
Beginning Portable
Shell Scripting
From Novice to Professional

Peter Seebach

10436fmfinal 1 10/23/08 10:40:24 PM

Beginning Portable Shell Scripting: From Novice to Professional

Copyright © 2008 by Peter Seebach

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1043-6

ISBN-10 (pbk): 1-4302-1043-5

ISBN-13 (electronic): 978-1-4302-1044-3

ISBN-10 (electronic): 1-4302-1044-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Frank Pohlmann
Technical Reviewer: Gary V. Vaughan
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Kim Benbow
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Dan Shaw
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Spe-
cial Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.

10436fmfinal 2 10/23/08 10:40:24 PM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www
http://www.apress.com/info/bulksales
http://www.apress.com

For Nora, who believed.

10436fmfinal 3 10/23/08 10:40:24 PM

10436fmfinal 4 10/23/08 10:40:24 PM

v

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

ChaPter 1 Introduction to Shell Scripting . 1

ChaPter 2 Patterns and Regular Expressions . 21

ChaPter 3 Basic Shell Scripting . 43

ChaPter 4 Core Shell Features Explained . 69

ChaPter 5 Shells Within Shells . 89

ChaPter 6 Invocation and Execution . 117

ChaPter 7 Shell Language Portability . 145

ChaPter 8 Utility Portability . 175

ChaPter 9 Bringing It All Together . 205

ChaPter 10 Shell Script Design . 219

ChaPter 11 Mixing and Matching . 237

aPPeNdix a The Shell Command Language . 255

aPPeNdix B The sh Utility . 297

aPPeNdix C Regular Expressions . 319

 iNdex . 339

10436fmfinal 5 10/23/08 10:40:25 PM

10436fmfinal 6 10/23/08 10:40:25 PM

vii

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

ChaPter 1 introduction to Shell Scripting . 1

About This Book . 1

Conventions . 2

What Shell Scripting Is . 3

What Shell Scripting Isn’t . 5

Why Shell? . 6

The Bourne Shell Family . 7

Why Portable? . 8

Why Not? . 9

Beyond Portability: Cleanliness and Good Living 10

What’s in This Book . 11

Introducing the Shell . 11

Interactive and Noninteractive Usage . 11

Simple Commands . 12

Introducing Variables . 14

Introducing Quoting . 15

The printf Command . 18

What’s Next? . 20

ChaPter 2 Patterns and regular expressions . 21

Shell Patterns . 21

Pattern-Matching Basics . 22

Character Classes . 24

Using Shell Patterns . 26

Pathname Expansion . 27

Differences from Shell Patterns . 27

Using Globs . 30

10436fmfinal 7 10/23/08 10:40:25 PM

■CONTENTSviii

Regular Expressions . 31

Basic Regular Expressions . 32

Backreferences . 33

Extended Regular Expressions . 34

Common Extensions . 36

Replacements . 36

Using Regular Expressions . 37

Replacing Patterns with Regular Expressions 39

Common Pitfalls of Regular Expressions . 40

What’s Next? . 41

ChaPter 3 Basic Shell Scripting . 43

Introducing Control Structures . 43

What Is Truth? . 44

Introducing Conditional Execution . 47

Introducing Iteration . 52

Thinking About Control Structures . 55

Introducing Redirection . 56

Understanding File Descriptors . 57

Redirection Using exec . 61

Introducing Here Documents . 64

Redirection and Loops . 66

What’s Next? . 68

ChaPter 4 Core Shell Features explained . 69

Parsing . 70

Tokens . 70

Words and Keywords . 72

Command Lists . 73

Shell Quoting . 77

Escaping Characters with a Backslash . 77

Escaping Characters with Single Quotes . 79

Escaping Characters with Double Quotes . 79

Quoting Examples . 79

10436fmfinal 8 10/23/08 10:40:26 PM

■CONTENTS ix

Substitution and Expansion . 80

Substitution and Field Splitting . 80

Understanding Parameter Substitution . 81

Tilde Expansion . 85

Globbing . 86

What’s Next? . 87

ChaPter 5 Shells Within Shells . 89

Understanding Processes . 89

Variables and the Environment . 90

Manipulating the Environment . 91

Temporary Changes . 92

Exploring Subshells . 94

Subshells and External Shells . 94

Command Substitution . 95

Implicit and Explicit Subshells . 97

Modifying the State of the Shell . 99

Shell Builtins . 99

Shell Functions . 99

The eval Command . 102

The dot (.) Command . 108

Using Shells Within Shells . 109

When to Use an External Shell . 109

When to Use eval or dot (.) . 111

When to Use Subshells . 111

When to Use Command Substitution . 112

Combinations . 113

What’s Next? . 115

ChaPter 6 invocation and execution . 117

Shell Invocation . 117

How UNIX Runs Scripts . 117

Shell Options . 119

Using Positional Parameters . 120

Manipulating Parameters for Fun and Profit 122

Shell Startup and Interactive Sessions . 128

10436fmfinal 9 10/23/08 10:40:26 PM

■CONTENTSx

Execution . 129

More on Jobs and Tasks . 129

Understanding Runtime Behavior . 137

Debugging Tools . 142

What’s Next? . 143

ChaPter 7 Shell Language Portability . 145

More on Portability . 145

Standardization . 146

Bugs . 147

Portability Issues: Welcome to the Club . 147

Common Extensions and Omissions . 148

Other Kinds of Expansion and Substitution . 148

Syntax Extensions . 154

Common Omissions . 158

Common Shells and Their Features . 158

Almquist Shell . 158

Bourne-Again Shell . 159

Debian Almquist Shell . 160

Korn Shell . 161

Public Domain Korn Shell . 162

Solaris /usr/xpg4/bin/sh . 163

SVR2 Bourne Shell . 164

SVR4 Bourne Shell . 164

Traditional Shell . 165

Z Shell . 166

Execution Preambles . 167

Setting Options and Variables . 168

Picking a Better Shell . 169

Self-Modifying Code . 170

Emulating Features . 172

What’s Next? . 174

10436fmfinal 10 10/23/08 10:40:27 PM

■CONTENTS xi

ChaPter 8 Utility Portability . 175

Common Variations . 175

Days of Yore: System V and BSD . 176

GNU Arrives . 177

Standardization . 178

busybox . 178

Shell Builtins . 179

Avoiding Unnecessary Dependencies . 180

Relying on Extensions Considered Harmful . 181

Test with More Than One Shell on More Than One System 182

Document Your Assumptions . 182

Common Utility Issues . 183

Public Enemy #1: echo . 183

Multiple Different Versions . 184

Archive Utilities . 185

Block Sizes . 188

Other Common Problems . 188

What to Do When Something Is Unavailable . 200

Roll Your Own . 200

Add a Missing Utility . 201

Use Something Else . 201

Demand a Real System . 201

A Few Examples . 202

What’s Next? . 203

ChaPter 9 Bringing it all together . 205

Robustness . 205

Handling Failure . 205

Temporary Files and Cleanup . 208

Handling Interrupts . 210

Startup Files and Environment Variables . 211

Documentation and Comments . 212

Degrade Gracefully . 214

Specify, and Test For, Requirements . 216

Scripts That Write Scripts . 216

Building a Script for a Specific Target . 217

Mixing with Other Languages . 218

What’s Next? . 218

10436fmfinal 11 10/23/08 10:40:27 PM

■CONTENTSxii

ChaPter 10 Shell Script design . 219

Do One Thing Well . 219

Separate Functionality . 220

Isolate Dependencies . 220

Be Cooperative . 221

Filters, File Manipulation, and Program Manipulation 221

Command-Line Options and Arguments . 224

Designing Options . 226

Options and Inputs . 228

Set Reasonable Limits . 229

Define Your Functional Scope . 230

Define Your Target Scope . 230

Case Study: pids . 232

What’s Next? . 235

ChaPter 11 Mixing and Matching . 237

Mixing Quoting Rules . 237

Embedding Shell Scripts in Code . 239

Shell and make . 239

Shell and C . 241

Embedding Code in Shell Scripts . 242

Shell and sed . 242

Shell and awk . 246

Utilities and Languages . 252

What’s Next? . 253

aPPeNdix a the Shell Command Language . 255

2 . Shell Command Language . 255

2 .1 Shell Introduction . 255

2 .2 Quoting . 256

2 .3 Token Recognition . 258

2 .4 Reserved Words . 260

2 .5 Parameters and Variables . 260

2 .6 Word Expansions . 264

2 .7 Redirection . 271

2 .8 Exit Status and Errors . 275

2 .9 Shell Commands . 276

10436fmfinal 12 10/23/08 10:40:28 PM

■CONTENTS xiii

2 .10 Shell Grammar . 285

2 .11 Signals and Error Handling . 292

2 .12 Shell Execution Environment . 293

2 .13 Pattern Matching Notation . 294

2 .14 Special Built- In Utilities . 296

aPPeNdix B the sh Utility . 297

Name . 297

Synopsis . 297

Description . 297

Options . 298

Operands . 298

Stdin . 299

Input Files . 300

Environment Variables . 300

Asynchronous Events . 303

Stdout . 303

Stderr . 303

Output Files . 303

Extended Description . 303

Command History List . 303

Command Line Editing . 303

Command Line Editing (vi- mode) . 304

vi Line Editing Insert Mode . 304

vi Line Editing Command Mode . 305

Exit Status . 314

Consequences Of Errors . 314

Application Usage . 314

Rationale . 316

Future Directions . 318

See Also . 318

Change History . 318

Issue 5 . 318

Issue 6 . 318

10436fmfinal 13 10/23/08 10:40:28 PM

■CONTENTSxiv

aPPeNdix C regular expressions . 319

9 . Regular Expressions . 319

9 .1 Regular Expression Definitions . 320

9 .2 Regular Expression General Requirements 321

9 .3 Basic Regular Expressions . 322

9 .4 Extended Regular Expressions . 327

9 .5 Regular Expression Grammar . 330

iNdex . 339

10436fmfinal 14 10/23/08 10:40:28 PM

xv

About the Author

■Peter SeeBaCh is a programmer who writes or, possibly, a writer who programs. He enjoys
writing on topics from C standardization to operating system internals; he programs in C,
Ruby, Lua, and shell by preference and several other languages when absolutely necessary.
He lives in Northfield, Minnesota, and owns cats (who cannot program and do not write).

10436fmfinal 15 10/23/08 10:40:28 PM

10436fmfinal 16 10/23/08 10:40:28 PM

xvii

About the Technical Reviewer

■Gary V. VaUGhaN, in his own words:

: ${This='sed -n'} #ightly:
$This 1s,^,not\ ,p<<rose
obsfuscated!
With red pen wielded
every page will be a
rose

: A perpetual traveler with no
time `for sight_seeing in earnest. I
do sleep ${when-1} # am
done`; juggling=100 pet=projects...

but somehow,
in_the_end () { I=always return "to mending libtool"; }

(You get extra credit if you can predict what this would do if you ran it.)

