFile;

The particular problem addressed by this approach can be solved either by requiring 
all pointers to be declared using pointer types, as shown in Listing 31-57, or by requir-
ing no more than one variable declaration per line. Be sure to choose at least one of 
these solutions!

31.6 Laying Out Comments
Cross-Reference For details 
on other aspects of com-
ments, see Chapter 32, “Self-
Documenting Code.”

Comments done well can greatly enhance a program’s readability; comments done 
poorly can actually hurt it. The layout of comments plays a large role in whether they 
help or hinder readability.
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Indent a comment with its corresponding code Visual indentation is a valuable aid to 
understanding a program’s logical structure, and good comments don’t interfere with 
the visual indentation. For example, what is the logical structure of the routine shown 
in Listing 31-58?

Listing 31-58 Visual Basic example of poorly indented comments.

For transactionId = 1 To totalTransactions 

' get transaction data 

   GetTransactionType( transactionType ) 

   GetTransactionAmount( transactionAmount ) 

 

' process transaction based on transaction type 

   If transactionType = Transaction_Sale Then 

      AcceptCustomerSale( transactionAmount ) 

 

   Else  

      If transactionType = Transaction_CustomerReturn Then 

 

' either process return automatically or get manager approval, if required 

         If transactionAmount >= MANAGER_APPROVAL_LEVEL Then 

 

' try to get manager approval and then accept or reject the return 

' based on whether approval is granted 

            GetMgrApproval( isTransactionApproved ) 

            If ( isTransactionApproved ) Then 

               AcceptCustomerReturn( transactionAmount ) 

            Else 

               RejectCustomerReturn( transactionAmount ) 

            End If 

         Else 

 

' manager approval not required, so accept return 

            AcceptCustomerReturn( transactionAmount ) 

         End If 

      End If 

   End If 

Next 

In this example, you don’t get much of a clue to the logical structure because the com-
ments completely obscure the visual indentation of the code. You might find it hard to 
believe that anyone ever makes a conscious decision to use such an indentation style, 
but I’ve seen it in professional programs and know of at least one textbook that rec-
ommends it.

The code shown in Listing 31-59 is exactly the same as that in Listing 31-58, except for 
the indentation of the comments.

CODING 
HORROR
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Listing 31-59 Visual Basic example of nicely indented comments.

For transactionId = 1 To totalTransactions 

   ' get transaction data 

   GetTransactionType( transactionType ) 

   GetTransactionAmount( transactionAmount ) 

 

   ' process transaction based on transaction type 

   If transactionType = Transaction_Sale Then 

      AcceptCustomerSale( transactionAmount ) 

 

   Else  

      If transactionType = Transaction_CustomerReturn Then 

 

         ' either process return automatically or get manager approval, if required 

         If transactionAmount >= MANAGER_APPROVAL_LEVEL Then 

 

            ' try to get manager approval and then accept or reject the return 

            ' based on whether approval is granted 

            GetMgrApproval( isTransactionApproved ) 

            If ( isTransactionApproved ) Then 

               AcceptCustomerReturn( transactionAmount ) 

            Else 

               RejectCustomerReturn( transactionAmount ) 

            End If 

         Else 

            ' manager approval not required, so accept return 

            AcceptCustomerReturn( transactionAmount ) 

         End If 

      End If 

   End If 

Next 

In Listing 31-59, the logical structure is more apparent. One study of the effectiveness 
of commenting found that the benefit of having comments was not conclusive, and 
the author speculated that it was because they “disrupt visual scanning of the pro-
gram” (Shneiderman 1980). From these examples, it’s obvious that the style of com-
menting strongly influences whether comments are disruptive.

Set off each comment with at least one blank line If someone is trying to get an over-
view of your program, the most effective way to do it is to read the comments without 
reading the code. Setting comments off with blank lines helps a reader scan the code. 
An example is shown in Listing 31-60:

Listing 31-60 Java example of setting off a comment with a blank line.

// comment zero 

CodeStatementZero; 

CodeStatementOne; 

 

// comment one 

CodeStatementTwo; 

CodeStatementThree;
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Some people use a blank line both before and after the comment. Two blanks use 
more display space, but some people think the code looks better than with just one. 
An example is shown in Listing 31-61:

Listing 31-61 Java example of setting off a comment with two blank lines.

 

// comment zero  

 

CodeStatementZero; 

CodeStatementOne; 

 

// comment one 

 

CodeStatementTwo; 

CodeStatementThree;

Unless your display space is at a premium, this is a purely aesthetic judgment and you 
can make it accordingly. In this, as in many other areas, the fact that a convention 
exists is more important than the convention’s specific details.

31.7 Laying Out Routines
Cross-Reference For details 
on documenting routines, 
see “Commenting Routines” 
in Section 32.5. For details 
on the process of writing a 
routine, see Section 9.3, 
“Constructing Routines by 
Using the PPP.” For a discus-
sion of the differences 
between good and bad rou-
tines, see Chapter 7, “High-
Quality Routines.”

Routines are composed of individual statements, data, control structures, comments—
all the things discussed in the other parts of the chapter. This section provides layout 
guidelines unique to routines.

Use blank lines to separate parts of a routine Use blank lines between the routine 
header, its data and named-constant declarations (if any), and its body.

Use standard indentation for routine arguments The options with routine-header 
layout are about the same as they are in a lot of other areas of layout: no conscious lay-
out, endline layout, or standard indentation. As in most other cases, standard inden-
tation does better in terms of accuracy, consistency, readability, and modifiability. 
Listing 31-62 shows two examples of routine headers with no conscious layout:

Listing 31-62  C++ examples of routine headers with no conscious layout.

bool ReadEmployeeData(int maxEmployees,EmployeeList *employees, 

   EmployeeFile *inputFile,int *employeeCount,bool  *isInputError) 

... 

 

void InsertionSort(SortArray data,int firstElement,int lastElement)

These routine headers are purely utilitarian. The computer can read them as well as it 
can read headers in any other format, but they cause trouble for humans. Without a 
conscious effort to make the headers hard to read, how could they be any worse?
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The second approach in routine-header layout is the endline layout, which usually 
works all right. Listing 31-63 shows the same routine headers reformatted:

Listing 31-63  C++ example of routine headers with mediocre endline layout.

bool ReadEmployeeData( int               maxEmployees, 

                       EmployeeList      *employees, 

                       EmployeeFile      *inputFile, 

                       int               *employeeCount, 

                       bool              *isInputError ) 

... 

void InsertionSort( SortArray   data, 

                    int         firstElement, 

                    int         lastElement )

Cross-Reference For more 
details on using routine 
parameters, see Section 7.5, 
“How to Use Routine 
Parameters.”

The endline approach is neat and aesthetically appealing. The main problem is that it 
takes a lot of work to maintain, and styles that are hard to maintain aren’t maintained. 
Suppose that the function name changes from ReadEmployeeData() to ReadNewEmploy-
eeData(). That would throw the alignment of the first line off from that of the other four 
lines. You’d have to reformat the other four lines of the parameter list to align with the 
new position of maxEmployees caused by the longer function name. And you’d probably 
run out of space on the right side since the elements are so far to the right already.

The examples shown in Listing 31-64, formatted using standard indentation, are just 
as appealing aesthetically but take less work to maintain.

Listing 31-64 C++ example of routine headers with readable, maintainable standard 
indentation.

public bool ReadEmployeeData( 

   int maxEmployees, 

   EmployeeList *employees, 

   EmployeeFile *inputFile, 

   int *employeeCount, 

   bool *isInputError 

) 

... 

 

public void InsertionSort( 

   SortArray data, 

   int firstElement, 

   int lastElement 

)

This style holds up better under modification. If the routine name changes, the 
change has no effect on any of the parameters. If parameters are added or deleted, 
only one line has to be modified—plus or minus a comma. The visual cues are similar 
to those in the indentation scheme for a loop or an if statement. Your eye doesn’t have 
to scan different parts of the page for every individual routine to find meaningful infor-
mation; it knows where the information is every time.
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This style translates to Visual Basic in a straightforward way, though it requires the use 
of line-continuation characters, as shown in Listing 31-65:

Listing 31-65 Visual Basic example of routine headers with readable, maintainable stan-
dard indentation.

Here’s the “_” character 
used as a line-continuation 
character.

Public Sub ReadEmployeeData ( _ 

   ByVal maxEmployees As Integer, _ 

   ByRef employees As EmployeeList, _ 

   ByRef inputFile As EmployeeFile, _ 

   ByRef employeeCount As Integer, _ 

   ByRef isInputError As Boolean _ 

)

31.8 Laying Out Classes
This section presents  guidelines for laying out code in classes. The first subsection 
describes how to lay out the class interface. The second subsection describes how to 
lay out the class implementations. The final subsection discusses laying out files and 
programs.

Laying Out Class Interfaces
Cross-Reference For details 
on documenting classes, see 
“Commenting Classes, Files, 
and Programs” in Section 
32.5. For a discussion of the 
differences between good 
and bad classes, see Chapter 
6, “Working Classes.”

In laying out class interfaces, the convention is to present the class members in the fol-
lowing order:

1. Header comment that describes the class and provides any notes about the over-
all usage of the class

2. Constructors and destructors

3. Public routines

4. Protected routines

5. Private routines and member data

Laying Out Class Implementations

Class implementations are generally laid out in this order:

1. Header comment that describes the contents of the file the class is in

2. Class data

3. Public routines

4. Protected routines

5. Private routines



31.8 Laying Out Classes 769

If you have more than one class in a file, identify each class clearly Routines that are 
related should be grouped together into classes. A reader scanning your code should be 
able to tell easily which class is which. Identify each class clearly by using several blank 
lines between it and the classes next to it. A class is like a chapter in a book. In a book, you 
start each chapter on a new page and use big print for the chapter title. Emphasize the 
start of each class similarly. An example of separating classes is shown in Listing 31-66:

Listing 31-66 C++ example of formatting the separation between classes.

This is the last routine in a 
class.

// create a string identical to sourceString except that the 

// blanks are replaced with underscores. 

void EditString::ConvertBlanks(  

   char *sourceString,  

   char *targetString  

   ) { 

   Assert( strlen( sourceString ) <= MAX_STRING_LENGTH ); 

   Assert( sourceString != NULL ); 

   Assert( targetString != NULL ); 

   int charIndex = 0; 

   do { 

      if ( sourceString[ charIndex ] == " " ) { 

         targetString[ charIndex ] = '_'; 

      } 

      else { 

         targetString[ charIndex ] = sourceString[ charIndex ]; 

      } 

      charIndex++; 

   } while sourceString[ charIndex ] != '\0'; 

} 

The beginning of the new 
class is marked with several 
blank lines and the name of 
the class.

//---------------------------------------------------------------------- 

// MATHEMATICAL FUNCTIONS 

// 

// This class contains the program's mathematical functions. 

//---------------------------------------------------------------------- 

This is the first routine in a 
new class.

// find the arithmetic maximum of arg1 and arg2 

int Math::Max( int arg1, int arg2 ) {  

   if ( arg1 > arg2 ) {  

      return arg1;  

   }  

   else { 

      return arg2;  

   } 

} 

 

This routine is separated 
from the previous routine 
by blank lines only.

// find the arithmetic minimum of arg1 and arg2 

int Math::Min( int arg1, int arg2 ) { 

   if ( arg1 < arg2 ) {  

      return arg1; 

   }  

   else { 

      return arg2; 

   } 

}
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Avoid overemphasizing comments within classes. If you mark every routine and com-
ment with a row of asterisks instead of blank lines, you’ll have a hard time coming up 
with a device that effectively emphasizes the start of a new class. An example is shown 
in Listing 31-67:

Listing 31-67 C++ example of overformatting a class.

//********************************************************************** 

//********************************************************************** 

// MATHEMATICAL FUNCTIONS 

// 

// This class contains the program’s mathematical functions. 

//********************************************************************** 

//********************************************************************** 

 

//********************************************************************** 

// find the arithmetic maximum of arg1 and arg2 

//********************************************************************** 

int Math::Max( int arg1, int arg2 ) {  

//********************************************************************** 

   if ( arg1 > arg2 ) {  

      return arg1; 

   }  

   else { 

      return arg2; 

   } 

} 

 

//********************************************************************** 

// find the arithmetic minimum of arg1 and arg2 

//********************************************************************** 

int Math::Min( int arg1, int arg2 ) { 

//********************************************************************** 

   if ( arg1 < arg2 ) {  

      return arg1; 

   }  

   else { 

      return arg2; 

   } 

}

In this example, so many things are highlighted with asterisks that nothing is really 
emphasized. The program becomes a dense forest of asterisks. Although it’s more an 
aesthetic than a technical judgment, in formatting, less is more.

If you must separate parts of a program with long lines of special characters, develop 
a hierarchy of characters (from densest to lightest) instead of relying exclusively on 
asterisks. For example, use asterisks for class divisions, dashes for routine divisions, 
and blank lines for important comments. Refrain from putting two rows of asterisks 
or dashes together. An example is shown in Listing 31-68:
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Listing 31-68 C++ example of good formatting with restraint.

//********************************************************************** 

// MATHEMATICAL FUNCTIONS 

// 

// This class contains the program's mathematical functions. 

//********************************************************************** 

The lightness of this line 
compared to the line of 
asterisks visually reinforces 
the fact that the routine is 
subordinate to the class.

//---------------------------------------------------------------------- 

// find the arithmetic maximum of arg1 and arg2 

//---------------------------------------------------------------------- 

int Math::Max( int arg1, int arg2 ) { 

   if ( arg1 > arg2 ) {  

      return arg1; 

   }  

   else { 

      return arg2; 

   } 

} 

 

//---------------------------------------------------------------------- 

// find the arithmetic minimum of arg1 and arg2 

//---------------------------------------------------------------------- 

int Math::Min( int arg1, int arg2 ) { 

   if ( arg1 < arg2 ) {  

      return arg1; 

   }  

   else { 

      return arg2; 

   } 

}

This advice about how to identify multiple classes within a single file applies only 
when your language restricts the number of files you can use in a program. If you’re 
using C++, Java, Visual Basic, or other languages that support multiple source files, 
put only one class in each file unless you have a compelling reason to do otherwise 
(such as including a few small classes that make up a single pattern). Within a single 
class, however, you might still have subgroups of routines, and you can group them 
using techniques such as the ones shown here.

Laying Out Files and Programs
Cross-Reference For docu-
mentation details, see “Com-
menting Classes, Files, and 
Programs” in Section 32.5.

Beyond the formatting techniques for classes is a larger formatting issue: how do you 
organize classes and routines within a file, and how do you decide which classes to 
put in a file in the first place?

Put one class in one file A file isn’t just a bucket that holds some code. If your language 
allows it, a file should hold a collection of routines that supports one and only one pur-
pose. A file reinforces the idea that a collection of routines are in the same class.
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Cross-Reference For details 
on the differences between 
classes and routines and 
how to make a collection of 
routines into a class, see 
Chapter 6, “Working 
Classes.”

All the routines within a file make up the class. The class might be one that the pro-
gram really recognizes as such, or it might be just a logical entity that you’ve created as 
part of your design.

Classes are a semantic language concept. Files are a physical operating-system con-
cept. The correspondence between classes and files is coincidental and continues to 
weaken over time as more environments support putting code into databases or oth-
erwise obscuring the relationship between routines, classes, and files.

Give the file a name related to the class name Most projects have a one-to-one cor-
respondence between class names and file names. A class named CustomerAccount 
would have files named CustomerAccount.cpp and CustomerAccount.h, for example.

Separate routines within a file clearly Separate each routine from other routines 
with at least two blank lines. The blank lines are as effective as big rows of asterisks or 
dashes, and they’re a lot easier to type and maintain. Use two or three to produce a 
visual difference between blank lines that are part of a routine and blank lines that 
separate routines. An example is shown in Listing 31-69:

Listing 31-69 Visual Basic example of using blank lines between routines.

'find the arithmetic maximum of arg1 and arg2 

Function Max( arg1 As Integer, arg2 As Integer ) As Integer 

   If ( arg1 > arg2 ) Then 

      Max = arg1 

   Else 

      Max = arg2 

   End If 

End Function

At least two blank lines 
separate the two routines.

 

 

 

'find the arithmetic minimum of arg1 and arg2 

Function Min( arg1 As Integer, arg2 As Integer ) As Integer 

   If ( arg1 < arg2 ) Then 

      Min = arg1 

   Else 

      Min = arg2 

   End If 

end Function

Blank lines are easier to type than any other kind of separator and look at least as 
good. Three blank lines are used in this example so that the separation between rou-
tines is more noticeable than the blank lines within each routine.

Sequence routines alphabetically An alternative to grouping related routines in a file 
is to put them in alphabetical order. If you can’t break a program up into classes or if 
your editor doesn’t allow you to find functions easily, the alphabetical approach can 
save search time.
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In C++, order the source file carefully Here’s a typical order of source-file contents 
in C++:

1. File-description comment

2. #include files

3. Constant definitions that apply to more than one class (if more than one class in 
the file)

4. Enums that apply to more than one class (if more than one class in the file)

5. Macro function definitions

6. Type definitions that apply to more than one class (if more than one class in the 
file)

7. Global variables and functions imported

8. Global variables and functions exported

9. Variables and functions that are private to the file

10. Classes, including constant definitions, enums, and type definitions within each 
class

cc2e.com/3194 CHECKLIST: Layout
General

❑ Is formatting done primarily to illuminate the logical structure of the 
code?

❑ Can the formatting scheme be used consistently?

❑ Does the formatting scheme result in code that’s easy to maintain?

❑ Does the formatting scheme improve code readability?

Control Structures
❑ Does the code avoid doubly indented begin-end or {} pairs?

❑ Are sequential blocks separated from each other with blank lines?

❑ Are complicated expressions formatted for readability?

❑ Are single-statement blocks formatted consistently?

❑ Are case statements formatted in a way that’s consistent with the format-
ting of other control structures?

❑ Have gotos been formatted in a way that makes their use obvious?
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Individual Statements
❑ Is white space used to make logical expressions, array references, and rou-

tine arguments readable?

❑ Do incomplete statements end the line in a way that’s obviously incorrect?

❑ Are continuation lines indented the standard indentation amount?

❑ Does each line contain at most one statement?

❑ Is each statement written without side effects?

❑ Is there at most one data declaration per line?

Comments
❑ Are the comments indented the same number of spaces as the code they 

comment?

❑ Is the commenting style easy to maintain?

Routines
❑ Are the arguments to each routine formatted so that each argument is easy 

to read, modify, and comment?

❑ Are blank lines used to separate parts of a routine?

Classes, Files and Programs
❑ Is there a one-to-one relationship between classes and files for most classes 

and files?

❑ If a file does contain multiple classes, are all the routines in each class 
grouped together and is each class clearly identified?

❑ Are routines within a file clearly separated with blank lines?

❑ In lieu of a stronger organizing principle, are all routines in alphabetical 
sequence?

Additional Resources
cc2e.com/3101 Most programming textbooks say a few words about layout and style, but thorough 

discussions of programming style are rare; discussions of layout are rarer still. The fol-
lowing books talk about layout and programming style:

Kernighan, Brian W. and Rob Pike. The Practice of Programming Reading, MA: Addison-
Wesley, 1999. Chapter 1 of this book discusses programming style focusing on C 
and C++.
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Vermeulen, Allan, et al. The Elements of Java Style. Cambridge University Press, 2000.

Misfeldt, Trevor, Greg Bumgardner, and Andrew Gray. The Elements of C++ Style. Cam-
bridge University Press, 2004.

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming Style, 2d ed. New 
York, NY: McGraw-Hill, 1978. This is the classic book on programming style—the first 
in the genre of programming-style books.

For a substantially different approach to readability, take a look at the following book:

Knuth, Donald E. Literate Programming. Cambridge University Press, 2001. This is a 
collection of papers describing the “literate programming” approach of combining a 
programming language and a documentation language. Knuth has been writing about 
the virtues of literate programming for about 20 years, and in spite of his strong claim 
to the title Best Programmer on the Planet, literate programming isn’t catching on. 
Read some of his code to form your own conclusions about the reason.

Key Points
■ The first priority of visual layout is to illuminate the logical organization of the 

code. Criteria used to assess whether that priority is achieved include accuracy, 
consistency, readability, and maintainability.

■ Looking good is secondary to the other criteria—a distant second. If the other 
criteria are met and the underlying code is good, however, the layout will look 
fine.

■ Visual Basic has pure blocks and the conventional practice in Java is to use pure-
block style, so you can use a pure-block layout if you program in those lan-
guages. In C++, either pure-block emulation or begin-end block boundaries work 
well.

■ Structuring code is important for its own sake. The specific convention you fol-
low is less important than the fact that you follow some convention consistently. 
A layout convention that’s followed inconsistently can actually hurt readability.

■ Many aspects of layout are religious issues. Try to separate objective preferences 
from subjective ones. Use explicit criteria to help ground your discussions about 
style preferences.
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Chapter 32

Self-Documenting Code
cc2e.com/3245 Contents

■ 32.1 External Documentation: page 777

■ 32.2 Programming Style as Documentation: page 778

■ 32.3 To Comment or Not to Comment: page 781

■ 32.4 Keys to Effective Comments: page 785

■ 32.5 Commenting Techniques: page 792

■ 32.6 IEEE Standards: page 813

Related Topics

■ Layout: Chapter 31

■ The Pseudocode Programming Process: Chapter 9

■ Working classes: Chapter 6

■ High-quality routines: Chapter 7

■ Programming as communication: Sections 33.5 and 34.3 

Code as if whoever main-
tains your program is a vio-
lent psychopath who knows 
where you live. 
—Anonymous

Most programmers enjoy writing documentation if the documentation standards 
aren’t unreasonable. Like layout, good documentation is a sign of the professional 
pride a programmer puts into a program. Software documentation can take many 
forms, and, after describing the sweep of the documentation landscape, this chapter 
cultivates the specific patch of documentation known as “comments.”

32.1 External Documentation
Cross-Reference For more 
on external documentation, 
see Section 32.6, “IEEE 
Standards.”

Documentation on a software project consists of information both inside the source-
code listings and outside them—usually in the form of separate documents or unit 
development folders. On large, formal projects, most of the documentation is outside 
the source code (Jones 1998). External construction documentation tends to be at a 
high level compared to the code, at a low level compared to the documentation from 
the problem definition, requirements, and architecture activities.
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Further Reading For a 
detailed description, see 
“The Unit Development 
Folder (UDF): An Effective 
Management Tool for Soft-
ware Development” (Ingras-
sia 1976) or “The Unit 
Development Folder (UDF): 
A Ten-Year Perspective” 
(Ingrassia 1987).

Unit development folders A unit-development folder (UDF), or software-develop-
ment folder (SDF), is an informal document that contains notes used by a developer 
during construction. A “unit” is loosely defined, usually to mean a class, although it 
could also mean a package or a component. The main purpose of a UDF is to provide 
a trail of design decisions that aren’t documented elsewhere. Many projects have stan-
dards that specify the minimum content of a UDF, such as copies of the relevant 
requirements, the parts of the top-level design the unit implements, a copy of the 
development standards, a current code listing, and design notes from the unit’s devel-
oper. Sometimes the customer requires a software developer to deliver the project’s 
UDFs; often they are for internal use only.

Detailed-design document The detailed-design document is the low-level design 
document. It describes the class-level or routine-level design decisions, the alterna-
tives that were considered, and the reasons for selecting the approaches that were 
selected. Sometimes this information is contained in a formal document. In such 
cases, detailed design is usually considered to be separate from construction. Some-
times it consists mainly of developers’ notes collected into a UDF. And sometimes—
often—it exists only in the code itself.

32.2 Programming Style as Documentation
In contrast to external documentation, internal documentation is found within the 
program listing itself. It’s the most detailed kind of documentation, at the source-
statement level. Because it’s most closely associated with the code, internal docu-
mentation is also the kind of documentation most likely to remain correct as the 
code is modified.

The main contributor to code-level documentation isn’t comments, but good pro-
gramming style. Style includes good program structure, use of straightforward and 
easily understandable approaches, good variable names, good routine names, use of 
named constants instead of literals, clear layout, and minimization of control-flow and 
data-structure complexity.

Here’s a code fragment with poor style:

Java Example of Poor Documentation Resulting from Bad Programming Style
for ( i = 2; i <= num; i++ ) { 

meetsCriteria[ i ] = true; 

} 

for ( i = 2; i <= num / 2; i++ ) { 

j = i + i; 

while ( j <= num ) { 

CODING 
HORROR
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meetsCriteria[ j ] = false; 

j = j + i; 

} 

} 

for ( i = 2; i <= num; i++ ) { 

if ( meetsCriteria[ i ] ) { 

System.out.println ( i + " meets criteria." ); 

} 

}

What do you think this routine does? It’s unnecessarily cryptic. It’s poorly docu-
mented not because it lacks comments, but because it lacks good programming style. 
The variable names are uninformative, and the layout is crude. Here’s the same code 
improved—just improving the programming style makes its meaning much clearer:

Cross-Reference In this 
code, the variable factor-
ableNumber is added solely 
for the sake of clarifying the 
operation. For details on 
adding variables to clarify 
operations, see "Making 
Complicated Expressions 
Simple" in Section 19.1.

Java Example of Documentation Without Comments (with Good Style)
for ( primeCandidate = 2; primeCandidate <= num; primeCandidate++ ) { 

   isPrime[ primeCandidate ] = true; 

} 

 

for ( int factor = 2; factor < ( num / 2 ); factor++ ) { 

   int factorableNumber = factor + factor; 

   while ( factorableNumber <= num ) { 

      isPrime[ factorableNumber ] = false; 

      factorableNumber = factorableNumber + factor; 

   } 

} 

 

for ( primeCandidate = 2; primeCandidate <= num; primeCandidate++ ) { 

   if ( isPrime[ primeCandidate ] ) { 

      System.out.println( primeCandidate + " is prime." ); 

   } 

}

Unlike the first piece of code, this one lets you know at first glance that it has some-
thing to do with prime numbers. A second glance reveals that it finds the prime num-
bers between 1 and Num. With the first code fragment, it takes more than two glances 
just to figure out where the loops end.

The difference between the two code fragments has nothing to do with comments—
neither fragment has any. The second one is much more readable, however, and 
approaches the Holy Grail of legibility: self-documenting code. Such code relies on 
good programming style to carry the greater part of the documentation burden. In 
well-written code, comments are the icing on the readability cake.
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cc2e.com/3252 CHECKLIST: Self-Documenting Code
Classes

❑ Does the class’s interface present a consistent abstraction?

❑ Is the class well named, and does its name describe its central purpose? 

❑ Does the class’s interface make obvious how you should use the class? 

❑ Is the class’s interface abstract enough that you don’t have to think about 
how its services are implemented? Can you treat the class as a black box?

Routines
❑ Does each routine’s name describe exactly what the routine does?

❑ Does each routine perform one well-defined task?

❑ Have all parts of each routine that would benefit from being put into their 
own routines been put into their own routines?

❑ Is each routine’s interface obvious and clear?

Data Names
❑ Are type names descriptive enough to help document data declarations?

❑ Are variables named well?

❑ Are variables used only for the purpose for which they’re named?

❑ Are loop counters given more informative names than i, j, and k?

❑ Are well-named enumerated types used instead of makeshift flags or bool-
ean variables?

❑ Are named constants used instead of magic numbers or magic strings?

❑ Do naming conventions distinguish among type names, enumerated types, 
named constants, local variables, class variables, and global variables?

Data Organization
❑ Are extra variables used for clarity when needed?

❑ Are references to variables close together?

❑ Are data types simple so that they minimize complexity?

❑ Is complicated data accessed through abstract access routines (abstract 
data types)?

Control
❑ Is the nominal path through the code clear?

❑ Are related statements grouped together?
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❑ Have relatively independent groups of statements been packaged into 
their own routines?

❑ Does the normal case follow the if rather than the else?

❑ Are control structures simple so that they minimize complexity?

❑ Does each loop perform one and only one function, as a well-defined rou-
tine would?

❑ Is nesting minimized?

❑ Have boolean expressions been simplified by using additional boolean 
variables, boolean functions, and decision tables?

Layout
❑ Does the program’s layout show its logical structure?

Design
❑ Is the code straightforward, and does it avoid cleverness?

❑ Are implementation details hidden as much as possible?

❑ Is the program written in terms of the problem domain as much as possi-
ble rather than in terms of computer-science or programming-language 
structures?

32.3 To Comment or Not to Comment
Comments are easier to write poorly than well, and commenting can be more damag-
ing than helpful. The heated discussions over the virtues of commenting often sound 
like philosophical debates over moral virtues, which makes me think that if Socrates 
had been a computer programmer, he and his students might have had the following 
discussion.

The Commento

Characters:

THRASYMACHUS A green, theoretical purist who believes everything he reads

CALLICLES A battle-hardened veteran from the old school—a “real” programmer

GLAUCON A young, confident, hot-shot computer jock

ISMENE A senior programmer tired of big promises, just looking for a few practices 
that work

SOCRATES The wise old programmer
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Setting:

END OF THE TEAM’S DAILY STANDUP MEETING

“Does anyone have any other issues before we get back to work?” Socrates asked.

“I want to suggest a commenting standard for our projects,” Thrasymachus said. 
“Some of our programmers barely comment their code, and everyone knows that 
code without comments is unreadable.”

“You must be fresher out of college than I thought,” Callicles responded. “Comments 
are an academic panacea, but everyone who’s done any real programming knows that 
comments make the code harder to read, not easier. English is less precise than Java or 
Visual Basic and makes for a lot of excess verbiage. Programming-language statements 
are short and to the point. If you can’t make the code clear, how can you make the 
comments clear? Plus, comments get out of date as the code changes. If you believe an 
out-of-date comment, you’re sunk.”

“I agree with that,” Glaucon joined in. “Heavily commented code is harder to read 
because it means more to read. I already have to read the code; why should I have to 
read a lot of comments, too?”

“Wait a minute,” Ismene said, putting down her coffee mug to put in her two drach-
mas’ worth. “I know that commenting can be abused, but good comments are worth 
their weight in gold. I’ve had to maintain code that had comments and code that 
didn’t, and I’d rather maintain code with comments. I don’t think we should have a 
standard that says use one comment for every x lines of code, but we should encour-
age everyone to comment.”

“If comments are a waste of time, why does anyone use them, Callicles?” Socrates 
asked.

“Either because they’re required to or because they read somewhere that they’re use-
ful. No one who’s thought about it could ever decide they’re useful.”

“Ismene thinks they’re useful. She’s been here three years, maintaining your code 
without comments and other code with comments, and she prefers the code with 
comments. What do you make of that?”

“Comments are useless because they just repeat the code in a more verbose—”

“Wait right there,” Thrasymachus interrupted. “Good comments don’t repeat the 
code or explain it. They clarify its intent. Comments should explain, at a higher level 
of abstraction than the code, what you’re trying to do.”

“Right,” Ismene said. “I scan the comments to find the section that does what I need 
to change or fix. You’re right that comments that repeat the code don’t help at all 

KEY POINT
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because the code says everything already. When I read comments, I want it to be like 
reading headings in a book or a table of contents. Comments help me find the right 
section, and then I start reading the code. It’s a lot faster to read one sentence in 
English than it is to parse 20 lines of code in a programming language.” Ismene 
poured herself another cup of coffee.

“I think that people who refuse to write comments (1) think their code is clearer than 
it could possibly be, (2) think that other programmers are far more interested in their 
code than they really are, (3) think other programmers are smarter than they really 
are, (4) are lazy, or (5) are afraid someone else might figure out how their code works.

“Code reviews would be a big help here, Socrates,” Ismene continued. “If someone 
claims they don’t need to write comments and are bombarded by questions during a 
review—when several peers start saying, ‘What the heck are you trying to do in this 
piece of code?’—then they’ll start putting in comments. If they don’t do it on their 
own, at least their manager will have the ammo to make them do it.

“I’m not accusing you of being lazy or afraid that people will figure out your code, Cal-
licles. I’ve worked on your code and you’re one of the best programmers in the com-
pany. But have a heart, huh? Your code would be easier for me to work on if you used 
comments.”

“But they’re a waste of resources,” Callicles countered. “A good programmer’s code 
should be self-documenting; everything you need to know should be in the code.”

“No way!” Thrasymachus was out of his chair. “Everything the compiler needs to 
know is in the code! You might as well argue that everything you need to know is in 
the binary executable file! If you were smart enough to read it! What is meant to hap-
pen is not in the code.”

Thrasymachus realized he was standing up and sat down. “Socrates, this is ridiculous. 
Why do we have to argue about whether comments are valuable? Everything I’ve ever 
read says they’re valuable and should be used liberally. We’re wasting our time.”

Clearly, at some level com-
ments have to be useful. To 
believe otherwise would be 
to believe that the compre-
hensibility of a program is 
independent of how much 
information the reader 
might already have about it.  
—B. A. Sheil

“Cool down, Thrasymachus. Ask Callicles how long he’s been programming.”

“How long, Callicles?”

“Well, I started on the Acropolis IV about 15 years ago. I guess I’ve seen about a dozen 
major systems from the time they were born to the time we gave them a cup of hemlock. 
And I’ve worked on major parts of a dozen more. Two of those systems had over half a 
million lines of code, so I know what I’m talking about. Comments are pretty useless.”

Socrates looked at the younger programmer. “As Callicles says, comments have a lot of 
legitimate problems, and you won’t realize that without more experience. If they’re 
not done right, they’re worse than useless.”
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“Even when they’re done right, they’re useless,” Callicles said. “Comments are less 
precise than a programming language. I’d rather not have them at all.”

“Wait a minute,” Socrates said. “Ismene agrees that comments are less precise. Her 
point is that comments give you a higher level of abstraction, and we all know that lev-
els of abstraction are one of a programmer’s most powerful tools.”

“I don’t agree with that,” Glaucon replied. “Instead of focusing on commenting, you 
should focus on making code more readable. Refactoring eliminates most of my com-
ments. Once I’ve refactored, my code might have 20 or 30 routine calls without need-
ing any comments. A good programmer can read the intent from the code itself, and 
what good does it do to read about somebody’s intent when you know the code has 
an error?” Glaucon was pleased with his contribution. Callicles nodded.

“It sounds like you guys have never had to modify someone else’s code,” Ismene said. 
Callicles suddenly seemed very interested in the pencil marks on the ceiling tiles. 
“Why don’t you try reading your own code six months or a year after you write it? You 
can improve your code-reading ability and your commenting. You don’t have to 
choose one or the other. If you’re reading a novel, you might not want section head-
ings. But if you’re reading a technical book, you’d like to be able to find what you’re 
looking for quickly. I shouldn’t have to switch into ultra-concentration mode and read 
hundreds of lines of code just to find the two lines I want to change.”

“All right, I can see that it would be handy to be able to scan code,” Glaucon said. He’d 
seen some of Ismene’s programs and had been impressed. “But what about Callicles’ 
other point, that comments get out of date as the code changes? I’ve only been program-
ming for a couple of years, but even I know that nobody updates their comments.”

“Well, yes and no,” Ismene said. “If you take the comment as sacred and the code as 
suspicious, you’re in deep trouble. Actually, finding a disagreement between the com-
ment and the code tends to mean both are wrong. The fact that some comments are 
bad doesn’t mean that commenting is bad. I’m going to the lunchroom to get another 
pot of coffee.” Ismene left the room.

“My main objection to comments,” Callicles said, “is that they’re a waste of resources.”

“Can anyone think of ways to minimize the time it takes to write the comments?” 
Socrates asked.

“Design routines in pseudocode, and then convert the pseudocode to comments and 
fill in the code between them,” Glaucon said.

“OK, that would work as long as the comments don’t repeat the code,” Callicles said.
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“Writing a comment makes you think harder about what your code is doing,” Ismene 
said, returning from the lunchroom. “If it’s hard to comment, either it’s bad code or 
you don’t understand it well enough. Either way, you need to spend more time on the 
code, so the time you spent commenting wasn’t wasted because it pointed you to 
required work.”

“All right,” Socrates said. “I can’t think of any more questions, and I think Ismene got 
the best of you guys today. We’ll encourage commenting, but we won’t be naive about 
it. We’ll have code reviews so that everyone will get a good sense of the kind of com-
ments that actually help. If you have trouble understanding someone else’s code, let 
them know how they can improve it.”

32.4 Keys to Effective Comments
As long as there are ill-
defined goals, bizarre bugs, 
and unrealistic schedules, 
there will be Real Program-
mers willing to jump in and 
Solve The Problem, saving 
the documentation for later. 
Long live Fortran! 
—Ed Post

What does the following routine do?

Java Mystery Routine Number One
// write out the sums 1..n for all n from 1 to num 

current = 1; 

previous = 0; 

sum = 1; 

for ( int i = 0; i < num; i++ ) { 

   System.out.println( "Sum = " + sum ); 

   sum = current + previous; 

   previous = current; 

   current = sum; 

}

Your best guess?

This routine computes the first num Fibonacci numbers. Its coding style is a little bet-
ter than the style of the routine at the beginning of the chapter, but the comment is 
wrong, and if you blindly trust the comment, you head down the primrose path in the 
wrong direction.

What about this one?

Java Mystery Routine Number Two
// set product to "base" 

product = base; 

 

// loop from 2 to "num" 

for ( int i = 2; i <= num; i++ ) { 

   // multiply "base" by "product"  

   product = product * base; 

} 

System.out.println( "Product = " + product );
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This routine raises an integer base to the integer power num. The comments in this 
routine are accurate, but they add nothing to the code. They are merely a more ver-
bose version of the code itself.

Here’s one last routine:

Java Mystery Routine Number Three
// compute the square root of Num using the Newton-Raphson approximation  

r = num / 2; 

while ( abs( r - (num/r) ) > TOLERANCE ) { 

   r = 0.5 * ( r + (num/r) ); 

} 

System.out.println( "r = " + r );

This routine computes the square root of num. The code isn’t great, but the comment 
is accurate.

Which routine was easiest for you to figure out correctly? None of the routines is par-
ticularly well written—the variable names are especially poor. In a nutshell, however, 
these routines illustrate the strengths and weaknesses of internal comments. Routine 
One has an incorrect comment. Routine Two’s commenting merely repeats the code 
and is therefore useless. Only Routine Three’s commenting earns its rent. Poor com-
ments are worse than no comments. Routines One and Two would be better with no 
comments than with the poor comments they have.

The following subsections describe keys to writing effective comments.

Kinds of Comments

Comments can be classified into six categories:

Repeat of the Code

A repetitious comment restates what the code does in different words. It merely gives 
the reader of the code more to read without providing additional information.

Explanation of the Code

Explanatory comments are typically used to explain complicated, tricky, or sensitive 
pieces of code. In such situations they are useful, but usually that’s only because the 
code is confusing. If the code is so complicated that it needs to be explained, it’s 
nearly always better to improve the code than it is to add comments. Make the code 
itself clearer, and then use summary or intent comments.
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Marker in the Code

A marker comment is one that isn’t intended to be left in the code. It’s a note to the 
developer that the work isn’t done yet. Some developers type in a marker that’s syntac-
tically incorrect (******, for example) so that the compiler flags it and reminds them 
that they have more work to do. Other developers put a specified set of characters in 
comments that don’t interfere with compilation so that they can search for them.

Few feelings are worse than having a customer report a problem in the code, debugging 
the problem, and tracing it to a section of code where you find something like this:

return NULL; // ****** NOT DONE! FIX BEFORE RELEASE!!!

Releasing defective code to customers is bad enough; releasing code that you knew 
was defective is even worse.

I’ve found that standardizing the style of marker comments is helpful. If you don’t 
standardize, some programmers will use *******, some will use !!!!!!, some will use 
TBD, and some will use various other conventions. Using a variety of notations makes 
mechanical searching for incomplete code error-prone or impossible. Standardizing 
on one specific marker style allows you to do a mechanical search for incomplete sec-
tions of code as one of the steps in a release checklist, which avoids the FIX BEFORE 
RELEASE!!! problem. Some editors support “to do” tags and allow you to navigate to 
them easily.

Summary of the Code

A comment that summarizes code does just that: it distills a few lines of code into one 
or two sentences. Such comments are more valuable than comments that merely 
repeat the code because a reader can scan them more quickly than the code. Sum-
mary comments are particularly useful when someone other than the code’s original 
author tries to modify the code.

Description of the Code’s Intent

A comment at the level of intent explains the purpose of a section of code. Intent com-
ments operate more at the level of the problem than at the level of the solution. For 
example,

-- get current employee information

is an intent comment, whereas

-- update employeeRecord object
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is a summary comment in terms of the solution. A six-month study conducted by IBM 
found that maintenance programmers “most often said that understanding the original 
programmer’s intent was the most difficult problem” (Fjelstad and Hamlen 1979). The 
distinction between intent and summary comments isn’t always clear, and it’s usually 
not important. Examples of intent comments are given throughout this chapter.

Information That Cannot Possibly Be Expressed by the Code Itself 

Some information can’t be expressed in code but must still be in the source code. This 
category of comments includes copyright notices, confidentiality notices, version 
numbers, and other housekeeping details; notes about the code’s design; references to 
related requirements or architecture documentation; pointers to online references; 
optimization notes; comments required by editing tools such as Javadoc and Doxy-
gen; and so on.

The three kinds of comments that are acceptable for completed code are information 
that can’t be expressed in code, intent comments, and summary comments.

Commenting Efficiently

Effective commenting isn’t that time-consuming. Too many comments are as bad as 
too few, and you can achieve a middle ground economically.

Comments can take a lot of time to write for two common reasons. First, the com-
menting style might be time-consuming or tedious. If it is, find a new style. A com-
menting style that requires a lot of busy work is a maintenance headache. If the 
comments are hard to change, they won’t be changed and they’ll become inaccurate 
and misleading, which is worse than having no comments at all.

Second, commenting might be difficult because the words to describe what the pro-
gram is doing don’t come easily. That’s usually a sign that you don’t understand what 
the program does. The time you spend “commenting” is really time spent understand-
ing the program better, which is time that needs to be spent regardless of whether you 
comment.

Following are guidelines for commenting efficiently:

Use styles that don’t break down or discourage modification Any style that’s too 
fancy is annoying to maintain. For example, pick out the part of the comment below 
that won’t be maintained:

Java Example of a Commenting Style That’s Hard to Maintain
//  Variable        Meaning 

//  --------        ------- 

//  xPos .......... XCoordinate Position (in meters) 

//  yPos .......... YCoordinate Position (in meters) 

1
2
3

HARD DATA
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//  ndsCmptng...... Needs Computing (= 0 if no computation is needed, 

//                                   = 1 if computation is needed) 

//  ptGrdTtl....... Point Grand Total 

//  ptValMax....... Point Value Maximum 

//  psblScrMax..... Possible Score Maximum

If you said that the leader dots (.....) will be hard to maintain, you’re right! They look 
nice, but the list is fine without them. They add busy work to the job of modifying 
comments, and you’d rather have accurate comments than nice-looking ones, if that’s 
the choice—and it usually is.

Here’s another example of a common style that’s hard to maintain:

C++ Example of a Commenting Style That’s Hard to Maintain
/********************************************************************** 

 * class:  GigaTron (GIGATRON.CPP)                                    * 

 *                                                                    * 

 * author: Dwight K. Coder                                            * 

 * date:   July 4, 2014                                               * 

 *                                                                    * 

 * Routines to control the twenty-first century's code evaluation     * 

 * tool. The entry point to these routines is the EvaluateCode()      * 

 * routine at the bottom of this file.                                * 

**********************************************************************/

This is a nice-looking block comment. It’s clear that the whole block belongs together, 
and the beginning and ending of the block are obvious. What isn’t clear about this 
block is how easy it is to change. If you have to add the name of a file to the bottom of 
the comment, chances are pretty good that you’ll have to fuss with the pretty column 
of asterisks at the right. If you need to change the paragraph comments, you’ll have to 
fuss with asterisks on both the left and the right. In practice, this means that the block 
won’t be maintained because it will be too much work. If you can press a key and get 
neat columns of asterisks, that’s great. Use it. The problem isn’t the asterisks but that 
they’re hard to maintain. The following comment looks almost as good and is a cinch 
to maintain:

C++ Example of a Commenting Style That’s Easy to Maintain
/********************************************************************** 

   class:  GigaTron (GIGATRON.CPP)  

 

   author: Dwight K. Coder 

   date:   July 4, 2014 

 

   Routines to control the twenty-first century's code evaluation  

   tool. The entry point to these routines is the EvaluateCode()  

   routine at the bottom of this file. 

 **********************************************************************/
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Here’s a particularly difficult style to maintain:

Microsoft Visual Basic Example of a Commenting Style That’s Hard to Maintain
'  set up Color enumerated type 

'  +--------------------------+ 

   ... 

 

'  set up Vegetable enumerated type 

'  +------------------------------+ 

   ...

It’s hard to know what value the plus sign at the beginning and end of each dashed 
line adds to the comment, but it’s easy to guess that every time a comment changes, 
the underline has to be adjusted so that the ending plus sign is in precisely the right 
place. And what do you do when a comment spills over into two lines? How do you 
align the plus signs? Take words out of the comment so that it takes up only one line? 
Make both lines the same length? The problems with this approach multiply when 
you try to apply it consistently.

A common guideline for Java and C++ that arises from a similar motivation is to use 
// syntax for single-line comments and /* ... */ syntax for longer comments, as 
shown here:

Java Example of Using Different Comment Syntaxes for Different Purposes
// This is a short comment 

... 

/* This is a much longer comment. Four score and seven years ago our fathers  

brought forth on this continent a new nation, conceived in liberty and dedicated to  

the proposition that all men are created equal. Now we are engaged in a great civil  

war, testing whether that nation or any nation so conceived and so dedicated can  

long endure. We are met on a great battlefield of that war. We have come to  

dedicate a portion of that field as a final resting-place for those who here gave  

their lives that that nation might live. It is altogether fitting and proper that  

we should do this. 

*/

The first comment is easy to maintain as long as it’s kept short. For longer comments, 
the task of creating long columns of double slashes, manually breaking lines of text 
between rows, and similar activities is not very rewarding, and so the /* ... */ syntax is 
more appropriate for multiline comments.

The point is that you should pay attention to how you spend your time. If you spend 
a lot of time entering and deleting dashes to make plus signs line up, you’re not pro-
gramming; you’re wasting time. Find a more efficient style. In the case of the under-
lines with plus signs, you could choose to have just the comments without any 
underlining. If you need to use underlines for emphasis, find some way other than 

CODING 
HORROR

KEY POINT
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underlines with plus signs to emphasize those comments. One way would be to have 
a standard underline that’s always the same length regardless of the length of the 
comment. Such a line requires no maintenance, and you can use a text-editor macro to 
enter it in the first place.

Cross-Reference For details 
on the Pseudocode Pro-
gramming Process, see 
Chapter 9, "The Pseudocode 
Programming Process."

Use the Pseudocode Programming Process to reduce commenting time If you outline 
the code in comments before you write it, you win in several ways. When you finish 
the code, the comments are done. You don’t have to dedicate time to comments. You 
also gain all the design benefits of writing in high-level pseudocode before filling in 
the low-level programming-language code.

Integrate commenting into your development style The alternative to integrating 
commenting into your development style is leaving commenting until the end of the 
project, and that has too many disadvantages. It becomes a task in its own right, which 
makes it seem like more work than when it’s done a little bit at a time. Commenting 
done later takes more time because you have to remember or figure out what the code 
is doing instead of just writing down what you’re already thinking about. It’s also less 
accurate because you tend to forget assumptions or subtleties in the design.

The common argument against commenting as you go along is “When you’re concen-
trating on the code, you shouldn’t break your concentration to write comments.” The 
appropriate response is that, if you have to concentrate so hard on writing code that 
commenting interrupts your thinking, you need to design in pseudocode first and 
then convert the pseudocode to comments. Code that requires that much concentra-
tion is a warning sign.

If your design is hard to code, simplify the design before you worry about comments 
or code. If you use pseudocode to clarify your thoughts, coding is straightforward and 
the comments are automatic.

Performance is not a good reason to avoid commenting One recurring attribute of 
the rolling wave of technology discussed in Section 4.3, “Your Location on the Tech-
nology Wave,” is interpreted environments in which commenting imposes a measur-
able performance penalty. In the 1980s, comments in Basic programs on the original 
IBM PC slowed programs. In the 1990s, .asp pages did the same thing. In the 2000s, 
JavaScript code and other code that needs to be sent across network connections pre-
sents a similar problem.

In each of these cases, the ultimate solution has not been to avoid commenting; it’s 
been to create a release version of the code that’s different from the development ver-
sion. This is typically accomplished by running the code through a tool that strips out 
comments as part of the build process.

KEY POINT
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Optimum Number of Comments

Capers Jones points out that studies at IBM found that a commenting density of one 
comment roughly every 10 statements was the density at which clarity seemed to 
peak. Fewer comments made the code hard to understand. More comments also 
reduced code understandability (Jones 2000).

This kind of research can be abused, and projects sometimes adopt a standard such as 
“programs must have one comment at least every five lines.” This standard addresses 
the symptom of programmers’ not writing clear code, but it doesn’t address the cause.

If you use the Pseudocode Programming Process effectively, you’ll probably end up with 
a comment for every few lines of code. The number of comments, however, will be a side 
effect of the process itself. Rather than focusing on the number of comments, focus on 
whether each comment is efficient. If the comments describe why the code was written 
and meet the other criteria established in this chapter, you’ll have enough comments.

32.5 Commenting Techniques
Commenting is amenable to several different techniques depending on the level to 
which the comments apply: program, file, routine, paragraph, or individual line.

Commenting Individual Lines

In good code, the need to comment individual lines of code is rare. Here are two pos-
sible reasons a line of code would need a comment:

■ The single line is complicated enough to need an explanation.

■ The single line once had an error, and you want a record of the error.

Here are some guidelines for commenting a line of code:

Avoid self-indulgent comments Many years ago, I heard the story of a maintenance 
programmer who was called out of bed to fix a malfunctioning program. The program’s 
author had left the company and couldn’t be reached. The maintenance programmer 
hadn’t worked on the program before, and after examining the documentation care-
fully, he found only one comment. It looked like this:

MOV AX, 723h    ; R. I. P. L. V. B.

After working with the program through the night and puzzling over the comment, 
the programmer made a successful patch and went home to bed. Months later, he met 
the program’s author at a conference and found out that the comment stood for “Rest 
in peace, Ludwig van Beethoven.” Beethoven died in 1827 (decimal), which is 723 
(hexadecimal). The fact that 723h was needed in that spot had nothing to do with the 
comment. Aaarrrrghhhhh!

1
2
3

HARD DATA
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Endline Comments and Their Problems

Endline comments are comments that appear at the ends of lines of code:

Visual Basic Example of Endline Comments
For employeeId = 1 To employeeCount 

   GetBonus( employeeId, employeeType, bonusAmount ) 

   If employeeType = EmployeeType_Manager Then 

      PayManagerBonus( employeeId, bonusAmount ) ' pay full amount 

   Else  

      If employeeType = EmployeeType_Programmer Then 

         If bonusAmount >= MANAGER_APPROVAL_LEVEL Then 

            PayProgrammerBonus( employeeId, StdAmt() ) ' pay std. amount 

         Else 

            PayProgrammerBonus( employeeId, bonusAmount ) ' pay full amount 

         End If 

      End If 

   End If 

Next 

Although useful in some circumstances, endline comments pose several problems. 
The comments have to be aligned to the right of the code so that they don’t interfere 
with the visual structure of the code. If you don’t align them neatly, they’ll make your 
listing look like it’s been through the washing machine. Endline comments tend to be 
hard to format. If you use many of them, it takes time to align them. Such time is not 
spent learning more about the code; it’s dedicated solely to the tedious task of press-
ing the spacebar or the Tab key.

Endline comments are also hard to maintain. If the code on any line containing an end-
line comment grows, it bumps the comment farther out and all the other endline com-
ments will have to be bumped out to match. Styles that are hard to maintain aren’t 
maintained, and the commenting deteriorates under modification rather than improving.

Endline comments also tend to be cryptic. The right side of the line usually doesn’t 
offer much room, and the desire to keep the comment on one line means that the 
comment must be short. Work then goes into making the line as short as possible 
instead of as clear as possible.

Avoid endline comments on single lines In addition to their practical problems, end-
line comments pose several conceptual problems. Here’s an example of a set of end-
line comments:

C++ Example of Useless Endline Comments
The comments merely 
repeat the code.

memoryToInitialize = MemoryAvailable();    // get amount of memory available 

pointer = GetMemory( memoryToInitialize ); // get a ptr to the available memory 

ZeroMemory( pointer, memoryToInitialize ); // set memory to 0 

... 

FreeMemory( pointer );                     // free memory allocated
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A systemic problem with endline comments is that it’s hard to write a meaningful 
comment for one line of code. Most endline comments just repeat the line of code, 
which hurts more than it helps.

Avoid endline comments for multiple lines of code If an endline comment is 
intended to apply to more than one line of code, the formatting doesn’t show which 
lines the comment applies to:

Visual Basic Example of a Confusing Endline Comment on Multiple Lines of Code
For rateIdx = 1 to rateCount                  ' Compute discounted rates 

   LookupRegularRate( rateIdx, regularRate ) 

   rate( rateIdx ) = regularRate * discount( rateIdx ) 

Next

Even though the content of this particular comment is fine, its placement isn’t. You 
have to read the comment and the code to know whether the comment applies to a 
specific statement or to the entire loop.

When to Use Endline Comments

Consider three exceptions to the recommendation against using endline comments:

Cross-Reference Other 
aspects of endline com-
ments on data declarations 
are described in “Comment-
ing Data Declarations,” later 
in this section.

Use endline comments to annotate data declarations Endline comments are useful 
for annotating data declarations because they don’t have the same systemic problems 
as endline comments on code, provided that you have enough width. With 132 col-
umns, you can usually write a meaningful comment beside each data declaration:

Java Example of Good Endline Comments for Data Declarations
int boundary = 0;         // upper index of sorted part of array  

String insertVal = BLANK; // data elmt to insert in sorted part of array  

int insertPos = 0;        // position to insert elmt in sorted part of array 

Avoid using endline comments for maintenance notes Endline comments are some-
times used for recording modifications to code after its initial development. This kind 
of comment typically consists of a date and the programmer’s initials, or possibly an 
error-report number. Here’s an example:

for i = 1 to maxElmts – 1   -- fixed error #A423 10/1/05 (scm)

Adding such a comment can be gratifying after a late-night debugging session on soft-
ware that’s in production, but such comments really have no place in production 
code. Such comments are handled better by version-control software. Comments 
should explain why the code works now, not why the code didn’t work at some point 
in the past.

CODING 
HORROR
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Cross-Reference Use of 
endline comments to mark 
ends of blocks is described 
further in “Commenting 
Control Structures,” later in 
this section.

Use endline comments to mark ends of blocks An endline comment is useful for 
marking the end of a long block of code—the end of a while loop or an if statement, for 
example. This is described in more detail later in this chapter.

Aside from a couple of special cases, endline comments have conceptual problems 
and tend to be used for code that’s too complicated. They are also difficult to format 
and maintain. Overall, they’re best avoided.

Commenting Paragraphs of Code

Most comments in a well-documented program are one-sentence or two-sentence 
comments that describe paragraphs of code:

Java Example of a Good Comment for a Paragraph of Code
// swap the roots 

oldRoot = root[0]; 

root[0] = root[1]; 

root[1] = oldRoot;

The comment doesn’t repeat the code—it describes the code’s intent. Such comments 
are relatively easy to maintain. Even if you find an error in the way the roots are 
swapped, for example, the comment won’t need to be changed. Comments that aren’t 
written at the level of intent are harder to maintain.

Write comments at the level of the code’s intent Describe the purpose of the block of 
code that follows the comment. Here’s an example of a comment that’s ineffective 
because it doesn’t operate at the level of intent:

Java Example of an Ineffective Comment
Cross-Reference This code 
that performs a simple string 
search is used only for 
purposes of illustration. For 
real code, you’d use Java’s 
built-in string library func-
tions instead. For more on 
the importance of under-
standing your language’s 
capabilities, see “Read!” in 
Section 33.3.

/* check each character in "inputString" until a dollar sign  

is found or all characters have been checked 

*/ 

done = false; 

maxLen = inputString.length(); 

i = 0; 

while ( !done && ( i < maxLen ) ) { 

   if ( inputString[ i ] == '$' ) { 

      done = true; 

   } 

   else { 

      i++; 

   } 

}

You can figure out that the loop looks for a $ by reading the code, and it’s somewhat 
helpful to have that summarized in the comment. The problem with this comment is 
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that it merely repeats the code and doesn’t give you any insight into what the code is 
supposed to be doing. This comment would be a little better:

// find '$' in inputString

This comment is better because it indicates that the goal of the loop is to find a $. But 
it still doesn’t give you much insight into why the loop would need to find a $—in 
other words, into the deeper intent of the loop. Here’s a comment that’s better still:

// find the command-word terminator ($)

This comment actually contains information that the code listing does not, namely 
that the $ terminates a command word. In no way could you deduce that fact merely 
from reading the code fragment, so the comment is genuinely helpful.

Another way of thinking about commenting at the level of intent is to think about what 
you would name a routine that did the same thing as the code you want to comment. If 
you’re writing paragraphs of code that have one purpose each, it isn’t difficult. The com-
ment in the previous code sample is a good example. FindCommandWordTerminator() 
would be a decent routine name. The other options, Find$InInputString() and Check-
EachCharacterInInputStrUntilADollarSignIsFoundOrAllCharactersHaveBeenChecked(), are 
poor names (or invalid) for obvious reasons. Type the description without shortening 
or abbreviating it, as you might for a routine name. That description is your com-
ment, and it’s probably at the level of intent.

Focus your documentation efforts on the code itself For the record, the code itself is 
always the first documentation you should check. In the previous example, the literal, 
$, should be replaced with a named constant and the variables should provide more 
of a clue about what’s going on. If you want to push the edge of the readability enve-
lope, add a variable to contain the result of the search. Doing that clearly distinguishes 
between the loop index and the result of the loop. Here’s the code rewritten with 
good comments and good style:

Java Example of a Good Comment and Good Code
// find the command-word terminator 

foundTheTerminator = false; 

commandStringLength = inputString.length(); 

testCharPosition = 0; 

while ( !foundTheTerminator && ( testCharPosition < commandStringLength ) ) { 

   if ( inputString[ testCharPosition ] == COMMAND_WORD_TERMINATOR ) { 

      foundTheTerminator = true;

Here’s the variable that 
contains the result of the 
search.

      terminatorPosition = testCharPosition; 

   } 

   else { 

      testCharPosition = testCharPosition + 1; 

   } 

}

KEY POINT
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If the code is good enough, it begins to read at close to the level of intent, encroaching 
on the comment’s explanation of the code’s intent. At that point, the comment and the 
code might become somewhat redundant, but that’s a problem few programs have.

Cross-Reference For more 
on moving a section of code 
into its own routine, see 
"Extract routine/extract 
method" in Section 24.3.

Another good step for this code would be to create a routine called something like 
FindCommandWordTerminator() and move the code from the sample into that routine. 
A comment that describes that thought is useful but is more likely than a routine 
name to become inaccurate as the software evolves.

Focus paragraph comments on the why rather than the how Comments that explain 
how something is done usually operate at the programming-language level rather 
than the problem level. It’s nearly impossible for a comment that focuses on how an 
operation is done to explain the intent of the operation, and comments that tell how 
are often redundant. What does the following comment tell you that the code doesn’t?

Java Example of a Comment That Focuses on How
// if account flag is zero 

if ( accountFlag == 0 ) ...

The comment tells you nothing more than the code itself does. What about this 
comment?

Java Example of a Comment That Focuses on Why
// if establishing a new account 

if ( accountFlag == 0 ) ...

This comment is a lot better because it tells you something you couldn’t infer from the 
code itself. The code itself could still be improved by use of a meaningful enumerated 
type name instead of O and a better variable name. Here’s the best version of this com-
ment and code:

Java Example of Using Good Style In Addition to a “Why” Comment
// if establishing a new account 

if ( accountType == AccountType.NewAccount ) ...

When code attains this level of readability, it’s appropriate to question the value of the 
comment. In this case, the comment has been made redundant by the improved code, 
and it should probably be removed. Alternatively, the purpose of the comment could 
be subtly shifted, like this:

Java Example of Using a “Section Heading” Comment
// establish a new account 

if ( accountType == AccountType.NewAccount ) { 

   ... 

}

CODING 
HORROR
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If this comment documents the whole block of code following the if test, it serves as a 
summary-level comment and it’s appropriate to retain it as a section heading for the 
paragraph of code it references.

Use comments to prepare the reader for what is to follow Good comments tell the 
person reading the code what to expect. A reader should be able to scan only the com-
ments and get a good idea of what the code does and where to look for a specific activ-
ity. A corollary to this rule is that a comment should always precede the code it 
describes. This idea isn’t always taught in programming classes, but it’s a well-estab-
lished convention in commercial practice.

Make every comment count There’s no virtue in excessive commenting—too many 
comments obscure the code they’re meant to clarify. Rather than writing more com-
ments, put the extra effort into making the code itself more readable.

Document surprises If you find anything that isn’t obvious from the code itself, put 
it into a comment. If you have used a tricky technique instead of a straightforward one 
to improve performance, use comments to point out what the straightforward tech-
nique would be and quantify the performance gain achieved by using the tricky tech-
nique. Here’s an example:

C++ Example of Documenting a Surprise
for ( element = 0; element < elementCount; element++ ) { 

   // Use right shift to divide by two. Substituting the 

   // right-shift operation cuts the loop time by 75%. 

   elementList[ element ] = elementList[ element ] >> 1; 

}

The selection of the right shift in this example is intentional. Among experienced pro-
grammers, it’s common knowledge that for integers, right shift is functionally equiva-
lent to divide-by-two.

If it’s common knowledge, why document it? Because the purpose of the operation is 
not to perform a right shift; it is to perform a divide-by-two. The fact that the code 
doesn’t use the technique most suited to its purpose is significant. Moreover, most 
compilers optimize integer division-by-two to be a right shift anyway, meaning that the 
reduced clarity is usually unnecessary. In this particular case, the compiler evidently 
doesn’t optimize the divide-by-two, and the time saved will be significant. With the 
documentation, a programmer reading the code would see the motivation for using 
the nonobvious technique. Without the comment, the same programmer would be 
inclined to grumble that the code is unnecessarily “clever” without any meaningful 
gain in performance. Usually such grumbling is justified, so it’s important to docu-
ment the exceptions.
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Avoid abbreviations Comments should be unambiguous, readable without the work 
of figuring out abbreviations. Avoid all but the most common abbreviations in com-
ments. Unless you’re using endline comments, using abbreviations isn’t usually a 
temptation. If you are and it is, realize that abbreviations are another strike against a 
technique that struck out several pitches ago.

Differentiate between major and minor comments In a few cases, you might want to 
differentiate between different levels of comments, indicating that a detailed comment 
is part of a previous, broader comment. You can handle this in a couple of ways. You 
can try underlining the major comment and not underlining the minor comment:

C++ Example of Differentiating Between Major and Minor Comments with 
Underlines—Not Recommended

The major comment is 
underlined.

A minor comment that’s 
part of the action described 
by the major comment 
isn’t underlined here...

...or here.

// copy the string portion of the table, along the way omitting  

// strings that are to be deleted 

//-------------------------------------------------------------------------- 

// determine number of strings in the table 

...  

// mark the strings to be deleted 

...

The weakness of this approach is that it forces you to underline more comments than 
you’d really like to. If you underline a comment, it’s assumed that all the nonunder-
lined comments that follow it are subordinate to it. Consequently, when you write the 
first comment that isn’t subordinate to the underlined comment, it too must be under-
lined and the cycle starts all over. The result is too much underlining or inconsistent 
underlining in some places and no underlining in others.

This theme has several variations that all have the same problem. If you put the major 
comment in all caps and the minor comments in lowercase, you substitute the prob-
lem of too many all-caps comments for too many underlined comments. Some pro-
grammers use an initial cap on major statements and no initial cap on minor ones, but 
that’s a subtle visual cue too easily overlooked.

A better approach is to use ellipses in front of the minor comments:

The major comment is 
formatted normally.

A minor comment that’s part 
of the action described by 
the major comment is pre-
ceded by an ellipsis here...

...and here.

C++ Example of Differentiating Between Major and Minor Comments with Ellipses
// copy the string portion of the table, along the way omitting 

// strings that are to be deleted  

// ... determine number of strings in the table 

... 

 

// ... mark the strings to be deleted 

...
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Another approach that’s often best is to put the major-comment operation into its own 
routine. Routines should be logically “flat,” with all their activities on about the same 
logical level. If your code differentiates between major and minor activities within a rou-
tine, the routine isn’t flat. Putting the complicated group of activities into its own routine 
makes for two logically flat routines instead of one logically lumpy one.

This discussion of major and minor comments doesn’t apply to indented code within 
loops and conditionals. In such cases, you’ll often have a broad comment at the top of 
the loop and more detailed comments about the operations within the indented code. 
In those cases, the indentation provides the clue to the logical organization of the 
comments. This discussion applies only to sequential paragraphs of code in which 
several paragraphs make up a complete operation and some paragraphs are subordi-
nate to others.

Comment anything that gets around an error or an undocumented feature in a 
language or an environment If it’s an error, it probably isn’t documented. Even if it’s 
documented somewhere, it doesn’t hurt to document it again in your code. If it’s an 
undocumented feature, by definition it isn’t documented elsewhere and it should be 
documented in your code.

Suppose you find that the library routine WriteData( data, numItems, blockSize ) works 
properly except when blockSize equals 500. It works fine for 499, 501, and every other 
value you’ve ever tried, but you’ve found that the routine has a defect that appears 
only when blockSize equals 500. In code that uses WriteData(), document why you’re 
making a special case when blockSize is 500. Here’s an example of how it could look:

Java Example of Documenting the Workaround for an Error
blockSize = optimalBlockSize( numItems, sizePerItem ); 

 

/* The following code is necessary to work around an error in 

WriteData() that appears only when the third parameter 

equals 500. '500' has been replaced with a named constant 

for clarity.  

*/ 

if ( blockSize == WRITEDATA_BROKEN_SIZE ) { 

   blockSize = WRITEDATA_WORKAROUND_SIZE; 

} 

WriteData ( file, data, blockSize );
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Justify violations of good programming style If you’ve had to violate good program-
ming style, explain why. That will prevent a well-intentioned programmer from chang-
ing the code to a better style, possibly breaking your code. The explanation will make 
it clear that you knew what you were doing and weren’t just sloppy—give yourself 
credit where credit is due!

Don’t comment tricky code; rewrite it Here’s a comment from a project I worked on:

C++ Example of Commenting Clever Code
// VERY IMPORTANT NOTE: 

// The constructor for this class takes a reference to a UiPublication. 

// The UiPublication object MUST NOT BE DESTROYED before the DatabasePublication 

// object. If it is, the DatabasePublication object will cause the program to 

// die a horrible death.

This is a good example of one of the most prevalent and hazardous bits of program-
ming folklore: that comments should be used to document especially “tricky” or “sen-
sitive” sections of code. The reasoning is that people should know they need to be 
careful when they’re working in certain areas.

This is a scary idea.

Commenting tricky code is exactly the wrong approach to take. Comments can’t res-
cue difficult code. As Kernighan and Plauger emphasize, “Don’t document bad code—
rewrite it” (1978).

One study found that areas of source code with large numbers of comments also 
tended to have the most defects and to consume the most development effort (Lind 
and Vairavan 1989). The authors hypothesized that programmers tended to comment 
difficult code heavily.

When someone says, “This is really tricky code,” I hear them say, “This is really bad 
code.” If something seems tricky to you, it will be incomprehensible to someone else. 
Even something that doesn’t seem all that tricky to you can seem impossibly convo-
luted to another person who hasn’t seen the trick before. If you have to ask yourself “Is 
this tricky?” it is. You can always find a rewrite that’s not tricky, so rewrite the code. 
Make your code so good that you don’t need comments, and then comment it to make 
it even better.

This advice applies mainly to code you’re writing for the first time. If you’re maintain-
ing a program and don’t have the latitude to rewrite bad code, commenting the tricky 
parts is a good practice.

CODING 
HORROR
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Commenting Data Declarations
Cross-Reference For details 
on formatting data, see "Lay-
ing Out Data Declarations" 
in Section 31.5. For details 
on how to use data effec-
tively, see Chapters 10 
through 13.

Comments for variable declarations describe aspects of the variable that the variable 
name can’t describe. It’s important to document data carefully; at least one company 
that studied its own practices has concluded that annotations on data are even more 
important than annotations on the processes in which the data is used (SDC, in Glass 
1982). Here are some guidelines for commenting data:

Comment the units of numeric data If a number represents length, indicate whether 
the length is expressed in inches, feet, meters, or kilometers. If it’s time, indicate 
whether it’s expressed in elapsed seconds since 1-1-1980, milliseconds since the start 
of the program, and so on. If it’s coordinates, indicate whether they represent latitude, 
longitude, and altitude and whether they’re in radians or degrees; whether they repre-
sent an X, Y, Z coordinate system with its origin at the earth’s center; and so on. Don’t 
assume that the units are obvious. To a new programmer, they won’t be. To someone 
who’s been working on another part of the system, they won’t be. After the program 
has been substantially modified, they won’t be.

Alternatively, in many cases you should embed the units in the variable names rather 
than in comments. An expression like distanceToSurface = marsLanderAltitude looks 
like it’s probably correct, but distanceToSurfaceInMeters = marsLanderAltitudeInFeet 
exposes an obvious error.

Cross-Reference A stronger 
technique for documenting 
allowable ranges of variables 
is to use assertions at the 
beginning and end of a rou-
tine to assert that the vari-
able’s values should be 
within a prescribed range. 
For more details, see Section 
8.2, "Assertions." 

Comment the range of allowable numeric values If a variable has an expected range 
of values, document the expected range. One of the powerful features of the Ada pro-
gramming language was the ability to restrict the allowable values of a numeric vari-
able to a range of values. If your language doesn’t support that capability (and most 
languages don’t), use a comment to document the expected range of values. For 
example, if a variable represents an amount of money in dollars, indicate that you 
expect it to be between $1 and $100. If a variable indicates a voltage, indicate that it 
should be between 105v and 125v.

Comment coded meanings If your language supports enumerated types—as C++ and 
Visual Basic do—use them to express coded meanings. If it doesn’t, use comments to 
indicate what each value represents—and use a named constant rather than a literal for 
each of the values. If a variable represents kinds of electrical current, comment the fact 
that 1 represents alternating current, 2 represents direct current, and 3 represents 
undefined.

Here’s an example of documenting variable declarations that illustrates the three pre-
ceding recommendations—all the range information is given in comments:
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Visual Basic Example of Nicely Documented Variable Declarations
Dim cursorX As Integer  ' horizontal cursor position; ranges from 1..MaxCols 

Dim cursorY As Integer  ' vertical cursor position; ranges from 1..MaxRows 

 

Dim antennaLength As Long      ' length of antenna in meters; range is >= 2 

Dim signalStrength As Integer  ' strength of signal in kilowatts; range is >= 1 

 

Dim characterCode As Integer      ' ASCII character code; ranges from 0..255 

Dim characterAttribute As Integer ' 0=Plain; 1=Italic; 2=Bold; 3=BoldItalic 

Dim characterSize As Integer ' size of character in points; ranges from 4..127

Comment limitations on input data Input data might come from an input parame-
ter, a file, or direct user input. The previous guidelines apply as much to routine-input 
parameters as to other kinds of data. Make sure that expected and unexpected values 
are documented. Comments are one way of documenting that a routine is never sup-
posed to receive certain data. Assertions are another way to document valid ranges, 
and if you use them the code becomes that much more self-checking.

Document flags to the bit level If a variable is used as a bit field, document the mean-
ing of each bit:

Cross-Reference For details 
on naming flag variables, 
see "Naming Status Vari-
ables" in Section 11.2.

Visual Basic Example of Documenting Flags to the Bit Level
' The meanings of the bits in statusFlags are as follows, from most  

' significant bit to least significant bit: 

' MSB   0     error detected: 1=yes, 0=no 

'       1-2   kind of error: 0=syntax, 1=warning, 2=severe, 3=fatal 

'       3     reserved (should be 0) 

'       4     printer status: 1=ready, 0=not ready 

'       ... 

'       14    not used (should be 0) 

' LSB   15-32 not used (should be 0)  

Dim statusFlags As Integer

If the example were written in C++, it would call for bit-field syntax so that the bit-field 
meanings would be self-documenting.

Stamp comments related to a variable with the variable’s name If you have com-
ments that refer to a specific variable, make sure the comment is updated whenever 
the variable is updated. One way to improve the odds of a consistent modification is 
to stamp the comment with the variable name. That way, string searches for the vari-
able name will find the comment as well as the variable.

Cross-Reference For details 
on using global data, see 
Section 13.3, "Global Data."