10436fmfinal 17 10/23/08 10:40:28 PM

10436fmfinal 18 10/23/08 10:40:29 PM

xix

Acknowledgments

the idea for this book came from Frank Pohlmann, who also edited it and provided a great
deal of guidance in making sense of my disjointed ramblings on the topic. Gary V. Vaughan's
technical advice and broad experience were invaluable throughout. I am particularly indebted
to Sven Mascheck’s excellent pages of information about historical shells, as well as the guide
to shell portability included in the autoconf documentation. Many other developers contrib-
uted tidbits, interesting trivia, or feedback on proposed code; there are too many to list, I'm
afraid. This book (and everything else I do) would not have been possible without support
from my beloved spouse, Jesse.

10436fmfinal 19 10/23/08 10:40:29 PM

10436fmfinal 20 10/23/08 10:40:29 PM

C h a p t e r 1

Introduction to Shell Scripting

The UNIX command- line interface has been criticized for complexity and a steep learning
curve, but no one disputes that it is one of the most flexible and programmable user inter-
faces ever developed. The core of the UNIX command- line interface is the shell, a program
that interprets and executes user commands. The shell can take commands from a keyboard
or stored in files; the syntax and commands are the same either way. A file containing shell
commands is called a shell script. Many systems offer shells that are arguably programmable;
the UNIX shell environment is actually good at it. As a result, thousands upon thousands of
programs have been implemented as shell scripts. This book treats the shell as a serious pro-
gramming language and introduces the practice of portable shell scripting—the development
of scripts that can be expected to run on a variety of host systems or even different shells on
the same system. What systems, you ask? Anything that looks reasonably like UNIX, whether
it’s Solaris, Linux, NetBSD, OS X, or even environments such as Cygwin, which provides
 UNIX- like behavior under Windows. Don’t mistake this for an exhaustive list; I don’t have the
space to include one; and furthermore, new systems that are released may well comply with
the same standards.

Not everyone thinks highly of portability as a goal. Linus Torvalds once said, “Portability
is for people who cannot write new programs.” As a great fan of portability, I am inclined to
nearly agree. I prefer, “Portability is for people who are too busy to write new programs.” Users
often imagine that portability is a gigantic nightmare requiring a huge amount of additional
work; however, in the vast majority of cases, writing portable code takes little extra time, and
pays for itself quickly. Portability usually does not mean writing completely different versions
of the same program for every system; rather, it means writing a single version that is correct
everywhere.

About This Book
This book is about programming in the Bourne shell and its derivatives; the Korn shell, the
 Bourne- again shell, and the POSIX shell are among the most obvious relatives. This book does
not cover the many other UNIX and UNIX- like shells, such as Plan 9’s rc, or the Berkeley csh.
It does cover a number of common UNIX commands, as well as a few somewhat less common
commands, and briefly looks into some common utilities, such as sed and awk, which have
historically been used heavily in shell scripting. While even further divergent things, such as
AppleScript, the Tcl shell, or even graphical shells like the Mac OS X Finder, are technically
shells, this book ignores them entirely, and hereafter uses the term shell to refer to the UNIX
Bourne shell family.

1

10436ch01final 1 10/23/08 11:37:25 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING2

The audience for this book is UNIX users who wish to write shell scripts. The focus on
portability offers a better investment in future utility, but the material should be useful even
to users who only plan to work on a single system. Portability is not restricted to running on
different variants of UNIX; it also applies to running on future releases of the same variant or
on different shells. This book is not intended as a complete or comprehensive reference to the
shell or to UNIX commands. Instead, it offers information on the shell language, with a focus
on areas where shells or utilities vary. Since the shell is not just a single language but a family
of related languages, this book also talks about how you decide what shells to use and how to
adapt to other shells. Furthermore, this book covers the basics of effective shell programming
and effective use of other peoples’ shell programs. You may be asked to run a nonportable
script on a new system; this book helps you do that. It is never too late to begin thinking about
portability.

It is assumed that the reader has some familiarity with UNIX shell conventions and syn-
tax, as well as common UNIX commands. For instance, I do not explain what echo or rm does.
However, a novice user should be able to understand the material with a little extra time spent
playing with the examples.

Conventions
This book uses a number of typographical conventions for clarity. As you have probably
already noticed, code fragments, such as the names of programs like grep in the main text, are
represented in monospaced text. Longer code fragments are illustrated as follows:

#!/bin/sh
hello.sh, version 6.23.7: greet the reader
echo "hello, world!"

When the results of a code fragment are displayed, they are shown in a separate listing,
like this:

hello, world!

References to UNIX manual pages use the conventional program(section) usage; for
instance, ls(1) refers to the ls program in section 1 of the UNIX manual. In cases where user
input is included in a code listing, user input is in bold. Italicized text is used to indicate key
definitions of technical terms; a technical term is a word you already know being used to refer
to a specific technical feature of the shell (or of this book). Italics are also used to identify
placeholder names. The rm file command removes file.

Shell scripts are rich with punctuation, and conventions are adopted for this as well.
When first referring to punctuation, I generally use the most common name (and occasion-
ally common alternatives, especially when they are more common for a particular usage) and
illustrate the symbol in parentheses. Fonts and displays vary widely, so the symbols you see
on your computer may look a bit different. For instance, the vertical bar character (|) is a solid
bar on some systems, and on other systems may look nearly the same as a colon (:). The char-
acter with the most names is probably the symbol called variously octothorpe, sharp, hash,
or pound (#). The name octothorpe is my favorite because people are completely consistent
in not having any idea what I’m talking about, but in this book I use sharp, which is originally
musical terminology for the symbol. If you have never studied music, this is a great excuse to

10436ch01final 2 10/23/08 11:37:25 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 3

start now. Further references to a symbol may use a common name or just the symbol inline in
the code format for brevity.

What Shell Scripting Is
For purposes of this book, the term shell script, or just script, is used to refer to any program
written in the Bourne shell language (Bourne shell is the traditional UNIX /bin/sh) or its deriv-
atives. The UNIX shell is not just the primary user interface of a traditional UNIX system; it is
also a full- featured programming language. Shell scripts are simply sets of shell commands,
just like those entered on the command line. Indeed, experienced shell programmers often
type simple scripts directly on the command line, rather than storing them in a file.

Although any shell can be used interactively or for scripting, there are often differences
between a good scripting shell and a good interactive shell. An interactive shell should nearly
always have rich command editing and history facilities; these are useless in scripting. A good
scripting shell should be fast and ideally small for performance reasons; this weighs against it
being the best choice for a command- line shell. Some users do prefer the more advanced fea-
ture sets of the bigger shells, even for scripting, but those features make scripts less portable.

The word “scripting” reflects a historical assumption about shell programming; the
majority of shell programs are automations of tasks humans can, or used to, perform. The
computing world is full of horror stories about some huge task that someone spent hours (or
days) performing manually. The horror in these stories comes not just from the large amount
of time spent, but rather, from the understanding that the time was wasted. However, in
modern usage, scripting usually refers more to a language implementation choice; a scripting
language is one in which code is parsed at runtime, rather than a compiled language (such
as C). In this book, the term script is usually used to refer to a shell program.

Scripting is not restricted in scope to major defined projects with written requirements.
Shell programs tend to be small, quickly written, and astonishingly powerful for their size.
Common, daily tasks are frequently automated by shell users. Even users who do not consider
themselves programmers often take advantage of some of the more familiar “cookbook” shell
scripting features. Experienced users will write simple programs “on the fly,” typing them
directly at the prompt without bothering to create a file to hold the code. Larger shell pro-
grams are somewhat rarer, but they have their place as well. Most noticeably, the configure
scripts shipped with thousands of free software packages are actually shell scripts, and very
complicated (and surprisingly portable) ones at that.

Used well, the shell can perform in a variety of roles. In general, the shell is used to manip-
ulate things. Three things shell programs often manipulate are

	 •	 Data

	 •	 Files

	 •	 Other	programs

Manipulating Data
A huge number of shell scripts revolve around the large variety of line- oriented utilities for
manipulating textual data that have been provided with UNIX systems. Not every data stream
is easily or naturally represented as a series of lines of text. However, an astounding variety of
data can be represented this way, and doing so provides access to a wealth of flexible utilities
to solve any number of complicated problems.

10436ch01final 3 10/23/08 11:37:25 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING4

The exceptionally rich selection of data- manipulation utilities provided by UNIX- like
systems owes a great deal to the huge problem space that line- oriented data lends itself well
to. Furthermore, line- oriented data are often exceptionally friendly to human users, who can
immediately see whether results are roughly as expected; this has led to using a lot of simple
 line- oriented data streams in prototyping and development phases.

A number of UNIX utilities build on this by providing translations from other data sources
to line- oriented data, which can then be massaged easily through simple shell scripts to pro-
duce detailed reports. The existence of a convenient “glue” language to let utilities cooperate
encourages the development of small, specialized programs that work together effectively to
accomplish virtually any computing task. Such programs may be slower than custom- coded
applications for a particular job, but they take a fraction of the development effort to produce.

For the cases where line- oriented textual representations of data are inappropriate, the
shell can still provide an excellent glue language. Archive utilities, graphics utilities, and others
have been built around the flexibility inherent in the shell. Users coming from a non- UNIX
background are often shocked that the most common native archive utilities on UNIX do not
perform any compression; their archives contain the included files unmodified. The wisdom
of this is revealed when you look at the space savings of replacing the classic compress pro-
gram with the newer gzip, and later of replacing gzip with bzip2 or even the newer lzma. In
each case, the archive programs (most notably tar) could be used with a new compression
or decompression algorithm without any modifications at all. Likewise, a change from one
archiver to another can be handled nearly transparently.

Manipulating Files
Sometimes, what matters isn’t the content of files, but manipulating the files themselves or
the directories containing them. Thus far, the shell is simply unequaled in this field; indeed,
the most technically impressive graphical applications are so far from the power and flexibil-
ity of the shell that it is hard to think of them as competition at all. On some desktop systems,
a program to tell you how much space each directory on your system takes up, and perhaps
help you clean it, might be successfully sold as commercial software. In the UNIX shell, a fairly
detailed report—even coupled with automatic archiving of rarely used large files—is a simple
matter of typing a few lines of code.

However, file manipulation code is easy to get wrong, especially with files with unusual
names, such as those using special characters or spaces. There are many shell idioms that sim-
ply cannot be made to function when interacting with file names containing new lines; avoid
these like the plague. Other special characters can be less painful, but spaces in file names
trigger an astounding variety of bugs, even in long- used scripts written by experienced pro-
grammers. Unfortunately, you cannot always control the names files are given by users.

A great deal of shell programming revolves around file manipulation, and this has led to
an astonishingly rich variety of file- related tools on most UNIX systems. Some of these tools
are a little opaque to users; in many cases, this is because they are designed first as building
blocks to use in shell scripts and only secondly as programs to be used directly by users.

Installation utilities can be written as shell scripts, taking advantage of the portability and
flexibility of the shell, as well as its ability to embed other data. A once- common example was
“shell archive” (or shar) files, which consisted of simple shell programs to reproduce a series
of files portably on remote systems. These fell into relative disuse due to the security problems
implicit in using execution of code generated on another system as an archive format and the

10436ch01final 4 10/23/08 11:37:26 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 5

widespread availability of substantially more robust archive utilities. On the other hand, the
GNU tar utility source code is available as a shell script because users who have no archive
utilities have to start somewhere. (Similarly, GNU make has a shell script build procedure
available.)