Document global data If global data is used, annotate each piece well at the point at 
which it’s declared. The annotation should indicate the purpose of the data and why 
it needs to be global. At each point at which the data is used, make it clear that the data 
is global. A naming convention is the first choice for highlighting a variable’s global 
status. If a naming convention isn’t used, comments can fill the gap.
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Commenting Control Structures
Cross-Reference For other 
details on control structures, 
see Section 31.3, “Layout 
Styles,” Section 31.4, “Laying 
Out Control Structures,” and 
Chapters 14 through 19.

The space before a control structure is usually a natural place to put a comment. If it’s 
an if or a case statement, you can provide the reason for the decision and a summary 
of the outcome. If it’s a loop, you can indicate the purpose of the loop.

C++ Example of Commenting the Purpose of a Control Structure
Purpose of the following 
loop.

// copy input field up to comma 

while ( ( *inputString != ',' ) && ( *inputString != END_OF_STRING ) ) { 

   *field = *inputString; 

   field++; 

   inputString++;

End of the loop (useful for 
longer, nested loops—
although the need for such 
a comment indicates overly 
complicated code).

Purpose of the loop. Position 
of comment makes it clear 
that inputString is being set 
up for the loop.

} // while -- copy input field 

 

*field = END_OF_STRING; 

 

if ( *inputString != END_OF_STRING ) {

   // read past comma and subsequent blanks to get to the next input field 

   inputString++; 

   while ( ( *inputString == ' ' ) && ( *inputString != END_OF_STRING ) ) { 

      inputString++; 

   } 

} // if -- at end of string

This example suggests some guidelines:

Put a comment before each if, case, loop, or block of statements Such a place is a 
natural spot for a comment, and these constructs often need explanation. Use a com-
ment to clarify the purpose of the control structure.

Comment the end of each control structure Use a comment to show what ended—for 
example,

} // for clientIndex — process record for each client

A comment is especially helpful at the end of long loops and to clarify loop nesting. 
Here’s a Java example of using comments to clarify the ends of loop structures:

Java Example of Using Comments to Show Nesting
for ( tableIndex = 0; tableIndex < tableCount; tableIndex++ ) { 

   while ( recordIndex < recordCount ) { 

      if ( !IllegalRecordNumber( recordIndex ) ) { 

         ...

These comments indicate 
which control structure is 
ending.

      } // if 

   } // while 

} // for

This commenting technique supplements the visual clues about the logical struc-
ture given by the code’s indentation. You don’t need to use the technique for short 
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loops that aren’t nested. When the nesting is deep or the loops are long, however, 
the technique pays off.

Treat end-of-loop comments as a warning indicating complicated code If a loop is 
complicated enough to need an end-of-loop comment, treat the comment as a warn-
ing sign: the loop might need to be simplified. The same rule applies to complicated if 
tests and case statements.

End-of-loop comments provide useful clues to logical structure, but writing them ini-
tially and then maintaining them can become tedious. The best way to avoid such 
tedious work is often to rewrite any code that’s complicated enough to require tedious 
documentation.

Commenting Routines
Cross-Reference For details 
on formatting routines, see 
Section 31.7. For details on 
how to create high-quality 
routines, see Chapter 7.

Routine-level comments are the subject of some of the worst advice in typical com-
puter-science textbooks. Many textbooks urge you to pile up a stack of information at 
the top of every routine, regardless of its size or complexity:

Visual Basic Example of a Monolithic, Kitchen-Sink Routine Prolog
'********************************************************************** 

' Name: CopyString 

' 

' Purpose:      This routine copies a string from the source 

'               string (source) to the target string (target). 

' 

' Algorithm:    It gets the length of "source" and then copies each 

'               character, one at a time, into "target". It uses 

'               the loop index as an array index into both "source" 

'               and "target" and increments the loop/array index 

'               after each character is copied. 

' 

' Inputs:       input    The string to be copied 

' 

' Outputs:      output   The string to receive the copy of "input" 

' 

' Interface Assumptions: None 

' 

' Modification History: None 

' 

' Author:       Dwight K. Coder 

' Date Created: 10/1/04 

' Phone:        (555) 222-2255 

' SSN:          111-22-3333 

' Eye Color:    Green 

' Maiden Name:  None 

' Blood Type:   AB- 

' Mother's Maiden Name: None 

' Favorite Car: Pontiac Aztek 

' Personalized License Plate: "Tek-ie" 

'**********************************************************************

CODING 
HORROR
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This is ridiculous. CopyString is presumably a trivial routine—probably fewer than five 
lines of code. The comment is totally out of proportion to the scale of the routine. The 
parts about the routine’s Purpose and Algorithm are strained because it’s hard to 
describe something as simple as CopyString at a level of detail that’s between “copy a 
string” and the code itself. The boilerplate comments Interface Assumptions and Modi-
fication History aren’t useful either—they just take up space in the listing. Requiring the 
author’s name is redundant with information that can be retrieved more accurately 
from the revision-control system. To require all these ingredients for every routine is a 
recipe for inaccurate comments and maintenance failure. It’s a lot of make-work that 
never pays off.

Another problem with heavy routine headers is that they discourage good factoring of 
the code—the overhead to create a new routine is so high that programmers will tend 
to err on the side of creating fewer routines, not more. Coding conventions should 
encourage good practices; heavy routine headers do the opposite.

Here are some guidelines for commenting routines:

Keep comments close to the code they describe One reason that the prolog to a rou-
tine shouldn’t contain voluminous documentation is that such a practice puts the 
comments far away from the parts of the routine they describe. During maintenance, 
comments that are far from the code tend not to be maintained with the code. The 
comments and the code start to disagree, and suddenly the comments are worthless. 
Instead, follow the Principle of Proximity and put comments as close as possible to 
the code they describe. They’re more likely to be maintained, and they’ll continue to 
be worthwhile.

Several components of routine prologs are described below and should be included as 
needed. For your convenience, create a boilerplate documentation prolog. Just don’t 
feel obliged to include all the information in every case. Fill out the parts that matter, 
and delete the rest.

Cross-Reference Good rou-
tine names are key to routine 
documentation. For details 
on how to create them, see 
Section 7.3, "Good Routine 
Names."

Describe each routine in one or two sentences at the top of the routine If you can’t 
describe the routine in a short sentence or two, you probably need to think harder 
about what it’s supposed to do. Difficulty in creating a short description is a sign that 
the design isn’t as good as it should be. Go back to the design drawing board and try 
again. The short summary statement should be present in virtually all routines except 
for simple Get and Set accessor routines.

Document parameters where they are declared The easiest way to document input 
and output variables is to put comments next to the parameter declarations:
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Java Example of Documenting Input and Output Data Where It’s 
Declared—Good Practice
public void InsertionSort(  

   int[] dataToSort, // elements to sort in locations firstElement..lastElement 

   int firstElement, // index of first element to sort (>=0) 

   int lastElement // index of last element to sort (<= MAX_ELEMENTS) 

)

Cross-Reference Endline 
comments are discussed in 
more detail in “Endline Com-
ments and Their Problems,” 
earlier in this section.

This practice is a good exception to the rule of not using endline comments; they are 
exceptionally useful in documenting input and output parameters. This occasion for 
commenting is also a good illustration of the value of using standard indentation 
rather than endline indentation for routine parameter lists—you wouldn’t have room 
for meaningful endline comments if you used endline indentation. The comments in 
the example are strained for space even with standard indentation. This example also 
demonstrates that comments aren’t the only form of documentation. If your variable 
names are good enough, you might be able to skip commenting them. Finally, the 
need to document input and output variables is a good reason to avoid global data. 
Where do you document it? Presumably, you document the globals in the monster 
prolog. That makes for more work and, unfortunately, in practice usually means that 
the global data doesn’t get documented. That’s too bad because global data needs to 
be documented at least as much as anything else.

Take advantage of code documentation utilities such as Javadoc If the code in the previ-
ous example were actually written in Java, you would have the additional ability to set up 
the code to take advantage of Java’s document extraction utility, Javadoc. In that case, 
“documenting parameters where they are declared” would change to look like this:

Java Example of Documenting Input and Output Data To Take Advantage of Javadoc 
/** 

 * ... <description of the routine> ... 

 * 

 * @param dataToSort  elements to sort in locations firstElement..lastElement 

 * @param firstElement index of first element to sort (>=0) 

 * @param lastElement  index of last element to sort (<= MAX_ELEMENTS) 

 */ 

public void InsertionSort(  

   int[] dataToSort, 

   int firstElement,  

   int lastElement  

)

With a tool like Javadoc, the benefit of setting up the code to extract documentation out-
weighs the risks associated with separating the parameter description from the parame-
ter’s declaration. If you’re not working in an environment that supports document 
extraction, like Javadoc, you’re usually better off keeping the comments closer to the 
parameter names to avoid inconsistent edits and duplication of the names themselves.
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Differentiate between input and output data It’s useful to know which data is used 
as input and which is used as output. Visual Basic makes it relatively easy to tell 
because output data is preceded by the ByRef keyword and input data is preceded by 
the ByVal keyword. If your language doesn’t support such differentiation automati-
cally, put it into comments. Here’s an example in C++:

Cross-Reference The order 
of these parameters follows 
the standard order for C++ 
routines but conflicts with 
more general practices. For 
details, see "Put parameters 
in input-modify-output 
order" in Section 7.5. For 
details on using a naming 
convention to differentiate 
between input and output 
data, see Section 11.4.

C++ Example of Differentiating Between Input and Output Data
void StringCopy( 

   char *target,       // out: string to copy to 

   const char *source  // in: string to copy from 

) 

...

C++-language routine declarations are a little tricky because some of the time the aster-
isk (*) indicates that the argument is an output argument and a lot of the time it just 
means that the variable is easier to handle as a pointer than as a nonpointer type. 
You’re usually better off identifying input and output arguments explicitly.

If your routines are short enough and you maintain a clear distinction between 
input and output data, documenting the data’s input or output status is probably 
unnecessary. If the routine is longer, however, it’s a useful service to anyone who 
reads the routine.

Cross-Reference For details 
on other considerations for 
routine interfaces, see Sec-
tion 7.5, "How to Use Rou-
tine Parameters." To 
document assumptions 
using assertions, see “Use 
assertions to document and 
verify preconditions and 
postconditions” in Section 
8.2.

Document interface assumptions Documenting interface assumptions might be 
viewed as a subset of the other commenting recommendations. If you have made any 
assumptions about the state of variables you receive—legal and illegal values, arrays 
being in sorted order, member data being initialized or containing only good data, 
and so on—document them either in the routine prolog or where the data is declared. 
This documentation should be present in virtually every routine.

Make sure that global data that’s used is documented. A global variable is as much an 
interface to a routine as anything else and is all the more hazardous because it some-
times doesn’t seem like one.

As you’re writing the routine and realize that you’re making an interface assumption, 
write it down immediately.

Comment on the routine’s limitations If the routine provides a numeric result, indi-
cate the accuracy of the result. If the computations are undefined under some condi-
tions, document the conditions. If the routine has a default behavior when it gets into 
trouble, document the behavior. If the routine is expected to work only on arrays or 
tables of a certain size, indicate that. If you know of modifications to the program that 
would break the routine, document them. If you ran into gotchas during the develop-
ment of the routine, document those also.
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Document the routine’s global effects If the routine modifies global data, describe 
exactly what it does to the global data. As mentioned in Section 13.3, “Global Data,” 
modifying global data is at least an order of magnitude more dangerous than merely 
reading it, so modifications should be performed carefully, part of the care being clear 
documentation. As usual, if documenting becomes too onerous, rewrite the code to 
reduce global data.

Document the source of algorithms that are used If you’ve used an algorithm from a 
book or magazine, document the volume and page number you took it from. If you 
developed the algorithm yourself, indicate where the reader can find the notes you’ve 
made about it.

Use comments to mark parts of your program Some programmers use comments to 
mark parts of their program so that they can find them easily. One such technique in 
C++ and Java is to mark the top of each routine with a comment beginning with these 
characters: 

/** 

This allows you to jump from routine to routine by doing a string search for /** or to 
use your editor to jump automatically if it supports that.

A similar technique is to mark different kinds of comments differently, depending on 
what they describe. For example, in C++ you could use @keyword, where keyword is a 
code you use to indicate the kind of comment. The comment @param could indicate 
that the comment describes a parameter to a routine, @version could indicate file-ver-
sion information, @throws could document the exceptions thrown by a routine, and 
so on. This technique allows you to use tools to extract different kinds of information 
from your source files. For example, you could search for @throws to retrieve docu-
mentation about all the exceptions thrown by all the routines in a program.

cc2e.com/3259 This C++ convention is based on the Javadoc convention, which is a well-established 
interface documentation convention for Java programs (java.sun.com/j2se/javadoc/). 
You can define your own conventions in other languages.

Commenting Classes, Files, and Programs
Cross-Reference For layout 
details, see Section 31.8, 
"Laying Out Classes." For 
details on using classes, see 
Chapter 6, "Working 
Classes."

Classes, files, and programs are all characterized by the fact that they contain multiple 
routines. A file or class should contain a collection of related routines. A program con-
tains all the routines in a program. The documentation task in each case is to provide 
a meaningful, top-level view of the contents of the file, class, or program.
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General Guidelines for Class Documentation

For each class, use a block comment to describe general attributes of the class: 

Describe the design approach to the class Overview comments that provide infor-
mation that can’t readily be reverse-engineered from coding details are especially use-
ful. Describe the class’s design philosophy, overall design approach, design 
alternatives that were considered and discarded, and so on.

Describe limitations, usage assumptions, and so on Similar to routines, be sure to 
describe any limitations imposed by the class’s design. Also describe assumptions 
about input and output data, error-handling responsibilities, global effects, sources of 
algorithms, and so on.

Comment the class interface Can another programmer understand how to use a 
class without looking at the class’s implementation? If not, class encapsulation is seri-
ously at risk. The class’s interface should contain all the information anyone needs to 
use the class. The Javadoc convention is to require, at a minimum, documentation for 
each parameter and each return value (Sun Microsystems 2000). This should be done 
for all exposed routines of each class (Bloch 2001).

Don’t document implementation details in the class interface A cardinal rule of 
encapsulation is that you expose information only on a need-to-know basis: if there is 
any question about whether information needs to be exposed, the default is to keep it 
hidden. Consequently, class interface files should contain information needed to use 
the class but not information needed to implement or maintain the inner workings of 
the class.

General Guidelines for File Documentation

At the top of a file, use a block comment to describe the contents of the file:

Describe the purpose and contents of each file The file header comment should 
describe the classes or routines contained in a file. If all the routines for a program are 
in one file, the purpose of the file is pretty obvious—it’s the file that contains the whole 
program. If the purpose of the file is to contain one specific class, the purpose is also 
obvious—it’s the file that contains the class with a similar name.

If the file contains more than one class, explain why the classes need to be combined 
into a single file.

If the division into multiple source files is made for some reason other than modu-
larity, a good description of the purpose of the file will be even more helpful to a 
programmer who is modifying the program. If someone is looking for a routine that 
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does x, does the file’s header comment help that person determine whether this file 
contains such a routine?

Put your name, e-mail address, and phone number in the block comment Author-
ship and primary responsibility for specific areas of source code becomes important 
on large projects. Small projects (fewer than 10 people) can use collaborative develop-
ment approaches, such as shared code ownership in which all team members are 
equally responsible for all sections of code. Larger systems require that programmers 
specialize in different areas of code, which makes full-team shared-code ownership 
impractical.

In that case, authorship is important information to have in a listing. It gives other pro-
grammers who work on the code a clue about the programming style, and it gives 
them someone to contact if they need help. Depending on whether you work on indi-
vidual routines, classes, or programs, you should include author information at the 
routine, class, or program level.

Include a version-control tag Many version-control tools will insert version informa-
tion into a file. In CVS, for example, the characters 

// $Id$

will automatically expand to

// $Id: ClassName.java,v 1.1 2004/02/05 00:36:43 ismene Exp $

This allows you to maintain current versioning information within a file without 
requiring any developer effort other than inserting the original $Id$ comment.

Include legal notices in the block comment Many companies like to include copy-
right statements, confidentiality notices, and other legal notices in their programs. If 
yours is one of them, include a line similar to the one below. Check with your com-
pany’s legal advisor to determine what information, if any, to include in your files.

Java Example of a Copyright Statement
// (c) Copyright 1993-2004 Steven C. McConnell. All Rights Reserved. 

...

Give the file a name related to its contents Normally, the name of the file should be 
closely related to the name of the public class contained in the file. For example, if the 
class is named Employee, the file should be named Employee.cpp. Some languages, 
notably Java, require the file name to match the class name.
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The Book Paradigm for Program Documentation

Further Reading This dis-
cussion is adapted from “The 
Book Paradigm for Improved 
Maintenance” (Oman and 
Cook 1990a) and “Typo-
graphic Style Is More Than 
Cosmetic” (Oman and Cook 
1990b). A similar analysis is 
presented in detail in 
Human Factors and Typog-
raphy for More Readable 
Programs (Baecker and Mar-
cus 1990).

Most experienced programmers agree that the documentation techniques described 
in the previous section are valuable. The hard, scientific evidence for the value of any 
one of the techniques is still weak. When the techniques are combined, however, evi-
dence of their effectiveness is strong.

In 1990, Paul Oman and Curtis Cook published a pair of studies on the “Book Para-
digm” for documentation (1990a, 1990b). They looked for a coding style that would 
support several different styles of code reading. One goal was to support top-down, 
bottom-up, and focused searches. Another was to break up the code into chunks that 
programmers could remember more easily than a long listing of homogeneous code. 
Oman and Cook wanted the style to provide for both high-level and low-level clues 
about code organization.

They found that by thinking of code as a special kind of book and by formatting it 
accordingly, they could achieve their goals. In the Book Paradigm, code and its docu-
mentation are organized into several components similar to the components of a book 
to help programmers get a high-level view of the program.

The “preface” is a group of introductory comments such as those usually found at the 
beginning of a file. It functions as the preface to a book does. It gives the programmer 
an overview of the program.

The “table of contents” shows the top-level files, classes, and routines (chapters). They 
might be shown in a list, as a traditional book’s chapters are, or graphically in a struc-
ture chart.

The “sections” are the divisions within routines—routine declarations, data declara-
tions, and executable statements, for example.

The “cross-references” are cross-reference maps of the code, including line numbers.

The low-level techniques that Oman and Cook use to take advantage of the similari-
ties between a book and a code listing are similar to the techniques described in 
Chapter 31, “Layout and Style,” and in this chapter.

The upshot of using their techniques to organize code was that when Oman and Cook 
gave a maintenance task to a group of experienced, professional programmers, the 
average time to perform a maintenance task in a 1000-line program was only about 
three-quarters of the time it took the programmers to do the same task in a traditional 
source listing (1990b). Moreover, the maintenance scores of programmers on code 
documented with the Book Paradigm averaged about 20 percent higher than on tradi-
tionally documented code. Oman and Cook concluded that by paying attention to the 
typographic principles of book design, you can get a 10 to 20 percent improvement in 
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comprehension. A study with programmers at the University of Toronto produced 
similar results (Baecker and Marcus 1990).

The Book Paradigm emphasizes the importance of providing documentation that 
explains both the high-level and the low-level organization of your program.

32.6 IEEE Standards
For documentation beyond the source-code level, valuable sources of information are 
the IEEE (Institute for Electric and Electrical Engineers) Software Engineering Stan-
dards. IEEE standards are developed by groups composed of practitioners and acade-
micians who are expert in a particular area. Each standard contains a summary of the 
area covered by the standard and typically contains the outline for the appropriate 
documentation for work in that area.

Several national and international organizations participate in standards work. The 
IEEE is a group that has taken the lead in defining software engineering standards. 
Some standards are jointly adopted by ISO (International Standards Organization), 
EIA (Electronic Industries Alliance), or IEC (International Engineering Consortium).

Standards names are composed of the standards number, the year the standard was 
adopted, and the name of the standard. So, IEEE/EIA Std 12207-1997, Information 
Technology—Software Life Cycle Processes, refers to standard number 12207.2, which was 
adopted in 1997 by the IEEE and EIA.

Here are some of the national and international standards most applicable to software 
projects:

cc2e.com/3266 The top-level standard is ISO/IEC Std 12207, Information Technology—Software Life Cycle 
Processes, which is the international standard that defines a life-cycle framework for 
developing and managing software projects. This standard was adopted in the United 
States as IEEE/EIA Std 12207, Information Technology—Software Life Cycle Processes.

Software-Development Standards
cc2e.com/3273 Here are software-development standards to consider:

IEEE Std 830-1998, Recommended Practice for Software Requirements Specifications

IEEE Std 1233-1998, Guide for Developing System Requirements Specifications

IEEE Std 1016-1998, Recommended Practice for Software Design Descriptions

IEEE Std 828-1998, Standard for Software Configuration Management Plans

IEEE Std 1063-2001, Standard for Software User Documentation

IEEE Std 1219-1998, Standard for Software Maintenance
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Software Quality-Assurance Standards
cc2e.com/3280 And here are software quality-assurance standards:

IEEE Std 730-2002, Standard for Software Quality Assurance Plans

IEEE Std 1028-1997, Standard for Software Reviews

IEEE Std 1008-1987 (R1993), Standard for Software Unit Testing

IEEE Std 829-1998, Standard for Software Test Documentation

IEEE Std 1061-1998, Standard for a Software Quality Metrics Methodology

Management Standards
cc2e.com/3287 Here are some software-management standards:

IEEE Std 1058-1998, Standard for Software Project Management Plans

IEEE Std 1074-1997, Standard for Developing Software Life Cycle Processes

IEEE Std 1045-1992, Standard for Software Productivity Metrics

IEEE Std 1062-1998, Recommended Practice for Software Acquisition

IEEE Std 1540-2001, Standard for Software Life Cycle Processes - Risk Management

IEEE Std 1490-1998, Guide - Adoption of PMI Standard - A Guide to the Project Manage-
ment Body of Knowledge

Overview of Standards
cc2e.com/3294 Here are sources that provide overviews of standards:

cc2e.com/3201 IEEE Software Engineering Standards Collection, 2003 Edition. New York, NY: Institute of 
Electrical and Electronics Engineers (IEEE). This comprehensive volume contains 40 
of the most recent ANSI/IEEE standards for software development as of 2003. Each 
standard includes a document outline, a description of each component of the outline, 
and a rationale for that component. The document includes standards for quality-
assurance plans, configuration-management plans, test documents, requirements spec-
ifications, verification and validation plans, design descriptions, project-management 
plans, and user documentation. The book is a distillation of the expertise of hundreds 
of people at the top of their fields and would be a bargain at virtually any price. Some 
of the standards are also available individually. All are available from the IEEE Com-
puter Society in Los Alamitos, California and from www.computer.org/cspress.

Moore, James W. Software Engineering Standards: A User’s Road Map. Los Alamitos, CA: 
IEEE Computer Society Press, 1997. Moore provides an overview of IEEE software 
engineering standards.
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Additional Resources
cc2e.com/3208 In addition to the IEEE standards, numerous other resources are available on pro-

gram documentation.

Spinellis, Diomidis. Code Reading: The Open Source Perspective. Boston, MA: Addison-
Wesley, 2003. This book is a pragmatic exploration of techniques for reading code, 
including where to find code to read, tips for reading large code bases, tools that sup-
port code reading, and many other useful suggestions.

cc2e.com/3215

I wonder how many great 
novelists have never read 
someone else’s work, how 
many great painters have 
never studied another’s 
brush strokes, how many 
skilled surgeons never 
learned by looking over a 
colleague’s shoulder.... And 
yet that’s what we expect 
programmers to do.
—Dave Thomas

SourceForge.net. For decades, a perennial problem in teaching software development 
has been finding life-size examples of production code to share with students. Many 
people learn quickest from studying real-life examples, but most life-size code bases 
are treated as proprietary information by the companies that created them. This situ-
ation has improved dramatically through the combination of the Internet and open-
source software. The Source Forge website contains code for thousands of programs 
in C, C++, Java, Visual Basic, PHP, Perl, Python, and many other languages, all which 
you can download for free. Programmers can benefit from wading through the code 
on the website to see much larger real-world examples than Code Complete, Second Edi-
tion, is able to show in its short code examples. Junior programmers who haven’t pre-
viously seen extensive examples of production code will find this website especially 
valuable as a source of both good and bad coding practices.

cc2e.com/3222 Sun Microsystems. “How to Write Doc Comments for the Javadoc Tool,” 2000. Avail-
able from http://java.sun.com/j2se/javadoc/writingdoccomments/. This article 
describes how to use Javadoc to document Java programs. It includes detailed advice 
about how to tag comments by using an @tag style notation. It also includes many 
specific details about how to wordsmith the comments themselves. The Javadoc con-
ventions are probably the most fully developed code-level documentation standards 
currently available.

Here are sources of information on other topics in software documentation:

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press, 
1998. This book describes the documentation required by a medium-sized business-
critical project. A related website provides numerous related document templates.

cc2e.com/3229 www.construx.com. This website (my company’s website) contains numerous docu-
ment templates, coding conventions, and other resources related to all aspects of soft-
ware development, including software documentation.

cc2e.com/3236 Post, Ed. “Real Programmers Don’t Use Pascal,” Datamation, July 1983, pp. 263–265. 
This tongue-in-cheek paper argues for a return to the “good old days” of Fortran pro-
gramming when programmers didn’t have to worry about pesky issues like readability.
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cc2e.com/3243 CHECKLIST: Good Commenting Technique
General

❑ Can someone pick up the code and immediately start to understand it?

❑ Do comments explain the code’s intent or summarize what the code does, 
rather than just repeating the code?

❑ Is the Pseudocode Programming Process used to reduce commenting 
time?

❑ Has tricky code been rewritten rather than commented?

❑ Are comments up to date?

❑ Are comments clear and correct?

❑ Does the commenting style allow comments to be easily modified?

Statements and Paragraphs
❑ Does the code avoid endline comments?

❑ Do comments focus on why rather than how?

❑ Do comments prepare the reader for the code to follow?

❑ Does every comment count? Have redundant, extraneous, and self-indul-
gent comments been removed or improved?

❑ Are surprises documented?

❑ Have abbreviations been avoided?

❑ Is the distinction between major and minor comments clear?

❑ Is code that works around an error or undocumented feature commented?

Data Declarations
❑ Are units on data declarations commented?

❑ Are the ranges of values on numeric data commented?

❑ Are coded meanings commented?

❑ Are limitations on input data commented?

❑ Are flags documented to the bit level?

❑ Has each global variable been commented where it is declared?

❑ Has each global variable been identified as such at each usage, by a naming 
convention, a comment, or both?

❑ Are magic numbers replaced with named constants or variables rather 
than just documented?
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Control Structures
❑ Is each control statement commented?

❑ Are the ends of long or complex control structures commented or, when 
possible, simplified so that they don’t need comments?

Routines
❑ Is the purpose of each routine commented?

❑ Are other facts about each routine given in comments, when relevant, 
including input and output data, interface assumptions, limitations, error 
corrections, global effects, and sources of algorithms?

Files, Classes, and Programs
❑ Does the program have a short document, such as that described in the 

Book Paradigm, that gives an overall view of how the program is orga-
nized?

❑ Is the purpose of each file described?

❑ Are the author’s name, e-mail address, and phone number in the listing?

Key Points
■ The question of whether to comment is a legitimate one. Done poorly, com-

menting is a waste of time and sometimes harmful. Done well, commenting is 
worthwhile.

■ The source code should contain most of the critical information about the pro-
gram. As long as the program is running, the source code is more likely than any 
other resource to be kept current, and it’s useful to have important information 
bundled with the code.

■ Good code is its own best documentation. If the code is bad enough to require 
extensive comments, try first to improve the code so that it doesn’t need exten-
sive comments.

■ Comments should say things about the code that the code can’t say about 
itself—at the summary level or the intent level.

■ Some commenting styles require a lot of tedious clerical work. Develop a style 
that’s easy to maintain.
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Chapter 33

Personal Character
cc2e.com/3313 Contents

■ 33.1 Isn’t Personal Character Off the Topic?: page 820

■ 33.2 Intelligence and Humility: page 821

■ 33.3 Curiosity: page 822

■ 33.4 Intellectual Honesty: page 826

■ 33.5 Communication and Cooperation: page 828

■ 33.6 Creativity and Discipline: page 829

■ 33.7 Laziness: page 830

■ 33.8 Characteristics That Don’t Matter As Much As You Might Think: page 830

■ 33.9 Habits: page 833

Related Topics

■ Themes in software craftsmanship: Chapter 34

■ Complexity: Sections 5.2 and 19.6

Personal character has received a rare degree of attention in software development. 
Ever since Edsger Dijkstra’s landmark 1965 article, “Programming Considered as a 
Human Activity,” programmer character has been regarded as a legitimate and fruitful 
area of inquiry. Titles such as The Psychology of Bridge Construction and “Exploratory 
Experiments in Attorney Behavior” might seem absurd, but in the computer field The 
Psychology of Computer Programming, “Exploratory Experiments in Programmer 
Behavior,” and similar titles are classics.

Engineers in every discipline learn the limits of the tools and materials they work 
with. If you’re an electrical engineer, you know the conductivity of various metals and 
a hundred ways to use a voltmeter. If you’re a structural engineer, you know the load-
bearing properties of wood, concrete, and steel.

If you’re a software engineer, your basic building material is human intellect and your 
primary tool is you. Rather than designing a structure to the last detail and then hand-
ing the blueprints to someone else for construction, you know that once you’ve 
designed a piece of software to the last detail, it’s done. The whole job of program-
ming is building air castles—it’s one of the most purely mental activities you can do. 
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Consequently, when software engineers study the essential properties of their tools 
and raw materials, they find that they’re studying people: intellect, character, and 
other attributes that are less tangible than wood, concrete, and steel.

If you’re looking for concrete programming tips, this chapter might seem too abstract 
to be useful. Once you’ve absorbed the specific advice in the rest of the book, however, 
this chapter spells out what you need to do to continue improving. Read the next sec-
tion, and then decide whether you want to skip the chapter.

33.1 Isn’t Personal Character Off the Topic?
The intense inwardness of programming makes personal character especially 
important. You know how difficult it is to put in eight concentrated hours in one 
day. You’ve probably had the experience of being burned out one day from concen-
trating too hard the day before or burned out one month from concentrating too 
hard the month before. You’ve probably had days on which you’ve worked well from 
8:00 A.M. to 2:00 P.M. and then felt like quitting. You didn’t quit, though; you 
pushed on from 2:00 P.M. to 5:00 P.M. and then spent the rest of the week fixing 
what you wrote from 2:00 to 5:00.

Programming work is essentially unsupervisable because no one ever really knows 
what you’re working on. We’ve all had projects in which we spent 80 percent of the 
time working on a small piece we found interesting and 20 percent of the time build-
ing the other 80 percent of the program.

Your employer can’t force you to be a good programmer; a lot of times your employer 
isn’t even in a position to judge whether you’re good. If you want to be great, you’re 
responsible for making yourself great. It’s a matter of your personal character.

Once you decide to make yourself a superior programmer, the potential for improve-
ment is huge. Study after study has found differences on the order of 10 to 1 in the 
time required to create a program. They have also found differences on the order of 10 
to 1 in the time required to debug a program and 10 to 1 in the resulting size, speed, 
error rate, and number of errors detected (Sackman, Erikson, and Grant 1968; Curtis 
1981; Mills 1983; DeMarco and Lister 1985; Curtis et al. 1986; Card 1987; Valett and 
McGarry 1989).

You can’t do anything about your intelligence, so the classical wisdom goes, but you 
can do something about your character. And it turns out that character is the more 
decisive factor in the makeup of a superior programmer.

1
2
3

HARD DATA
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33.2 Intelligence and Humility
We become authorities and 
experts in the practical and 
scientific spheres by so many 
separate acts and hours of 
work. If a person keeps faith-
fully busy each hour of the 
working day, he can count on 
waking up some morning to 
find himself one of the com-
petent ones of his generation.  
—William James

Intelligence doesn’t seem like an aspect of personal character, and it isn’t. Coinciden-
tally, great intelligence is only loosely connected to being a good programmer.

What? You don’t have to be superintelligent?

No, you don’t. Nobody is really smart enough to program computers. Fully under-
standing an average program requires an almost limitless capacity to absorb details 
and an equal capacity to comprehend them all at the same time. The way you focus 
your intelligence is more important than how much intelligence you have.

As Chapter 5 (“Design in Construction”) mentioned, at the 1972 Turing Award Lec-
ture, Edsger Dijkstra delivered a paper titled “The Humble Programmer.” He argued 
that most of programming is an attempt to compensate for the strictly limited size of 
our skulls. The people who are best at programming are the people who realize how 
small their brains are. They are humble. The people who are the worst at program-
ming are the people who refuse to accept the fact that their brains aren’t equal to the 
task. Their egos keep them from being great programmers. The more you learn to 
compensate for your small brain, the better a programmer you’ll be. The more humble 
you are, the faster you’ll improve.

The purpose of many good programming practices is to reduce the load on your gray 
cells. Here are a few examples:

■ The point of “decomposing” a system is to make it simpler to understand. (See 
”Levels of Design” in Section 5.2 for more details.) 

■ Conducting reviews, inspections, and tests is a way of compensating for antici-
pated human fallibilities. These review techniques originated as part of “egoless 
programming” (Weinberg 1998). If you never made mistakes, you wouldn’t 
need to review your software. But you know that your intellectual capacity is lim-
ited, so you augment it with someone else’s.

■ Keeping routines short reduces the load on your brain.

■ Writing programs in terms of the problem domain rather than in terms of low-
level implementation details reduces your mental workload.

■ Using conventions of all sorts frees your brain from the relatively mundane 
aspects of programming, which offer little payback.

You might think that the high road would be to develop better mental abilities so that 
you wouldn’t need these programming crutches. You might think that a programmer 
who uses mental crutches is taking the low road. Empirically, however, it’s been 
shown that humble programmers who compensate for their fallibilities write code 
that’s easier for themselves and others to understand and that has fewer errors. The 
real low road is the road of errors and delayed schedules.
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33.3 Curiosity
Once you admit that your brain is too small to understand most programs and you 
realize that effective programming is a search for ways to offset that fact, you begin a 
career-long search for ways to compensate. In the development of a superior program-
mer, curiosity about technical subjects must be a priority. The relevant technical infor-
mation changes continually. Many Web programmers have never had to program in 
Microsoft Windows, and many Windows programmers never had to deal with DOS 
or UNIX or punch cards. Specific features of the technical environment change every 
5 to 10 years. If you aren’t curious enough to keep up with the changes, you might find 
yourself down at the old-programmers’ home playing cards with T-Bone Rex and the 
Brontosaurus sisters.

Programmers are so busy working they often don’t have time to be curious about how 
they might do their jobs better. If this is true for you, you’re not alone. The following 
subsections describe a few specific actions you can take to exercise your curiosity and 
make learning a priority.

Cross-Reference For a fuller 
discussion of the importance 
of process in software devel-
opment, see Section 34.2, 
“Pick Your Process.”

Build your awareness of the development process The more aware you are of the 
development process, whether from reading or from your own observations about 
software development, the better position you’re in to understand changes and to 
move your group in a good direction.

If your workload consists entirely of short-term assignments that don’t develop your 
skills, be dissatisfied. If you’re working in a competitive software market, half of what 
you now need to know to do your job will be out of date in three years. If you’re not 
learning, you’re turning into a dinosaur.

You’re in too much demand to spend time working for management that doesn’t have 
your interests in mind. Despite some ups and downs and some jobs moving overseas, 
the average number of software jobs available in the U.S. is expected to increase dramat-
ically between 2002 and 2012. Jobs for systems analysts are expected to increase by 
about 60 percent and for software engineers by about 50 percent. For all computer-job 
categories combined, about 1 million new jobs will be created beyond the 3 million that 
currently exist (Hecker 2001, BLS 2004). If you can’t learn at your job, find a new one.

Cross-Reference Several key 
aspects of programming 
revolve around the idea of 
experimentation. For details, 
see “Experimentation” in 
Section 34.9.

Experiment One effective way to learn about programming is to experiment with 
programming and the development process. If you don’t know how a feature of your 
language works, write a short program to exercise the feature and see how it works. 
Prototype! Watch the program execute in the debugger. You’re better off working with 
a short program to test a concept than you are writing a larger program with a feature 
you don’t quite understand.

1
2
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What if the short program shows that the feature doesn’t work the way you want it to? 
That’s what you wanted to find out. Better to find it out in a small program than a large 
one. One key to effective programming is learning to make mistakes quickly, learning 
from them each time. Making a mistake is no sin. Failing to learn from a mistake is.

Further Reading A great 
book that teaches problem 
solving is James Adams’s 
Conceptual Blockbusting 
(2001).