Manipulating programs
Scripts are used heavily in nearly every phase of a UNIX system’s life. With the exception of
Mac OS X’s launchd, virtually every UNIX system’s service startup is handled through a maze
of shell scripts. From the System V init scripts (reproduced, loosely, in many Linux systems)
to NetBSD’s very different rc.d subsystem, shell programs are excellently suited to the task
of identifying configuration state and running programs appropriately. I have met many pro-
grammers who are not system administrators, but I’ve never met a successful UNIX system
administrator who couldn’t program in shell.

Shell programs have been heavily used in bootstrapping the builds of programs in other
languages, such as C. The GNU autoconf suite builds huge (and impressively robust) shell
scripts that run reliably across hundreds of platforms. The portability of carefully written
shell code often makes it easier to develop robust tests and automate common build pro-
cesses; anyone who has had to manually edit header files to configure for a local UNIX- like
system’s quirks will be familiar with the disadvantages of the manual process. Shell scripts
are often more portable than features of other programs; for instance, using a shell script to
build a makefile for use with the make utility may be easier than writing a makefile that works
with all the common variants.

This kind of usage is often called “glue” code; it is the code that holds things together.
UNIX utilities and programs are often designed with the assumption that, if you really need
to automate a function, you will write a program to do so. The shell is one of the primary lan-
guages used to do this.

What Shell Scripting Isn’t
Shell scripts are not a complete replacement for programs in other languages. One issue is
that the shell is almost always slower than a compiled language, or even than many inter-
preted languages, but there are additional limitations. Many of the utility programs scripts are
 ill- equipped to handle arbitrary binary data, or data where the primary unit of operation isn’t
a single line of text. The shell itself is virtually useless as a language; the real power and flexibil-
ity come from the huge variety of utility programs the shell can use to perform common tasks.
Paying attention to portability can restrict your options further, even as it gives you the chance
of running on a wider variety of targets.

Scripts are not usually high- performance. Programs that are computationally intensive
are unlikely to be written in shell in the first place; a ray- tracer in shell would be more of an
installation artwork than a programming project.

Shell scripts are usually portable only between UNIX- like environments. With the intro-
duction of Mac OS X, that has come to include the Macintosh desktop environment, as well
as the traditional UNIX- like servers (and desktops). Windows users with the Cygwin environ-
ment, or commercial products like the MKS Toolkit, may also take advantage of shell scripting,
but shell techniques usually don’t translate well to an unmodified Windows system.

10436ch01final 5 10/23/08 11:37:26 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING6

With specialized exceptions, shell scripts are essentially free of graphical interfaces. There
are a few add- ons or specialized utilities to allow some graphical work, but they are not por-
table. Furthermore, they don’t seem to fit well with the underlying philosophy of the shell;
you’re usually better off switching to a more general language at that point.

performance Issues
Shell scripts generally don’t perform very quickly. Many of the most fundamental actions in
a script involve the spawning of a completely separate program to actually do the work. In fact,
the amount of work going on behind the scenes in shell scripts is huge; it is a major influence
on the very low tolerance that UNIX- like systems have for high- process startup costs. Shell
scripts are at their best when the computational or I/O requirements of their tasks exceed
the cost of spawning additional processes. Writers expecting their scripts to run on emulated
 UNIX- like environments on systems like Windows have to exercise caution.

In many cases, a script with performance issues becomes an invitation to develop
a well- considered utility program. Sometimes writing even a simple small C program can dra-
matically improve the performance of a script, but the development time cost tends to reserve
this for the rare case when a script’s performance is primarily shell- bound.

expansion Options
The shell has either the most astoundingly flexible plug- in architecture ever seen in a pro-
gramming language, or no plug- in architecture at all. I lean toward the latter view. You can
implement anything you want as a tool usable in shell scripts, as long as it maps well onto
 line- oriented textual data. Support for manipulation of binary streams is decent but much
more limited; you cannot expect to use grep effectively on them, for instance. The language
simply doesn’t provide for the sorts of plug- ins and extensions that you see in languages like
C, Perl, or Ruby. While some shells offer frameworks to allow new features to be plugged
in, the language specification doesn’t provide for this at all. This can be a disadvantage.
 Well- designed glue utilities can help some, but there are limits to what you can express
cleanly enough to justify the effort.

Why Shell?
After this discussion of the limitations and weaknesses of the shell, you may wonder why shell
scripting matters. The answer is simple; while there are things the shell isn’t good at, for the
things shell is good at, there is very little better. Very few languages are as widely available.
There are hundreds of thousands of devices running UNIX- like systems these days, and they
may not come with a compiler, but they very often include a shell and some core functional
commands. Even if you do not intend to write many shell scripts, the commands in a UNIX
makefile are shell commands; and many things that are too complicated for make to handle are
trivial in the shell. Of course, this makes it possible that your makefile, rather than your C code,
will be the limiting factor on where your code is portable.

The shell is a powerful and expressive language. The huge library of existing filters
and tools is a great starting point. Furthermore, shell programming makes it easy to build
new filters from existing filters. Familiarity with the shell can also make it easier to solve

10436ch01final 6 10/23/08 11:37:26 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 7

programming tasks that require work in other languages; often, the shell’s amazing flexibility
as glue code to combine things allows a couple of small, simple programs to give you a very
powerful program.

Furthermore, shell programming pays dividends in daily use if you work on a UNIX- like
system. Being able to write small scripts to handle common tasks (or even one- off tasks that
would take hours to do by hand) justifies a little time spent learning a new language.

In the end, the UNIX shell is one of the most durable programming languages in use today.
While there have been extensions and developments in shell programming over the past 30
years, many shell programs written in the 1970s are still usable today. While competing lan-
guages have found some traction, they primarily target tasks the shell isn’t good at, leaving the
shell’s primary domain largely unchallenged.

The Bourne Shell Family
This book focuses on shells derived from the classic Bourne shell distributed with early UNIX,
and, in particular, on the standard POSIX shell. There are a number of shells in this family, and
this book covers some of the common (or unique, but interesting anyway) extensions they
offer over the base shell language. The shells covered are the following:

	 •	 Bourne shell (old sh): The shell that started it all. The Bourne shell was the standard sys-
tem shell in early AT&T UNIX, and most modern shells are moderately compatible with
it. While this is the baseline, early Bourne shells lacked some features now universally
provided. For most users, this shell is of marginal relevance, as nearly all major systems
now provide a POSIX shell; only a few do not provide a POSIX shell as /bin/sh. More
information on getting into a more modern shell is provided in Chapter 7.

	 •	 POSIX shell (sh): This is the baseline shell. Users familiar with older UNIX systems will
note that many of the features described for the POSIX shell are innovations (many of
them inherited or acquired from variant shells). While an occasional reference is made
to some of the limitations of earlier shells, the modern landscape is consistent in pro-
viding reasonably stable and full- featured POSIX shells. Furthermore, even on systems
lacking such a shell, it is usually practical to acquire one of the other variants. In most
cases, portable in this book means “running on the POSIX shell without modification.”

	 •	 Almquist shell (ash): The Almquist shell was developed as a reasonably compatible
independent re- implementation of the POSIX shell included with SVR4 UNIX. It was
distributed originally primarily with BSD variants. This shell is much smaller than
some of the other variants, but maintains (in its original form) POSIX compatibility.
The Almquist shell is familiar to many users as the Busybox shell.

	 •	 Bourne-again shell (bash): The GNU Bourne- again shell is the largest, and arguably
most complete, shell. It has a history of aggressive feature adoption, and can run nearly
anything, although early versions had some compatibility quirks. Many Linux systems
ship with bash as the default /bin/sh, as does current Mac OS X. Scripts developed for
bash, and using its extensions, may not run on other shells. Many users dislike the per-
formance costs of bash. A number of scripts for Linux systems (such as the quilt patch
manager) assume that the shell is bash, which has caused portability problems. Don’t
do that.

10436ch01final 7 10/23/08 11:37:27 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING8

	 •	 Debian Almquist shell (dash): This is a derivative of the Almquist shell used in Debian
and derived systems, such as Ubuntu. It has been installed as the default shell on
some Debian variants for a while now, exposing a number of scripts that erroneously
depended on bash- only extensions. This shell exists as a small, fast implementation of
the basic portable shell.

	 •	 Korn shell (ksh): Developed by David G. Korn at AT&T, ksh was one of the first Bourne
shell derivatives to add many of the features now adopted elsewhere as standard. There
are multiple versions: historic ksh, the 1988 revision (ksh88), and the 1993 revision
(ksh93). The current versions are available as source from AT&T.

	 •	 Public-domain Korn shell (pdksh): Before the Korn shell became free software, a public
domain clone of it was written. While there are a few noticeable compatibility differ-
ences, for the most part, pdksh and ksh88 are compatible implementations. A number
of systems have used pdksh as a shortcut to getting a reasonably full- featured POSIX
shell. More modern systems often replace pdksh with ksh93.

	 •	 Z shell (zsh): The Z shell is probably by far the most divergent of those listed here from
the historical Bourne shell. However, zsh can be configured to perform as a fairly solid
POSIX shell, and on some systems it may be the only shell available that can be made
to execute POSIX shell code at all. (For more information on encouraging zsh to behave
like a POSIX shell, see Chapter 7.)

Nearly every example in this book (except those used to illustrate differences between
these shells) will run identically on all of these except the pre- POSIX Bourne shell. This
diversity of options is certainly one of the reasons to favor shell- derived languages for
programming.

Why Portable?
Portable code is more useful. If your scripts are portable, they will survive changes in your
platform. This offers two key benefits. First, you can freely switch platforms whenever you
want. Second, you can use a broader range of platforms.

There is no perfect system. Every system you might use has flaws. You will want to change
systems from time to time. You may find that your best choices for different systems are differ-
ent operating systems, running on different hardware. Portability lets you share code between
things. People, and companies, have been known to get trapped on a platform because they
wrote unportable code that makes it too expensive to migrate. In the long run, writing portable
code saves you work.

Furthermore, the cost of portability is often greatly overestimated. People look at the
pages and pages of output of a typical configure script and assume that there are dozens or
hundreds of things they need to check for and write alternative code for. In general, this is
not the case. Writing unportable code for two systems, as well as code to distinguish between
them, is not generally the first strategy to take when pursuing portability. Programs taking that
approach, whether in shell or any other language, in general become quickly unmaintainable.

The best way to write portable code is to understand the language and tools you are work-
ing with. A lot of unportable code results from people who don’t understand a chunk of code,
copying it and modifying it until it seems to work. Don’t do that! It is fine to copy a chunk of
code you do not understand; however, study it and experiment until you understand it before

10436ch01final 8 10/23/08 11:37:27 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 9

you use it. Often, much of the code in a large and poorly maintained project is irrelevant and
unneeded, and it is present only because someone saw it done and didn’t understand why.

As developers throughout the open source world have learned, and documented, in
many cases there is no real difference between writing code well and writing it portably.
 Well- organized code that isolates its assumptions (see the discussion on this in Chapters 7
and 8) tends to be easy to maintain on any platform, as well as easy to port. Furthermore, as
soon as you give some attention to the assumptions you have made about your environment,
you are likely to realize that you do not need to make those assumptions. Fixing the assump-
tions creates code that is not only more portable, but also simpler and thus easier to maintain.