Read about problem solving Problem solving is the core activity in building com-
puter software. Herbert Simon reported a series of experiments on human problem 
solving. They found that human beings don’t always discover clever problem-solving 
strategies themselves, even though the same strategies could readily be taught to the 
same people (Simon 1996). The implication is that even if you want to reinvent the 
wheel, you can’t count on success. You might reinvent the square instead.

Analyze and plan before you act You’ll find that there’s a tension between analysis 
and action. At some point you have to quit gathering data and act. The problem for 
most programmers, however, isn’t an excess of analysis. The pendulum is currently so 
far on the “acting” side of the arc that you can wait until it’s at least partway to the mid-
dle before worrying about getting stuck on the “analysis-paralysis” side.

cc2e.com/3320 Learn about successful projects One especially good way to learn about program-
ming is to study the work of the great programmers. Jon Bentley thinks that you 
should be able to sit down with a glass of brandy and a good cigar and read a program 
the way you would a good novel. That might not be as far-fetched as it sounds. Most 
people wouldn’t want to use their recreational time to scrutinize a 500-page source 
listing, but many people would enjoy studying a high-level design and dipping into 
more detailed source listings for selected areas.

The software-engineering field makes extraordinarily limited use of examples of past 
successes and failures. If you were interested in architecture, you’d study the drawings 
of Louis Sullivan, Frank Lloyd Wright, and I. M. Pei. You’d probably visit some of their 
buildings. If you were interested in structural engineering, you’d study the Brooklyn 
Bridge; the Tacoma Narrows Bridge; and a variety of other concrete, steel, and wood 
structures. You would study examples of successes and failures in your field.

Thomas Kuhn points out that a part of any mature science is a set of solved problems 
that are commonly recognized as examples of good work in the field and that serve as 
examples for future work (Kuhn 1996). Software engineering is only beginning to 
mature to this level. In 1990, the Computer Science and Technology Board concluded 
that there were few documented case studies of either successes or failures in the soft-
ware field (CSTB 1990).

An article in the Communications of the ACM argued for learning from case studies of 
programming problems (Linn and Clancy 1992). The fact that someone has to argue 
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for this is significant. That one of the most popular computing columns, “Program-
ming Pearls,” was built around case studies of programming problems is also sugges-
tive. And one of the most popular books in software engineering is The Mythical Man-
Month, a case study in programming management of the IBM OS/360 project.

With or without a book of case studies in programming, find code written by supe-
rior programmers and read it. Ask to look at the code of programmers you respect. 
Ask to look at the code of programmers you don’t. Compare their code, and com-
pare their code to your own. What are the differences? Why are they different? 
Which way is better? Why?

In addition to reading other people’s code, develop a desire to know what expert pro-
grammers think about your code. Find world-class programmers who’ll give you their 
criticism. As you listen to the criticism, filter out points that have to do with their per-
sonal idiosyncrasies and concentrate on the points that matter. Then change your pro-
gramming so that it’s better.

Read! Documentation phobia is rampant among programmers. Computer docu-
mentation tends to be poorly written and poorly organized, but for all its problems, 
there’s much to gain from overcoming an excessive fear of computer-screen photons 
or paper products. Documentation contains the keys to the castle, and it’s worth 
spending time reading it. Overlooking information that’s readily available is such a 
common oversight that a familiar acronym on newsgroups and bulletin boards is 
“RTFM!” which stands for “Read the !#*%*@ Manual!”

A modern language product is usually bundled with an enormous set of library code. 
Time spent browsing through the library documentation is well invested. Often the 
company that provides the language product has already created many of the classes 
you need. If it has, make sure you know about them. Skim the documentation every 
couple of months.

Cross-Reference For books 
you can use in a personal 
reading program, see Sec-
tion 35.4, “A Software Devel-
oper’s Reading Plan.”

Read other books and periodicals Pat yourself on the back for reading this book. 
You’re already learning more than most people in the software industry because one 
book is more than most programmers read each year (DeMarco and Lister 1999). A 
little reading goes a long way toward professional advancement. If you read even one 
good programming book every two months, roughly 35 pages a week, you’ll soon 
have a firm grasp on the industry and distinguish yourself from nearly everyone 
around you.

Affiliate with other professionals Find other people who care about sharpening 
their software-development skills. Attend a conference, join a local user group, or par-
ticipate in an online discussion group.
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Further Reading For other 
discussions of programmer 
levels, see “Construx’s Pro-
fessional Development Pro-
gram” (Chapter 16) in 
Professional Software Devel-
opment (McConnell 2004).

Make a commitment to professional development Good programmers constantly 
look for ways to become better. Consider the following professional development lad-
der used at my company and several others: 

■ Level 1: Beginning A beginner is a programmer capable of using the basic 
capabilities of one language. Such a person can write classes, routines, loops, 
and conditionals and use many of the features of a language.

■ Level 2: Introductory An intermediate programmer who has moved past the 
beginner phase is capable of using the basic capabilities of multiple languages 
and is very comfortable in at least one language.

■ Level 3: Competency A competent programmer has expertise in a language or 
an environment or both. A programmer at this level might know all the intrica-
cies of J2EE or have the Annotated C++ Reference Manual memorized. Program-
mers at this level are valuable to their companies, and many programmers never 
move beyond this level.

■ Level 4: Leadership A leader has the expertise of a Level 3 programmer and 
recognizes that programming is only 15 percent communicating with the com-
puter and 85 percent communicating with people. Only 30 percent of an 
average programmer’s time is spent working alone (McCue 1978). Even less 
time is spent communicating with the computer. The guru writes code for an 
audience of people rather than machines. True guru-level programmers write 
code that’s crystal-clear, and they document it, too. They don’t want to waste 
their valuable gray cells reconstructing the logic of a section of code that they 
could have read in a one-sentence comment.

A great coder who doesn’t emphasize readability is probably stuck at Level 3, but even 
that isn’t usually the case. In my experience, the main reason people write unreadable 
code is that their code is bad. They don’t say to themselves, “My code is bad, so I’ll 
make it hard to read.” They just don’t understand their code well enough to make it 
readable, which locks them into one of the lower levels.

The worst code I’ve ever seen was written by someone who wouldn’t let anyone go 
near her programs. Finally, her manager threatened to fire her if she didn’t cooperate. 
Her code was uncommented and littered with variables like x, xx, xxx, xx1, and xx2, 
all of which were global. Her manager’s boss thought she was a great programmer 
because she fixed errors quickly. The quality of her code gave her abundant opportu-
nities to demonstrate her error-correcting ability.

It’s no sin to be a beginner or an intermediate. It’s no sin to be a competent program-
mer instead of a leader. The sin is in how long you remain a beginner or intermediate 
after you know what you have to do to improve.
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33.4 Intellectual Honesty
Part of maturing as a programming professional is developing an uncompromising sense 
of intellectual honesty. Intellectual honesty commonly manifests itself in several ways:

■ Refusing to pretend you’re an expert when you’re not

■ Readily admitting your mistakes

■ Trying to understand a compiler warning rather than suppressing the message

■ Clearly understanding your program—not compiling it to see if it works

■ Providing realistic status reports

■ Providing realistic schedule estimates and holding your ground when manage-
ment asks you to adjust them

The first two items on this list—admitting that you don’t know something or that you 
made a mistake—echo the theme of intellectual humility discussed earlier. How can you 
learn anything new if you pretend that you know everything already? You’d be better off 
pretending that you don’t know anything. Listen to people’s explanations, learn some-
thing new from them, and assess whether they know what they are talking about.

Be ready to quantify your degree of certainty on any issue. If it’s usually 100 percent, 
that’s a warning sign.

Any fool can defend his or 
her mistakes—and most 
fools do.  
—Dale Carnegie

Refusing to admit mistakes is a particularly annoying habit. If Sally refuses to admit a 
mistake, she apparently believes that not admitting the mistake will trick others into 
believing that she didn’t make it. The opposite is true. Everyone will know she made a 
mistake. Mistakes are accepted as part of the ebb and flow of complex intellectual activ-
ities, and as long as she hasn’t been negligent, no one will hold mistakes against her.

If she refuses to admit a mistake, the only person she’ll fool is herself. Everyone else 
will learn that they’re working with a prideful programmer who’s not completely hon-
est. That’s a more damning fault than making a simple error. If you make a mistake, 
admit it quickly and emphatically.

Pretending to understand compiler messages when you don’t is another common 
blind spot. If you don’t understand a compiler warning or if you think you know 
what it means but are too pressed for time to check it, guess what’s really a waste of 
time? You’ll probably end up trying to solve the problem from the ground up while 
the compiler waves the solution in your face. I’ve had several people ask for help in 
debugging programs. I’ll ask if they have a clean compile, and they’ll say yes. Then 
they’ll start to explain the symptoms of the problem, and I’ll say, “Hmmmm. That 
sounds like it would be an uninitialized pointer, but the compiler should have 
warned you about that.” Then they’ll say, “Oh yeah—it did warn about that. We 



33.4 Intellectual Honesty 827

thought it meant something else.” It’s hard to fool other people about your 
mistakes. It’s even harder to fool the computer, so don’t waste your time trying.

A related kind of intellectual sloppiness occurs when you don’t quite understand your 
program and “just compile it to see if it works.” One example is running the program 
to see whether you should use < or <=. In that situation, it doesn’t really matter 
whether the program works because you don’t understand it well enough to know 
why it works. Remember that testing can show only the presence of errors, not their 
absence. If you don’t understand the program, you can’t test it thoroughly. Feeling 
tempted to compile a program to “see what happens” is a warning sign. It might mean 
that you need to back up to design or that you began coding before you were sure you 
knew what you were doing. Make sure you have a strong intellectual grip on the pro-
gram before you relinquish it to the compiler.

The first 90 percent of the 
code accounts for the first 90 
percent of the development 
time. The remaining 10 per-
cent of the code accounts for 
the other 90 percent of the 
development time.  
—Tom Cargill

Status reporting is an area of scandalous duplicity. Programmers are notorious for say-
ing that a program is “90 percent complete” during the last 50 percent of the project. 
If your problem is that you have a poor sense of your own progress, you can solve it by 
learning more about how you work. But if your problem is that you don’t speak your 
mind because you want to give the answer your manager wants to hear, that’s a differ-
ent story. A manager usually appreciates honest observations about the status of a 
project, even if they’re not the opinions the manager wants to hear. If your observa-
tions are well thought out, give them as dispassionately as you can and in private. 
Management needs to have accurate information to coordinate development activi-
ties, and full cooperation is essential.

cc2e.com/3341 An issue related to inaccurate status reporting is inaccurate estimation. The typical 
scenario goes like this: Management asks Bert for an estimate of how long it would 
take to develop a new database product. Bert talks to a few programmers, crunches 
some numbers, and comes back with an estimate of eight programmers and six 
months. His manager says, “That’s not really what we’re looking for. Can you do it in 
a shorter time, with fewer programmers?” Bert goes away and thinks about it and 
decides that for a short period he could cut training and vacation time and have every-
one work a little overtime. He comes back with an estimate of six programmers and 
four months. His manager says, “That’s great. This is a relatively low-priority project, 
so try to keep it on time without any overtime because the budget won’t allow it.”

The mistake Bert made was not realizing that estimates aren’t negotiable. He can 
revise an estimate to be more accurate, but negotiating with his boss won’t change the 
time it takes to develop a software project. IBM’s Bill Weimer says, “We found that 
technical people, in general, were actually very good at estimating project require-
ments and schedules. The problem they had was defending their decisions; they 
needed to learn how to hold their ground” (Weimer in Metzger and Boddie 1996). 
Bert’s not going to make his manager any happier by promising to deliver a project in 
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four months and delivering it in six than he would by promising and delivering it in 
six. He’ll lose credibility by compromising, and he’ll gain respect by standing firm on 
his estimate.

If management applies pressure to change your estimate, realize that ultimately the 
decision whether to do a project rests with management: “Look. This is how much it’s 
going to cost. I can’t say whether it’s worth this price to the company—that’s your job. 
But I can tell you how long it takes to develop a piece of software—that’s my job. I can’t 
‘negotiate’ how long it will take; that’s like negotiating how many feet are in a mile. 
You can’t negotiate laws of nature. We can, however, negotiate other aspects of the 
project that affect the schedule and then reestimate the schedule. We can eliminate 
features, reduce performance, develop the project in increments, or use fewer people 
and a longer schedule or more people and a shorter schedule.”

One of the scariest exchanges I’ve ever heard was at a lecture on managing software 
projects. The speaker was the author of a best-selling software-project-management 
book. A member of the audience asked, “What do you do if management asks for an 
estimate and you know that if you give them an accurate estimate they’ll say it’s too 
high and decide not to do the project?” The speaker responded that that was one of 
those tricky areas in which you had to get management to buy into the project by 
underestimating it. He said that once they’d invested in the first part of the project, 
they’d see it through to the end.

Wrong answer! Management is responsible for the big-picture issues of running a 
company. If a certain software capability is worth $250K to a company and you esti-
mate it will cost $750K to develop, the company shouldn’t develop the software. It’s 
management’s responsibility to make such judgments. When the speaker advocated 
lying about the project’s cost, telling management it would cost less than it really 
would, he advocated covertly stealing management’s authority. If you think a project 
is interesting, breaks important new ground for the company, or provides valuable 
training, say so. Management can weigh those factors, too. But tricking management 
into making the wrong decision could literally cost the company hundreds of thou-
sands of dollars. If it costs you your job, you’ll have gotten what you deserve.

33.5 Communication and Cooperation
Truly excellent programmers learn how to work and play well with others. Writing 
readable code is part of being a team player. The computer probably reads your pro-
gram as often as other people do, but it’s a lot better at reading poor code than people 
are. As a readability guideline, keep the person who has to modify your code in mind. 
Programming is communicating with another programmer first and communicating 
with the computer second.
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33.6 Creativity and Discipline
When I got out of school, I thought I was the best programmer in the world. I 
could write an unbeatable tic-tac-toe program, use five different computer lan-
guages, and create 1000-line programs that WORKED (really!).  Then I got out 
into the Real World. My first task in the Real World was to read and understand 
a 200,000-line Fortran program and then speed it up by a factor of two. Any 
Real Programmer will tell you that all the Structured Coding in the world won’t 
help you solve a problem like that—it takes actual talent.
—Ed Post

It’s hard to explain to a fresh computer-science graduate why you need conventions 
and engineering discipline. When I was an undergraduate, the largest program I 
wrote was about 500 lines of executable code. As a professional, I’ve written dozens of 
utilities that have been smaller than 500 lines, but the average main-project size has 
been 5,000 to 25,000 lines, and I’ve participated in projects with over a half million 
lines of code. This type of effort requires not the same skills on a larger scale, but a 
new set of skills altogether.

Some creative programmers view the discipline of standards and conventions as sti-
fling to their creativity. The opposite is true. Can you imagine a website on which each 
page used different fonts, colors, text alignment, graphics styles, and navigation clues? 
The effect would be chaotic, not creative. Without standards and conventions on large 
projects, project completion itself is impossible. Creativity isn’t even imaginable. 
Don’t waste your creativity on things that don’t matter. Establish conventions in non-
critical areas so that you can focus your creative energies in the places that count.

In a 15-year retrospective on work at NASA’s Software Engineering Laboratory, 
McGarry and Pajerski reported that methods and tools that emphasize human disci-
pline have been especially effective (1990). Many highly creative people have been 
extremely disciplined. “Form is liberating,” as the saying goes. Great architects work 
within the constraints of physical materials, time, and cost. Great artists do, too. Any-
one who has examined Leonardo’s drawings has to admire his disciplined attention 
to detail. When Michelangelo designed the ceiling of the Sistine Chapel, he divided it 
into symmetric collections of geometric forms, such as triangles, circles, and squares. 
He designed it in three zones corresponding to three Platonic stages. Without this 
self-imposed structure and discipline, the 300 human figures would have been merely 
chaotic rather than the coherent elements of an artistic masterpiece.

A programming masterpiece requires just as much discipline. If you don’t try to ana-
lyze requirements and design before you begin coding, much of your learning about 
the project will occur during coding and the result of your labors will look more like 
a three-year-old’s finger painting than a work of art.
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33.7 Laziness
Laziness: The quality that 
makes you go to great effort 
to reduce overall energy 
expenditure. It makes you 
write labor-saving programs 
that other people will find 
useful, and document what 
you wrote so that you don’t 
have to answer so many 
questions about it.
—Larry Wall

Laziness manifests itself in several ways:

■ Deferring an unpleasant task

■ Doing an unpleasant task quickly to get it out of the way

■ Writing a tool to do the unpleasant task so that you never have to do the task 
again

Some of these manifestations of laziness are better than others. The first is hardly ever 
beneficial. You’ve probably had the experience of spending several hours futzing with 
jobs that didn’t really need to be done so that you wouldn’t have to face a relatively 
minor job that you couldn’t avoid. I detest data entry, and many programs require a 
small amount of data entry. I’ve been known to delay working on a program for days 
just to delay the inevitable task of entering several pages of numbers by hand. This 
habit is “true laziness.” It manifests itself again in the habit of compiling a class to see 
if it works so that you can avoid the exercise of checking the class with your mind.

The small tasks are never as bad as they seem. If you develop the habit of doing them 
right away, you can avoid the procrastinating kind of laziness. This habit is “enlight-
ened laziness”—the second kind of laziness. You’re still lazy, but you’re getting around 
the problem by spending the smallest possible amount of time on something that’s 
unpleasant.

The third option is to write a tool to do the unpleasant task. This is “long-term lazi-
ness.” It is undoubtedly the most productive kind of laziness (provided that you ulti-
mately save time by having written the tool). In these contexts, a certain amount of 
laziness is beneficial.

When you step through the looking glass, you see the other side of the laziness pic-
ture. “Hustle” or “making an effort” doesn’t have the rosy glow it does in high-school 
physical education class. Hustle is extra, unnecessary effort. It shows that you’re eager 
but not that you’re getting your work done. It’s easy to confuse motion with progress, 
busy-ness with being productive. The most important work in effective programming 
is thinking, and people tend not to look busy when they’re thinking. If I worked with 
a programmer who looked busy all the time, I’d assume that he was not a good pro-
grammer because he wasn’t using his most valuable tool, his brain.

33.8 Characteristics That Don’t Matter As Much As You 
Might Think

Hustle isn’t the only characteristic that you might admire in other aspects of your life 
but that doesn’t work very well in software development.
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Persistence

Depending on the situation, persistence can be either an asset or a liability. Like most 
value-laden concepts, it’s identified by different words depending on whether you 
think it’s a good quality or a bad one. If you want to identify persistence as a bad qual-
ity, you say it’s “stubbornness” or “pigheadedness.” If you want it to be a good quality, 
you call it “tenacity” or “perseverance.”

Most of the time, persistence in software development is pigheadedness—it has little 
value. Persistence when you’re stuck on a piece of new code is hardly ever a virtue. Try 
redesigning the class, try an alternative coding approach, or try coming back to it later. 
When one approach isn’t working, that’s a good time to try an alternative (Pirsig 1974).

Cross-Reference For a more 
detailed discussion of persis-
tence in debugging, see 
“Tips for Finding Defects” in 
Section 23.2.

In debugging, it can be mighty satisfying to track down the error that has been annoy-
ing you for four hours, but it’s often better to give up on the error after a certain 
amount of time with no progress—say 15 minutes. Let your subconscious chew on the 
problem for a while. Try to think of an alternative approach that would circumvent the 
problem altogether. Rewrite the troublesome section of code from scratch. Come back 
to it later when your mind is fresh. Fighting computer problems is no virtue. Avoiding 
them is better.

It’s hard to know when to give up, but it’s essential that you ask. When you notice that 
you’re frustrated, that’s a good time to ask the question. Asking doesn’t necessarily 
mean that it’s time to give up, but it probably means that it’s time to set some param-
eters on the activity: “If I don’t solve the problem using this approach within the next 
30 minutes, I’ll take 10 minutes to brainstorm about different approaches and try the 
best one for the next hour.”

Experience

The value of hands-on experience as compared to book learning is smaller in software 
development than in many other fields for several reasons. In many other fields, basic 
knowledge changes slowly enough that someone who graduated from college 10 
years after you did probably learned the same basic material that you did. In software 
development, even basic knowledge changes rapidly. The person who graduated from 
college 10 years after you did probably learned twice as much about effective program-
ming techniques. Older programmers tend to be viewed with suspicion not just 
because they might be out of touch with specific technology but because they might 
never have been exposed to basic programming concepts that became well known 
after they left school.

In other fields, what you learn about your job today is likely to help you in your job 
tomorrow. In software, if you can’t shake the habits of thinking you developed while 
using your former programming language or the code-tuning techniques that worked 
on your old machine, your experience will be worse than none at all. A lot of software 
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people spend their time preparing to fight the last war rather than the next one. If you 
can’t change with the times, experience is more a handicap than a help.

Aside from the rapid changes in software development, people often draw the wrong 
conclusions from their experiences. It’s hard to view your own life objectively. You can 
overlook key elements of your experience that would cause you to draw different con-
clusions if you recognized them. Reading studies of other programmers is helpful 
because the studies reveal other people’s experience—filtered enough that you can 
examine it objectively.

People also put an absurd emphasis on the amount of experience programmers have. 
“We want a programmer with five years of C programming experience” is a silly state-
ment. If a programmer hasn’t learned C after a year or two, the next three years won’t 
make much difference. This kind of “experience” has little relationship to performance.

The fact that information changes quickly in programming makes for weird dynamics 
in the area of “experience.” In many fields, a professional who has a history of achieve-
ment can coast, relaxing and enjoying the respect earned by a string of successes. In 
software development, anyone who coasts quickly becomes out of touch. To stay valu-
able, you have to stay current. For young, hungry programmers, this is an advantage. 
Older programmers sometimes feel they’ve already earned their stripes and resent 
having to prove themselves year after year.

The bottom line on experience is this: if you work for 10 years, do you get 10 years of 
experience or do you get 1 year of experience 10 times? You have to reflect on your 
activities to get true experience. If you make learning a continuous commitment, 
you’ll get experience. If you don’t, you won’t, no matter how many years you have 
under your belt.

Gonzo Programming

If you haven’t spent at least a month working on the same program—working 16 
hours a day, dreaming about it during the remaining 8 hours of restless sleep, 
working several nights straight through trying to eliminate that “one last bug” 
from the program—then you haven’t really written a complicated computer pro-
gram. And you may not have the sense that there is something exhilarating 
about programming.

—Edward Yourdon

This lusty tribute to programming machismo is pure B.S. and an almost certain recipe 
for failure. Those all-night programming stints make you feel like the greatest pro-
grammer in the world, but then you have to spend several weeks correcting the 
defects you installed during your blaze of glory. By all means, get excited about pro-
gramming. But excitement is no substitute for competency. Remember which is more 
important.
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33.9 Habits
The moral virtues, then, are engendered in us neither by nor contrary to 
nature...their full development in us is due to habit....Anything that we have to 
learn to do we learn by the actual doing of it....Men will become good builders 
as a result of building well and bad ones as a result of building badly....So it is 
a matter of no little importance what sort of habits we form from the earliest 
age—it makes a vast difference, or rather all the difference in the world.

—Aristotle

Good habits matter because most of what you do as a programmer you do without 
consciously thinking about it. For example, at one time, you might have thought 
about how you wanted to format indented loops, but now you don’t think about it 
again each time you write a new loop. You do it the way you do it out of habit. This is 
true of virtually all aspects of program formatting. When was the last time you seri-
ously questioned your formatting style? Chances are good that if you’ve been pro-
gramming for five years, you last questioned it four and a half years ago. The rest of the 
time you’ve relied on habit.

Cross-Reference For details 
on errors in assignment 
statements, see “Errors by 
Classification” in Section 
22.4.

You have habits in many areas. For example, programmers tend to check loop indexes 
carefully and not to check assignment statements, which makes errors in assignment 
statements much harder to find than errors in loop indexes (Gould 1975). You 
respond to criticism in a friendly way or in an unfriendly way. You’re always looking 
for ways to make code readable or fast, or you’re not. If you have to choose between 
making code fast and making it readable, and you make the same choice every time, 
you’re not really choosing—you’re responding out of habit.

Study the quotation from Aristotle and substitute “programming virtues” for “moral vir-
tues.” He points out that you are not predisposed to either good or bad behavior but are 
constituted in such a way that you can become either a good or a bad programmer. The 
main way you become good or bad at what you do is by doing—builders by building and 
programmers by programming. What you do becomes habit, and over time your good 
and bad habits determine whether you’re a good or a bad programmer.

Bill Gates says that any programmer who will ever be good is good in the first few 
years. After that, whether a programmer is good or not is cast in concrete (Lammers 
1986). After you’ve been programming a long time, it’s hard to suddenly start saying, 
“How do I make this loop faster?” or “How do I make this code more readable?” These 
are habits that good programmers develop early.

When you first learn something, learn it the right way. When you first do it, you’re 
actively thinking about it and you still have an easy choice between doing it in a good 
way and doing it in a bad way. After you’ve done it a few times, you pay less attention 
to what you’re doing and “force of habit” takes over. Make sure that the habits that 
take over are the ones you want to have.
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What if you don’t already have the most effective habits? How do you change a bad 
habit? If I had the definitive answer to that, I could sell self-help tapes on late-night TV. 
But here’s at least part of an answer. You can’t replace a bad habit with no habit at all. 
That’s why people who suddenly stop smoking or swearing or overeating have such a 
hard time unless they substitute something else, like chewing gum. It’s easier to 
replace an old habit with a new one than it is to eliminate one altogether. In program-
ming, try to develop new habits that work. Develop the habits of writing a class in 
pseudocode before coding it and carefully reading the code before compiling it, for 
instance. You won’t have to worry about losing the bad habits; they’ll naturally drop 
by the wayside as new habits take their places.

Additional Resources
cc2e.com/3327 Following are additional resources on the human aspects of software development:

cc2e.com/3334 Dijkstra, Edsger. “The Humble Programmer.” Turing Award Lecture. Communications 
of the ACM 15, no. 10 (October 1972): 859–66. This classic paper helped begin the 
inquiry into how much computer programming depends on the programmer’s men-
tal abilities. Dijkstra has persistently stressed the message that the essential task of 
programming is mastering the enormous complexity of computer science. He argues 
that programming is the only activity in which humans have to master nine orders of 
magnitude of difference between the lowest level of detail and the highest. This paper 
would be interesting reading solely for its historical value, but many of its themes 
sound fresh decades later. It also conveys a good sense of what it was like to be a pro-
grammer in the early days of computer science.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary 
Edition. New York, NY: Dorset House, 1998. This classic book contains a detailed 
exposition of the idea of egoless programming and of many other aspects of the 
human side of computer programming. It contains many entertaining anecdotes and 
is one of the most readable books yet written about software development.

Pirsig, Robert M. Zen and the Art of Motorcycle Maintenance: An Inquiry into Values. 
William Morrow, 1974. Pirsig provides an extended discussion of “quality,” ostensibly 
as it relates to motorcycle maintenance. Pirsig was working as a software technical 
writer when he wrote ZAMM, and his insightful comments apply as much to the psy-
chology of software projects as to motorcycle maintenance.  

Curtis, Bill, ed. Tutorial: Human Factors in Software Development. Los Angeles, CA: 
IEEE Computer Society Press, 1985. This is an excellent collection of papers that 
address the human aspects of creating computer programs. The 45 papers are 
divided into sections on mental models of programming knowledge, learning to pro-
gram, problem solving and design, effects of design representations, language char-
acteristics, error diagnosis, and methodology. If programming is one of the most 
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difficult intellectual challenges that humankind has ever faced, learning more about 
human mental capacities is critical to the success of the endeavor. These papers 
about psychological factors also help you to turn your mind inward and learn about 
how you individually can program more effectively.

McConnell, Steve. Professional Software Development. Boston, MA: Addison-Wesley, 
2004. Chapter 7, “Orphans Preferred,” provides more details on programmer person-
alities and the role of personal character.

Key Points
■ Your personal character directly affects your ability to write computer programs.

■ The characteristics that matter most are humility, curiosity, intellectual honesty, 
creativity and discipline, and enlightened laziness.

■ The characteristics of a superior programmer have almost nothing to do with 
talent and everything to do with a commitment to personal development.

■ Surprisingly, raw intelligence, experience, persistence, and guts hurt as much as 
they help.

■ Many programmers don’t actively seek new information and techniques and 
instead rely on accidental, on-the-job exposure to new information. If you 
devote a small percentage of your time to reading and learning about program-
ming, after a few months or years you’ll dramatically distinguish yourself from 
the programming mainstream.

■ Good character is mainly a matter of having the right habits. To be a great 
programmer, develop the right habits and the rest will come naturally.
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cc2e.com/3444 Contents
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■ 34.9 Thou Shalt Rend Software and Religion Asunder: page 851

Related Topics

■ The whole book

This book is mostly about the details of software construction: high-quality classes, 
variable names, loops, source-code layout, system integration, and so on. This book 
has deemphasized abstract topics to emphasize subjects that are more concrete.

Once the earlier parts of the book have put the concrete topics on the table, all you 
have to do to appreciate the abstract concepts is to pick up the topics from the various 
chapters and see how they’re related. This chapter makes the abstract themes explicit: 
complexity, abstraction, process, readability, iteration, and so on. These themes 
account in large part for the difference between hacking and software craftsmanship.

34.1 Conquer Complexity
Cross-Reference For details 
on the importance of atti-
tude in conquering complex-
ity, see Section 33.2, 
“Intelligence and Humility.”

The drive to reduce complexity is at the heart of software development, to such a 
degree that Chapter 5, “Design in Construction,” described managing complexity as 
Software’s Primary Technical Imperative. Although it’s tempting to try to be a hero 
and deal with computer-science problems at all levels, no one’s brain is really capa-
ble of spanning nine orders of magnitude of detail. Computer science and software 
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engineering have developed many intellectual tools for handling such complexity, and 
discussions of other topics in this book have brushed up against several of them:

■ Dividing a system into subsystems at the architecture level so that your brain 
can focus on a smaller amount of the system at one time.

■ Carefully defining class interfaces so that you can ignore the internal workings 
of the class.

■ Preserving the abstraction represented by the class interface so that your brain 
doesn’t have to remember arbitrary details.

■ Avoiding global data, because global data vastly increases the percentage of the 
code you need to juggle in your brain at any one time.

■ Avoiding deep inheritance hierarchies because they are intellectually demanding.

■ Avoiding deep nesting of loops and conditionals because they can be replaced 
by simpler control structures that burn up fewer gray cells.

■ Avoiding gotos because they introduce nonlinearity that has been found to be 
difficult for most people to follow.

■ Carefully defining your approach to error handling rather than using an arbi-
trary proliferation of different error-handling techniques.

■ Being systematic about the use of the built-in exception mechanism, which can 
become a nonlinear control structure that’s about as hard to understand as gotos 
if not used with discipline.

■ Not allowing classes to grow into monster classes that amount to whole pro-
grams in themselves.

■ Keeping routines short.

■ Using clear, self-explanatory variable names so that your brain doesn’t have to 
waste cycles remembering details like “i stands for the account index, and j 
stands for the customer index, or was it the other way around?” 

■ Minimizing the number of parameters passed to a routine, or, more important, 
passing only the parameters needed to preserve the routine interface’s abstraction.

■ Using conventions to spare your brain the challenge of remembering arbitrary, 
accidental differences between different sections of code.

■ In general, attacking what Chapter 5 describes as “accidental difficulties” wher-
ever possible.

When you put a complicated test into a boolean function and abstract the purpose of 
the test, you make the code less complex. When you substitute a table lookup for a 
complicated chain of logic, you do the same thing. When you create a well-defined, 
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consistent class interface, you eliminate the need to worry about implementation 
details of the class and you simplify your job overall.

The point of having coding conventions is also mainly to reduce complexity. When 
you can standardize decisions about formatting, loops, variable names, modeling 
notations, and so on, you release mental resources that you need to focus on more 
challenging aspects of the programming problem. One reason coding conventions are 
so controversial is that choices among the options have some limited aesthetic base 
but are essentially arbitrary. People have the most heated arguments over their small-
est differences. Conventions are the most useful when they spare you the trouble of 
making and defending arbitrary decisions. They’re less valuable when they impose 
restrictions in more meaningful areas.

Abstraction in its various forms is a particularly powerful tool for managing complex-
ity. Programming has advanced largely through increasing the abstractness of pro-
gram components. Fred Brooks argues that the biggest single gain ever made in 
computer science was in the jump from machine language to higher-level languages—
it freed programmers from worrying about the detailed quirks of individual pieces of 
hardware and allowed them to focus on programming (Brooks 1995). The idea of rou-
tines was another big step, followed by classes and packages.

Naming variables functionally, for the “what” of the problem rather than the “how” of 
the implementation-level solution, increases the level of abstraction. If you say, “OK, 
I’m popping the stack and that means that I’m getting the most recent employee,” 
abstraction can save you the mental step “I’m popping the stack.” You simply say, “I’m 
getting the most recent employee.” This is a small gain, but when you’re trying to 
reduce a range in complexity of 1 to 109, every step counts. Using named constants 
rather than literals also increases the level of abstraction. Object-oriented program-
ming provides a level of abstraction that applies to algorithms and data at the same 
time, a kind of abstraction that functional decomposition alone didn’t provide.

In summary, a primary goal of software design and construction is conquering com-
plexity. The motivation behind many programming practices is to reduce a program’s 
complexity, and reducing complexity is arguably the most important key to being an 
effective programmer.

34.2 Pick Your Process
A second major thread in this book is the idea that the process you use to develop soft-
ware matters a surprising amount. On a small project, the talents of the individual 
programmer are the biggest influence on the quality of the software. Part of what 
makes an individual programmer successful is his or her choice of processes.
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On projects with more than one programmer, organizational characteristics make a big-
ger difference than the skills of the individuals involved do. Even if you have a great 
team, its collective ability isn’t simply the sum of the team members’ individual abilities. 
The way in which people work together determines whether their abilities are added to 
each other or subtracted from each other. The process the team uses determines 
whether one person’s work supports the work of the rest of the team or undercuts it.

Cross-Reference For details 
on making requirements sta-
ble, see Section 3.4, 
“Requirements Prerequi-
site.” For details on variations 
in development approaches, 
see Section 3.2, “Determine 
the Kind of Software You’re 
Working On.”

One example of the way in which process matters is the consequence of not making 
requirements stable before you begin designing and coding. If you don’t know what 
you’re building, you can’t very well create a superior design for it. If the requirements 
and subsequently the design change while the software is under development, the 
code must change too, which risks degrading the quality of the system.

“Sure,” you say, “but in the real world, you never really have stable requirements, so 
that’s a red herring.” Again, the process you use determines both how stable your 
requirements are and how stable they need to be. If you want to build more flexibility 
into the requirements, you can set up an incremental development approach in which 
you plan to deliver the software in several increments rather than all at once. This is an 
attention to process, and it’s the process you use that ultimately determines whether 
your project succeeds or fails. Table 3-1 in Section 3.1 makes it clear that requirements 
errors are far more costly than construction errors, so focusing on that part of the pro-
cess also affects cost and schedule.

My message to the serious 
programmer is: spend a part 
of your working day examin-
ing and refining your own 
methods. Even though pro-
grammers are always strug-
gling to meet some future or 
past deadline, methodologi-
cal abstraction is a wise 
long-term investment.  
—Robert W. Floyd

The same principle of consciously attending to process applies to design. You have to 
lay a solid foundation before you can begin building on it. If you rush to coding before 
the foundation is complete, it will be harder to make fundamental changes in the sys-
tem’s architecture. People will have an emotional investment in the design because 
they will have already written code for it. It’s hard to throw away a bad foundation 
once you’ve started building a house on it.

The main reason the process matters is that in software, quality must be built in from 
the first step onward. This flies in the face of the folk wisdom that you can code like 
hell and then test all the mistakes out of the software. That idea is dead wrong. Testing 
merely tells you the specific ways in which your software is defective. Testing won’t 
make your program more usable, faster, smaller, more readable, or more extensible.

Premature optimization is another kind of process error. In an effective process, you 
make coarse adjustments at the beginning and fine adjustments at the end. If you 
were a sculptor, you’d rough out the general shape before you started polishing indi-
vidual features. Premature optimization wastes time because you spend time polish-
ing sections of code that don’t need to be polished. You might polish sections that are 
small enough and fast enough as they are, you might polish code that you later throw 
away, and you might fail to throw away bad code because you’ve already spent time 
polishing it. Always be thinking, “Am I doing this in the right order? Would changing 
the order make a difference?” Consciously follow a good process.
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Cross-Reference For details 
on iteration, see Section 
34.8, “Iterate, Repeatedly, 
Again and Again,” later in 
this chapter.

Low-level processes matter, too. If you follow the process of writing pseudocode and 
then filling in the code around the pseudocode, you reap the benefits of designing 
from the top down. You’re also guaranteed to have comments in the code without hav-
ing to put them in later.

Observing large processes and small processes means pausing to pay attention to how 
you create software. It’s time well spent. Saying that “code is what matters; you have to 
focus on how good the code is, not some abstract process” is shortsighted and ignores 
mountains of experimental and practical evidence to the contrary. Software development 
is a creative exercise. If you don’t understand the creative process, you’re not getting the 
most out of the primary tool you use to create software—your brain. A bad process wastes 
your brain cycles. A good process leverages them to maximum advantage.

34.3 Write Programs for People First, Computers Second
your program n. A maze of non sequiturs littered with clever-clever tricks and 
irrelevant comments. Compare MY PROGRAM.

my program n. A gem of algoristic precision, offering the most sublime balance 
between compact, efficient coding on the one hand and fully commented legibil-
ity for posterity on the other. Compare YOUR PROGRAM.

—Stan Kelly-Bootle

Another theme that runs throughout this book is an emphasis on code readability. 
Communication with other people is the motivation behind the quest for the Holy 
Grail of self-documenting code.

The computer doesn’t care whether your code is readable. It’s better at reading binary 
machine instructions than it is at reading high-level-language statements. You write 
readable code because it helps other people to read your code. Readability has a posi-
tive effect on all these aspects of a program:

■ Comprehensibility

■ Reviewability

■ Error rate

■ Debugging

■ Modifiability

■ Development time—a consequence of all of the above

■ External quality—a consequence of all of the above
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In the early years of pro-
gramming, a program was 
regarded as the private 
property of the programmer. 
One would no more think of 
reading a colleague’s pro-
gram unbidden than of pick-
ing up a love letter and 
reading it. This is essentially 
what a program was, a love 
letter from the programmer 
to the hardware, full of the 
intimate details known only 
to partners in an affair. Con-
sequently, programs became 
larded with the pet names 
and verbal shorthand so 
popular with lovers who live 
in the blissful abstraction 
that assumes that theirs is 
the only existence in the uni-
verse. Such programs are 
unintelligible to those out-
side the partnership.  
—Michael Marcotty

Readable code doesn’t take any longer to write than confusing code does, at least not in 
the long run. It’s easier to be sure your code works if you can easily read what you wrote. 
That should be a sufficient reason to write readable code. But code is also read during 
reviews. It’s read when you or someone else fixes an error. It’s read when the code is 
modified. It’s read when someone tries to use part of your code in a similar program.

Making code readable is not an optional part of the development process, and favor-
ing write-time convenience over read-time convenience is a false economy. You should 
go to the effort of writing good code, which you can do once, rather than the effort of 
reading bad code, which you’d have to do again and again.

“What if I’m just writing code for myself? Why should I make it readable?” Because a 
week or two from now you’re going to be working on another program and think, 
“Hey! I already wrote this class last week. I’ll just drop in my old tested, debugged 
code and save some time.” If the code isn’t readable, good luck!

The idea of writing unreadable code because you’re the only person working on a 
project sets a dangerous precedent. Your mother used to say, “What if your face froze 
in that expression?” And your dad used to say, “You play how you practice.” Habits 
affect all your work; you can’t turn them on and off at will, so be sure that what you’re 
doing is something you want to become a habit. A professional programmer writes 
readable code, period.

It’s also good to recognize that whether a piece of code ever belongs exclusively to you 
is debatable. Douglas Comer came up with a useful distinction between private and 
public programs (Comer 1981): “Private programs” are programs for a programmer’s 
own use. They aren’t used by others. They aren’t modified by others. Others don’t even 
know the programs exist. They are usually trivial, and they are the rare exception. “Pub-
lic programs” are programs used or modified by someone other than the author.

Standards for public and for private programs can be different. Private programs can 
be sloppily written and full of limitations without affecting anyone but the author. 
Public programs must be written more carefully: their limitations should be docu-
mented, they should be reliable, and they should be modifiable. Beware of a private 
program’s becoming public, as private programs often do. You need to convert the 
program to a public program before it goes into general circulation. Part of making a 
private program public is making it readable.

Even if you think you’re the only one who will read your code, in the real world 
chances are good that someone else will need to modify your code. One study found 
that 10 generations of maintenance programmers work on an average program before 
it gets rewritten (Thomas 1984). Maintenance programmers spend 50 to 60 percent 
of their time trying to understand the code they have to maintain, and they appreciate 
the time you put into documenting it (Parikh and Zvegintzov 1983).

1
2
3

HARD DATA
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Earlier chapters in this book examined the techniques that help you achieve readabil-
ity: good class, routine, and variable names, careful formatting, small routines, hiding 
complex boolean tests in boolean functions, assigning intermediate results to vari-
ables for clarity in complicated calculations, and so on. No individual application of a 
technique can make the difference between a readable program and an illegible one, 
but the accumulation of many small readability improvements will be significant.

If you think you don’t need to make your code readable because no one else ever 
looks at it, make sure you’re not confusing cause and effect.

34.4 Program into Your Language, Not in It
Don’t limit your programming thinking only to the concepts that are supported auto-
matically by your language. The best programmers think of what they want to do, and 
then they assess how to accomplish their objectives with the programming tools at 
their disposal.

Should you use a class member routine that’s inconsistent with the class’s abstraction 
just because it’s more convenient than using one that provides more consistency? You 
should write code in a way that preserves the abstraction represented by the class’s 
interface as much as possible. You don’t need to use global data or gotos just because 
your language supports them. You can choose not to use those hazardous program-
ming capabilities and instead use programming conventions to make up for weak-
nesses of the language. Programming using the most obvious path amounts to 
programming in a language rather than programming into a language; it’s the pro-
grammer’s equivalent of “If Freddie jumped off a bridge, would you jump off a bridge, 
too?” Think about your technical goals, and then decide how best to accomplish those 
goals by programming into your language.

Your language doesn’t support assertions? Write your own assert() routine. It might 
not function exactly the same as a built-in assert(), but you can still realize most of 
assert()’s benefits by writing your own routine. Your language doesn’t support enu-
merated types or named constants? That’s fine; you can define your own enumera-
tions and named constants with a disciplined use of global variables supported by 
clear naming conventions.

In extreme cases, especially in new-technology environments, your tools might be so 
primitive that you’re forced to change your desired programming approach signifi-
cantly. In such cases, you might have to balance your desire to program into the lan-
guage with the accidental difficulties that are created when the language makes your 
desired approach too cumbersome. But in such cases, you’ll benefit even more from 
programming conventions that help you steer clear of those environments’ most haz-
ardous features. In more typical cases, the gap between what you want to do and what 
your tools will readily support will require you to make only relatively minor conces-
sions to your environment.
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34.5 Focus Your Attention with the Help of Conventions
Cross-Reference For an 
analysis of the value of con-
ventions as they apply to 
program layout, see “How 
Much Is Good Layout 
Worth?” and “Objectives of 
Good Layout” in Section 
31.1.

A set of conventions is one of the intellectual tools used to manage complexity. Earlier 
chapters talk about specific conventions. This section lays out the benefits of conven-
tions with many examples.

Many of the details of programming are somewhat arbitrary. How many spaces do 
you indent a loop? How do you format a comment? How should you order class rou-
tines? Most of the questions like these have several correct answers. The specific way 
in which such a question is answered is less important than that it be answered con-
sistently each time. Conventions save programmers the trouble of answering the same 
questions—making the same arbitrary decisions—again and again. On projects with 
many programmers, using conventions prevents the confusion that results when dif-
ferent programmers make the arbitrary decisions differently.

A convention conveys important information concisely. In naming conventions, a sin-
gle character can differentiate among local, class, and global variables; capitalization 
can concisely differentiate among types, named constants, and variables. Indentation 
conventions can concisely show the logical structure of a program. Alignment conven-
tions can indicate concisely that statements are related.

Conventions protect against known hazards. You can establish conventions to elimi-
nate the use of dangerous practices, to restrict such practices to cases in which they’re 
needed, or to compensate for their known hazards. You could eliminate a dangerous 
practice, for example, by prohibiting global variables or prohibiting multiple state-
ments on a line. You could compensate for a hazardous practice by requiring paren-
theses around complicated expressions or requiring pointers to be set to NULL 
immediately after they’re deleted to help prevent dangling pointers.

Conventions add predictability to low-level tasks. Having conventional ways of han-
dling memory requests, error processing, input/output, and class interfaces adds a 
meaningful structure to your code and makes it easier for another programmer to fig-
ure out—as long as the programmer knows your conventions. As mentioned in an ear-
lier chapter, one of the biggest benefits of eliminating global data is that you eliminate 
potential interactions among different classes and subsystems. A reader knows 
roughly what to expect from local and class data. But it’s hard to tell when changing 
global data will break some bit of code four subsystems away. Global data increases 
the reader’s uncertainty. With good conventions, you and your readers can take more 
for granted. The amount of detail that has to be assimilated will be reduced, and that 
in turn will improve program comprehension.

Conventions can compensate for language weaknesses. In languages that don’t sup-
port named constants (such as Python, Perl, UNIX shell script, and so on), a conven-
tion can differentiate between variables intended to be both read and written and 
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those that are intended to emulate read-only constants. Conventions for the disci-
plined use of global data and pointers are other examples of compensating for lan-
guage weaknesses with conventions.

Programmers on large projects sometimes go overboard with conventions. They 
establish so many standards and guidelines that remembering them becomes a full-
time job. But programmers on small projects tend to go “underboard,” not realizing 
the full benefits of intelligently conceived conventions. You should understand their 
real value and take advantage of them; you should use them to provide structure in 
areas in which structure is needed.

34.6 Program in Terms of the Problem Domain
Another specific method of dealing with complexity is to work at the highest possible 
level of abstraction. One way of working at a high level of abstraction is to work in 
terms of the programming problem rather than the computer-science solution.

Top-level code shouldn’t be filled with details about files and stacks and queues and 
arrays and characters whose parents couldn’t think of better names for them than i, j, 
and k. Top-level code should describe the problem that’s being solved. It should be 
packed with descriptive class names and routine calls that indicate exactly what the 
program is doing, not cluttered with details about opening a file as “read only.” Top-
level code shouldn’t contain clumps of comments that say “i is a variable that repre-
sents the index of the record from the employee file here, and then a little later it’s 
used to index the client account file there.”

That’s clumsy programming practice. At the top level of the program, you don’t need 
to know that the employee data comes as records or that it’s stored as a file. Informa-
tion at that level of detail should be hidden. At the highest level, you shouldn’t have 
any idea how the data is stored. Nor do you need to read a comment that explains 
what i means and that it’s used for two purposes. You should see different variable 
names for the two purposes instead, and they should also have distinctive names such 
as employeeIndex and clientIndex.

Separating a Program into Levels of Abstraction

Obviously, you have to work in implementation-level terms at some level, but you can 
isolate the part of the program that works in implementation-level terms from the part 
that works in problem-domain terms. If you’re designing a program, consider the lev-
els of abstraction shown in Figure 34-1.
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Figure 34-1 Programs can be divided into levels of abstraction. A good design will allow 
you to spend much of your time focusing on only the upper layers and ignoring the lower 
layers.

Level 0: Operating-System Operations and Machine Instructions

If you’re working in a high-level language, you don’t have to worry about the lowest 
level—your language takes care of it automatically. If you’re working in a low-level lan-
guage, you should try to create higher layers for yourself to work in, even though many 
programmers don’t do that.

Level 1: Programming-Language Structures and Tools

Programming-language structures are the language’s primitive data types, control struc-
tures, and so on. Most common languages also provide additional libraries, access to 
operating system calls, and so on. Using these structures and tools comes naturally 
since you can’t program without them. Many programmers never work above this level 
of abstraction, which makes their lives much harder than they need to be.

Level 2: Low-Level Implementation Structures

Low-level implementation structures are slightly higher-level structures than those 
provided by the language itself. They tend to be the operations and data types you 
learn about in college courses in algorithms and data types: stacks, queues, linked 
lists, trees, indexed files, sequential files, sort algorithms, search algorithms, and so 
on. If your program consists entirely of code written at this level, you’ll be awash in 
too much detail to win the battle against complexity.

Level 3: Low-Level Problem-Domain Terms

At this level, you have the primitives you need to work in terms of the problem 
domain. It’s a glue layer between the computer-science structures below and the high-
level problem-domain code above. To write code at this level, you need to figure out 

4
High-level problem-domain terms

3
Low-level problem-domain terms

2
Low-level implementation structures

1
Programming-language structures and tools 

0
Operating-system operations and machine instructions
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the vocabulary of the problem area and create building blocks you can use to work 
with the problem the program solves. In many applications, this will be the business 
objects layer or a services layer. Classes at this level provide the vocabulary and the 
building blocks. The classes might be too primitive to be used to solve the problem 
directly at this level, but they provide a framework that higher-level classes can use to 
build a solution to the problem.

Level 4: High-Level Problem-Domain Terms

This level provides the abstractive power to work with a problem on its own terms. 
Your code at this level should be somewhat readable by someone who’s not a com-
puter-science whiz, perhaps even by your nontechnical customer. Code at this level 
won’t depend much on the specific features of your programming language because 
you’ll have built your own set of tools to work with the problem. Consequently, at this 
level your code depends more on the tools you’ve built for yourself at Level 3 than on 
the capabilities of the language you’re using.

Implementation details should be hidden two layers below this one, in a layer of com-
puter-science structures, so that changes in hardware or the operating system don’t 
affect this layer at all. Embody the user’s view of the world in the program at this level 
because when the program changes, it will change in terms of the user’s view. 
Changes in the problem domain should affect this layer a lot, but they should be easy 
to accommodate by programming in the problem-domain building blocks from the 
layer below.

In addition to these conceptual layers, many programmers find it useful to break a 
program up into other “layers” that cut across the layers described here. For example, 
the typical three-tier architecture cuts across the levels described here and provides 
further tools for making the design and code intellectually manageable.

Low-Level Techniques for Working in the Problem Domain

Even without a complete, architectural approach to working in the problem area’s 
vocabulary, you can use many of the techniques in this book to work in terms of the 
real-world problem rather than the computer-science solution:

■ Use classes to implement structures that are meaningful in problem-domain 
terms.

■ Hide information about the low-level data types and their implementation 
details.

■ Use named constants to document the meanings of strings and of numeric literals.

■ Assign intermediate variables to document the results of intermediate calculations.

■ Use boolean functions to clarify complex boolean tests.
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34.7 Watch for Falling Rocks
Programming is neither fully an art nor fully a science. As it’s typically practiced, it’s a 
“craft” that’s somewhere between art and science. At its best, it’s an engineering discipline 
that arises from the synergistic fusion of art and science (McConnell 2004). Whether art, 
science, craft, or engineering, it still takes plenty of individual judgment to create a work-
ing software product. And part of having good judgment in computer programming is 
being sensitive to a wide array of warning signs, subtle indications of problems in your 
program. Warning signs in programming alert you to the possibility of problems, but 
they’re usually not as blatant as a road sign that says “Watch for falling rocks.”

When you or someone else says “This is really tricky code,” that’s a warning sign, usu-
ally of poor code. “Tricky code” is a code phrase for “bad code.” If you think code is 
tricky, think about rewriting it so that it’s not.

A class’s having more errors than average is a warning sign. A few error-prone classes 
tend to be the most expensive part of a program. If you have a class that has had more 
errors than average, it will probably continue to have more errors than average. Think 
about rewriting it.

If programming were a science, each warning sign would imply a specific, well-
defined corrective action. Because programming is still a craft, however, a warning 
sign merely points to an issue that you should consider. You can’t necessarily rewrite 
tricky code or improve an error-prone class.

Just as an abnormal number of defects in a class warns you that the class has low qual-
ity, an abnormal number of defects in a program implies that your process is defective. 
A good process wouldn’t allow error-prone code to be developed. It would include the 
checks and balances of architecture followed by architecture reviews, design followed 
by design reviews, and code followed by code reviews. By the time the code was ready 
for testing, most errors would have been eliminated. Exceptional performance 
requires working smart in addition to working hard. Lots of debugging on a project is 
a warning sign that implies people aren’t working smart. Writing a lot of code in a day 
and then spending two weeks debugging it is not working smart.

You can use design metrics as another kind of warning sign. Most design metrics are 
heuristics that give an indication of the quality of a design. The fact that a class con-
tains more than seven members doesn’t necessarily mean that it’s poorly designed, 
but it’s a warning that the class is complicated. Similarly, more than about 10 decision 
points in a routine, more than three levels of logical nesting, an unusual number of 
variables, high coupling to other classes, or low class or routine cohesion should raise 
a warning flag. None of these signs necessarily means that a class is poorly designed, 
but the presence of any of them should cause you to look at the class skeptically.
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Any warning sign should cause you to doubt the quality of your program. As Charles 
Saunders Peirce says, “Doubt is an uneasy and dissatisfied state from which we strug-
gle to free ourselves and pass into the state of belief.” Treat a warning sign as an “irri-
tation of doubt” that prompts you to look for the more satisfied state of belief.

If you find yourself working on repetitious code or making similar modifications in 
several areas, you should feel “uneasy and dissatisfied,” doubting that control has 
been adequately centralized in classes or routines. If you find it hard to create scaffold-
ing for test cases because you can’t use an individual class easily, you should feel the 
“irritation of doubt” and ask whether the class is coupled too tightly to other classes. 
If you can’t reuse code in other programs because some classes are too interdepen-
dent, that’s another warning sign that the classes are coupled too tightly.

When you’re deep into a program, pay attention to warning signs that indicate that 
part of the program design isn’t defined well enough to code. Difficulties in writing 
comments, naming variables, and decomposing the problem into cohesive classes 
with clear interfaces all indicate that you need to think harder about the design before 
coding. Wishy-washy names and difficulty in describing sections of code in concise 
comments are other signs of trouble. When the design is clear in your mind, the low-
level details come easily.

Be sensitive to indications that your program is hard to understand. Any discomfort is 
a clue. If it’s hard for you, it will be even harder for the next programmers. They’ll 
appreciate the extra effort you make to improve it. If you’re figuring out code instead 
of reading it, it’s too complicated. If it’s hard, it’s wrong. Make it simpler.

If you want to take full advantage of warning signs, program in such a way that you 
create your own warnings. This is useful because even after you know what the signs 
are, it’s surprisingly easy to overlook them. Glenford Myers conducted a study of 
defect correction in which he found that the single most common cause of not finding 
errors was simply overlooking them. The errors were visible on test output but not 
noticed (Myers 1978b).

Make it hard to overlook problems in your program. One example is setting pointers 
to null after you free them so that they’ll cause ugly problems if you mistakenly use 
one. A freed pointer might point to a valid memory location even after it’s been freed. 
Setting it to null guarantees that it points to an invalid location, making the error 
harder to overlook.

Compiler warnings are literal warning signs that are often overlooked. If your pro-
gram generates warnings or errors, fix it so that it doesn’t. You don’t have much 
chance of noticing subtle warning signs when you’re ignoring those that have 
“WARNING” printed directly on them.

1
2
3

HARD DATA
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Why is paying attention to intellectual warning signs especially important in software 
development? The quality of the thinking that goes into a program largely determines 
the quality of the program, so paying attention to warnings about the quality of think-
ing directly affects the final product.

34.8 Iterate, Repeatedly, Again and Again
Iteration is appropriate for many software-development activities. During your initial 
specification of a system, you work with the user through several versions of require-
ments until you’re sure you agree on them. That’s an iterative process. When you 
build flexibility into your process by building and delivering a system in several incre-
ments, that’s an iterative process. If you use prototyping to develop several alternative 
solutions quickly and cheaply before crafting the final product, that’s another form of 
iteration. Iterating on requirements is perhaps as important as any other aspect of the 
software-development process. Projects fail because they commit themselves to a solu-
tion before exploring alternatives. Iteration provides a way to learn about a product 
before you build it.

As Chapter 28, “Managing Construction,” points out, schedule estimates during ini-
tial project planning can vary greatly depending on the estimation technique you use. 
Using an iterative approach for estimation produces a more accurate estimate than 
relying on a single technique.

Software design is a heuristic process and, like all heuristic processes, is subject to iter-
ative revision and improvement. Software tends to be validated rather than proven, 
which means that it’s tested and developed iteratively until it answers questions cor-
rectly. Both high-level and low-level design attempts should be repeated. A first 
attempt might produce a solution that works, but it’s unlikely to produce the best 
solution. Taking several repeated and different approaches produces insight into the 
problem that’s unlikely with a single approach.

The idea of iteration appears again in code tuning. Once the software is operational, 
you can rewrite small parts of it to greatly improve overall system performance. Many 
of the attempts at optimization, however, hurt the code more than they help it. It’s not 
an intuitive process, and some techniques that seem likely to make a system smaller 
and faster actually make it larger and slower. The uncertainty about the effect of any 
optimization technique creates a need for tuning, measuring, and tuning again. If a 
bottleneck is critical to system performance, you can tune the code several times, and 
several of your later attempts may be more successful than your first.

Reviews cut across the grain of the development process, inserting iterations at any 
stage in which they’re conducted. The purpose of a review is to check the quality of 
the work at a particular point. If the product fails the review, it’s sent back for rework. 
If it succeeds, it doesn’t need further iteration.
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One definition of engineering is to do for a dime what anyone can do for a dollar. Iter-
ating in the late stages is doing for two dollars what anyone can do for one dollar. Fred 
Brooks suggested that you “build one to throw away; you will, anyhow” (Brooks 
1995). The trick of software engineering is to build the disposable parts as quickly 
and inexpensively as possible, which is the point of iterating in the early stages.

34.9 Thou Shalt Rend Software and Religion Asunder
Religion appears in software development in numerous incarnations—as dogmatic 
adherence to a single design method, as unswerving belief in a specific formatting or 
commenting style, or as a zealous avoidance of global data. Whatever the case, it’s 
always inappropriate.

Software Oracles
Cross-Reference For details 
on handling programming 
religion as a manager, see 
“Religious Issues” in Section 
28.5.

Unfortunately, the zealous attitude is decreed from on high by some of the more 
prominent people in the profession. It’s important to publicize innovations so that 
practitioners can try out promising new methods. Methods have to be tried before 
they can be fully proven or disproved. The dissemination of research results to practi-
tioners is called “technology transfer” and is important for advancing the state of the 
practice of software development. There’s a difference, however, between disseminat-
ing a new methodology and selling software snake oil. The idea of technology transfer 
is poorly served by dogmatic methodology peddlers who try to convince you that 
their new one-size-fits-all, high-tech cow pies will solve all your problems. Forget 
everything you’ve already learned because this new method is so great it will improve 
your productivity 100 percent in everything!

Rather than latching on to the latest miracle fad, use a mixture of methods. Experi-
ment with the exciting, recent methods, but bank on the old and dependable ones.

Eclecticism
Cross-Reference For more 
on the difference between 
algorithmic and heuristic 
approaches, see Section 2.2, 
“How to Use Software Meta-
phors.” For information on 
eclecticism in design, see 
“Iterate” in Section 5.4.

Blind faith in one method precludes the selectivity you need if you’re to find the most 
effective solutions to programming problems. If software development were a deter-
ministic, algorithmic process, you could follow a rigid methodology to your solution. 
But software development isn’t a deterministic process; it’s heuristic, which means 
that rigid processes are inappropriate and have little hope of success. In design, for 
example, sometimes top-down decomposition works well. Sometimes an object-ori-
ented approach, a bottom-up composition, or a data-structure approach works better. 
You have to be willing to try several approaches, knowing that some will fail and some 
will succeed but not knowing which ones will work until after you try them. You have 
to be eclectic.
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Adherence to a single method is also harmful in that it makes you force-fit the problem 
to the solution. If you decide on the solution method before you fully understand the 
problem, you act prematurely. Over-constrain the set of possible solutions, and you 
might rule out the most effective solution.

You’ll be uncomfortable with any new methodology initially, and the advice that you 
avoid religion in programming isn’t meant to suggest that you should stop using a 
new method as soon as you have a little trouble solving a problem with it. Give the 
new method a fair shake, but give the old methods their fair shakes, too.

Cross-Reference For a more 
detailed description of the 
toolbox metaphor, see 
“Applying Software Tech-
niques: The Intellectual Tool-
box” in Section 2.3.

Eclecticism is a useful attitude to bring to the techniques presented in this book as 
much as to techniques described in other sources. Discussions of several topics pre-
sented here have advanced alternative approaches that you can’t use at the same time. 
You have to choose one or the other for each specific problem. You have to treat the 
techniques as tools in a toolbox and use your own judgment to select the best tool for 
the job. Most of the time, the tool choice doesn’t matter very much. You can use a box 
wrench, vise-grip pliers, or a crescent wrench. In some cases, however, the tool selec-
tion matters a lot, so you should always make your selection carefully. Engineering is 
in part a discipline of making tradeoffs among competing techniques. You can’t make 
a tradeoff if you’ve prematurely limited your choices to a single tool.

The toolbox metaphor is useful because it makes the abstract idea of eclecticism con-
crete. Suppose you were a general contractor and your buddy Simple Simon always 
used vise-grip pliers. Suppose he refused to use a box wrench or a crescent wrench. 
You’d probably think he was odd because he wouldn’t use all the tools at his disposal. 
The same is true in software development. At a high level, you have alternative design 
methods. At a more detailed level, you can choose one of several data types to repre-
sent any given design. At an even more detailed level, you can choose several different 
schemes for formatting and commenting code, naming variables, defining class inter-
faces, and passing routine parameters.

A dogmatic stance conflicts with the eclectic toolbox approach to software construc-
tion. It’s incompatible with the attitude needed to build high-quality software.

Experimentation

Eclecticism has a close relative in experimentation. You need to experiment through-
out the development process, but zealous inflexibility hobbles the impulse. To exper-
iment effectively, you must be willing to change your beliefs based on the results of the 
experiment. If you’re not willing, experimentation is a gratuitous waste of time.

Many of the inflexible approaches to software development are based on a fear of 
making mistakes. A blanket attempt to avoid mistakes is the biggest mistake of all. 
Design is a process of carefully planning small mistakes in order to avoid making big 
ones. Experimentation in software development is a process of setting up tests so that 
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you learn whether an approach fails or succeeds—the experiment itself is a success as 
long as it resolves the issue.

Experimentation is appropriate at as many levels as eclecticism is. At each level at 
which you are ready to make an eclectic choice, you can probably come up with a cor-
responding experiment to determine which approach works best. At the architectural-
design level, an experiment might consist of sketching software architectures using 
three different design approaches. At the detailed-design level, an experiment might 
consist of following the implications of a higher-level architecture using three different 
low-level design approaches. At the programming-language level, an experiment 
might consist of writing a short experimental program to exercise the operation of a 
part of the language you’re not completely familiar with. The experiment might con-
sist of tuning a piece of code and benchmarking it to verify that it’s really smaller or 
faster. At the overall software-development-process level, an experiment might consist 
of collecting quality and productivity data so that you can see whether inspections 
really find more errors than walk-throughs.

The point is that you have to keep an open mind about all aspects of software devel-
opment. You have to get technical about your process as well as your product. Open-
minded experimentation and religious adherence to a predefined approach don’t mix.

Key Points
■ One primary goal of programming is managing complexity.

■ The programming process significantly affects the final product.

■ Team programming is more an exercise in communicating with people than in 
communicating with a computer. Individual programming is more an exercise 
in communicating with yourself than with a computer.

■ When abused, a programming convention can be a cure that’s worse than the 
disease. Used thoughtfully, a convention adds valuable structure to the develop-
ment environment and helps with managing complexity and communication.

■ Programming in terms of the problem rather than the solution helps to manage 
complexity.

■ Paying attention to intellectual warning signs like the “irritation of doubt” is 
especially important in programming because programming is almost purely a 
mental activity.

■ The more you iterate in each development activity, the better the product of that 
activity will be.

■ Dogmatic methodologies and high-quality software development don’t mix. Fill 
your intellectual toolbox with programming alternatives, and improve your skill 
at choosing the right tool for the job.
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If you’ve read this far, you already know that a lot has been written about effective soft-
ware-development practices. Much more information is available than most people 
realize. People have already made all the mistakes that you’re making now, and unless 
you’re a glutton for punishment, you’ll prefer reading their books and avoiding their 
mistakes to inventing new versions of old problems.

Because this book describes hundreds of other books and articles that contain infor-
mation on software development, it’s hard to know what to read first. A software-
development library is made up of several kinds of information. A core of program-
ming books explains fundamental concepts of effective programming. Related books 
explain the larger technical, management, and intellectual contexts within which pro-
gramming goes on. And detailed references on languages, operating systems, environ-
ments, and hardware contain information that’s useful for specific projects.

cc2e.com/3581 Books in the last category generally have a life span of about one project; they’re more or 
less temporary and aren’t discussed here. Of the other kinds of books, it’s useful to have 
a core set that discusses each of the major software-development activities in depth: 
books on requirements, design, construction, management, testing, and so on. The fol-
lowing sections describe construction resources in depth and then provide an overview 
of materials available in other software knowledge areas. Section 35.4 wraps these 
resources into a neat package by defining a software developer’s reading program.
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35.1 Information About Software Construction
cc2e.com/3588 I originally wrote this book because I couldn’t find a thorough discussion of software 

construction. In the years since I published the first edition, several good books have 
appeared.

Pragmatic Programmer (Hunt and Thomas 2000) focuses on the activities most closely 
associated with coding, including testing, debugging, use of assertions, and so on. It 
does not dive deeply into code itself but contains numerous principles related to cre-
ating good code.

Jon Bentley’s Programming Pearls, 2d ed. (Bentley 2000) discusses the art and science 
of software design in the small. The book is organized as a set of essays that are very 
well written and express a great deal of insight into effective construction techniques 
as well as genuine enthusiasm for software construction. I use something I learned 
from Bentley’s essays nearly every day that I program.

Cross-Reference For more in 
the economics of Extreme 
Programming and agile pro-
gramming, see cc2e.com/
3545.

Kent Beck’s Extreme Programming Explained: Embrace Change (Beck 2000) defines a 
construction-centric approach to software development. As Section 3.1 (“Importance 
of Prerequisites”) explained, the book’s assertions about the economics of Extreme 
Programming are not borne out by industry research, but many of its recommenda-
tions are useful during construction regardless of whether a team is using Extreme 
Programming or some other approach.

A more specialized book is Steve Maguire’s Writing Solid Code – Microsoft’s Techniques 
for Developing Bug-Free C Software (Maguire 1993). It focuses on construction practices 
for commercial-quality software applications, mostly based on the author’s experi-
ences working on Microsoft’s Office applications. It focuses on techniques applicable 
in C. It is largely oblivious to object-oriented programming issues, but most of the top-
ics it addresses are relevant in any environment.

Another more specialized book is The Practice of Programming, by Brian Kernighan and 
Rob Pike (Kernighan and Pike 1999). This book focuses on nitty-gritty, practical 
aspects of programming, bridging the gap between academic computer-science 
knowledge and hands-on lessons. It includes discussions of programming style, 
design, debugging, and testing. It assumes familiarity with C/C++.

cc2e.com/3549 Although it’s out of print and hard to find, Programmers at Work, by Susan Lammers 
(1986), is worth the search. It contains interviews with the industry’s high-profile pro-
grammers. The interviews explore their personalities, work habits, and programming 
philosophies. The luminaries interviewed include Bill Gates (founder of Microsoft), John 
Warnock (founder of Adobe), Andy Hertzfeld (principal developer of the Macintosh 
operating system), Butler Lampson (a senior engineer at DEC, now at Microsoft), Wayne 
Ratliff (inventor of dBase), Dan Bricklin (inventor of VisiCalc), and a dozen others.



35.2 Topics Beyond Construction 857

35.2 Topics Beyond Construction
Beyond the core books described in the previous section, here are some books that 
range further afield from the topic of software construction.

Overview Material
cc2e.com/3595 The following books provide software-development overviews from a variety of van-

tage points:

Robert L. Glass’s Facts and Fallacies of Software Engineering (2003) provides a readable 
introduction to the conventional wisdom of software development dos and don’ts. 
The book is well researched and provides numerous pointers to additional resources.

My own Professional Sofware Development (2004) surveys the field of software develop-
ment as it is practiced now and as it could be if it were routinely practiced at its best.

The Swebok: Guide to the Software Engineering Body of Knowledge (Abran 2001) pro-
vides a detailed decomposition of the software-engineering body of knowledge. This 
book has dived into detail in the software-construction area. The Guide to the Swebok 
shows just how much more knowledge exists in the field.

Gerald Weinberg’s The Psychology of Computer Programming (Weinberg 1998) is 
packed with fascinating anecdotes about programming. It’s far-ranging because it was 
written at a time when anything related to software was considered to be about pro-
gramming. The advice in the original review of the book in the ACM Computing 
Reviews is as good today as it was when the review was written:

Every manager of programmers should have his own copy. He should read it, 
take it to heart, act on the precepts, and leave the copy on his desk to be stolen 
by his programmers. He should continue replacing the stolen copies until equi-
librium is established (Weiss 1972).

If you can’t find The Psychology of Computer Programming, look for The Mythical Man-
Month (Brooks 1995) or PeopleWare (DeMarco and Lister 1999). They both drive 
home the theme that programming is first and foremost something done by people 
and only secondarily something that happens to involve computers.

A final excellent overview of issues in software development is Software Creativity 
(Glass 1995). This book should have been a breakthrough book on software creativity 
the way that Peopleware was on software teams. Glass discusses creativity versus disci-
pline, theory versus practice, heuristics versus methodology, process versus product, 
and many of the other dichotomies that define the software field. After years of dis-
cussing this book with programmers who work for me, I have concluded that the 
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difficulty with the book is that it is a collection of essays edited by Glass but not 
entirely written by him. For some readers, this gives the book an unfinished feel. 
Nonetheless, I still require every developer in my company to read it. The book is 
out of print and hard to find but worth the effort if you are able to find it.

Software-Engineering Overviews
Every practicing computer programmer or software engineer should have a high-level 
reference on software engineering. Such books survey the methodological landscape 
rather than painting specific features in detail. They provide an overview of effective 
software-engineering practices and capsule descriptions of specific software-engineer-
ing techniques. The capsule descriptions aren’t detailed enough to train you in the 
techniques, but a single book would have to be several thousand pages long to do 
that. They provide enough information so that you can learn how the techniques fit 
together and can choose techniques for further investigation.

Roger S. Pressman’s Software Engineering: A Practitioner’s Approach, 6th ed. (Pressman 
2004), is a balanced treatment of requirements, design, quality validation, and man-
agement. Its 900 pages pay little attention to programming practices, but that’s a 
minor limitation, especially if you already have a book on construction such as the 
one you’re reading.

The sixth edition of Ian Sommerville’s Software Engineering (Sommerville 2000) is 
comparable to Pressman’s book, and it also provides a good high-level overview of the 
software-development process.

Other Annotated Bibliographies
cc2e.com/3502 Good computing bibliographies are rare. Here are a few that justify the effort it takes 

to obtain them:

ACM Computing Reviews is a special-interest publication of the Association for Com-
puting Machinery (ACM) that’s dedicated to reviewing books about all aspects of 
computers and computer programming. The reviews are organized according to an 
extensive classification scheme, making it easy to find books in your area of interest. 
For information on this publication and on membership in the ACM, see 
www.acm.org.

cc2e.com/3509 Construx Software’s Professional Development Ladder (www.construx.com/ladder/). 
This website provides recommended reading programs for software developers, tes-
ters, and managers.

C35619670.fm  Page 858  Tuesday, April 12, 2011  3:45 PM



35.3 Periodicals 859

35.3 Periodicals

Lowbrow Programmer Magazines

These magazines are often available at local newsstands:

cc2e.com/3516 Software Development. www.sdmagazine.com. This magazine focuses on programming 
issues—less on tips for specific environments than on the general issues you face as a 
professional programmer. The quality of the articles is quite good. It also includes 
product reviews.

cc2e.com/3523 Dr. Dobb’s Journal. www.ddj.com. This magazine is oriented toward hard-core program-
mers. Its articles tend to deal with detailed issues and include lots of code.

If you can’t find these magazines at your local newsstand, many publishers will send 
you a complimentary issue, and many articles are available online.