Many programming books encourage you to try experiments to see what happens. This
often leads to horribly unportable code. Portable code behaves predictably on multiple sys-
tems. Unportable code doesn’t necessarily behave badly; it may, in fact, do exactly what you
were hoping for on the machine you were on when you tried it. Knowing that something
“works” on a single machine is no substitute for knowing how it works and being able to
 predict what it will do on another machine.

Does this mean you shouldn’t perform experiments? Of course not! It means you should
perform your experiments several times on a variety of computers and shells. Don’t be too
quick to trust vague memories, either of what is or what is not portable. (For a concrete exam-
ple, see the sidebar “Checking Your Assumptions” later in this chapter.)

Why Not?
This book focuses on the Bourne shell, with a little discussion of the major derivatives. I don’t
talk about the C shell (csh) much, even though this is a book on shell scripting. There are sev-
eral reasons for this, but they all come down to the C shell being a pretty decent interactive
shell, though not nearly as good as a programming shell. Tom Christiansen’s seminal article
“Csh Programming Considered Harmful” has stood the test of time, and this representative
quote is as true today as it was when it was first written:

While some vendors have fixed some of the csh’s bugs (the tcsh also does much better

here), many have added new ones. Most of its problems can never be solved because

they’re not actually bugs per se, but rather the direct consequences of braindead design

decisions. It’s inherently flawed.

—Tom Christiansen, www.faqs.org/faqs/unix-faq/shell/csh- whynot/

The C shell is not a compatible relative of the Bourne shell; past the simplest one- liner
scripts, the two are simply incompatible. The C shell and its variants (most noticeably tcsh)
are popular for interactive use but have little to offer for portable shell programming. Their
most significant features are related to elaborate (and extremely powerful) command history.
The job control features that motivated many users to switch to the C shell are now widely
available in Bourne shell derivatives. Perhaps more importantly for the purposes of this book,
these features have essentially no impact on noninteractive use in scripts.

Other UNIX- like shells, such as Plan 9’s excellent rc, are omitted, not because they are
 ill- suited to development, but because they are not as consistently installed on as broad a base
of systems as the Bourne shell family and offer very different language features. Any UNIX- like

10436ch01final 9 10/23/08 11:37:27 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING10

machine you use will have a shell that is similar enough to the Bourne shell for programming
purposes; many will not have the other shells installed. While it is often easy to install these
shells, you may not always have the permissions needed to install them globally, and needing
to do so is one more thing that can go wrong. More generally, non- shell scripting languages,
such as Tcl or Perl, are too far afield to mix well, even though some of them provide shell- like
interfaces; Tcl’s wish and Ruby’s irb, while interesting and useful, are better approached in the
context of those languages, rather than as though they were “shell variants.”

The only languages other than shell discussed at any length are sed and awk, which are
often used for stream editing and processing within shell scripts. Note, though, that the shell
is a very friendly language and loves to cooperate. You can generally use other scripting lan-
guages easily from shell.

Beyond Portability: Cleanliness and Good Living
This book talks a lot about portability concerns. It also talks about how to write clean code.
Cleanliness in code is a somewhat fuzzy concept, and programmers argue over it for hours.
You might wonder why this book discusses style, defensive programming, and common con-
ventions, which have no functional impact on the shell itself. There are good reasons.

If you are interested in portable code, it is because you want your code to work on multi-
ple platforms. Code that is broken identically on ten platforms is of no use to you. Established
shell conventions make it easier for other people to read your code, make it easier for you to
read other peoples’ code, and usually have sound engineering principles behind them. Simi-
larly, learning to program defensively is essential to making good use of the shell. Because the
shell runs with no sandbox, and with all of the caller’s privileges and access to the file system,
it is extremely dangerous to run badly written shell code.

Writing clear, clean code makes it easier for you to see what is happening and why. Clean
code is more likely to be portable, easier to port when needed, and more likely to be useful
enough to be worth the bother of porting. In short, to borrow the words of C.A.R. Hoare:

There are two ways of constructing a software design: One way is to make it so simple

that there are obviously no deficiencies, and the other way is to make it so complicated

that there are no obvious deficiencies. The first method is far more difficult.

—C.A.R. Hoare, 1980 Turing Award Lecture

Writing clean code saves you time. It saves you time porting, it saves you time debugging,
and it generally saves you time even during initial development. If you are sharing source with
other users or developers, clean code will get more contributions and more useful feedback. If
you are prototyping and revising your design as you go, clean code will be easier to maintain
and update. Of the code I wrote ten and 15 years ago, the clean code has stayed with me and
adapted quickly to new systems; the badly written code has not survived and has often been
too much work to update.

Do not write carelessly or poorly, even for small one- off scripts. Sloppy work is
 habit- forming.

10436ch01final 10 10/23/08 11:37:27 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 11

What’s in This Book
The next section offers a very quick overview of the shell, without going into great detail on the
formal syntax or semantics of shell scripting. If you’ve used the shell before, you may be able
to skip it and get into the more detailed material in the following chapters. The next chapter
gives a detailed look at the various ways in which the shell performs pattern- matching. Follow-
ing this are four chapters of detailed discussion of shell features, explaining their specifications
more precisely, and showing how to make effective use of them. After this are chapters on por-
tability of shell language constructs and utilities commonly used in shell programming, and
then on shell script design and interactions with other languages. If you encounter unfamiliar
terminology, look in related sections; I have tried to define terms when I first use them.

Introducing the Shell
This section gives a quick tour of shell usage, starting with basic usage and display conven-
tions, and then moving on to the basics of quoting and variables. There are some generaliza-
tions to which you will later learn exceptions, but it gives a quick basic grounding in what the
shell does. This overview should make it easier to see where each of the following chapters fits
in. Throughout this, you may find yourself asking questions that start out “but what happens
if . . . ?” which are not answered in this chapter. As mentioned in the previous discussion on
portability, go ahead and try them, but be aware that the results may sometimes vary between
shells.

Whether being used interactively or from a script, the shell’s basic operation is the same.
It reads lines of input, which it breaks into words (usually around spaces), performs substitu-
tions and expansions, and finally executes commands. Much of the shell’s power comes from
the fact that the shell has rules for modifying the words it is given to generate commands. This
section gives a brief overview of these rules, and the ways to keep the shell from performing
these modifications inappropriately.

Most of the material in this section is covered in more detail (indeed, with a particular
attention to fiddly little details) later in the book.

Interactive and Noninteractive Usage
In interactive usage, the shell indicates readiness for input by displaying a string called
a prompt Generally, the default prompt is a dollar sign ($). If the shell is expecting a continu-
ation of previous input, the prompt changes to a greater- than sign (>). In interactive usage,
the shell usually shows the output of each command before printing the next prompt. For
instance, the following interactive session shows both of these prompts:

$ echo 'hello
> there'
hello
there

In the preceding example, the shell gives the first prompt ($) and waits for input. The
user enters the text echo 'hello. The apostrophe, or single quote, begins a quoted string; in
a quoted string, the shell does not break words around spaces or new lines, and the string is

10436ch01final 11 10/23/08 11:37:28 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING12

not complete until the other quote is seen (this is explained a bit more in the section “Intro-
ducing Quoting” later in this chapter). The shell cannot execute this command yet because
the string isn’t complete. The shell knows there must be more input; it displays the secondary
prompt (>), and waits for more input. The user enters the text there'. The second apostro-
phe ends the string. Unlike some languages, the shell uses pairs of identical apostrophes for
strings, rather than using left and right quotes. With the string complete, the shell now returns
to looking for the ends of words or commands. It sees a new line (from the user hitting return),
and this ends the command.

The shell runs the command, passing the quoted string to the echo command, which
displays its arguments. Note that the new line within the quoted string becomes part of the
argument to echo, and the result has a new line in the same place. The same continuation
prompt is used when a shell syntax structure (such as if- then) is incomplete.

When the shell is running a command provided to it from a noninteractive source, no
prompts are displayed. To run these examples noninteractively, save them in a file, then run
your shell of choice on the file; for instance, if you have saved an example as hello, you can
invoke it with the command sh hello. Another option is to create an executable shell script.
To do this, add a line to the beginning of the file indicating that it is a shell script:

#!/bin/sh

This line is often called a shebang (short for sharp- bang, the nicknames of the first two
characters on the line.) A file starting with this, and marked as executable, is treated as a script
for the named program. Some users prefer to put a space after the exclamation mark (!), but
it is not needed (the notion that it might be on some systems is a very persistent portability
myth). To mark a script executable, change its mode:

$ chmod +x hello

Once you have done this, you no longer need to specify the shell interpreter, although you
will usually need to specify the path to a program in the current directory to use it:

$./hello

Prompts vary from shell to shell, and many systems change the default shell prompt.
While not all shells support this, some can interpolate things (such as the current directory)
into the shell prompt. Some shells, on hardware that supports it, will even colorize the prompt.

The biggest difference between interactive and script usage is in the interleaving of out-
put and input. When you work interactively, each command’s output is displayed before the
shell offers you a new prompt. When you run a script, commands are run in sequence with-
out pauses. While this book typically uses chunks of shell code without prompts to illustrate
points, the same code entered at a prompt would generally have the same effect, despite the
formatting differences.

Simple Commands
A simple command is just a command (such as echo or ls) and its arguments. In the absence
of special characters (called metacharacters) or words that have special meaning to the shell
(called keywords), a series of words followed by a new line are a simple command. Control flow
constructs (such as if statements, discussed in Chapter 3) are not simple commands.

10436ch01final 12 10/23/08 11:37:28 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 13

The shell breaks each line of input into sequences of characters called words, usually
around spaces and tabs, although there are other ways to separate words. The process of split-
ting text into words is called word splitting. It does not matter how many spaces (or tabs) you
place between the words. A line beginning with a sharp (#) is a comment and is ignored by the
shell. The first word on a line (which may be the only word) is the command (usually an exter-
nal program) to run; the following words are passed to it as parameters, called arguments. The
echo command displays its arguments, separated by spaces if there’s more than one argument,
and followed by a new line. (This is usually the case; however, the echo command is full of
nonportable special cases discussed in Chapter 8.) Each of the following commands produces
the same output:

$ echo hello, world
hello, world
$ echo hello, world
hello, world
$ echo hello, world
hello, world

As you can see, the shell modifies input text before executing it. In this case, for instance,
the spaces between words are not counted or recorded; rather, the shell just uses them to
detect word boundaries. A quick way to get some insight into how your commands are being
modified is to put the shell into trace mode, by issuing the command set -x. This will cause
the shell to show you each simple command before executing it. To turn this off, issue the
command set +x. Each simple command, as finally executed, is echoed back with a plus sign
(+) in front of it before the shell executes that command. For more information on trace mode,
including the circumstances where it displays something other than the plus sign, see Chapter
6. Be aware that the exact format of the message may vary from one shell to another. Regard-
less, tracing is usually quite helpful in understanding the shell. For instance, the following
transcript shows that the commands executed by the shell have had strings of spaces replaced
by single spaces:

$ set -x
$ echo hello, world
+ echo hello, world
hello, world
$ echo hello, world
+ echo hello, world
hello, world
$ echo hello, world
+ echo hello, world
hello, world
$ set +x
+ set +x

If you are experimenting with the trace feature on the command line, do not forget to
turn it off with a final set +x. However, in the pursuit of brevity, the set +x is omitted in future
examples.