Highbrow Programmer Journals

You don’t usually buy these magazines at the newsstand. You usually have to go to a 
major university library or subscribe to them for yourself or your company:

cc2e.com/3530 IEEE Software. www.computer.org/software/. This bimonthly magazine focuses on soft-
ware construction, management, requirements, design and other leading-edge soft-
ware topics. Its mission is to “build the community of leading software practitioners.” 
In 1993, I wrote that it’s “the most valuable magazine a programmer can subscribe to.” 
Since I wrote that, I’ve been Editor in Chief of the magazine, and I still believe it’s the 
best periodical available for a serious software practitioner.

cc2e.com/3537 IEEE Computer. www.computer.org/computer/. This monthly magazine is the flagship 
publication of the IEEE (Institute of Electrical and Electronics Engineers) Computer 
Society. It publishes articles on a wide spectrum of computer topics and has scrupu-
lous review standards to ensure the quality of the articles it publishes. Because of its 
breadth, you’ll probably find fewer articles that interest you than you will in IEEE Soft-
ware.

cc2e.com/3544 Communications of the ACM. www.acm.org/cacm/. This magazine is one of the oldest 
and most respected computer publications available. It has the broad charter of pub-
lishing about the length and breadth of computerology, a subject that’s much vaster 
than it was even a few years ago. As with IEEE Computer, because of its breadth, you’ll 
probably find that many of the articles are outside your area of interest. The magazine 
tends to have an academic flavor, which has both a bad side and a good side. The bad 
side is that some of the authors write in an obfuscatory academic style. The good side 
is that it contains leading-edge information that won’t filter down to the lowbrow mag-
azines for years.
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Special-Interest Publications

Several publications provide in-depth coverage of specialized topics.

Professional Publications

cc2e.com/3551 The IEEE Computer Society publishes specialized journals on software engineering, 
security and privacy, computer graphics and animation, internet development, multi-
media, intelligent systems, the history of computing, and other topics. See www.com-
puter.org for more details.

cc2e.com/3558 The ACM also publishes special-interest publications in artificial intelligence, comput-
ers and human interaction, databases, embedded systems, graphics, programming 
languages, mathematical software, networking, software engineering, and other top-
ics. See www.acm.org for more information.

Popular-Market Publications

cc2e.com/3565 These magazines all cover what their names suggest they cover.

The C/C++ Users Journal. www.cuj.com.

Java Developer’s Journal. www.sys-con.com/java/.

Embedded Systems Programming. www.embedded.com.

Linux Journal. www.linuxjournal.com.

Unix Review. www.unixreview.com.

Windows Developer’s Network. www.wd-mag.com.

35.4 A Software Developer’s Reading Plan
cc2e.com/3507 This section describes the reading program that a software developer needs to work 

through to achieve full professional standing at my company, Construx Software. The 
plan described is a generic baseline plan for a software professional who wants to 
focus on development. Our mentoring program provides for further tailoring of the 
generic plan to support an individual’s interests, and within Construx this reading is 
also supplemented with training and directed professional experiences.

Introductory Level

To move beyond “introductory” level at Construx, a developer must read the follow-
ing books:

Adams, James L. Conceptual Blockbusting: A Guide to Better Ideas, 4th ed. Cambridge, 
MA: Perseus Publishing, 2001.
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Bentley, Jon. Programming Pearls, 2d ed. Reading, MA: Addison-Wesley, 2000.

Glass, Robert L. Facts and Fallacies of Software Engineering. Boston, MA: Addison-
Wesley, 2003.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press, 1998.

McConnell, Steve. Code Complete, 2d ed. Redmond, WA: Microsoft Press, 2004.

Practitioner Level 

To achieve “intermediate” status at Construx, a programmer needs to read the follow-
ing additional materials:

Berczuk, Stephen P. and Brad Appleton. Software Configuration Management Patterns: 
Effective Teamwork, Practical Integration. Boston, MA: Addison-Wesley, 2003.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 
3d ed. Boston, MA: Addison-Wesley, 2003.

Glass, Robert L. Software Creativity. Reading, MA: Addison-Wesley, 1995.

Kaner, Cem, Jack Falk, Hung Q. Nguyen. Testing Computer Software, 2d ed. New York, 
NY: John Wiley & Sons, 1999.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis 
and Design and the Unified Process, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 2001.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.

Wiegers, Karl. Software Requirements, 2d ed. Redmond, WA: Microsoft Press, 2003.

cc2e.com/3514 “Manager’s Handbook for Software Development,” NASA Goddard Space Flight Cen-
ter. Downloadable from sel.gsfc.nasa.gov/website/documents/online-doc.htm.

Professional Level

A software developer must read the following materials to achieve full professional 
standing at Construx (“leadership” level). Additional requirements are tailored to 
each individual developer; this section describes the generic requirements.

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2d ed. 
Boston, MA: Addison-Wesley, 2003.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading, MA: Addi-
son-Wesley, 1999.

Gamma, Erich, et al. Design Patterns. Reading, MA: Addison-Wesley, 1995.
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Gilb, Tom. Principles of Software Engineering Management. Wokingham, England: Add-
ison-Wesley, 1988.

Maguire, Steve. Writing Solid Code. Redmond, WA: Microsoft Press, 1993.

Meyer, Bertrand. Object-Oriented Software Construction, 2d ed. New York, NY: Prentice 
Hall PTR, 1997.

cc2e.com/3521 “Software Measurement Guidebook,” NASA Goddard Space Flight Center. Available 
from sel.gsfc.nasa.gov/website/documents/online-doc.htm.

cc2e.com/3528 For more details on this professional development program, as well as for up-to-
date reading lists, see our professional development website at www.construx.com
/professionaldev/.

35.5 Joining a Professional Organization
cc2e.com/3535 One of the best ways to learn more about programming is to get in touch with other 

programmers who are as dedicated to the profession as you are. Local user groups for 
specific hardware and language products are one kind of group. Other kinds are 
national and international professional organizations. The most practitioner-oriented 
organization is the IEEE Computer Society, which publishes the IEEE Computer and 
IEEE Software magazines. For membership information, see www.computer.org.

cc2e.com/3542 The original professional organization was the ACM, which publishes Communications 
of the ACM and many special-interest magazines. It tends to be somewhat more aca-
demically oriented than the IEEE Computer Society. For membership information, 
see www.acm.org.
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Symbols and Numbers
* (pointer declaration symbol), 332, 

334–335, 763
& (pointer reference symbol), 332
–> (pointer symbol), 328
80/20 rule, 592

A
abbreviation of names, 283–285
abstract data types. See ADTs
Abstract Factory pattern, 104
abstraction

access routines for, 340–342
ADTs for. See ADTs
air lock analogy, 136
checklist, 157
classes for, 152, 157
cohesion with, 138
complexity, for handling, 839
consistent level for class 

interfaces, 135–136
defined, 89
erosion under modification 

problem, 138
evaluating, 135
exactness goal, 136–137
forming consistently, 89–90
good example for class interfaces, 

133–134
guidelines for creating class 

interfaces, 135–138
high-level problem domain terms, 

847
implementation structures, 

low-level, 846
inconsistent, 135–136, 138
interfaces, goals for, 133–138
levels of, 845–847
opposites, pairs of, 137
OS level, 846
patterns for, 103
placing items in inheritance trees, 

146
poor example for class interfaces, 

134–135
problem domain terms, low-level, 

846
programming-language level, 846
routines for, 164

access routines
abstraction benefit, 340
abstraction, level of, 341–342
advantages of, 339–340
barricaded variables benefit, 339
centralized control from, 339
creating, 340
g_ prefix guideline, 340
information hiding benefit, 340
lack of support for, overcoming, 

340–342
locking, 341
parallelism from, 342
requiring, 340

accidental problems, 77–78
accreting a system metaphor, 15–16
accuracy, 464
Ada

description of, 63
parameter order, 174–175

adaptability, 464
Adapter pattern, 104
addition, dangers of, 295
ADTs (abstract data types)

abstraction with, 130
access routines, 339–342
benefits of, 126–129
changes not propagating benefit, 

128
classes based on, 133
cooling system example, 129–130
data, meaning of, 126
defined, 126
documentation benefit, 128
explicit instancing, 132
files as, 130
guidelines, 130–131
hiding information with, 127
instancing, 132
implicit instancing, 132
interfaces, making more 

informative, 128
low-level data types as, 130
media independence with, 131
multiple instances, handling, 

131–133
need for, example of, 126–127
non-object-oriented languages 

with, 131–133
objects as, 130

operations examples, table of, 
129–130

passing of data, minimization of, 
128

performance improvements with, 
128

purpose of, 126
real-world entities, working with, 

128–129
representation question, 130
simple items as, 131
verification of code benefit, 128

agile development, 58, 658
algebraic identities, 630
algorithms

commenting, 809
heuristics compared to, 12
metaphors serving as, 11–12
resources on, 607
routines, planning for, 223

aliasing, 311-316
analysis skills development, 823
approaches to development

agile development, 58, 658
bottom-up approaches, 112–113, 

697–698
Extreme Programming, 58, 

471–472, 482, 708, 856
importance of, 839–841
iterative approach. See iteration in 

development
premature optimization problem, 

840
quality control, 840. See also 

quality of software
resources for, 58–59
sequential approach, 35–36
team processes, 839–840
top-down approaches, 111–113, 

694–696
architecture

building block definition, 45
business rules, 46
buying vs. building components, 

51
changes, 44, 52
checklist for, 54–55
class design, 46
commitment delay strategy, 52
conceptual integrity of, 52
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architecture, continued
data design, 46
defined, 43
error handling, 49–50
fault tolerance, 50
GUIs, 47
importance of, 44
input/output, 49
internationalization planning, 48
interoperability, 48
key point for, 60
localization planning, 48
machine independence, 53
overengineering, 51
percent of total activity, by size of 

project, 654–655
performance goals, 48
performance-oriented, 590
prerequisite nature of, 44
program organization, 45–46
quality, 52–53, 55
resource management, 47
resources on developing, 57
reuse decisions, 52
risky areas, identifying, 53
scalability, 48
security design, 47
technical feasibility, 51
time allowed for, 56
user interface design, 47
validation design, 50

arithmetic expressions
misleading precedence example, 

733
magnitudes, greatly different, 295
multiplication, changing to 

addition, 623–624
rounding errors, 297

arrays
C language macro for, 311
checklist, 317
containers as an alternative, 310
costs of operations, 602
cross-talk, 311
defined, 310
dimensions, minimizing, 

625–626
end points, checking, 310
foreach loops with, 372
indexes of, 310–311
layout of references, 754
loops with, 387–388
multidimensional, 310
naming conventions for, 280–281

performance tuning, 593–594, 
603–604

refactoring, 572
references, minimizing, 626–627
semantic prefixes for, 280–281
sentinel tests for loops, 621–623
sequential access guideline, 310

assembly language
description of, 63
listing tools, 720
recoding to, 640–642

assertions
aborting program recommended, 

206
arguments for, 189
assumptions to check, list of, 190
barricades, relation to, 205
benefits of, 189
building your own mechanism 

for, 191
C++ example, 191
dangerous use of example, 192
defined, 189
dependencies, checking for, 350
error handling with, 191, 193–194
executable code in, 191–192
guidelines for, 191–193
Java example of, 190
postcondition verification, 

192–193
precondition verification, 

192–193
removing from code, 190
resources for, 212
Visual Basic examples, 192–194

assignment statements, 249, 758
author role in inspections, 486
auto_ptrs, 333
automated testing, 528–529

B
backup plans, 669, 670
bad data, testing for, 514–515
barricades

assertions, relation to, 205
class-level, 204
input data conversions, 204
interfaces as boundaries, 203
operating room analogy, 204
purpose of, 203

base classes
abstract overridable routines, 145
abstraction aspect of, 89
coupling, too tight, 143

Liskov Substitution Principle, 
144–145

overridable vs. non-overridable 
routines, 145–146

protected data, 143
routines overridden to do 

nothing, 146–147
single classes from, 146

Basic, 65. See also Visual Basic
basis testing, structured, 503, 

505–509
BCD (binary coded decimal) type, 

297
BDUF (big design up front), 119
beauty, 80
begin-end pairs, 742–743
bibliographies, software, 858
big-bang integration, 691
big design up front (BDUF), 119
binary searches, 428
binding

in code, 252
compile time, 252–253
heuristic design with, 107
just in time, 253
key point, 258
load time, 253
run time, 253
variables, timing of, 252–254

black-box testing, 500
blank lines for formatting, 747–748, 

765–766
blocks

braces writing rule, 443
comments on, 795–796
conditionals, clarifying, 443
defined, 443
emulated pure layout style, 

740–743
pure, layout style, 738–740
single statements, 748–749

Book Paradigm, 812–813
boolean expressions

0, comparisons to, 441–442
0s and 1s as values, 432
breaking into partial tests, 433
C languages syntax, 442–443
characters, comparisons to zero, 

441
checklist for, 459
constants in comparisons, 

442–443
decision tables, moving to, 435
DeMorgan’s Theorems, applying, 

436–437

arithmetic expressions
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evaluation guidelines, 438–440
functions, moving to, 434–435
identifiers for, 431–433
if statements, negatives in, 

435–436
implicit comparisons, 433
Java syntax, 439, 443
layout guidelines, 749–750
logical identities, 630
negatives in, 435–437
numeric, structuring, 440–441
parentheses for clarifying, 

437–438
pointers, comparisons with, 441
positive form recommended, 

435–437
refactoring, 572
short circuit evaluation, 438–440
simplifying, 433–435
variables in. See boolean variables
zero, comparisons to, 441–442

boolean functions
creating from expressions, 

434–435
if statements, used in, 359

boolean tests
breaking into partial tests, 433
hiding with routines, 165
simplifying, 301–302
zero, comparisons to, 441–442

boolean variables
0s and 1s as values, 432
C, creating data type, 302–303
checklist, 317
documentation with, 301
enumerated types as alternative, 

304
expressions with. See boolean 

expressions
identifiers for, 431–433
naming, 268–269
simplifying tests with, 301–302
zeros and ones as values, 432

boss readiness test on prerequisites, 
30–31

bottom-up approach to design, 
112–113

bottom-up integration, 697–698
boundary analysis, 513–514
braces

block layout with, 740–743
styles compared, 734

break statements
C++ loops, 371–372
caution about, 381
guidelines, 379–380

labeled, 381
multiple in one loop, 380
nested-if simplification with, 

446–447
while loops with, 379

bridge failure, Tacoma Narrows, 74
Bridge pattern, 104
brute-force debugging, 548–549
buffer overruns, 196
bugs. See debugging; defects in code; 

errors
build tools, 716–717. See also 

compilers
building metaphor, 16–19
building vs. buying components, 18
builds, daily. See daily build and 

smoke tests
business rules

architecture prerequisites, 46
change, identifying areas of, 98
good practices table for, 31–32
subsystem design, 85

buying components, 18, 51

C
C language

ADTs with, 131
boolean expression syntax, 

442–443
description of, 64
naming conventions for, 275, 278
pointers, 334–335
string data types, 299–301, 317
string index errors, 299–300

C#, 64
C++

assertion example, 191
boolean expression syntax, 

442–443
debugging stubs with, 208–209
description of, 64
DoNothing() macros, 444–445
exceptions in, 198–199
inline routines, 184–185
interface considerations, 139–141
layout recommended, 745
macro routines, 182–184
naming conventions for, 275–277
null statements, 444–445
parameters, by reference vs. by 

value, 333
pointers, 325, 328–334, 763
preprocessors, excluding debug 

code, 207–208
resources for, 159

side effects, 759–761
source files, layout in, 773

caching, code tuning with, 628–629
Capability Maturity Model (CMM), 

491
capturing design work, 117–118
Cardinal Rule of Software Evolution, 

565
CASE (computer-aided software 

engineering) tools, 710
case statements

alpha ordering, 361
checklist, 365
debugging, 206
default clauses, 363
drop-throughs, 363–365
end of case statements, 363–365
endline layout, 751–752
error detection in, 363
frequency of execution ordering, 

361, 612–613
if statements, comparing 

performance with, 614
key points, 366
language support for, 361
nested ifs, converting from, 

448–449, 451
normal case first rule, 361
numeric ordering, 361
ordering cases, 361
parallel modifications to, 566
phony variables, 361–362
polymorphism preferable to, 

147–148
redesigning, 453
refactoring, 566, 573
simple action guideline, 361
table-driven methods using, 

421–422
change control. See configuration 

management
character arrays, 299–300. See also 

string data types
character data types

arrays vs. string pointers, 299
C language, 299–301
character sets, 298
checklist, 316–317
conversion strategies, 299
magic (literal) characters, 

297–298
Unicode, 298, 299

character, personal
analysis skills, 823
communication skills, 828

character, personal
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character, personal, continued
compiler messages, treatment of, 

826–827
computer-science graduates, 829
cooperation skills, 828
creativity, 829, 857
curiosity, 822–825
development process awareness, 

822
discipline, 829
estimations, 827–828
experience, 831–832
experimentation, 822–823
gonzo programming, 832
habits, 833–834
humility, 821, 826, 834
importance of, 819–820
intellectual honesty, 826–828
intelligence, 821
judgment, 848
key points, 835
laziness, 830
mistakes, admitting to, 826
persistence, 831
practices compensating for 

weakness, 821
problem solving, 823
professional development, 

824–825
reading, 824
religion in programming, harmful 

effects of, 851–853
resources on, 834–835
status reporting, 827
successful projects, learning from, 

823–824
checklists

abstraction, 157
architecture, 54–55
arrays, 317
backups, 670
boolean expressions, 459
case statements, 365
character data types, 316–317
classes, 157–158, 233–234, 

578–579, 774, 780
coding practices, 69
code tuning, 607–608, 642–643
comments, 774, 816–817
conditional statements, 365
configuration management, 

669–670
constants, 317
construction practices, 69–70
control structures, 459, 773, 780

daily build and smoke tests, 707
data organization, 780
data types, 316–318
debugging, 559–561
defects, 489, 559–560
defensive programming, 211–212
design, 122–123, 781
documentation, 780–781, 

816–817
encapsulation, 158
enumerated types, 317
fixing defects, 560
formal inspections, 489, 491–492
formatting, 773–774
goto statements, 410
if statements, 365
inheritance, 158
initialization, 257
integration, 707
interfaces, 579
layout, 773–774
list of, xxix–xxx
loops, 388–389
names, 288–289, 780
pair programming, 484
parameters, 185
performance tuning, 607–608
pointers, 344
prerequisites, 59
pseudocoding, 233–234
programming tools, 724–725
quality assurance, 42–43, 70, 476
refactoring, 570, 577–579, 584
requirements, 40, 42–43
routines, 185, 774, 780
speed, tuning for, 642–643
statements, 774
straight-line code, 353
strings, 316–317
structures, 343
table-driven methods, 429
testing, 503, 532
tools, 70
type creation, 318
variables, 257–258, 288–289, 

343–344
circular dependencies, 95
classes

abstract data types. See ADTs
abstract objects, modeling, 152
abstraction checklist, 157
alternates to PPP, 232–233
architecture prerequisites, 46
assumptions about users, 141
base. See base classes

bidirectional associations, 577
calls to, refactoring, 575
case statements vs. inheritance, 

147–148
centralizing control with, 153
changes, limiting effects of, 153
checklists, 157–158, 774, 780
coding routines from 

pseudocode, 225–229
cohesion as refactoring indicator, 

566
complexity issues, 152–153
constant values returned, 574
constructors, 151–152
containment, 143–144
coupling considerations, 

100–102, 142–143
data-free, 155
deep inheritance trees, 147
defined, 125
delegation vs. inheritance, 

refactoring, 576
descendants, refactoring indicator 

for, 567
designing, 86, 216, 220–225, 233
disallowing functions and 

operators, 150
documenting, 780, 810
encapsulation, 139–143, 158
extension, refactoring with, 576
factoring, benefit of, 154
files containing, 771–772
foreign routines, refactoring with, 

576
formalizing contracts for 

interfaces, 106
formatting, 768–771
friend, encapsulation violation 

concern, 141
functions in. See functions; 

routines
global data, hiding, 153
god classes, 155
hacking approach to, 233
hiding implementation details, 

153
implementation checklist, 158
indirect calls to other classes, 150
information hiding, 92–93
inheritance, 144–149, 158
initializing members, 243
integration, 691, 694, 697
irrelevant classes, 155
is a relationships, 144
key points for, 160, 234

checklists
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language-specific issues, 156
layout of, 768–771
limiting collaboration, 150
Liskov Substitution Principle, 

144–145
member variables, naming, 273, 

279
methods of. See routines
minimizing accessibility rule, 139
mixins, 149
modeling real-world objects, 152
multiple per file, layout of, 

769–770
naming, 277, 278
number of members, 143
number of routines, 150
object names, differentiating from, 

272–273
objects, contrasted with, 86
overformatting, 770
overriding routines, 145–146, 156
packages, 155–157
parallel modifications refactoring 

indicator, 566
planning for program families, 

154
private vs. protected data, 148
private, declaring members as, 

150
procedures in. See routines
protected data, 148
pseudocode for designing, 

232–234
public members, 139, 141, 576
read-time convenience rule, 141
reasons for creating, 152–156
refactoring, 155, 574–576, 

578–579, 582
resources, 159
reusability benefit of, 154
review and test step, 217
routine construction step, 217
routines in. See routines
routines, unused, 146–147, 576
semantic violations of 

encapsulation, 141–142
Set() routines, unnecessary, 576
similar sub and superclasses, 576
single-instance, 146
singleton property, enforcing, 151
steps in creating, 216–217
streamlining parameter passing, 

153
subclasses, 165, 575

superclasses for common code, 
575

test-first development, 233
testing with stub objects, 523
unidirectional associations, 577
visibility of, 93
warning signs for, 848, 849

class-hierarchy generators, 713
cleanup steps, PPP, 232
cleanroom development, 521
CMM (Capability Maturity Model), 

491
Cobol, 64
code coverage testing, 506
code libraries, 222, 717
code quality analysis tools, 713–714
code reading method, 494
code tuning

80/20 rule, 592
advantages from, 591
algebraic identities, 630
appeal of, 591–592
arrays, 593–594, 603–604, 

625–627
assembler, listing tools, 720
assembler, recoding to, 640–642
bottleneck identification, 594
caching data, 628–629
checklists, 607–608, 642–643
comparing logic structures, 614
competing objectives dilemma, 

595
compiler considerations, 590, 

596–597
converting data types, 635
correctness, importance of, 

595–596
data transformations, 624–629
data type choices, 635
database indexing, 601
defects in code, 601
defined, 591
DES example, 605–606
design view, 589–590
disadvantages of, 591
disassemblers, 720
execution profiler tools, 720
expressions, 630–639
feature specific, 595
frequency, testing in order of, 

612–613
frequently used code spots, 592
hardware considerations, 591
improvements possible, 605
indexing data, 627–628

inefficiency, sources of, 598–601
initializing at compile time, 

632–633
inline routines, 639–640
input/output, 598–599
integers preferred to floating, 625
interpreted vs. compiled 

languages, 592, 600–601
iteration of, 608, 850
jamming loops, 617–618
key points, 608, 645
language specificity, 644
lazy evaluation, 615–616
lines of code, minimizing number 

of, 593–594
logic manipulation guidelines, 

610–616
lookup tables for, 614–615, 635
loops, 616–624
low-level language, recoding to, 

640–642
measurement to locate hot spots, 

603–604, 644
memory vs. file operations, 

598–599
minimizing work inside loops, 

620–621
multiplication, changing to 

addition, 623–624
nested loop order, 623
old wives’ tales, 593–596
operating system considerations, 

590
operation speeds, presumptions 

about, 594
operations, costs of common, 

601–603
optimizing as you go, 594–595
overview of, 643–644
paging operations, 599
Pareto Principle, 592
precomputing results, 635–638
program requirements view of, 

589
refactoring, compared to, 609
resource goals, 590
resources on, 606–607, 644–645
right shifting, 634
routines, 590, 639–640
sentinel tests for loops, 621–623
short-circuit evaluation, 610
speed, importance of, 595–596
strength reduction, 623–624, 

630–632

code tuning
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code tuning, continued
subexpression elimination, 

638–639
summary of approach for, 606
system calls, 599–600, 633–634
tools, 720
unrolling loops, 618–620
unswitching loops, 616–617
variations in environments for, 

594
when to tune, 596

code-generation wizards, 718
coding. See also construction; 

software construction overview
conventions. See conventions, 

coding
practices checklist, 69
sequential. See straight-line code
software construction as, 5
style. See layout

cohesion
interfaces, class, 138
routines, designing with, 168–171
strength reduction, 623–624, 

630–632
coincidental cohesion, 170
collaboration

code reading, 494
collective ownership benefits, 482
comparisons of techniques, table 

of, 495–496
cost advantage, 480–481
defined, 479, 480
design phase, 115
development time benefit, 480
dog-and-pony shows, 495
extending beyond construction, 

483
Extreme Programming method, 

482
formal inspections. See formal 

inspections
General Principle of Software 

Quality, 481
inspections. See formal 

inspections
key points, 497
mentoring aspect of, 482
pair programming. See pair 

programming
purpose of, 480
standards, IEEE, 497
testing, compared to, 481
walk-throughs, 492–493

collections, refactoring, 572

collective ownership, 482. See also 
collaboration

comments. See also documentation
/* vs. //, 790
abbreviations in, 799
algorithms, 809
argument against, 782
authorship, 811
bad code, on, 568
blank lines around, 765–766
Book Paradigm for, 812–813
categories of, 786–788
checklists, 774, 816–817
classes, 810
coded meanings, 802–803
control structures, 804–805, 817
declarations with, 794, 802–803, 

816
descriptions of code intent, 787
distance to code guideline, 806
efficient creation of, 788–791
endline comments, 793–795
errors, marking workarounds, 

800
explanatory, 786
files, 810–811
flags, bit level, 803
global variables, 803, 809
indentation guidelines, 764–765
individual lines with, 792–795
input data, 803, 808
integrating into development, 791
interfaces, class, 810
interfaces, routine, 808
Javadoc, 807, 815
key points, 817
layout guidelines, 763–766
legal notices, 811
length of descriptions, 806
level of code intent, 795–796
loops, 804–805
maintenance of, 220, 788–791, 

794
major vs. minor, 799–800
markers, 787
non-code essential information, 

788
numerical data, 802
optimum density of, 792
output data, 808
paragraphs of code with, 

795–801, 816
parameter declarations, 806–807
parts of programs, 809
performance considerations, 791

preceding code rule, 798
proportionality of, 806
pseudocode, deriving from, 220, 

784, 791
purpose of, 782
repeating code with, 786
resources on, 815
routines with, 805–809, 817
self-commenting code, 796–797
Socratic dialog about, 781–785
standards, IEEE, 813–814
style differences, managing, 683
style violations, 801
summaries of code, 787
surprises, 798
tricky code, 798, 801
undocumented features, 800
variables, 803
version control, 811
why vs. how, 797–798
workarounds, 800

commitment delay strategy, 52
communication skills, importance 

of, 828
communicational cohesion, 169
communications, development 

team, 650
comparisons

boolean. See boolean tests
floating-point equality, 295–296
mixed data types, 293

compilers
binding during compilation, 

252–253
broken builds, 703
data type warnings, 293
debugging tools, as, 557, 827
errors, finding in routines, 

230–231
line numbers, debugging with, 

549
messages, treatment of, 549, 

826–827
multiple error messages, 550
optimizations by, 596–597
performance tuning 

considerations, 590
project-wide standards for, 557
speeds from optimization, table 

of, 597
tools for, 716
tricky code optimization, 597
validators with, 231
warnings, 293, 557

code-generation wizards
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completeness of requirements 
checklist, 43

complex data types. See structures
complexity

abstraction for handling, 839
classes for reducing, 152
coding conventions for reducing, 

839
control structure contributions to, 

456–459
conventions for managing,

 844–845
decision points, counting, 458
importance of, 457
isolation, classes for, 153
live time, 459
management, 77–79, 844–845
McCabe’s metric, 457–458
mental objects held, measure of, 

457
methods for handling, 837–839
minimization goal, 80
patterns, reducing with, 103
problem domain, working at, 845
reliability correlated with, 457
routines for reducing, 164
size of projects, effect on, 

656–657
span, 459

component testing, 499
components, buying, 18, 51
Composite pattern, 104
compound boundaries, 514
compound statements. See blocks
computed-value qualifiers of 

variable names, 263–264
computer-aided software 

engineering (CASE) tools, 710
conditional statements

boolean function calls with, 359
boolean variables recommended, 

301–302
case statements. See case 

statements
chained if-then-else statements, 

358–360
checklist, 365
common cases first guideline, 

359–360
comparing performance of, 614
covering all cases, 360
defined, 355
eliminating testing redundancy, 

610–611
else clauses, 358–360

equality, branching on, 355
error processing examples, 

356–357
frequency, testing in order of, 

612–613
if statements. See if statements
key points, 366
lookup tables, substituting, 

614–615
looping, conditional. See loops
normal case first guideline, 

356–357
normal path first guideline, 355
null if clauses, 357
plain if-then statements, 355–357
refactoring, 573
short-circuit evaluation, 610
switch statements. See case 

statements
confessional debugging, 547–548
configuration management

architectural anticipation of 
change, 52

backup plans, 669, 670
boards, change-control, 667
bureaucratic considerations, 667
checklist, 669–670
code changes, 667–668
cost, estimating, 666
defined, 664
design changes, 666–667
estimating change costs, 666
grouping change requests, 666
high change volumes, 666
identifying areas of change, 97–99
machine configurations, 

reproducing, 668
purpose of, 664–665
requirements changes, 41, 664, 

666–667
resources on, 670
SCM, 665
tool version control, 668
version-control software, 668

const keyword, C++, 176, 177, 243, 
274, 333

constants
checklist, 317
consistency rule, 309
declarations using, 308
defined, 307
emulation by global variables, 338
initializing, 243
literals, avoiding with, 308–309
naming, 270, 273, 277–279

purpose of, 307
refactoring, 571
simulating in languages lacking, 

309
construction. See also software 

construction overview
collaborative. See collaboration
decisions. See construction 

decisions
guidelines, 66
managing. See managing 

construction
percent of total activity, by size of 

project, 654–655
prerequisites. See prerequisites, 

upstream
quality of. See quality of software
resources on, 856
schedules, estimating. See 

construction schedules, 
estimating

size of projects, effects on. See size 
of projects

tools for. See programming tools
construction decisions

checklist of major construction 
practices, 69–70

coding practices checklist, 69
early-wave environments, 67
key points for, 70
major construction practices, 

selecting, 69–70
mature technology environments, 

67
programming conventions, 66–66
programming into languages, 

68–69
programming languages. See 

programming language choice
quality assurance checklist, 70
teamwork checklist, 69
technology waves, determining 

your location in, 66–69
tools checklist, 70

construction schedules, estimating
approaches to, list of, 671
catching up from behind, 

675–676
controlling vs. estimating, 675
factors influencing, 674–675
level of detail for, 672
multiple techniques with 

comparisons, 672
objectives, establishing, 671
optimism, 675

construction schedules, estimating
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construction schedules, estimating, 
continued

overview, 671
planning estimation time, 671
reduction of scope, 676
reestimating, 672
requirements specification, 672
resources for, 677
teams, expanding, 676

constructors
deep vs. shallow copies, 151–152
exceptions with, 199
guidelines for, 151–152
initializing data members, 151
refactoring, 577
singleton property, enforcing, 151

container classes, 310
containment, 88, 143
continuation lines, 754–758
continue statements, 379, 380, 381
continuous integration, 706
control structures

boolean expressions in. See 
boolean expressions

case. See case statements
checklists, 459, 773, 780
commenting, 804–805, 817
complexity, contributions to, 

456–459
compound statements, 443
conditional flow. See conditional 

statements
continuation lines in, 757
data types, relationship to, 

254–255
documentation, 780
double indented begin-end pairs, 

746–747
gotos. See goto statements
if statements. See if statements
iteration, 255, 456
key points, 460
layout styles, 745–752
loops. See loops
multiple returns from routines, 

391–393
null statements, 444–445
recursive. See recursion
reliability correlated with 

complexity, 457
returns as. See return statements
selective data with, 254
sequential data with, 254
structured programming, 

454–455

unindented begin-end pairs, 746
unusual, overview of, 408

conventions, coding
benefits of, 844–845
checklist, 69
formatting. See layout
hazards, avoiding with, 844
predictability benefit, 844

converting data types, 635
cooperation skills, importance of, 

828
correctness, 197, 463
costs. See also performance tuning

change estimates, 666
collaboration benefits, 480–481
debugging, time consumed by, 

474–475
defects contributing to, 519–520
detection of defects, 472
error-prone routines, 518
estimating, 658, 828
fixing of defects, 472–473, 519
General Principle of Software 

Quality, 474–475, 522
pair programming vs. inspections, 

480–481
resources on, 658

counted loops. See for loops
coupling

base classes to derived classes, 
143

classes, too tightly, 142–143
design considerations, 100–102
flexibility of, 100–101
goals of, 100
loose, 80, 100–102
object-parameter type, 101
semantic type, 102
simple-data-parameter type, 101
simple-object type, 101
size of, 100
visibility of, 100

coverage
monitoring tools, 526
structured basis testing, 505–509

CRC (Class, Responsibility, 
Collaboration) cards, 118

creativity, importance of, 829, 857
cross-reference tools, 713
curiosity, role in character, 822–825
Currency data types, 297
customization, building metaphor 

for, 18

D
daily build and smoke tests

automation of, 704
benefits of, 702
broken builds, 703, 705
build groups, 704
checklist, 707
defined, 702
diagnosis benefit, 702
holding area for additions, 

704–705
importance of, 706
morning releases, 705
pressure, 706
pretest requirement, 704
revisions, 704
smoke tests, 703
unsurfaced work, 702

data
architecture prerequisites, 46
bad classes, testing for, 514–515
change, identifying areas of, 99
code tuning. See data 

transformations for code 
tuning

combined states, 509–510
defined state, 509–510
defined-used paths, testing, 

510–512
design, 46
entered state, 509
exited state, 509
good classes, testing, 515–516
killed state, 509–510
legacy, compatibility with, 516
nominal case errors, 515
test, generators for, 524–525
types. See data types
used state, 509–510

data dictionaries, 715
data flow testing, 509–512
data literacy test, 238–239
data recorder tools, 526
data structures. See structures
data transformations for code 

tuning
array dimension minimization, 

625–626
array reference minimization, 

626–627
caching data, 628–629
floating point to integers, 625
indexing data, 627–628
purpose of, 624

constructors
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data types
“a” prefix convention, 272
abstract data types. See ADTs
arrays. See arrays
BCD, 297
boolean. See boolean variables
change, identifying areas of, 99
characters. See character data 

types
checklist, 316–318
complex. See structures
control structures, relationship to, 

254–255
creating. See type creation
Currency, 297
definitions, 278
enumerated types. See 

enumerated types
floating-point. See floating-point 

data types
integers. See integer data types
iterative data, 255
key points for, 318
naming, 273, 277, 278
numeric. See numeric data types
overloaded primitives, 567
pointers. See pointers
refactoring to classes, 567, 572
resources on, 239
selective data, 254
sequential data, 254
strings. See string data types
structures. See structures
t_ prefix convention, 272
user-defined. See type creation
variables of, differentiating from, 

272–273
databases

performance issues, 601
SQL, 65
subsystem design, 85

data-level refactoring, 571–572, 577
days-in-month, determining, 

413–414
deallocation

goto statements for, 399
pointers, of, 326, 330, 332

Debug.Assert statements, 191–193
debugging

aids to. See debugging aids
binary searches of code, 546
blindness, sources of, 554–555
breakpoints, 558
breaks, taking, 548
brute-force, 548–549

changes, recent, 547
checklist, 559–561
comments, misplaced, 550
common defects lists, 547
compilers as tools for, 549, 557
confessional debugging, 547–548
costs of, 29–30, 474–475
debugger tools, 526–527, 545, 

556–559, 719. See also 
debugging aids

defects as opportunities, 537–538
defensive. See debugging aids
defined, 535
Diff tool, 556
execution profilers for, 557–558
expanding suspicious regions, 

547
experience of programmers, 

effects of, 537
finding defects, 540, 559–560
fixing defects, 550–554
guessing, 539
history of, 535–536
hypothesis testing, 543–544, 546
incremental approach, 547
ineffective approach to, 539–540
key points, 562
line numbers from compilers, 549
lint tool, 557
listing possibilities, 546
locating error sources, 543–544
logic checking tools, 557
multiple compiler messages, 550
narrowing code searches, 546
obvious fixes, 539
performance variations, 536–537
project-wide compilers settings, 

557
psychological considerations, 

554–556
quality of software, role in, 536
quotation marks, misplaced, 550
readability improvements, 538
recommended approach, 541
reexamining defect-prone code, 

547
resources for, 561
Satan’s helpers, 539–540
scaffolding for, 558
scientific method of, 540–544
self-knowledge from, 538
source-code comparators, 556
stabilizing errors, 542–543
superstitious approaches, 

539–540

symbolic debuggers, 526–527
syntax checking, 549–550, 557, 

560
system debuggers, 558
test case creation, 544
testing, compared to, 500
time for, setting maximums, 549
tools for, 526–527, 545, 556–559, 

719. See also debugging aids
understanding the problems, 539
unit tests, 545
varying test cases, 545
warnings, treating as errors, 557

debugging aids
C++ preprocessors, 207–208
case statements, 206
early introduction recommended, 

206
offensive programming, 206
planning removal of, 206–209
pointers, checking, 208–209
preprocessors, 207–208
production constraints in 

development versions, 205
purpose of, 205
stubs, 208–209
version control tools, 207

decision tables. See table-driven 
methods

declarations
commenting, 794, 802–803, 816
const recommended, 243
declare and define near first use 

rule, 242–243
define near first use rule, 

242–243
final recommended, 243
formatting, 761–763
implicit declarations, 239–240
multiple on one line, 761–762
naming. See naming conventions
numerical data, commenting, 802
order of, 762
placement of, 762
pointers, 325–326, 763
using all declared, 257

Decorator pattern, 104
defects in code

classes prone to error, 517–518
classifications of, 518–520
clerical errors (typos), 519
Code Complete example, 

490–491
construction, proportion 

resulting from, 520–521

defects in code
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defects in code, continued
cost of detection, 472
cost of fixing, 472–473
databases of, 527
detection by various techniques, 

table of, 470
distribution of, 517–518
ease of fixing defects, 519
error checklists, 489
expected rate of, 521–522
finding, checklist, 559–560
fixing. See debugging; fixing 

defects
formal inspections for detecting. 