10436ch01final 13 10/23/08 11:37:28 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING14

You can enter several simple commands on a line by separating them with semicolons (;).
Semicolons are a good example of a metacharacter, a character that has special meaning to the
shell even when it is not separated from other text by spaces:

$ echo hello;echo world
hello
world

The semicolon breaks this into two commands. The second command is executed imme-
diately after the first, and the user is not prompted between them.

Introducing Variables
Variables are named storage that can hold values. The shell expands a variable when the vari-
able’s name occurs after a dollar sign ($), replacing the dollar sign and variable name with
the contents of the variable. This is called variable expansion, or substitution, or occasionally
replacement or even interpolation. Of these terms, expansion is used most often in documen-
tation, but substitution is probably the clearest. Variables are assigned using an equals sign (=)
with no spaces around it:

$ name=John
$ echo hello, $name
hello, John

Unlike most other programming languages, the shell uses different syntax when referring
to a variable than when assigning a value to it. Variable names start with a letter or underscore,
followed by zero or more letters, numbers, and underscores. Some shell programmers use all
capitalized names for variables by convention, but in this book, I use all capitalized names
only for environment variables or special predefined shell variables (such as $IFS, which is
explained in Chapter 4). Do not use mixed case; it works, but it is not idiomatic for the shell.

If a variable has not been set, it expands to an empty string; there is no warning (usually)
for trying to use an unset variable, which can make it hard to detect simple typos. Variables in
shell are always strings; the shell does not distinguish between strings, integers, or other data
types. The shell is generally considered a typeless language.

If you want to obtain a value from the user, you can do so using the read command to read
a line of input and store it in a variable, as in the following example:

$ echo Please enter your name. ; read name
Please enter your name.
Dave
$ echo Hello, $name.
Hello, Dave.

If you try to assign a value including spaces to a variable, you will discover that the shell
splits the line into words before trying to assign variables. Thus, this doesn’t work:

$ name=John Smith
sh: Smith: command not found
$ echo hello, $name
hello,

10436ch01final 14 10/23/08 11:37:28 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 15

A brief explanation of what went wrong follows in the next section; a full explanation of
what went wrong is found in Chapter 3. For now, the key lesson is that the assignment doesn’t
work, and you need a way to prevent the shell from splitting words.

Introducing Quoting
The separation of input into words is generally very useful, but it is occasionally desirable to
prevent it. For instance, if someone created a file named hey you, trying to remove it might
prove frustrating:

$ rm hey you
rm: hey: No such file or directory
rm: you: No such file or directory

To overcome this, you must tell the shell that, rather than being a special character that
separates words, the space is just a literal character with no special meaning. This is called
quoting, and the most common way to do it is by enclosing material in quotes. Quotes can
be single quotes or double quotes; in both cases, the shell does not use distinct left and right
quotes, but uses the same quotes on both sides. [On a slightly related note, text surrounded by
back quotes (`) is not being quoted; that is one of the syntaxes used for embedding the output
of shell commands, much as variables are substituted. Command substitution is explained
in Chapter 5.] Most commonly, you simply enclose a string in single quotes (') to prevent the
shell from modifying it. Here’s a review of the hello world example, using quoting:

$ set -x
$ echo 'hello, world'
+ echo hello, world
hello, world
$ echo 'hello, world'
+ echo hello, world
hello, world
$ echo ' hello, world'
+ echo hello, world
 hello, world

Single quotes prevent the shell from modifying input, including word splitting. The quote
marks themselves are removed. While this is useful for arguments, it is important not to quote
things that you do want the shell to split. For instance, the following script doesn’t do what the
user probably wanted:

$ set -x
$ 'echo hello, world'
+ echo hello, world
sh: echo hello, world: command not found

With all the spaces quoted, the shell has no way of knowing the user meant to invoke the
echo command; instead, it obligingly looks for a command named echo hello, world. Since
there isn’t one, the shell prints an error message.

10436ch01final 15 10/23/08 11:37:29 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING16

■Note Error messages may vary between shells. Do not worry if you try an example and get an error mes-
sage in a slightly different format. Also, the display of an error message may depend on whether the shell
was executing a script. For a syntax error or other shell error, the shell usually gives the name of the script
and the line number it was executing. This does not mean you should not run examples and try them out for
yourself; it does mean that it is not always a good idea to depend on the exact contents of an error message.

You can now pursue the previous example of trying to assign a full name, including
a space, to a variable:

$ name='John Smith'
$ echo hello, $name
hello, John Smith

 The quotes allow you to assign a value containing spaces to a variable. When the variable
is substituted, the space is included. Try to figure out the next example before you run it:

$ command='echo hello, world'
$ $command

There are two ways you might reasonably expect this to play out. One is that the shell will
respond with hello, world. The other is that it will respond with an error message, such as
sh: echo hello, world: command not found. Since word splitting happens before variable
expansion, you might reasonably expect the error message, but in fact the shell greets you. The
reason for this is that the outputs of variable substitution are usually subject to word splitting
again. (The results are not then subject to variable substitution.) In this case, that’s very useful.
But consider what happens if you are trying to preserve spaces, not just include them:

$ name='Smith, John'
$ echo $name
Smith, John

No problem; you know how to protect spaces, right?

$ name='Smith, John'
$ echo '$name'
$name

You need a way to ask the shell to expand variables but not perform word splitting. Conve-
niently, the shell has multiple quoting mechanisms. If you want some special characters, but
you still want to quote spaces, you can use double quotes. The shell substitutes variables in
 double- quoted strings:

$ set -x
$ name='Smith, John'
+ name=Smith, John
$ echo $name
+ echo Smith, John
Smith, John

10436ch01final 16 10/23/08 11:37:29 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 17

$ echo '$name'
+ echo $name
$name
$ echo "$name"
+ echo Smith, John
hello, Smith, John

The text $name is substituted both when unquoted and when in double quotes; it is not
substituted when in single quotes. When unquoted, the substituted value is subject to field
splitting (much like word splitting, but see the in- depth discussion in Chapter 4); inside double
quotes, it is not. If you have used other scripting languages, you may have seen this distinction
between single and double quotes before; it is very useful to be able to distinguish between
a purely literal string and one in which you want variables to be substituted, and the shell
syntax is familiar to many users. Single quotes are the easiest to understand; a single- quoted
string lasts until the next single quote. No other characters have any special meaning within
single quotes. Of course, this makes it hard to get a literal string including a single quote; to do
that, use double quotes. This allows an expansion on an earlier example:

echo 'What is your name? '
read name
echo "I'm sorry, $name, but I can't let you do that."

What is your name?
Dave
I'm sorry, Dave, but I can't let you do that.

Note the use of double quotes to protect the spaces and other punctuation, including
single quotes. Try to guess what the following code will produce before running it:

echo "What is your name?"
read name
echo I'm sorry, $name, I can't let you do that.

In this version, because the single quotes were not themselves quoted, they defined
a quoted string. This has two effects: The first is to prevent $name from being expanded, and
the second is the removal of the apostrophes, which the shell interprets as single quotes. For
this reason, shell programmers often use double quotes around strings passed to echo even
when no obvious need to is in evidence. It is easy to forget that a harmless apostrophe is actu-
ally a sinister and dire single quote, plotting ambush and mayhem from its lair between “n”
and “t.” Having the quotes there is a good example of defensive programming. The use of
double quotes to get literal single quotes (and single quotes to get literal double quotes) is easy
enough once you are used to it, but it can be a bit surprising at first.

As you have probably noticed, the quote characters themselves are not included in the
strings they quote. Quoted strings are considered to be part of the same word as anything they
are adjacent to. It is a common misconception that the quoted material is itself a “word” to the
shell, and that a pair of adjacent quotes are treated as separate words. This is not so, and this
leads to the way to get single quotes into a string that is single- quoted when you want an apos-
trophe but do not want any expansion:

10436ch01final 17 10/23/08 11:37:29 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING18

$ echo '$name is a variable, now, isn'"'"'t it?'
$name is a variable, now, isn't it?

The two single- quoted strings are adjacent to a double- quoted string containing only an
apostrophe; when the quotes are removed, these become a single shell word. The echo com-
mand receives only one argument. As this example illustrates, there are a great number of
subtleties to the interactions of these features, but this quick tour should prepare you to follow
along with code even if you haven’t used any of these features before.

The printf Command
The printf command was introduced some years back, but many users are unaware of it. It
mostly emulates the behavior of a C function by the same name, used to format output. The
first argument to printf is called a format string, and describes an output format. Certain spe-
cial characters in the format string need to be filled in with data; these data are taken from the
other arguments, in order. This is easier to show than to describe:

$ name="John"
$ printf "Hello, %s!\n" "$NAME"
Hello, John!

CHECKING YOUR ASSUMPTIONS
When I originally drafted this text, I used echo in all of the examples because it was the only portable com-
mand for displaying text. It is problematic in many ways (it gets its own section in Chapter 8), but there’s
nothing else. The wonderful and expressive printf utility is unfortunately not portable. After all, it’s only
found on BSD systems and Linux systems and built- in to bash and ksh93. Actually, it looks like Solaris has
it. In fact, I searched among something around 30 systems, and the only system I could find that anyone had
still running in which printf did not work in /bin/sh was a SunOS box (not Solaris) a friend of mine had
still running, even though it was officially unsupported due to unfixed Y2K bugs.

I did some informal polling. Every experienced shell programmer I talked to “knew” that the shell com-
mand printf was a new feature (or had never even heard of it). No one thought it was portable, but it turns
out to be substantially more portable than many features I have been taking for granted for ten years. While it
is true that it is a new change, it is a change specified by the current UNIX standards, and one that appears to
have become essentially universal. So, even if you are pretty sure you know that something isn’t portable (or
that it is), check your assumptions!

The special sequence %s indicates that a string should be displayed; the next argument
is interpreted as a string and replaces the %s. The character determining what kind of object
to print (such as a string or a number) is called a format character, and the whole character
sequence is called a format specification. Other common formats are % (print a percent sign),
d (print a number), o (print a number in octal), x (print a number in hexadecimal), and
f (print a floating- point value). The other thing printf does is interpret backslashes fol-
lowed by special characters; these combinations are called escape sequences. The most

10436ch01final 18 10/23/08 11:37:29 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING 19

important one to know about is \n, which represents a new line. Unlike echo, printf does not
automatically finish its output with a new line character:

$ echo "Hello!" ; echo "Goodbye!"
Hello!
Goodbye!
$ printf "Hello!" ; printf "Goodbye!"
Hello!Goodbye!$

In fact, even the shell’s prompt can end up on the same line as the output from a printf
command. This can be a bit of a surprise to new users, and even experienced users will get it
wrong occasionally. However, it is also extremely useful in some cases. If you wish to display
a prompt and then request input from the user, being able to omit the new line is quite handy.
(There is no portable way to do this with echo, although there are several nonportable ways
that may work on individual systems.)

The other thing printf is good at is formatting—not just displaying output, but display-
ing it according to particular rules. There are three key concepts in displaying fields. The first
is width, or how many characters to display at a minimum. Width, given as a number between
the % and the format character, is used to format output so it lines up nicely:

$ printf "%3d: lined\n%3d: up\n" 1 100
 1: lined
100: up

The width of 3 causes the printf command to display at least three characters, even if it
does not need that many. But what if there are more? There is also a way to limit the number of
characters printed; this is called precision, and is written as a number following a period, once
again between the % and the format character. Precision limits the total number of characters
printed for strings; for floating- point numbers, it limits the number of characters printed after
the decimal point.

$ printf "%.5s\n%.5s\n" John Samantha
John
Saman

You can specify both width and precision; if you do this, the precision is used to deter-
mine what to print, and the width then influences whether the shell pads the output. Padding
can be controlled a little. The two most common ways to control padding are to specify flags,
which are put before the width. (If there is no width, there is no padding, and there is no point
to specifying flags.) The two common flags are left justification (-), and zero padding (0). Zero
padding applies only to numeric values. Idiomatically, the pattern %02x is used to express byte
values in hexadecimal:

$ printf "%02x\n" 197 198
c5
c6

This example also illustrates another feature: If you provide additional arguments, printf
recycles its format string, starting over at the beginning. Format specifications without argu-
ments are treated as though the argument was a 0 (for numeric formats) or an empty string
(for string formats).

10436ch01final 19 10/23/08 11:37:30 PM

Chapter 1 ■ INtrODUCtION tO SheLL SCrIptING20

There is only one significant flaw in the printf command, which is that you cannot easily
use it to display arbitrary characters. The C language printf function has a %c format specifier,
which prints a numeric value as a raw character; for instance, on an ASCII- based machine, the
C code printf("%c", 64); prints an at sign (@). In the shell command, %c is equivalent to %.1s;
it prints the first character of its argument, which is treated as a string. So, for instance, printf
'%c\n' 64 prints 6. However, you can print characters using an escape sequence; a backslash
followed by three octal digits is printed as the character in question, so printf '\100\n' prints
@. In later chapters, you’ll see how you could use printf to create a format string containing
arbitrary characters as octal escape sequences.

Some implementations of printf take additional options (starting with hyphens) before
the format string. In portable code, never start a format string with a hyphen. If you want to
display a hyphen, use %s:

$ printf '%sv' -
-v

Be very careful with parameter substitution in printf format strings. The translation
of format specifiers into arguments happens after parameter substitution; if you substitute
a parameter containing % characters into a format string, those % characters may become for-
mat specifiers. If you wish to include the value of a parameter in your displayed output, always
use a suitable format (usually %s) and provide the parameter as a double- quoted argument:

$ password="xfzy%dNo"
$ printf "Your password is $password.\n"
Your password is xfzy0No.
$ printf "Your password is %s.\n" "$password"
Your password is xfzy%dNo.

In general, I recommend using single- quoted strings as printf format strings; this ensures
that the calling shell will not do something unexpected with any backslash escape sequences
you used (behavior of backslashes inside double- quoted strings is not always 100% portable),
and that no parameter substitution occurs; this allows you to be sure you know what your for-
mat string is.

Some implementations of printf have difficulties with particularly long formats; for
example, the Solaris printf aborts when given the format string %05000d. Exercise caution with
large formats.

What’s Next?
This whirlwind introduction covers enough so that, even if you’ve never tried to use the shell
before, you can follow along with the examples used to illustrate various points of shell archi-
tecture and design. The next chapter talks about patterns and regular expressions; if you’re
familiar with those already, you can skip ahead, but you might like the quick refresher. Now,
on to the fiddly little details!

10436ch01final 20 10/23/08 11:37:30 PM

C H A P T E R 2

Patterns and Regular
Expressions

This chapter is a bit of a digression; if you are comfortable with patterns and regular expres-
sions, you can just skip ahead to Chapter 3, where I begin the discussion of shell syntax.
However, if you are unfamiliar with patterns and regular expressions, this material turns out
to be very important for understanding and illustrating the coming examples. Furthermore,
you will have to learn it to be an effective shell programmer, so if you haven’t learned it before,
start early.

Shell programming is heavily dependent on string processing. The term string is used
generically to refer to any sequence of characters; typical examples of strings might be a line
of input or a single argument to a command. Users enter responses to prompts, file names
are generated, and commands produce output. Recurring throughout this is the need to
determine whether a given string conforms to a given pattern; this process is called pattern
matching. The shell has a fair amount of built- in pattern matching functionality (especially if
you are comfortable with relying on POSIX shell features). Pattern matching is not unique to
the shell; other programs, such as find, use the same pattern- matching rules. A special variant
of shell pattern matching, called globbing, is used to expand file name patterns into groups of
matching names. The distinction between globbing and pattern matching is a bit vague; many
people call all patterns globs and use the term file globbing for the special case of matching file
names. The shell manual pages, however, tend to call pathname expansion globbing.

Furthermore, many common UNIX utilities, such as grep or sed, provide features for pat-
tern matching. These programs usually use a more powerful kind of pattern matching, called
regular expressions. Regular expressions, while different from shell patterns, are crucial to
most effective shell scripting. While there is no portable regular expression support built into
the shell itself, shell programs rely heavily on external utilities, many of which use regular
expressions.

Shell Patterns
Shell patterns are used in a number of contexts. The most common usage is in the case state-
ment (see Chapter 3 for more information). Given two shell variables string and pattern, the
following code determines whether text matches pattern:

21

10436ch02final 21 10/23/08 10:13:25 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS22

case $string in
 $pattern) echo "Match" ;;
 *) echo "No match";;
esac

If $string matches $pattern, the shell echoes “Match” and leaves the case statement.
Otherwise, it checks to see whether $string matches *. Since * matches anything in a shell
pattern, the shell prints “No match” when there was not a match against $pattern. (The case
statement only executes one branch, even if more than one pattern matches.)

For exploring pattern matching, you might find it useful to create a shell script based on
this. The following self- contained script performs matching tests of a number of words against
a pattern:

#!/bin/sh
pattern="$1"
shift
echo "Matching against '$pattern':"
for string
do
 case $string in
 $pattern) echo "$string: Match." ;;
 *) echo "$string: No match." ;;
 esac
done

Save this script to a file named pattern, make it executable (chmod a+x pattern), and you
can use it to perform your own tests:

$./pattern '*' 'hello'
Matching against '*':
hello: Match.
$./pattern 'hello*' 'hello' 'hello, there' 'well, hello'
Matching against 'hello*':
hello: Match.
hello, there: Match.
well, hello: No match.

Remember to use single quotes around the arguments. An unquoted word containing
pattern characters such as the asterisk (*) is subject to globbing (sometimes called file name
expansion), where the shell replaces such words with any files with names matching the pat-
tern. This can produce misleading results for tests like this. File name patterns are discussed in
more detail in the next section.

Pattern-Matching Basics
In a pattern, most characters match themselves, and only themselves. The word hello is a per-
fectly valid pattern; it matches the word hello, and nothing else. A pattern that matches only
part of a string is not considered to have matched that string. The word hello does not match
the text hello, world. For a pattern to match a string, two things must be true:

10436ch02final 22 10/23/08 10:13:25 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 23

	 •	 Every	character	in	the	pattern	must	match	the	string.

	 •	 Every	character	in	the	string	must	match	the	pattern.

Now, if this were all there were to patterns, a pattern would be another way of describing
string comparison, and the rest of this chapter would consist of filler text like “a . . . consists of
sequences of nonblank characters separated by blanks,” or possibly some wonderful cookie
recipes. Sadly, this is not so. Instead, there are some characters in a pattern that have special
meaning and can match something other than themselves. Characters that have special mean-
ing in a pattern are called wildcards or metacharacters. Some users prefer to restrict the term
wildcard to refer only to the special characters that can match anything. In talking about pat-
terns, I prefer to call them all wildcards to avoid confusion with characters that have special
meaning to the shell. Wildcards make those two simple rules much more complicated; a single
character in a pattern could match a very long string, or a group of characters in the pattern
might match only one character or even none at all. What matters is that there are no mis-
matches and nothing left over of the string after the match.

The most common wildcards are the question mark (?), which matches any character,
and the asterisk (*), which matches anything at all, even an empty string. (If this sounds very
wrong, and you think they modify previous characters, you are thinking of regular expressions.
Regular	expressions,	discussed	in	detail	in	the	“Regular	Expressions”	section	of	this	chapter,	
are much more expressive and somewhat more complicated.)

The ? is easy to use in patterns; you use it when you know there will be exactly one char-
acter, but you are not sure exactly what it will be. For instance, if you are not sure what accent
the user will greet you in, you might use the pattern h?llo, in case your user prefers to write
hallo, or hullo. This leaves you with two problems. The first is that users are typically verbose,
and write things like hello, there, or hello little computer, or possibly even hello how do
i send email. If you just want to verify that you are getting something that sounds a bit like
a greeting, you need a way to say “this, or this plus any other stuff on the end.”

That is what * is for. Because * matches anything, the pattern hello* matches anything
starting with hello, or even just hello with nothing after it. However, that pattern doesn’t
match the string well, hello because there is nothing in the pattern that can match charac-
ters before the word hello. A common idiom when you want to match a word if it is present at
all is to use asterisks on both sides of a pattern: *hello* matches a broad range of greetings.

If you want to match something, but you are not sure what it is or how long it will be,
you can combine these. The pattern hello ?* matches hello world but does not match hello
alone. However, this pattern introduces a new problem. The space character is not special in
a pattern, but it is special in the shell. This leads to a bit of a dilemma. If you do not quote the
pattern, the shell splits it into multiple words, and it does not match what you expected. If you
do quote it, the shell ignores the wildcards. There are two solutions available; the first is to
quote spaces, the second is to unquote wildcards. So, you could write hello" "?*, or you could
write "hello "?*.

In the contexts where the shell performs pattern matching (such as case statements),
you do not need to worry about spaces resulting from variable substitution; the shell doesn’t
perform splitting on variable substitutions in those contexts. (A disclaimer is in order: zsh’s
behavior differs here, unless it is running in sh emulation mode. See Chapter 7 for more
information.)

10436ch02final 23 10/23/08 10:13:25 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS24

Character Classes
The h?llo pattern has another flaw, which is that it is too permissive. While your friends who
type with a thick accent will doubtless appreciate your consideration, you might reasonably
draw the line at hzllo, h!llo, or hXllo. The shell provides a mechanism for more restrictive
matches, called a character class. A character class matches any one of a set of characters, but
nothing else; it is like ?, only more restrictive. A character class is surrounded in square brack-
ets ([]), and looks like [characters]. The greeting described previously could be written using
a character class as h[aeu]llo. A character class matches exactly one of the characters in it; it
never matches more than one character.

Character classes may specify ranges of characters. A typical usage would be to match any
digit, with [0- 9]. In a range, two characters separated by a hyphen are treated as every char-
acter between them in the character set; mostly, this is used for letters and numbers. Patterns
are case sensitive; if you want to match all standard ASCII letters, use [a-zA- Z]. The behavior
of a range where the second character comes before the first in the character set is not predict-
able; do not do that. Sometimes, rather than knowing what you do want, you know what you
don’t want; you can invert a character class by using an exclamation mark (!) as its first char-
acter. The character class [!0- 9] matches any character that is not a digit. When a character
class is inverted, it matches any character not in the range, not just any reasonable or common
character; if you write [!aeiou] hoping to get consonants, you will also match punctuation or
control characters. Wildcards do not have special meaning in a character class; [?*] matches
a question mark or an asterisk, but not anything else.