See formal inspections
intermittent, 542–543
misunderstood designs as sources 

for, 519
opportunities presented by, 

537–538
outside of construction domain, 

519
percentage of, measurement, 

469–472
performance issues, 601
programmers at fault for, 519
readability improvements, 538
refactoring after fixing, 582
scope of, 519
self-knowledge from, 538
size of projects, effects on, 

651–653
sources of, table, 518
stabilizing, 542–543

defensive programming
assertions, 189–194
assumptions to check, list of, 190
barricades, 203–205
checklist, 211–212
debugging aids, 205–209
defined, 187
error handling for, 194–197
exceptions, 198–203, 211
friendly messages guideline, 210
graceful crashing guideline, 210
guidelines for production code, 

209–210
hard crash errors guideline, 209
important errors guideline, 209
key points for, 213
logging guideline, 210
problems caused by, 210
quality improvement techniques, 

other, 188
robustness vs. correctness, 197

security issues, 212
trivial errors guideline, 209
validating input, 188

defined data state, 509–510
defining variables. See declarations
Delphi, recoding to assembler, 

640–642
DeMorgan’s Theorems, applying, 

436–437
dependencies, code-ordering

checker tools, 716
circular, 95
clarifying, 348–350
concept of, 347
documentation, 350
error checking, 350
hidden, 348
initialization order, 348
naming routines, 348–349
non-obvious, 348
organization of code, 348
parameters, effective, 349

design
abstractions, forming consistent, 

89–90
accidental problems, 77–78
BDUF, 119
beauty, 80
bottom-up approach to design, 

112–113
business logic subsystem, 85
capturing work, 117–118
central points of control, 107
change, identifying areas of, 

97–99
changes, management of, 

666–667
characteristics of high quality, 

80–81
checklists, 122–123, 781
classes, division into, 86
collaboration, 115
communications among 

subsystems, 83–84
completion of, determining, 

115–117
complexity management, 77–80
construction activity, as, 73–74
contract, by, 233
coupling considerations, 100–102
database access subsystem, 85
defined, 74
diagrams, drawing, 107
discussion, summarizing, 117

divide and conquer technique, 
111

documentation, as, 781
documentation overkill, 117
emergent nature of, 76
encapsulation, 90–91
enough, determining, 118–119
essential problems, 77–78
extensibility goal, 80
formality of, determining, 

115–117
formalizing class contracts, 106
goals checklist, 122–123
good practices table for, 31–32
heuristic. See heuristic design
hierarchies for, 105–106
high fan-in goal, 80
IEEE standards, 122
information hiding, 92–97, 120
inheritance, 91–92
iteration practice, 111–117
key points, 123
leanness goal, 81
level of detail needed, 115–117
levels of, 82–87
loose coupling goal, 80
low-to-medium fan-out goal, 81
maintenance goals, 80
mental limitations of humans, 79
metrics, warning signs from, 848
nondeterministic nature of, 76, 87
object-oriented, resource for, 119
objects, real world, finding, 87–89
packages level, 82–85
patterns, common. See patterns
performance tuning 

considerations, 589–590
portability goal, 81
practice heuristics. See heuristic 

design
practices, 110–118, 122
prioritizing during, 76
prototyping, 114–115
resources for, 119–121
restrictive nature of, 76
reusability goal, 80
routines, of, 86–87
sloppy process nature of, 75–76
software system level, 82
standard techniques goal, 81
standards, IEEE, 122
stratification goal, 81
strong cohesion, 105
subsystem level, 82–85

defensive programming
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system dependencies subsystem, 
85

testing for implementation, 503
tools for, 710
top-down approach, 111–113
tradeoffs, 76
UML diagrams, 118
user interface subsystem, 85
visual documentation of, 118
wicked problem nature of, 74–75
Wikis, capturing on, 117

destructors, exceptions with, 199
detailed-design documents, 778
developer testing. See testing
development processes. See 

approaches to development
development standards, IEEE, 813
diagrams

heuristic design use of, 107
UML, 118

Diff tools, 556, 712
direct access tables

advantages of, 420
arrays for, 414
case statement approach, 

421–422
days-in-month example, 413–414
defined, 413
design method for, 420
flexible-message-format example, 

416–423
fudging keys for, 423–424
insurance rates example, 415–416
keys for, 423–424
object approach, 422–423
transforming keys, 424

disassemblers, 720
discipline, importance of, 829
discourse rules, 733
disposing of objects, 206
divide and conquer technique, 111
division, 292–293
Do loops, 369–370. See also loops
documentation

abbreviation of names, 284–285
ADTs for, 128
bad code, of, 568
Book Paradigm for, 812–813
capturing work, 117–118
checklists, 780–781, 816–817
classes, 780
comments. See comments
control structures, 780
CRC cards for, 118
dependencies, clarifying, 350

design as, 117, 781
detailed-design documents, 778
external, 777–778
Javadoc, 807, 815
key points, 817
names as, 284–285, 778–779, 

780
organization of data, 780
parameter assumptions, 178
pseudocode, deriving from, 220
resources on, 815
routine parameter assumptions, 

178
routines, 780
SDFs, 778
self-documenting code, 778–781
size of projects, effects of, 657
source code as, 7
standards, IEEE, 813–814
style differences, managing, 683
UDFs, 778
visual, of designs, 118
why vs. how, 797–798

dog-and-pony shows, 495
dog tag fields, 326–327
DoNothing() macros, 444–445
DRY (Don’t Repeat Yourself) 

principle, 565
duplication

avoiding with routines, 164–165
code as refactoring indicator, 565

E
early-wave environments, 67
ease of maintenance design goal, 80
eclecticism, 851–852
editing tools

beautifiers, 712
class-hierarchy generators, 713
cross-reference tools, 713
Diff tools, 712
grep, 711
IDEs, 710–711
interface documentation, 713
merge tools, 712
multiple-file string searches, 

711–712
templates, 713

efficiency, 464
eighty/twenty (80/20) rule, 592
else clauses

boolean function calls with, 359
case statements instead of, 360
chains, in, 358–360

common cases first guideline, 
359–360

correctness testing, 358
default for covering all cases, 360
gotos with, 406–407
null, 358

embedded life-critical systems, 
31–32

emergent nature of design process, 
76

emulated pure blocks layout style, 
740–743

encapsulation
assumptions about users, 141
checklist, 158
classes, role for, 139–143
coupling classes too tightly, 

142–143
downcast objects, 574
friend class concern, 141
heuristic design with, 90–91
minimizing accessibility, 139
private details in class interfaces, 

139–141
public data members, 567
public members of classes, 139
public routines in interfaces 

concern, 141
semantic violations of, 141–142
weak, 567

endless loops, 367, 374
endline comments, 793–795
endline layout, 743–745, 751–752, 

767
enumerated types

benefits of, 303
booleans, alternative to, 304
C++, 303–304, 306
changes benefit, 304
checklist, 317
comments substituting for, 

802–803
creating for Java, 307
defined, 303
emulation by global variables, 338
explicit value pitfalls, 306
first entry invalid trick, 305–306
iterating through, 305
Java, creating for, 307
languages available in, 303
loop limits with, 305
naming, 269, 274, 277–279
parameters using, 303
readability from, 303
reliability benefit, 304

enumerated types
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enumerated types, continued
standard for, 306
validation with, 304–305
Visual Basic, 303–306

equality, floating-point, 295–296
equivalence partitioning, 512
error codes, 195
error detection, doing early, 29–30
error guessing, 513
error handling. See also exceptions

architecture prerequisites, 49–50
assertions, compared to, 191
barricades, 203–205
buffer overruns compromising, 

196
closest legal value, 195
defensive programming, 

techniques for, 194–197
error codes, returning, 195
error-processing routines, calling, 

196
high-level design implication, 197
local handling, 196
logging warning messages, 195
messages, 49, 195–196, 210
next valid data, returning, 195
previous answers, reusing, 195
propagation design, 49
refactoring, 577
returning neutral values, 194
robustness, 51, 197
routines, designing along with, 

222
shutting down, 196
validation design, 50

error messages
codes, returning, 195
design, 49
displaying, 196
friendly messages guideline, 210

errors. See also defects in code; 
exceptions

classifications of, 518–520
coding. See defects in code
dog tag fields, 326–327
exceptions. See exceptions
handling. See error handling
goto statements for processing, 

401–402
sources of, table, 518

essential problems, 77–78
estimating schedules

approaches to, list of, 671
change costs, 666
control, compared to, 675

factors influencing, 674–675
level of detail for, 672
inaccuracy, character-based, 

827–828
multiple techniques with 

comparisons, 672
objectives, establishing, 671
optimism, 675
overview, 671
planning for estimation time, 671
redoing periodically, 672
reduction of scope, 676
requirements specification, 672
resources for, 677
teams, expanding, 676

event handlers, 170
evolution. See software evolution
Evolutionary Delivery. See 

incremental development 
metaphor

exceptions. See also error handling
abstraction issues, 199–200
alternatives to, 203
base classes for, project specific, 

203
C++, 198–199
centralized reporters, 201–202
constructors with, 199
defensive programming checklist, 

211
destructors with, 199
empty catch blocks rule, 201
encapsulation, breaking, 200
full information rule, 200
Java, 198–201
languages, table comparing, 

198–199
level of abstraction rule, 199–200
library code generation of, 201
local handling rule, 199
non-exceptional conditions, 199
purpose of, 198, 199
readability of code using, 199
refactoring, 577
resources for, 212–213
standardizing use of, 202–203
Visual Basic, 198–199, 202

execution profilers, 557–558, 720
executable-code tools

build tools, 716–717
code libraries, 717
code-generation wizards, 718
compilers. See compilers
installation tools, 718
linkers, 716

preprocessors, 718–719
setup tools, 718

Exit Function, 391. See also return 
statements

Exit statements. See break 
statements

Exit Sub, 392–393. See also return 
statements

exiting loops, 369–372, 377–381
experience, personal, 831–832
experimental prototyping, 114–115
experimentation as learning, 

822–823, 852–853
exponential expressions, 631–632
expressions

boolean. See boolean expressions
constants, data types for, 635
initializing at compile time, 

632–633
layout guidelines, 749–750
precomputing results, 635–638
right shifting, 634
strength reduction, 630–632
subexpression elimination, 

638–639
system calls, performance of, 

633–634
extensibility design goal, 80
external audits, 467
external documentation, 777–778
Extreme Programming

collaboration component of, 482
defect detection, 471–472
defined, 58
resources on, 708, 856

F
Facade pattern, 104
factorials, 397–398
factoring, 154. See also refactoring
factory methods

Factory Method pattern, 103–104
nested ifs refactoring example, 

452–453
refactoring to, 577

fan-in, 80
fan-out, 81
farming metaphor, 14–15
fault tolerance, 50
feature-oriented integration, 

700–701
Fibonacci numbers, 397–398
figures, list of, xxxiii

equality, floating-point
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files
ADTs, treating as, 130
authorship records for, 811
C++ source file order, 773
deleting multiple example, 

401–402
documenting, 810–811
layout within, 771–773
naming, 772, 811
routines in, 772

final keyword, Java, 243
finally statements, 404–405
fixing defects

checking fixes, 553
checklist, 560
diagnosis confirmation, 551
hurrying, impact of, 551
initialization defects, 553
maintenance issues, 553
one change at a time rule, 553
reasoning for changes, 553
saving unfixed code, 552
similar defects, looking for, 554
special cases, 553
symptoms, fixing instead of 

problems, 552–553
understand first guideline, 

550–551
unit tests for, 554

flags
change, identifying areas of, 

98–99
comments for bit-level meanings, 

803
enumerated types for, 266–267
gotos, rewriting with, 403–404
names for, 266–267
semantic coupling with, 102

flexibility
coupling criteria for, 100–101
defined, 464

floating-point data types
accuracy limitations, 295
BCD, 297
checklist, 316
costs of operations, 602
equality comparisons, 295–296
magnitudes, greatly different, 

operations with, 295
rounding errors, 297
Visual Basic types, 297

for loops
advantages of, 374
formatting, 732–733, 746–747
indexes, 377–378
purpose of, 372

foreach loops, 367, 372
formal inspections

author role, 486
benefit summary, 491
blame game, 490
checklist, 491–492
CMM, 491
Code Complete example, 

490–491
compared to other collaboration, 

495–496
defined, 485
egos in, 490
error checklists, 489
expected results from, 485–486
fine-tuning, 489
follow-up stage, 489
inspection meetings, 488
key points, 497
management role, 486–487
moderator role, 486
overview stage, 487
performance appraisals from, 487
planning stage, 487
preparation stage, 487–488
procedure for, 487–489
rate of code review, 488
reports, 488–489
resources for, 496–497
reviewer role, 486
reviews, compared to, 485
rework stage, 489
roles in, 486–487
scenarios approach, 488
scribe role, 486
stages of, 487–489
three-hour solutions meeting, 489

formal technical reviews, 467
formatting code. See layout
Fortran, 64
functional cohesion, 168–169
functional specification. See 

requirements
functions. See also routines

calculations converted to 
example, 166–167

defined, 181
disallowing, 150
key point for, 186
naming conventions for, 172, 181
private, overriding, 146
return values, setting, 182
status as return value, 181
when to use, 181–182

Fundamental Theorem of 
Formatting, 732

G
General Principle of Software 

Quality
collaboration effects, 481
costs, 522
debugging, 537
defined, 474–475

global variables
access routines for. See access 

routines
aliasing problems with, 336–337
alternatives to, 339–342
annotating, 343
changes to, inadvertent, 336
checklist for, 343–344
class variable alternatives, 339
code reuse problems, 337
commenting, 803, 809
enumerated types emulation by, 

338
g_ prefix guideline, 340
hiding implementation in classes, 

153
information hiding problems 

with, 95–96
initialization problems, 337
intermediate results, avoiding, 

343
key points, 344
local first guideline, 339
locking, 341
modularity damaged by, 337–338
named constants emulation by, 

338
naming, 263, 273, 277, 278, 279, 

342
objects for, monster, 343
overview of, 335–336
persistence of, 251
preservation of values with, 338
re-entrant code problems, 337
refactoring, 568
risk reduction strategies, 342–343
routines using as parameters, 336
semantic coupling with, 102
streamlining data use with, 338
tramp data, eliminating with, 338

god classes, 155
gonzo programming, 832
good data, testing, 515–516
goto statements

Ada, inclusion in, 399
advantages of, 399
alternatives compared with, 405
checklist, 410

goto statements
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goto statements, continued
deallocation with, 399
disadvantages of, 398–399
duplicate code, eliminating with, 

399
else clauses with, 406–407
error processing with, 401–402
Fortran’s use of, 399
forward direction guideline, 408
guidelines, 407–408
indentation problem with, 398
key points, 410
layout guidelines, 750–751
legitimate uses of, 407–408
optimization problem with, 398
phony debating about, 400–401
readability issue, 398
resources for, 409–410
rewritten with nested ifs, 

402–403
rewritten with status variables, 

403–404
rewritten with try-finally, 

404–405
trivial rewrite example, 400–401
unused labels, 408

graphical design tools, 710
grep, 711
growing a system metaphor, 14–15
GUIs (graphical user interfaces)

architecture prerequisites, 47
refactoring data from, 576
subsystem design, 85

H
habits of programmers, 833–834
hacking approach to design, 233
hardware

dependencies, changing, 98
performance enhancement with, 

591
has a relationships, 143
heuristic design

abstractions, forming consistent, 
89–90

alternatives from patterns, 103
avoiding failure, 106–107
binding time considerations, 107
bottom-up approach to design, 

112–113
brute force, 107
capturing work, 117–118
central points of control, 107

change, identifying areas of, 
97–99

checklist for, 122–123
collaboration, 115
communications benefit from 

patterns, 104
completion of, determining, 

115–117
coupling considerations, 100–102
diagrams, drawing, 107
divide and conquer technique, 

111
encapsulation, 90–91
error reduction with patterns, 103
formality of, determining, 

115–117
formalizing class contracts, 106
goals checklist, 122–123
guidelines for using, 109–110
hierarchies for, 105–106
information hiding, 92–97, 120
inheritance, 91–92
interfaces, formalizing as 

contracts, 106
iteration practice, 111–117
key points, 123
level of detail needed, 115–117
modularity, 107
multiple approach suggestion, 

110
nature of design process, 76
nondeterministic basis for, 87
object-oriented, resource for, 119
objects, real world, finding, 87–89
patterns, 103–105, 120
practices, 110–118, 122
prototyping, 114–115
resources for, 121
responsibilities, assigning to 

objects, 106
strong cohesion, 105
summary list of rules, 108
testing, anticipating, 106
top-down approach, 111–112, 113

heuristics
algorithms compared to, 12
design with. See heuristic design
error guessing, 513

hiding. See information hiding
hierarchies, benefits of, 105–106
high fan-in design goal, 80
human aspects of software 

development. See character, 
personal

humility, role in character, 821, 826, 
834

Hungarian naming convention, 279
hybrid coupling of variables, 

256–257

I
I/O (input/output)

architecture prerequisites, 49
change, identifying areas of, 98
performance considerations, 

598–599
IDEs (Integrated Development 

Environments), 710–711
IEEE (Institute for Electric and 

Electrical Engineers), 813
if statements

boolean function calls with, 359
break blocks, simplification with, 

446–447
case statements, compared to, 

360, 614
case statements, converting to, 

448–449, 451
chains of, 358–360
checklist, 365
common cases first guideline, 

359–360
continuation lines in, 757
covering all cases, 360
else clauses, 358–360, 406–407
equality, branching on, 355
error processing examples, 

356–357
factoring to routines, 449–451
flipped, 358
frequency, testing in order of, 

612–613
gotos rewritten with, 402–403, 

406–407
if-then-else statements, converting 

to, 447–448
key points, 366
lookup tables, substituting, 

614–615
multiple returns nested in, 

392–393
negatives in, making positive, 

435–436
nested. See nested if statements
normal case first guideline, 

356–357
normal path first guideline, 355
null if clauses, 357

graphical design tools
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plain if-then statements, 355–357
refactoring, 573
simplification, 445–447
single-statement layout, 748–749
tables, replacing with, 413–414
types of, 355

implicit declarations, 239–240
implicit instancing, 132
in keyword, creating, 175–176
incomplete preparation, causes of, 

25–27
incremental development metaphor, 

15–16
incremental integration

benefits of, 693–694
bottom-up strategy, 697–698
classes, 694, 697
customer relations benefit, 694
defined, 692
disadvantages of top-down 

strategy, 695–696
errors, locating, 693
feature-oriented integration, 

700–701
interface specification, 695, 697
progress monitoring benefit, 693
resources on, 708
results, early, 693
risk-oriented integration, 699
sandwich strategy, 698–699
scheduling benefits, 694
slices approach, 698
steps in, 692
strategies for, overview, 694
stubs, 694, 696
summary of approaches, 702
test drivers, 697
top-down strategy for, 694–696
T-shaped integration, 701
vertical-slice approach, 696

indentation, 737, 764–768
indexed access tables, 425–426, 

428–429
indexes, supplementing data types 

with, 627–628
indexes, loop

alterations, 377
checklist, 389
enumerated types for, 305
final values, 377–378
scope of, 383–384
variable names, 265

infinite loops, 367, 374
informal reviews, 467, 492–493

information hiding
access routines for, 340
ADTs for, 127
barriers to, 95–96
categories of secrets, 94
circular dependencies problem, 

95
class data mistaken for global 

data, 95–96
class design considerations, 93
class implementation details, 153
example, 93–94
excessive distribution problem, 

95
importance of, 92
interfaces, class, 93
performance issues, 96
privacy rights of classes, 92–93
resources for, 120
secrets concept, 92
type creation for, 313–314

inheritance
access privileges from, 148
case statements, 147–148
checklist, 158
containment compared to, 143
decisions involved in, 144
deep trees, 147
defined, 144
design rule for, 144
functions, private, overriding, 146
guidelines, list of, 149
heuristic design with, 91–92
identifying as a design step, 88
is a relationships, 144
key points for, 160
Liskov Substitution Principle, 

144–145
main goal of, 136
mixins, 149
multiple, 148–149
overridable vs. non-overridable 

routines, 145–146
parallel modifications refactoring 

indicator, 566
placement of common items in 

tree, 146
private vs. protected data, 148
private, avoiding, 143
recommended bias against, 149
routines overridden to do 

nothing, 146–147
single-instance classes, 146
similar sub and super classes, 576

initializing variables
accumulators, 243
at declaration guideline, 241
C++ example, 241
checklist for, 257
class members, 243
compiler settings, 243
consequences of failing to, 240
const recommended, 243
constants, 243
counters, 243
declare and define near first use 

rule, 242–243
final recommended, 243
first use guideline, 241–242
fixing defects, 553
global variables, 337
importance of, 240–241
Java example, 242–243
key point, 258
loops, variables used in, 249
parameter validity, 244
pointer problems, 241, 244, 

325–326
Principle of Proximity, 242
reinitialization, 243
strings, 300
system perturbers, testing with, 

527
Visual Basic examples, 241–242

initializing working memory, 244
inline routines, 184–185
input parameters, 274
input/output. See I/O
inspections. See formal inspections
installation tools, 718
instancing objects

ADTs, 132
factory method, 103–104
singleton, 104, 151

integer data types
checklist, 316
costs of operations, 602
division considerations, 293
overflows, 293–295
ranges of, 294

Integrated Development 
Environments (IDEs), 710–711

integration
benefits of, 690–691, 693–694
big-bang, 691
bottom-up strategy, 697–698
broken builds, 703
checklist, 707

integration
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integration, continued
classes, 691, 694, 697
continuous, 706
customer relations, 694
daily build and smoke test, 

702–706
defined, 689
disadvantages of top-down 

strategy, 695–696
errors, locating, 693
feature-oriented strategy, 700–701
importance of approach methods, 

689–691
incremental. See incremental 

integration
interface specification, 695, 697
key points, 708
monitoring, 693
phased, 691–692
resources on, 707–708
risk-oriented strategy, 699
sandwich strategy, 698–699
scheduling, 694
slices approach, 698
smoke tests, 703
strategies for, overview, 694
stubs, 694, 696
summary of approaches, 702
testing, 499, 697
top-down strategy for, 694–696
T-shaped integration, 701
unsurfaced work, 702
vertical-slice approach, 696

integrity, 464
intellectual honesty, 826–828
intellectual toolbox approach, 20
intelligence, role in character, 821
interfaces, class

abstraction aspect of, 89, 
133–138, 566

calls to classes, refactoring, 575
cohesion, 138
consistent level of abstraction, 

135–136
delegation vs. inheritance, 

refactoring, 576
documenting, 713, 810
erosion under modification 

problem, 138
evaluating abstraction of, 135
extension classes, refactoring 

with, 576
formalizing as contracts, 106
good abstraction example, 

133–134

guidelines for creating, 135–138
foreign routines, refactoring with, 

576
inconsistency with members 

problem, 138
inconsistent abstraction, example 

of, 135–136
information hiding role, 93
integration, specification during, 

695, 697
key points for, 160
layout of, 768
mixins, 149
objects, designing for, 89
opposites, pairs of, 137
poor abstraction example, 

134–135
private details in, 139–141
programmatic preferred to 

semantic, 137
public routines in interfaces 

concern, 141
read-time convenience rule, 141
refactoring, 575–576, 579
routines, moving to refactor, 575
routines, unused, 576
semantic violations of 

encapsulation, 141–142
unrelated information, handling, 

137
interfaces, graphic. See GUIs
interfaces, routine. See also 

parameters of routines
commenting, 808
foreign routines, refactoring with, 

576
pseudocode for, 226
public member variables, 576
routines, hiding, 576
routines, moving to refactor, 575

internationalization, 48
interoperability, 48
interpreted languages, performance 

of, 600–601
invalid input. See validation
iteration, code. See also loops

foreach loops, 367, 372
iterative data, 255
iterator loops, defined, 367
Iterator pattern, 104
structured programming concept 

of, 456
iteration in development

choosing, reasons for, 35–36
code tuning, 850

design practice, 111–117
Extreme Programming, 58
importance of, 850–851
prerequisites, 28, 33–34
sequential approach compared, 

33–34
pseudocode component of, 219

J
jamming loops, 617–618
Java

assertion example in, 190
boolean expression syntax, 443
description of, 65
exceptions, 198–201
layout recommended, 745
live time examples, 247–248
naming conventions for, 276, 277
parameters example, 176–177
persistence of variables, 251
resources for, 159

Javadoc, 807, 815
JavaScript, 65
JUnit, 531
just in time binding, 253

K
key construction decisions. See 

construction decisions
killed data state, 509–510
kinds of software projects, 31–33

L
languages, programming. See 

programming language choice
Law of Demeter, 150
layout

array references, 754
assignment statement 

continuations, 758
begin-end pairs, 742–743
blank lines, 737, 747–748
block style, 738–743
brace styles, 734, 740–743
C++ side effects, 759–761
checklist, 773–774
classes, 768–771
closely related statement 

elements, 755–756
comments, 763–766
complicated expressions, 

749–750
consistency requirement, 735

integrity
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continuing statements, 754–758
control statement continuations, 

757
control structure styles, 745–752
declarations, 761–763
discourse rules, 733
documentation in code, 763–766
double indented begin-end pairs, 

746–747
emulating pure blocks, 740–743
endline layout, 743–745, 751–752
ends of continuations, 756–757
files, within, 771–773
Fundamental Theorem of 

Formatting, 732
gotos, 750–751
incomplete statements, 754–755
indentation, 737
interfaces, 768
key points, 775
language-specific guidelines, 745
logical expressions, 753
logical structure, reflecting, 732, 

735
mediocre example, 731–732
misleading indentation example, 

732–733
misleading precedence, 733
modifications guideline, 736
multiple statements per line, 

758–761
negative examples, 730–731
objectives of, 735–736
parentheses for, 738
pointers, C++, 763
pure blocks style, 738–740
readability goal, 735
religious aspects of, 735
resources on, 774–775
routine arguments, 754
routine call continuations, 756
routine guidelines, 766–768
self-documenting code, 778–781
single-statement blocks, 748–749
statement continuation, 754–758
statement length, 753
structures, importance of, 

733–734
styles overview, 738
unindented begin-end pairs, 746
violations of, commenting, 801
Visual Basic blocking style, 738
white space, 732, 736–737, 

753–754
laziness, 830
lazy evaluation, 615–616

leanness design goal, 81
legal notices, 811
length of variable names, optimum, 

262
levels of design

business logic subsystem, 85
classes, divisions into, 86
database access subsystem, 85
overview of, 82
packages, 82–85
routines, 86–87
software system, 82
subsystems, 82–85
system dependencies subsystem, 

85
user interface subsystem, 85

libraries, code
purpose of, 717
using functionality from, 222

libraries, book. See software-
development libraries

life-cycle models
good practices table for, 31–32
development standard, 813

linked lists
deleting pointers, 330
node insertion, 327–329
pointers, isolating operations of, 

325
linkers, 716
lint tool, 557
Liskov Substitution Principle (LSP), 

144–145
lists

of checklists, xxix–xxx
of figures, xxxiii
of tables, xxxi–xxxii

literal data, 297–298, 308–309
literate programs, 13
live time of variables, 246–248, 459
load time, binding during, 253
localization

architecture prerequisites, 48
string data types, 298

locking global data, 341
logarithms, 632–634
logging

defensive programming guideline, 
210

tools for testing, 526
logic coverage testing, 506
logical cohesion, 170
logical expressions. See also boolean 

expressions
code tuning, 610–616
comparing performance of, 614

eliminating testing redundancy, 
610–611

frequency, testing in order of, 
612–613

identities, 630
layout of, 753
lazy evaluation, 615–616
lookup tables, substituting, 

614–615
short-circuit evaluation, 610

loops
abnormal, 371
arrays with, 387–388
bodies of, processing, 375–376, 

388
brackets recommended, 375
break statements, 371–372, 

379–380, 381
checklist, 388–389
code tuning, 616–624
commenting, 804–805
completion tests, location of, 368
compound, simplifying, 621–623
continuously evaluated loops, 

367. See also while loops
continuation lines in, 757
continue statements, 379, 380, 

381
counted loops, 367. See also for 

loops
cross talk, 383
defined, 367
designing, process for, 385–387
do loops, 369–370
empty, avoiding, 375–376
endless loops, 367, 374
endpoint considerations, 

381–382
entering, guidelines for, 373–375, 

388
enumerated types for, 305
exit guidelines, 369–372, 

377–381, 389
for loops, 372, 374–378, 

732–733, 746–747
foreach loops, 367, 372
fusion of, 617–618
goto with, 371
housekeeping statements, 376
index alterations, 377
index checklist, 389
index final values, 377–378
index variable names, 265
index scope, 383-384
infinite loops, 367, 374

loops
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loops, continued
initialization code for, 373, 374
iterative data structures with, 255
iterator loops, 367, 456
jamming, 617–618
key points, 389
kinds of, generalized, 367–368
labeled break statements, 381
language-specific, table of, 368
length of, 385
minimizing work inside, 620–621
multiple break statements, 380
naming variables, 382–383
nested, 382–383, 385, 623
null statements, rewriting, 445
off-by-one errors, 381–382
one-function guideline, 376
order of nesting, 623
performance considerations, 599
pointers inside, 620
problems with, overview of, 373
pseudocode method, 385–387
refactoring, 565, 573
repeat until clauses, 377
routines in, 385
safety counters with, 378–379
scope of indexes, 383–384
sentinel tests for, 621–623
size as refactoring indicator, 565
strength reduction, 623–624
switching, 616
termination, making obvious, 377
testing redundancy, eliminating, 

610–611
unrolling, 618–620
unswitching, 616–617
variable guidelines, 382–384
variable initializations, 249
variables checklist, 389
verifying termination, 377
while loops, 368–369

loose coupling
design goal, as, 80
strategies for, 100–102

low-to-medium fan-out design goal, 
81

LSP (Liskov Substitution Principle), 
144–145

M
Macintosh naming conventions, 275
macro routines. See also routines

alternatives for, 184
limitations on, 184
multiple statements in, 183

naming, 183, 277–278
parentheses with, 182–183

magazines on programming, 
859–860

magic variables, avoiding, 292, 
297–298, 308–309

maintenance
comments requiring, 788–791
design goal for, 80
error-prone routines, prioritizing 

for, 518
fixing defects, problems from, 553
maintainability defined, 464
readability benefit for, 842
structures for reducing, 323

major construction practices 
checklist, 69–70

managing construction
approaches. See approaches to 

development
change control. See configuration 

management
code ownership attitudes, 663
complexity, 77–79
configuration management. See 

configuration management
good coding, encouraging, 

662–664
inspections, management role in, 

486–487
key points, 688
managers, 686
measurements, 677–680
programmers, treatment of, 

680–686
readability standard, 664
resources on, 687
reviewing all code, 663
rewarding good practices, 664
schedules, estimating, 671–677
signing off on code, 663
size of projects, effects of. See size 

of projects
standards, authority to set, 662
standards, IEEE, 687, 814
two-person teams, 662

markers, defects from, 787
matrices. See arrays
mature technology environments, 

67
maximum normal configurations, 

515
maze recursion example, 394–396
McCabe’s complexity metric, 457, 

458
measure twice, cut once, 23

measurement
advantages of, 677
arguing against, 678
goals for, 679
outlier identification, 679
resources for, 679–680
side effects of, 678
table of useful types of, 678–679

memory
allocation, error detection for, 206
corruption by pointers, 325
fillers, 244
initializing working, 244
paging operation performance 

impact, 599
pointers, corruption by, 325
tools for, 527

mentoring, 482
merge tools, 712
metaphors, software

accreting a system, 15–16
algorithmic use of, 11, 12
building metaphor, 16–19
building vs. buying components, 

18
combining, 20
computer-centric vs. data-centric 

views, 11
customization, 18
discoveries based on, 9–10
earth centric vs. sun centric views, 

10–11
examples of, 13–20
farming, 14–15
growing a system, 14–15
heuristic use of, 12
importance of, 9–11
incremental development, 15–16
key points for, 21
modeling use for, 9
overextension of, 10
oyster farming, 15–16
pendulum example, 10
power of, 10
readability, 13
relative merits of, 10, 11
simple vs. complex structures, 

16–17
size of projects, 19
throwing one away, 13–14
toolbox approach, 20
using, 11–12
writing code example, 13–14

methodologies, 657–659. See also 
approaches to development

methods. See routines

loose coupling
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metrics reporters, 714
minimum normal configurations, 

515
mission-critical systems, 31–32
mixed-language environments, 276
mixins, 149
mock objects, 523
modeling, metaphors as. See 

metaphors, software
moderator role in inspections, 486
modularity

design goal of, 107
global variables, damage from, 

337–338
modules, coupling considerations, 

100–102
multiple inheritance, 148–149
multiple returns from routines, 

391–393
multiple-file string search capability, 

711–712

N
named constants. See constants
naming conventions

“a” prefix convention, 272
abbreviating names, 282–285
abbreviation guidelines, 282
arrays, 280–281
benefits of, 270–271
C language, 275, 278
C++, 275–277
capitalization, 274, 286
case-insensitive languages, 273
characters, hard to read, 287
checklist, 288–289, 780
class member variables, 273
class vs. object names, 272–273
common operations, for, 172–173
constants, 273–274
cross-project benefits, 270
descriptiveness guideline, 171
documentation, 284–285, 

778–780
enumerated types, 269, 274, 

277–279
formality, degrees of, 271
files, 811
function return values, 172
global variables, 273, 342
homonyms, 286
Hungarian, 279
informal, 272–279
input parameters, 274
Java, 276, 277

key points, 289
kinds of information in names, 

277
language-independence 

guidelines, 272–274
length, not limiting, 171
Macintosh, 275
meanings in names, too similar, 

285
misleading names, 285
misspelled words, 286
mixed-language considerations, 

276
multiple natural languages, 287
numbers, differentiating solely by, 

171
numerals, 286
opposites, use of, 172
parameters, 178
phonic abbreviations, 283
prefix standardization, 279–281
procedure descriptions, 172
proliferation reduction benefit, 

270
pronunciation guideline, 283
purpose of, 270–271
readability, 274
relationships, emphasis of, 271
reserved names, 287
routines, 171–173, 222
semantic prefixes, 280–281
short names, 282–285, 288–289
similarity of names, too much, 

285
spacing characters, 274
t_ prefix convention, 272
thesaurus, using, 283
types vs. variables names, 

272–273
UDT abbreviations, 279–280
variables, for. See variable names
Visual Basic, 278–279
when to use, 271

nested if statements
case statements, converting to, 

448–449, 451
converting to if-then-else 

statements, 447–448
factoring to routines, 449–451
factory method approach, 

converting to, 452–453
functional decomposition of, 

450–451
object-oriented approach, 

converting to, 452–453

redesigning, 453
simplification by retesting 

conditions, 445–446
simplification with break blocks, 

446–447
summary of techniques for 

reducing, 453–454
too many levels of, 445–454

nested loops
designing, 382–383, 385
ordering for performance, 623

nondeterministic nature of design 
process, 76, 87

nonstandard language features, 98
null objects, refactoring, 573
null statements, 444–445
numbers, literal, 292
numeric data types