Character classes are one of the most complicated aspects of shell pattern matching. Left
and right square brackets ([]), hyphens (-), and exclamation marks (!) are all special to them.
A hyphen can easily be included in a class by specifying it as the last character of the class,
with no following character. An exclamation mark can be included by specifying it as any
character but the first. (What if there are no other characters? Then you are specifying only one
character and probably don’t need a character class.) The left bracket is actually easy; include
it anywhere, it won’t matter. The right bracket (]) is special; if you want a right bracket, put it
either at the very beginning of the list or immediately after the ! for a negated class. Otherwise,
the	shell	might	think	that	the	right	bracket	was	intended	to	close	the	character	class.	Even	
apart from the intended feature set, be aware that some shells have plain and simple bugs hav-
ing to do with right brackets in character classes; avoid them if you can.

If you want to match any left or right bracket, exclamation mark, or hyphen, but no other
characters, here is a way to do it:

[][!-]

The first left bracket begins the definition of the class. The first right bracket does not
close the class because there is nothing in it yet; it is taken as a plain literal right bracket. The
second left bracket and the exclamation mark have no special meaning; neither is in a position
where it would have any. Finally, the hyphen is not between two other characters in the class
because the right square bracket ends the definition of the character class, so the hyphen must
be a plain character.

Many users have the habit of using a caret (^) instead of ! in shell character classes. This is
not portable, but it is a common extension some shells offer because habitual users of regular

10436ch02final 24 10/23/08 10:13:26 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 25

expressions may be more used to it. This can create an occasional surprise if you have never
seen it used, and want to match a caret in a class.

 Table 2-1 explains the behavior of a number of characters that may have special meaning
within a character class, as well as how to include them literally in a class when you want to.

 Table 2‑1. Special Characters in Character Classes

Character Meaning Portability How to Include It

]	 End	of	class	 Universal	 	Put	at	the	beginning	of	the	class	(or	first	after	the	
negation character)

[Beginning of class Universal Put it anywhere in the class

^ Inversion Common Put after some other character

! Inversion Universal Put after some other character

- Range Universal Put at the beginning or end of the class

Ranges have an additional portability problem that is often overlooked, especially by
English	speakers.	There	is	no	guarantee	that	the	range	 [a- z] matches every lowercase letter,
and strictly speaking there is not even a guarantee that it matches only lowercase letters. The
problem is that most people assume the ASCII character set, which defines only unaccented
characters. In ASCII, the uppercase letters are contiguous, and the lowercase letters are also
contiguous (but there are characters between them; [A- z] matches a few punctuation char-
acters). However, there are UNIX- like systems on which either or both of these assumptions
may be wrong. In practice, it is very nearly portable to assume that [a- z] matches 26 lower-
case letters. However, accented variants of lowercase letters do not match this pattern. There
is no generally portable way to match additional characters, or even to find out what they are.
Scripts may be run in different environments with different character sets.

Some shells also support additional character class notations; these were introduced by
POSIX but so far are rare outside of ksh (not pdksh) and bash. The notation is [[:class:]],
where class is a word like digit, alpha, or punct. This matches any character for which the
corresponding C isclass() function would return true. For example, [[:digit:]] is equiva-
lent to [0- 9]. These classes may be combined with other characters; [[:digit:][:alpha:]_]
matches any letter or number or an underscore (_). Additional similar rules use [.name.] to
match a special collating symbol. (For instance, some languages might have a special rule for
matching and sorting certain combinations of letters, so a ch might sort differently from a c
followed by an h) and [=name=] to match equivalence classes, such as a lowercase letter and
any accented variant of it.) These rules are particularly useful for internationalized scripts
but not sufficiently widely available to be used in portable scripts yet. To avoid any possible
misunderstandings, avoid using a left bracket followed immediately by a period (.), equals
sign (=), or colon (:) in a character class. Note that this applies only to a left bracket within the
character class, not the initial bracket that opens the class; [.] matches a period. (This is more
significant in regular expressions, where a period would otherwise have special meaning.)

Character classes are, as you can see, substantially more complicated than the rest of the
shell pattern matching rules. Table 2-2 shows the full set.

10436ch02final 25 10/23/08 10:13:26 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS26

 Table 2‑2. Shell Pattern Characters

Pattern Meaning

? Any character

* Any string (even an empty one)

[...] One character from a class

Anything else Itself

Using Shell Patterns
Shell patterns are quite powerful, but they have a number of limitations. There is no way to
specify repetition of a character class; no shell pattern matches an arbitrary number of digits.
You can’t make part of a pattern optional; the closest you get to optional components is the
asterisk.

Patterns as a whole generally match as much as they can; this is called being greedy. How-
ever, if matching too many things with an asterisk prevents a match, the asterisk gives up the
extra characters and lets other pattern components match them. If you match the pattern b*
to the string banana, the * matches the text anana. However, if you use the pattern b*na, the *
matches only the text ana. The rule is that the * grabs the largest number of characters it can
without preventing a match. Other pattern components, such as character classes, literal
characters, or question marks, get first priority on consuming characters, and the asterisk gets
what’s left.

Some of the limitations of shell patterns can be overcome by creative usage. One way to
store lists of items in the shell is to have multiple items joined with a delimiter; for instance,
you might store the value a,b,c to represent a list of three items. The following example code
illustrates how such a list might be used. (The case statement, used here, executes code when
a pattern matches a given string; it is explained in more detail in Chapter 3.)

list=orange,apple,banana
case $list in
apple) echo "How do you like them apples?";;
esac

How do you like them apples?

This script has a subtle bug, however. It does not check for exact matches. If you try to
check against a slightly different list, the problem becomes obvious:

list=orange,crabapple,banana
case $list in
apple) echo "How do you like them apples?";;
esac

How do you like them apples?

10436ch02final 26 10/23/08 10:13:26 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 27

The problem is that the asterisks can match anything, even the commas used as delimit-
ers. However, if you add the delimiters to the pattern, you can no longer match the ends of the
list:

list=orange,apple,banana
case $list in
,orange,) echo "The only fruit for which there is no Cockney slang.";;
esac

[no output]

To resolve this, wrap the list in an extra set of delimiters when expanding it:

list=orange,apple,banana
case ,$list, in
,orange,) echo "The only fruit for which there is no Cockney slang.";;
esac

The only fruit for which there is no Cockney slang.

The expansion of $list now has a comma appended to each end, ensuring that every
member of the list has a comma on both sides of it.

Sometimes, you may find that shell patterns do not have the flexibility to represent what
you want. When that happens, you may need to go to regular expressions; see the “Regular
Expressions”	section at the end of this chapter for more information.

Pathname Expansion
Pathname expansion (the POSIX term), or globbing (what everyone actually calls it), is one
of the shell features most users are likely to be at least partially familiar with. The shell has
 a built- in facility for generating or matching file names. When an unquoted word contains
any of the pattern- matching wildcards, it is subject to globbing. In globbing, the shell com-
pares the pattern to files in the file system (using essentially the same pattern matching rules
described previously) and expands the word into any matching file names. If there are no
matches, the shell leaves the pattern alone. Instead of matching a single specified word against
a pattern to produce a single true/false result, globbing matches multiple names and produces
all the matches as results. There is, of course, an exception; the find utility uses globbing pat-
terns to match file names but uses them for true/false matches.

Differences from Shell Patterns
Pathname expansion uses the same basic pattern- matching characters as regular shell pat-
terns, but there are a couple of significant differences. When a pathname refers to a file not
in the current directory, the full name used is called the path	of	the	file.	Each	of	the	pieces	of	
a path, separated by slashes (or possibly by other characters on non- UNIX systems), is called
a component. In globbing, each section of a pattern (as divided by path separators) is matched

10436ch02final 27 10/23/08 10:13:27 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS28

against single components. So, if you wish to match the file bin/unsort, you can specify b*/
unsort, or b*/u*, or bin/*sort, but you cannot just use *unsort. If there are no path separators
in a pattern, it matches against files in the current directory; if you are in the bin directory,
*sort could match unsort. (Note that there is no portable unsort utility, but writing one makes
a great exercise.)

Another way to think about this is that the special characters can never match a path
separator; only a literal path separator can match a path separator in a file path. For example,
bin[/]unsort does not match bin/unsort. The character class can only match path compo-
nents, never a path separator. To search in directories with a pattern, you must explicitly
include any path separators you wish to match.

If a path starts with a path separator, the path is called an absolute path. Otherwise, it is
called a relative path. A relative path name is always interpreted relative to your current direc-
tory. In fact, even a file name with no separators is technically a relative path; it is just a very
short relative path.

The decision to match only within specified directories may seem surprising, but it makes
good sense. Given that a typical UNIX system can easily have hundreds of thousands of files,
it is quite simply impractical to try to match against all of them; the desktop system on which
I ran most of my test scripts has a bit over three and a half million files on it. The requirement
to match directories explicitly is probably a good idea. (The zsh shell, however, offers glob-
bing extensions to let you do crazy things like this if you want. They are not generally portable,
though.)

Pathname expansion, like pattern expansion, is aggressive about trying to find a match.
Many UNIX systems sort some binaries into both /usr/bin and /usr/sbin. Sometimes it is not
obvious which directory a program would be in. While the idiomatic solution is to use which
file to find a copy of a file in your execution path, this doesn’t help if you’ve forgotten the
exact name of the utility. The glob pattern /usr/*bin/*stat matches any file in either /usr/bin
or /usr/sbin with a name ending in stat. When expanding each component, the shell makes
a list of possible matches, then compares all of these to the next component. If one of the com-
ponents never ends up producing any matches, it is discarded completely. There is one subtle
difference, having to do with components, between globbing and pattern matching. In a UNIX
path, // is always equivalent to /; however, a shell pattern like a/*/b does not match a/b. You
cannot match an empty component with a pattern because there is never actually an empty
component.

Wildcards never match a component with a name starting with a period (.). These files,
called dot files, are not matched by patterns and are usually not displayed to the user; they are
often called hidden files. This is not the same way in which some other systems allow a file to
be tagged as being invisible. You can see and manipulate these files in most programs; they
just don’t get displayed in lists by default or matched by globs. This applies to all the compo-
nents in a path, not just file names. Note that a period has no special meaning except as the
first character of a file name, and even then the meaning is purely one of convention. UNIX
file names may have as many (or as few) periods in them as they want. Some programs assign
special meaning to suffixes starting with a period, but most UNIX programs give no special
interpretation to the name of a file. The pattern *.name does not match a file named .name; the
period in the pattern is not at the beginning of the pattern, so it can’t match a period at the
beginning of a file name.

10436ch02final 28 10/23/08 10:13:27 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 29

CaSE SEnSITIvITy In PaTHnaME ExPanSIon

Systems differ in their handling of letters in different cases. On a traditional UNIX system, files named readme
and README can exist in the same directory because the names of files are case- sensitive; that is to say,
capital and lowercase letters are distinct. Other systems have used two other conventions. Some file systems
(most notably, the traditional MS- DOS FAT16 file system) store all names without reference to case. This
policy is often called case- insensitive. On these systems, not only are README and readme the same name,
there is no way to know which of them was used to create a file.