BCD, 297
checklist, 316
compiler warnings, 293
comparisons, 440–442
conversions, showing, 293
costs of operations, 602
declarations, commenting, 802
floating-point types, 295–297, 

316, 602
hard coded 0s and 1s, 292
integers, 293–295
literal numbers, avoiding, 292
magic numbers, avoiding, 292
magnitudes, greatly different, 

operations with, 295
mixed-type comparisons, 293
overflows, 293–295
ranges of integers, 294
zero, dividing by, 292

O
objectives, software quality, 466, 

468–469
object-oriented programming

hiding information. See 
information hiding

inheritance. See inheritance
objects. See classes; objects
polymorphism. See 

polymorphism
resources for, 119, 159

object-parameter coupling, 101
objects

ADTs as, 130
attribute identification, 88

objects

Z02I619670.fm  Page 903  Wednesday, May 12, 2004  12:23 PM



904 first top-level entry

objects, continued
class names, differentiating from, 

272–273
classes, contrasted to, 86
containment, identifying, 88
deleting objects, 206
factory methods, 103–104, 

452–453, 577
identifying, 88
inheritance, identifying, 88. See 

also inheritance
interfaces, designing, 89. See also 

interfaces, class
operations, identifying, 88
parameters, using as, 179, 574
protected interfaces, designing, 

89
public vs. private members, 

designing, 89
real world, finding, 87–89
refactoring, 574–576
reference objects, 574
responsibilities, assigning to, 106
singleton property, enforcing, 151
steps in designing, 87–89

Observer pattern, 104
off-by-one errors

boundary analysis, 513–514
fixing, approaches to, 553

offensive programming, 206
one-in, one-out control constructs, 

454
operating systems, 590
operations, costs of common, 

601–603
opposites for variable names, 264
optimization, premature, 840. See 

also performance tuning
oracles, software, 851
out keyword creation, 175–176
overengineering, 51
overflows, integer, 293–295
overlay linkers, 716
overridable routines, 145–146, 156
oyster farming metaphor, 15–16

P
packages, 156–157
paging operations, 599
pair programming

benefits of, 484
checklist, 484
coding standards support for, 483
compared to other collaboration, 

495–496

defined, 483
inexperienced pairs, 484
key points, 497
pace, matching, 483
personality conflicts, 484
resources, 496
rotating pairs, 483
team leaders, 484
visibility of monitor, 484
watching, 483
when not to use, 483

parameters of routines
abstraction and object 

parameters, 179
actual, matching to formal, 180
asterisk (*) rule for pointers, 

334–335
behavior dependence on, 574
by reference vs. by value, 333
checklist for, 185
C-library order, 175
commenting, 806–807
const prefix, 176, 177, 274
dependencies, clarifying, 349
documentation, 178
enumerated types for, 303
error variables, 176
formal, matching to actual, 180
global variables for, 336
guidelines for use in routines, 

174–180
in keyword creation, 175–176
input-modify-output order, 

174–175
Java, 176–177
list size as refactoring indicator, 

566
matching actual to formal, 180
naming, 178, 180, 274, 277, 278, 

279
number of, limiting, 178
objects, passing, 179
order for, 174–176
out keyword creation, 175–176
passing, types of, 333
refactoring, 571, 573
status, 176
structures as, 322
using all of rule, 176
variables, using as, 176–177
Visual Basic, 180

parentheses
balancing technique, 437–438
layout with, 738

Pareto Principle, 592

passing parameters, 333
patterns

advantages of, 103–104
alternatives suggested by, 103
communications benefit, 104
complexity reduction with, 103
disadvantages of, 105
error reduction benefit, 103
Factory Method, 103–104
resource for, 120
table of, 104

people first theme. See readability
performance appraisals, 487
performance tuning

algorithm choice, 590
architecture prerequisites, 48
arrays, 593–594, 603–604
checklist, 607–608
code tuning for. See code tuning
comments, effects on, 791
competing objectives dilemma, 

595, 605
compiler considerations, 590, 

596–597
correctness, importance of, 

595–596
database indexing, 601
defects in code, 601
DES example, 605–606
design view, 589–590
feature specific, 595
hardware considerations, 591
inefficiency, sources of, 598–601
information hiding 

considerations of, 96
input/output, 598–599
interpreted vs. compiled 

languages, 600–601
key points, 608
lines of code, minimizing number 

of, 593–594
measurement of, 603–604
memory vs. file operations, 

598–599
old wives’ tales, 593–596
operating system considerations, 

590
operations, costs of common, 

601–603
overview of, 643–644
paging operations, 599
premature optimization, 840
program requirements view of, 

589
purpose of, 587

Observer pattern
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quality of code, impact on, 588
resource goals, 590
resources, 606–607
routine design, 165, 222–223, 

590
speed, importance of, 595–596
summary of approach for, 606
system calls, 599–600
timing issues, 604
user view of coding, 588
when to tune, 596

periodicals on programming, 
859-860

Perl, 65
persistence of variables, 251–252, 

831
personal character. See character, 

personal
perturbers. See system perturbers
phased integration, 691–692
phonic abbreviations of names, 283
PHP (PHP Hypertext Processor), 65, 

600
physical environment for 

programmers, 684–685
planning

analogy argument for, 27–28
building metaphor for, 18–19
data arguing for, 28–30
good practices table for, 31–32
logical argument for, 27

pointers
* (pointer declaration symbol), 

332, 334–335, 763
& (pointer reference symbol), 332 
–> (pointer symbol), 328
address of, 323, 326
allocation of, 326, 330, 331
alternatives to, 332
as function return values, 182
asterisk (*) rule, 334–335
auto_ptrs, 333
bounds checking tools, 527
C language, 334–335
C++ examples, 325, 328–334
C++ guidelines, 332–334
checking before using, 326, 331
checklist for, 344
comparisons with, 441
contents, interpretation of, 

324–325
cover routines for, 331–332
dangers of, 323, 325
data types pointed to, 324–325
deallocation of, 326, 330, 332

debugging aids, 208–209
declaring, 325–326, 763
deleting, 330–331, 332
diagramming, 329
dog tag fields, 326–327
explicit typing of, 334
explicitly redundant fields, 327
extra variables for clarity, 

327–329
hiding operations with routines, 

165
initializing, 241, 244, 325–326
interpretation of address 

contents, 324–325
isolating operations of, 325
key points, 344
languages not providing, 323
linked lists, deleting in, 330
location in memory, 323
memory corruption by, 325–327
memory parachutes, 330
null, setting to after deleting, 330
null, using as warnings, 849
overwriting memory with junk, 

330
parts of, 323
passing by reference, 333
references, C++, 332
resources for, 343
SAFE_ routines for, 331–332
simplifying complicated 

expressions, 329
sizeof(), 335
smart, 334
string operations in C, 299
type casting, avoiding, 334
variables referenced by, checking, 

326
polymorphism

case statements, replacing with, 
147–148

defined, 92
language-specific rules, 156
nested ifs, converting to, 452–453

polynomial expressions, 631–632
portability

data types, defining for, 315–316
defined, 464
routines for, 165

postconditions
routine design with, 221
verification, 192–193

PPP (Pseudocode Programming 
Process)

algorithms, researching, 223

alternates to, 232–233
checking for errors, 230–231
checklist for, 233–234
cleanup steps, 232
coding below comments, 

227–229
coding routines from, 225–229
data structure for routines, 224
declarations from, 226
defined, 218
designing routines, 220–225
error handling considerations, 

222
example for routines, 224
functionality from libraries, 222
header comments for routines, 

223
high-level comments from, 

226–227
iterating, 225
key points for, 234
naming routines, 222
performance considerations, 

222–223
prerequisites, 221
problem definition, 221
refactoring, 229
removing errors, 231
repeating steps, 232
reviewing pseudocode, 224–225
stepping through code, 231
testing the code, 222, 231
writing pseudocode step, 

223–224
precedence, misleading, 733
preconditions

routine design with, 221
verification, 192–193

prefixes, standardization of, 
279–281

premature optimization, 840
preparation. See prerequisites, 

upstream
preprocessors

C++, 207–208
debugging aids, removing with, 

207–208
purpose of, 718–719
writing, 208

prerequisites, upstream
analogy argument for, 27–28
architectural. See architecture
boss readiness test, 30–31
checklist for, 59

prerequisites, upstream
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prerequisites, upstream, continued
choosing between iterative and 

sequential approaches, 35–36
coding too early mistake, 25
compelling argument for, 27–31
data arguing for, 28–30
error detection, doing early, 

29–30
goal of, 25
good practices table for, 31–32
importance of, 24
incomplete preparation, causes of, 

25–27
iterative and sequential mixes, 

34–35
iterative methods with, 28, 33–34
key points for, 59–60
kinds of projects, 31–33
logical argument for, 27
manager ignorance problem, 26
problem definition, 36–38
requirements development. See 

requirements
risk reduction goal, 25
skills required for success, 25
time allowed for, 55–56
WIMP syndrome, 26
WISCA syndrome, 26

Principle of Proximity, 242, 351
private data, 148
problem-definition prerequisites, 

36–38
problem domain, programming at, 

845–847
problem-solving skills development, 

823
procedural cohesion, 170
procedures. See also routines

naming guidelines for, 172
when to use, 181–182

processes, development. See 
approaches to development

productivity
effects of good construction 

practice, 7
industry average, 474
size of projects, effects on, 653

professional development, 824–825
professional organizations, 862
program flow

control of. See control structures
sequential. See straight-line code

program organization prerequisite, 
45–46

program size. See size of projects

programmers, character of. See 
character, personal

programmers, treatment of. See also 
teams

overview, 680
physical environment, 684–685
privacy of offices, 684
religious issues, 683–684
resources on, 685–686
style issues, 683–684
time allocations, 681
variations in performance, 

681–683
programming conventions

choosing, 66
coding practices checklist, 69
formatting rules. See layout

programming into languages, 
68–69, 843

programming language choice
Ada, 63
assembly language, 63
Basic, 65
C, 64
C#, 64
C++, 64
Cobol, 64
expressiveness of concepts, 63
familiar vs. unfamiliar languages, 

62
Fortran, 64
higher- vs. lower-level language 

productivity, 62
importance of, 61–63
Java, 65
JavaScript, 65
Perl, 65
PHP, 65
productivity from, 62
programming into languages, 

68–69, 843
Python, 65
ratio of statements compared to C 

code, table of, 62
SQL, 65
thinking, effects on, 63
Visual Basic, 65

programming tools
assembler listing tools, 720
beautifiers, 712
build tools, 716–717
building your own, 721–722
CASE tools, 710
checklist, 724–725
class-hierarchy generators, 713

code libraries, 717
code tuning, 720
code-generation wizards, 718
compilers, 716
cross-reference tools, 713
data dictionaries, 715
debugging tools, 526–527, 545, 

558–559, 719
dependency checkers, 716
design tools, 710
Diff tools, 712
disassemblers, 720
editing tools, 710–713
executable-code tools, 716–720
execution profiler tools, 720
fantasyland, 722–723
graphical design tools, 710
grep, 711
IDEs, 710–711
interface documentation, 713
key points, 725
linkers, 716
merge tools, 712
metrics reporters, 714
multiple-file string searches, 

711–712
preprocessors, 718–719
project-specific tools, 721–722
purpose of, 709
quality analysis, 713–714
refactoring tools, 714–715
resources on, 724
restructuring tools, 715
scripts, 722
semantics checkers, 713–714
source-code tools, 710–715
syntax checkers, 713–714
templates, 713
testing tools, 719
tool-oriented environments, 

720–721
translators, 715
version control tools, 715

project types, prerequisites 
corresponding to, 31–33

protected data, 148
prototyping, 114–115, 468
Proximity, Principle of, 242, 351
pseudocode

algorithms, researching, 223
bad, example of, 218–219
benefits from, 219–220
changing, efficiency of, 220
checking for errors, 230–231
checklist for PPP, 233–234

Principle of Proximity
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classes, steps in creating, 216–217
coding below comments, 

227–229
coding from, 225–229
comments from, 220, 791
data structure for routines, 224
declarations from, 226
defined, 218
designing routines, 220–225
error handling considerations, 

222
example for routines, 224
functionality from libraries, 222
good, example of, 219
guidelines for effective use, 218
header comments for routines, 

223
high-level comments from, 

226–227
iterative refinement, 219, 225
key points for creating, 234
loop design, 385–387
naming routines, 222
performance considerations, 

222–223
PPP. See PPP
prerequisites, 221
problem definition, 221
refactoring, 229
reviewing, 224–225
routines, steps in creating, 217, 

223–224
testing, planning for, 222

Pseudocode Programming Process. 
See PPP

psychological distance, 556
psychological set, 554–555
psychological factors. See character, 

personal
public data members, 567
pure blocks layout style, 738–740
Python

description of, 65
performance issues, 600

Q
quality assurance. See also quality of 

software
checklist, 70
good practices table for, 31–32
prerequisites role in, 24
requirements checklist, 42–43

quality gates, 467

quality of software
accuracy, 464
adaptability, 464
change-control procedures, 468
checklist for, 476
collaborative construction. See 

collaboration
correctness, 463
costs of finding defects, 472
costs of fixing defects, 472–473
debugging, role of, 474–475, 536
detection of defects by various 

techniques, table of, 470
development process assurance 

activities, 467–468
efficiency, 464
engineering guidelines, 467
explicit activity for, 466
external audits, 467
external characteristics of, 

463–464
Extreme Programming, 471–472
flexibility, 464
gates, 467
General Principle of Software 

Quality, 474–475
integrity, 464
internal characteristics, 464–465
key points, 477
maintainability, 464
measurement of results, 468
multiple defect detection 

techniques recommended, 
470–471

objectives, setting, 466, 468–469
optimization conflicts, 465–466
percentage of defects 

measurement, 469–472
portability, 464
programmer performance, 

objectives based, 468–469
prototyping, 468
readability, 464
recommended combination for, 

473
relationships of characteristics, 

465–466
reliability, 464
resources for, 476
reusability, 464
reviews, 467
robustness, 464
standards, IEEE, 477, 814
testing, 465, 467, 500–502

understandability, 465
usability, 463
when to do assurance of, 473

R
random-data generators, 525
readability

as management standard, 664
defects exposing lack of, 538
defined, 464
formatting for. See layout
importance of, 13, 841–843
maintenance benefit from, 842
naming variables for. See naming 

conventions; variable names
positive effects from, 841
private vs. public programs, 842
professional development, 

importance to, 825
structures, importance of, 

733–734
warning sign, as a, 849

reading as a skill, 824
reading plan for software 

developers, 860–862
records, refactoring, 572
recursion

alternatives to, 398
checklist, 410
defined, 393
factorials using, 397–398
Fibonacci numbers using, 

397–398
guidelines for, 394
key points, 410
maze example, 394–396
safety counters for, 396
single routine guideline, 396
sorting example, 393–394
stack space concerns, 397
terminating, 396

refactoring
80/20 rule, 582
adding routines, 582
algorithms, 573
arrays, 572
backing up old code, 579
bidirectional class associations, 

577
boolean expressions, 572
case statements, 573
checklists for, 570, 577–579
checkpoints for, 580

refactoring
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refactoring, continued
class cohesion indicator, 566
class interfaces, 575–576
classes, 566–567, 574–576, 

578–579, 582
code tuning, compared to, 609
collections, 572
comments on bad code, 568
complex modules, 583
conditional expressions, 573
constant values varying among 

subclass, 574
constructors to factory methods, 

577
data from uncontrolled sources, 

576
data sets, related, as indicator, 566
data types to classes, 572
data-level, 571–572, 577
defects, fixes of, 582
defined, 565
designing code for future needs, 

569–570
Don’t Repeat Yourself principle, 

565
duplicate code indicator, 565
error-prone modules, 582
expressions, 571
global variables, 568
GUI data, 576
if statements, 573
interfaces, 566, 575–576, 579
key points, 585
listing planned steps, 580
literal constants, 571
loops, 565, 573
maintenance triggering, 583
middleman classes, 567
misuse of, 582
null objects, 573
objects, 574–576
one-at-a-time rule, 580
overloaded primitive data types, 

567
parallel modifications required 

indicator, 566
parameters, 566, 571, 573
PPP coding step, 229
public data members, 567
queries, 574
reasons not to, 571
records, 572
redesigning instead of, 582
reference objects, 574
resources on, 585

reviews of, 580–581
risk levels of, 581
routines, 565–567, 573–574, 578, 

582
safety guidelines, 579–581, 584
setup code, 568–569
size guideline, 580
statement-level, 572–573, 

577–578
strategies for, 582–584
subclasses, 567, 575
superclasses, 575
system-level, 576–577, 579
takedown code, 568–569
testing, 580
to do lists for, 580
tools for, 714–715
tramp data, 567
ugly code, interfaces to, 583–584
unidirectional class associations, 

577
unit tests for, 580
variables, 571
warnings, compiler, 580

references (&), C++, 332
regression testing

diff tools for, 524
defined, 500
purpose of, 528

reliability
cohesive routines, 168
defined, 464

religious attitude toward 
programming

eclecticism, 851–852
experimentation compared to, 

852–853
harmful effects of, 851–853
layout styles becoming, 735
managing people, 683–684
software oracles, 851

reports. See formal inspections
requirements

benefits of, 38–39
business cases for, 41
change-control procedures, 40–41
checklists for, 40, 42–43
coding without, 26
communicating changes in, 40–41
completeness, checklist, 43
configuration management of, 

664, 666–667
defined, 38
development approaches with, 41

development process effects on, 
40

dumping projects, 41
errors in, effects of, 38–39
functional, checklist, 42
good practices table for, 31–32
importance of, 38–39
key point for, 60
nonfunctional, checklist, 42
performance tuning, 589
quality, checklist, 42–43
rate of change, typical, 563
resources on developing, 56–57
stability of, 39–40, 840
testing for, 503
time allowed for, 55–56

resource management
architecture for, 47
cleanup example, 401–402

restrictive nature of design, 76
restructuring tools, 715
retesting. See regression testing
return statements

checklist, 410
guard clauses, 392–393
key points, 410
multiple, from one routine, 

391–393
readability, 391–392
resources for, 408

reusability
defined, 464
architecture prerequisites, 52

reviewer role in inspections, 486
reviews

code reading, 494
dog-and-pony shows, 495
educational aspect of, 482
every line of code rule, 663
formal inspections, compared to, 

485
formal, quality from, 467
informal, defined, 467
iteration process, place in, 850
refactoring conducting after, 

580–581
walk-throughs, 492–493

right shifting, 634
risk-oriented integration, 699
robustness

architecture prerequisites, 51
assertions with error handling, 

193–194
correctness, balanced against, 197
defined, 197, 464

references (&), C++
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rounding errors, 297
routines

abstract overridable, 145
abstraction benefit, 164
abstraction with object 

parameters, 179, 574
access. See access routines
algorithm selection for, 223, 573
alternates to PPP, 232–233
black-box testing of, 502
blank lines in, 766
boolean test benefit, 165
calculation to function example, 

166–167
calls, costs of, 601
checking for errors, 230–231
checklists, 185, 774, 780
classes, converting to, criteria for, 

573
cleanup steps, 232
code tuning, 639–640
coding from pseudocode, 

225–229
cohesion, 168–171
coincidental cohesion, 170
commenting, 805–809, 817
communicational cohesion, 169
compiling for errors, 230–231
complexity metric, 458
complexity reduction benefit, 164
construction step for classes, 217
continuations in call lines, 756
coupling considerations, 100–102
data states, 509
data structures for, 224
declarations, 226
defined, 161
descriptiveness guideline for 

naming, 171
design by contract, 233
designing, 86, 220–225
documentation, 178, 780
downcast objects, 574
duplication benefit, 164–165
endline layout, 767
error handling considerations, 

222
errors in, relation to length of, 173
event handlers, 170
fields of objects, passing to, 574
files, layout in, 772
functional cohesion, 168–169
functionality from libraries, 222

functions, special considerations 
for, 181–182

hacking approach to, 233
header comments for, 223
high quality, counterexample, 

161–163
high-level comments from 

pseudocode, 226–227
importance of, 163
in keyword creation, 175–176
indentation of, 766–768
internal design, 87
inline, 184–185
input-modify-output parameter 

order, 174–175
interface statements, 226
iterating pseudocode, 225
key points for, 186, 234
layout of, 754, 766–768
length of, guideline for, 173–174
limitations, documenting, 808
logical cohesion, 170
low-quality example, 161–163
macro. See macro routines
mentally checking for errors, 230
multiple returns from, 391–393
named parameters in, 180
naming, 171–173, 222, 277–278, 

567
nested deeply, 164
objects, passing to, 179, 574
out keyword creation, 175–176
overridable vs. non-overridable 

routines, 145–146
overridden to do nothing, 

146–147
overriding, 156
parameters. See parameters of 

routines
performance considerations, 165, 

222–223
pointer hiding benefit, 165
portability benefit, 165
postconditions, 221
PPP checklist for, 233–234
preconditions, 221
prerequisites, 221
problem definition, 221
procedural cohesion, 170
procedure naming guideline, 172
pseudocode writing step, 

223–224
public, using in interfaces 

concern, 141
queries, refactoring, 574

reasons for creating, list of, 167
refactoring, 229, 573–575, 578, 

582
reliability from cohesiveness, 168
removing errors, 231
repeating steps, 232
returns from, multiple, 391–393
reviewing pseudocode, 224–225
sequence hiding benefit, 165
sequential cohesion, 168
setup code for, refactoring, 

568–569
similar parameters, order for, 176
similar, refactoring, 574
simple, usefulness of, 166–167
size as refactoring indicator, 

565–566
small vs. large, 166, 173–174
specification example, 221
stepping through code, 231
strength, 168
subclassing benefit, 165
temporal cohesion, 169
test-first development, 233
testing, 222, 231, 523
tramp data in, 567
unused, refactoring, 576
valid reasons for creating, 

164–167
variable names, differentiating 

from, 272
wrong class, indicator for, 566

run time, binding during, 253

S
safety counters in loops, 378–379
sandwich integration, 698–699
scaffolding

debugging with, 558
testing, 523–524, 531

scalability, 48. See also size of 
projects

scientific method, classic steps in, 
540

SCM (software configuration 
management), 665. See also 
configuration management

schedules, estimating. See estimating 
schedules

scope of variables
convenience argument, 250
defined, 244
global scope, problems with, 251

scope of variables
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scope of variables, continued
grouping related statements, 

249–250
key point, 258
language differences, 244
live time, minimizing, 246–248
localizing references to variables, 

245
loop initializations, 249
manageability argument, 251
minimizing, guidelines for, 

249–251
restrict and expand tactic, 250
span of variables, 245
value assignments, 249
variable names, effects on, 

262–263
scribe role in inspections, 486
scripts

programming tools, as, 722
slowness of, 600-601

SDFs (software development 
folders), 778

security, 47
selections, code, 455
selective data, 254
self-documenting code, 778–781, 

796–797
semantic coupling, 102
semantic prefixes, 280–281
semantics checkers, 713–714
sentinel tests for loops, 621–623
sequences, code. See also blocks

hiding with routines, 165
order of. See dependencies, 

code-ordering
structured programming concept 

of, 454
sequential approach, 33–36
sequential cohesion, 168
Set() routines, 576
setup code, refactoring, 568–569
setup tools, 718
short-circuit evaluation, 438–440, 

610
side effects, C++, 759–761
signing off on code, 663
simple-data-parameter coupling, 101
simple-object coupling, 101
single points of control, 308
single-statement blocks, 748–749
singleton property, enforcing, 104, 

151

size of projects
activities, list of fastest growing, 

655
activity types, effects on, 654–655
building metaphor for, 19
communications between people, 

650
complexity, effect of, 656–657
defects created, effects on, 

651–653
documentation requirements, 

657
estimation errors, 656–657
formality requirements, 657
key points, 659
methodology considerations, 

657–658
overview, 649
productivity, effects on, 653
ranges in, 651
resources on, 658–659
single product, multiple users, 

656
single program, single user, 656
system products, 656
systems, 656

sizeof(), 335
sloppy processes, 75–76
smart pointers, 334
smoke tests, 703
software accretion metaphor, 15–16
software construction overview

activities excluded from, 6
activities in, list of, 3
centralness to development 

process, 7
defined, 3–6
documentation by source code, 7
guaranteed done nature of, 7
importance of, 6–7
key points for, 8
main activities of, 4
percent of total development 

process, 7
productivity, importance in, 7
programming as, 5
programming vs., 4
source code as documentation, 7
tasks in, list of, 5

software design. See design
software development folders 

(SDFs), 778
software engineering overview of 

resources, 858

software evolution
background for, 563–564
Cardinal Rule of, 565
construction vs. maintenance, 

564
improving vs. degrading direction 

of, 564
philosophy of, 564–565

software metaphors. See metaphors, 
software

software oracles, 851
software quality. See quality of 

software
Software’s Primary Technical 

Imperative, 92
software-development libraries

bibliographies, 858
construction, 856
magazines, 859–860
overview, 855, 857–858
reading plan, 860–862
software engineering overviews, 

858
software-engineering guidelines, 

467
sorting, recursive algorithm for, 

393–394
source code

documentation aspect of, 7
resource for, 815

source-code tools
analyzing quality, 713–714
beautifiers, 712
class-hierarchy generators, 713
comparators, 556
cross-reference tools, 713
data dictionaries, 715
Diff tools, 712
editing tools, 710–713
grep, 711
IDEs, 710–711
interface documentation, 713
merge tools, 712
metrics reporters, 714
multiple-file string searches, 

711–712
refactoring tools, 714–715
restructuring tools, 715
semantics checkers, 713–714
syntax checkers, 713–714
templates, 713
translators, 715
version control tools, 715

span, 245, 459

scribe role in inspections
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specific functional requirements 
checklist, 42

specific nonfunctional requirements 
checklist, 42

specification. See requirements
speed improvement checklist, 

642–643. See also code tuning; 
performance tuning

SQL, 65
stabilizing errors, 542–543
stair-step access tables, 426–429
standards, overview of, 814
state variables. See status variables
statements

checklist, 774
closely-related elements, 755–756
continuation layout, 754–758
ends of continuations, 756–757
incomplete, 754–755
length of, 753
refactoring, 572–573, 577–578
sequential. See straight-line code

status reporting, 827
status variables

bit-level meanings, 803
change, identifying areas of, 

98–99
enumerated types for, 266–267
gotos rewritten with, 403–404
names for, 266–267
semantic coupling of, 102

straight-line code
checklist, 353
clarifying dependencies, 348–350
dependencies concept, 347
documentation, 350
error checking, 350
grouping related statements, 

352–353
hidden dependencies, 348
initialization order, 348
naming routines, 348–349
non-obvious dependencies, 348
organization to show 

dependencies, 348
parameters, effective, 349
proximity principle, 351
specific order, required, 347–350
top to bottom readability 

guideline, 351–352
Strategy pattern, 104
stratification design goal, 81
strcpy(), 301
streams, 206
strength. See cohesion

string data types
C language, 299–301
character sets, 298
checklist, 316–317
conversion strategies, 299
indexes, 298, 299–300, 627
initializing, 300
localization, 298
magic (literal) strings, 297–298
memory concerns, 298, 300
pointers vs. character arrays, 299
Unicode, 298, 299

string pointers, 299
strncpy(), 301
strong cohesion, 105
structs. See structures
structured basis testing

recommended, 503
theory of, 505–509

structured programming
core thesis of, 456
iteration, 456
overview, 454
selections, 455
sequences, 454

structures
blocks of data, operations on, 

320–322
checklist for, 343
clarifying data relationships with, 

320
classes performing as, 319
defined, 319
key points, 344
maintenance reduction with, 323
overdoing, 322
parameter simplification with, 

322
relationships, clear example of, 

320
routine calls with, 322
simplifying data operations with, 

320–322
swapping data, 321–322
unstructured data example, 320
Visual Basic examples, 320–322

stub objects, testing with, 523
stubs as integration aids, 694, 696
stubs with debugging aids, 208–209
style issues

formatting. See layout
self-documenting code, 778–781
human aspects of, 683–684

sub procedures, 161. See also 
routines

subsystem design level, 82–85
subtraction, 295
swapping data using structures, 

321–322
switch statements. See case 

statements
symbolic debuggers, 526–527
syntax, errors in, 549–550, 560, 

713–714
system architecture. See architecture
system calls

code tuning, 633–634
performance issues, 599–600

system dependencies, 85
system perturbers, 527
system testing, 500
system-level refactoring, 576–577, 

579

T
table-driven methods

advantages of, 420
binary searches with, 428
case statement approach, 

421–422
checklist, 429
code-tuning with, 614–615
creating from expressions, 435
days-in-month example, 413–414
defined, 411
design method, 420
direct access. See direct access 

tables
endpoints of ranges, 428
flexible-message-format example, 

416–423
fudging keys for, 423–424
indexed access tables, 425–426, 

428–429
insurance rates example, 415–416
issues in, 412–413
key points, 430
keys for, 423–424
lookup issue, 412
miscellaneous examples, 429
object approach, 422–423
precomputing calculations, 635
purpose of, 411–412
stair-step access tables, 426–429
storage issue, 413
transforming keys, 424

Tacoma Narrows bridge, 74
takedown code, refactoring, 

568–569
Team Software Process (TSP), 521

Team Software Process
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teams. See also managing 
construction

build groups, 704
checklist, 69
development processes used by, 

840
expanding to meet schedules, 676
managers, 686
physical environment, 684–685
privacy of offices, 684
process, importance to, 839–840
religious issues, 683–684
resources on, 685–686
size of projects, effects of, 650–653
style issues, 683–684
time allocations, 681
variations in performance, 

681–683
technology waves, determining your 

location in, 66–69
Template Method pattern, 104
template tools, 713
temporal cohesion, 169
temporary variables, 267–268
testability

defined, 465
strategies for, 467

test-data generators, 524–525
test-first development, 233
testing

automated testing, 528–529
bad data classes, 514–515
black-box testing, 500
boundary analysis, 513–514
bounds checking tools, 527
cases, creating, 506–508, 

522–525, 532
characteristics of, troublesome, 

501
checklist, 532
classes prone to error, 517–518
classifications of errors, 518–520
clean test limitation, 504
clerical errors (typos), 519
code coverage testing, 506
component testing, 499
compound boundaries, 514
construction defects, proportion 

of, 520–521
coverage of code, 505–509, 526
data flow testing, 509–512
data generators for, 524–525
data recorder tools, 526
debuggers, 526–527
debugging, compared to, 500

defined-used data paths, 510–512
design concerns, 503
designs, misunderstanding, 519
developer-view limitations, 504
developing tests, 522
diff tools for, 524
driver routines, 523
dummy classes, 523
dummy files for, 524
during construction, 502–503
ease of fixing defects, 519
equivalence partitioning, 512
error checklists for, 503
error databases, 527
error guessing, 513
error presence assumption, 501
errors in testing itself, 522
expected defect rate, 521–522
first or last recommendation, 

503–504, 531
frameworks for, 522, 524
goals of, 501
good data classes, 515–516
integration testing, 499
JUnit for, 531
key points, 533
limitations on developer testing, 

504
logging tools for, 526
logic coverage testing, 506
maximum normal configurations, 

515
measurement of, 520, 529
memory tools, 527
minimum normal configurations, 

515
mock objects, 523
nominal case errors, 515
old data, compatibility with, 516
optimistic programmers 

limitation, 504
outside of construction domain 

defects, 519
planning for, 528
prioritizing coverage, 505
provability of correctness, 501, 

505
quality not affected by, 501
random-data generators, 525
recommended approach to, 

503–504
record keeping for, 529–530
regression testing, 500, 528
requirements, 503
resources for, 530–531

results, uses for, 502
role in software quality assurance, 

500–502
routines, black-box testing of, 502
scaffolding, 523–524, 531
scope of defects, 519
selecting cases for convenience, 

516
stabilizing errors, 542
standards, IEEE, 532
structured basis testing, 503, 

505–509
stub objects, 523
symbolic debuggers, 526–527
system perturbers, 527
system testing, 500
testability, 465, 467
test case errors, 522
time commitment to, 501–502
test-first development, 233
tools, list of, 719
unit testing, 499, 545
varying cases, 545
white-box testing, 500, 502

threading, 337
throwaway code, 114
throwing one away metaphor, 13–14
time allowances, 55–56
tool version control, 668
toolbox approach, 20
tools

checklist, 70
debugging. See debugging
editing. See editing tools
programming. See programming 

tools
source code. See source-code tools

top-down approach to design, 
111–113

top-down integration, 694–696
transcendental functions, 602, 634
translator tools, 715
try-finally statements, 404–405
T-shaped integration, 701
type casting, avoiding, 334
type creation

C++, 312
centralization benefit, 314
checklist, 318
classes, compared to, 316
example of, 313–315
guidelines for, 315–316
information hiding aspect of, 

313–314

teams
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languages with, evaluation of, 
314–315

modification benefit, 314
naming conventions, 315
Pascal example, 312–313
portability benefit, 315–316
predefined types, avoiding, 315
purpose of, 311–312
reasons for, 314
redefining predefined, 315
reliability benefit, 314
validation benefit, 314

type definitions, 278

U
UDFs (unit development folders), 

778
UDT (user-defined type) 

abbreviations, 279–280
UML diagrams, 118, 120
understandability, 465. See also 

readability
Unicode, 288–299
unit development folders (UDFs), 

778
unit testing, 499
UNIX programming environment, 

720
unrolling loops, 618–620
unswitching loops, 616–617
upstream prerequisites. See 

prerequisites, upstream
usability, 463
used data state, 509–510
user-defined type (UDT) 

abbreviations, 279–280
user interfaces

architecture prerequisites, 47
refactoring data from, 576
subsystem design, 85

V
validation

assumptions to check, list of, 190
data types, suspicious, 188
enumerated types for, 304–305
external data sources rule, 188
input parameters rule, 188

variable names
abbreviation guidelines, 282

accurate description rule, 
260–261

bad names, examples of, 
259–260, 261

boolean variables, 268–269
C language, 275, 278
C++, 263, 275–277
capitalization, 286
characters, hard to read, 287
checklist, 288–289
class member variables, 273
computed-value qualifiers, 

263–264
constants, 270
enumerated types, 269
full description rule, 260–261
global, qualifiers for, 263
good names, examples of, 260, 

261
homonyms, 286
Java conventions, 277
key points, 289
kinds of information in, 277
length, optimum, 262
loop indexes, 265
misspelled words, 286
multiple natural languages, 287
namespaces, 263
numerals in, 286
opposite pairs for, 264
phonic abbreviations, 283
problem orientation rule, 261
psychological distance, 556
purpose of, 240
reserved names, 287
routine names, differentiating 

from, 272
scope, effects of, 262–263
similarity of names, too much, 

285
specificity rule, 261
status variables, 266–267
temporary variables, 267–268
type names, differentiating from, 

272–273
Visual Basic, 279

variables
binding time for, 252–254
change, identifying areas of, 

98–99
checklist for using, 257–258
comments for, 803
counters, 243

data literacy test, 238–239
data type relationship to control 

structures, 254–255
declaring. See declarations
global. See global variables
hidden meanings, avoiding, 

256–257
hybrid coupling, 256–257
implicit declarations, 239–240
initializing, 240–244, 257
iterative data, 255
key points, 258
live time, 246–248, 459
localizing references to, 245
looping, 382–384
naming. See variable names
persistence of, 251–252
Principle of Proximity, 242
public class members, 576
refactoring, 571, 576
reusing, 255–257
scope of. See scope of variables
selective data, 254
sequential data, 254
span of, 245
types of. See data types
using all declared, 257

version control
commenting, 811
debugging aid removal, 207
tools for, 668, 715

visibility. See also scope of variables
coupling criteria for, 100
classes, of, 93

vision statement prerequisites. See 
problem definition 
prerequisites

Visual Basic
assertion examples, 192–194
blocking style, 738
case-insensitivity, 273
description of, 65
enumerated types, 303–306
exceptions in, 198–199, 202
implicit declarations, turning off, 

240
layout recommended, 745
naming conventions for, 278–279
parameters example, 180
resources for, 159
structures, 320–322

Visual Basic
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W
walk-throughs, 492–493, 495–496
warning signs, 848–850
while loops

advantages of, 374–375
break statements, 379
do-while loops, 369
exits in, 369–372
infinite loops, 374
misconception of evaluation, 554
null statements with, 444

purpose of, 368
tests, position of, 369

white space
blank lines, 737, 747–748
defined, 732
grouping with, 737
importance of, 736
indentation, 737
individual statements with, 

753–754
white-box testing, 500, 502

wicked problems, 74–75
Wikis, 117
WIMP syndrome, 26
WISCA syndrome, 26
workarounds, documenting, 800
writing metaphor for coding, 13–14

Z
zero, dividing by, 292

walk-throughs
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