Some systems, most notably the Macintosh and Amiga, introduced a new (well, it was new in the
80s, and UNIX doesn’t change much) policy called case- preserving. On a case- preserving file system, the
exact name used to create a file is preserved in the file system, but matches against file names are typically
 case- insensitive. Thus you can see that the file was named ReadMe when it was created, but if you try to
open a file named rEADmE, you get the same file anyway. This behavior is also quite common on the more
modern (well, relatively speaking) FAT32 file system used by Windows 95, and commonly used on flash
drives or external hard drives. However, it is dependent on the “long name support” introduced in that era,
and some devices (such as cameras) may fail spectacularly to recover gracefully if a file’s name uses this
feature.

For the most part, the UNIX shell is totally unaware of this, which can be a major source of surprises
when using a case- preserving file system. The most common case- preserving file systems in use today are
the native ones of Windows and Macintosh machines. Since OS X is a UNIX system these days, and many
users expect shell scripts to run in the various UNIX- like emulation environments available under Windows,
this may impact your scripts some day.

Some shells may offer extra options to provide for pathname expansion that ignores case. With shells
that do not, you have to be aware of the potential issues. Even if the shell handles this well, though, utility
programs may or may not do so reliably. Some programs may scan a directory looking for matching names
before trying to open a file, end up failing to see the file, and possibly later overwriting it. This is unusual, but
not unheard of. Your best allies in this are experienced users, who are typically familiar with the case han-
dling of their system and reasonably careful about it.

A common pitfall for users coming from DOS environments is to think that the pattern
. should match any file. However, this convention relies on the distinction between a file’s
name and the characters after the period, called the extension. UNIX has no such distinction,
and a file whose name does not contain a literal period (.) does not match this pattern. This
pattern also does not match dot files. It is not enough to match the period literally; the period
must be the first character in the relevant path component to match against a dot file.

In some cases, pathname expansion will not detect files that can be accessed explicitly
by name. There are three cases where this may apply. The first is case- sensitivity issues (see
the previous sidebar). The second is that some network disk services provide directories only
when they are explicitly requested; echo * lists only those directories that are in use, not the
ones that could be in use if you asked for them.

Finally, globbing relies on the ability to read directories, while access to files relies only on
the execute permission bit. This is a reasonably arcane distinction, which most people rarely
encounter. Normally, directories give neither or both read and execute permission to any
given user. However, it is possible to grant execute permission alone to a directory. This might

10436ch02final 29 10/23/08 10:13:27 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS30

be useful, for instance, in a public file server, allowing people to access files by name, but not
to obtain a listing of files. Globbing requires the ability to read the directory to obtain the list of
files against which a glob pattern is matched; without that, no file ever matches a glob.

Some shells offer an additional kind of pathname expansion called brace expansion. This
is not portable to standard shells, but this does not mean you can safely ignore it; it means
that, in some cases, file names with patterns like {a,b} will not behave as you expect them
to. Brace expansion is discussed in Chapter 7. It does not affect file names expanded through
pathname expansion, or the results of parameter expansion, so you do not need to worry
about it when interacting with generated file names.

Using Globs
All of the previous discussion is pretty useful, but it can be a bit hard to get a feel for how to use
globs without a few examples. This section introduces a few of the most common shell pattern
idioms and explains how each of them works; it also gives some key advice about using globs
effectively, both interactively and in scripts.

The pattern .??* matches any file beginning with a period and following it with at least
two characters; this is used to match dot files in a given directory. This pattern is constructed
to match files with names beginning with a period (.), but exclude the two special directory
entries . and .. (which match the current and parent directory, respectively). You might think
that, since the initial period has to be matched explicitly, you could use .?*, but the second
period in .. is not special and can be matched by a question mark. This pattern does not catch
files with names like .a or .b, which can be a problem.

To match any file with a name ending in .png or .gif, use a pattern like *.[pg][ni][gf].
In fact, this pattern also matches a number of other possible names, but luckily the number
of clashes is low. (This problem gets worse if you try to match many more file suffixes.) Pat-
terns like this are useful in cases where you can think of two or three likely file name suffixes
that might be in use, but you are not sure all of them will be in use. If you have a directory
containing a number of PNG files (using the common suffix) but no GIF files, and use the pair
of patterns *.png and *.gif, the second pattern matches no files, and is left untouched. By
contrast, the pattern *.[pg][ni][gf] matches all the PNG files and is replaced by their names,
even though there are no GIF files.

A similar technique is often used for case- insensitive file name matching; for instance,
you might use *.[Tt][Xx][Tt] to match files with a .txt suffix. By convention, when using sets
of character classes like this, you should use the same position in each class for a given compo-
nent. Thus [pg][ni][gf] suggests png and gif to the reader; if you wrote [gp][ni][gf], people
would think you were aiming for gng and pif.

Files with really long names often lend themselves to abbreviation using a wildcard
expected to match only one file’s name. This is probably one of the most common sources of
crazy or unplanned behavior in interactive usage; be careful when picking the patterns you
use! It is very easy to get thrown off by an * unexpectedly matching a very long string, or an
empty string, when you were looking at a particular part of a path name. This can be done
across multiple directories, as well; a Mac user might spell /System/Library/LaunchDaemons as
/S*/L*/L*ons. Anchoring the first and last characters of a file name often narrows down the
field very quickly.

Wildcards can also be used to avoid shell metacharacters without quoting; for instance,
a file named a;b can be referred to as a?b, as long as there are no other files matching the pat-
tern. The use of ? as a fill- in for spaces or other special shell characters is idiomatic.

10436ch02final 30 10/23/08 10:13:28 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 31

ExErCISE CauTIon

Be careful with wildcards. Typos can create horrible problems. One of the most common typos I’ve seen (and
made, repeatedly), is to try to remove .o files (created by the C compiler) and end up typing rm *>o. This
removes every file (except dot files) in the current directory and redirects its output (which is usually empty)
into a file named o. This typo may seem unusual, but the * is a shifted key on most US keyboards and so
is >. Just remember: There is no undo button. Whenever you’re about to type an rm command, especially an
rm -f, be sure to check the command line out to make sure you haven’t made any crucial typos. Do not alias
rm to rm -i; this is a horrible habit, which breaks a lot of useful scripted features. Worse, it will make you
careless. A poor- quality safety net is worse than no safety net at all.

regular Expressions
A comprehensive review of regular expressions is too much to fit into a single chapter. Whole
books have been written on the topic. This section provides a basic grounding in regular
expressions, covering the main features of the most common varieties. Regular expressions
are primarily used by programs other than the shell, although many shells have a built- in ver-
sion of some command (typically expr) that uses them. However, they are not used in portable
shell syntax. (Some shells offer relevant exceptions, discussed in Chapter 7.) The term regular
expression is often abbreviated to either regexp or regex. While regexp is clearer to read, regex
is pronounceable; the plural is regexes (or regexps, which is still unpronounceable). I use the
abbreviation here for brevity.

There are two primary varieties of regexes; basic regexes	(often	called	BREs)	and	extended	
regexes	(EREs).	Each	uses	slightly	different	rules.	The	basic	regex	syntax	is	actually	slightly	
more powerful than the extended syntax, but it is harder to write clearly and concisely.
Many implementations offer additional features bolted on to either of these, making it hard
to be sure exactly which features are portable. What’s worse, not everyone implements the
official POSIX standard for regexes, so you cannot necessarily rely on the standard. The
default in most tools is to provide basic regexes with at least a few extensions, which may be
documented.

In addition to the traditional forms of regexes, there are other variants. The Perl program-
ming language introduced a number of additional features, which have become popular and
widely used. Many programs other than Perl now provide “Perl- compatible regular expressions,”
thanks to the efforts of the kind people at www.pcre.org. There are other pattern matching lan-
guages available, such as Lua’s patterns, some of which are much simpler than regexes.

In any discussion of regexes, credit must be given to Henry Spencer’s regular expression
library, released long enough ago that free software was a relatively new concept. Before POSIX
even existed, Henry Spencer wrote an essentially compatible clone (not derived from AT&T
source) of the V8 UNIX regexp() family of library functions. While most systems now provide
standard library functions to make regexes available to most programs, this was not the case
back then, and many programs offer regex support in the first place only because the Henry
Spencer regex library made it possible. It offered what were essentially extended regexes (and
still does in a few programs, I’m sure). This code was written in 1986 and is still found in a few
modern systems in compatibility libraries.

10436ch02final 31 10/23/08 10:13:28 PM

http://www.pcre.org

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS32

Basic Regular Expressions
Regexes are most famously used by the grep utility; its name is derived from the ed editor’s
usage g/regular- expression/p, meaning “global search for regular- expression and print.” In
fact, there are often several varieties of the grep utility on a system, and it may support more
than one variety of regex; this can be a portability problem if you depend on one of the exten-
sions. Toward the end of the chapter, Table 2-8 shows the common variants you are likely to
encounter and where they are likely to be found. As with most tools, check the documentation
and any available standards, don’t just test behavior on a given system. This section begins
with a discussion of basic regexes, then goes on to cover extended regexes. Some newer soft-
ware now uses extended regexes by default, and behavior can vary surprisingly. However,
the most common utilities (grep, expr, sed) default to basic regexes. Because of this, I start
with basic regexes, then go on to a description of the differences between extended and basic
regexes; it mostly boils down to putting a backslash in front of anything cool in a basic regex.
This reverses the usual sense of backslash as suppressing special meanings.

Unlike shell patterns, regexes are considered to have matched if there exists a matching
string anywhere in the string being matched, even if it does not fill the whole line; this is simi-
lar to the behavior of a shell pattern with a * on each end. You can override this by anchoring
the regex, tying it to the beginning of the line with a leading ^ or to the end of the line with
a trailing $. The shell pattern hello is equivalent to the regex ^hello$. In some cases, a regex is
implicitly anchored; for instance, the expr utility’s colon (:) operator matches a regex against
the beginning of a string.

In regexes, the character that matches anything is period (.), not question mark (?). So, if
you want to match multiple greetings, you’d use h.llo as a regex, not h?llo. Character classes
are essentially the same, except that regexes use ^, not !, to negate a character class. (Some
shells support this syntax in character classes as well, as an extension.) Support for the POSIX
[[:class:]] feature (and the related =name= and .name. features) is slightly more common in
regex implementations than it is in shells, but it is still not portable enough to rely on.

You may have noticed that ^ has two different meanings in regexes. The regex ̂[0- 9]
matches a digit at the beginning of a string; the regex [^0- 9] matches any character but a digit
anywhere in a string. Many seemingly intractable regex problems have turned out to be typos
closely related to this.

Where regexes really begin to differ from shell patterns is in the handling of *. In shell
patterns, the asterisk itself is capable of matching parts of a string. In a regex, it modifies the
previous character. The regex apples* matches either apple or apples (or applesssss, for that
matter). Instead of matching something in addition to the preceding s, the * modifies the s.
The * is called a repetition operator; it repeats something else, rather than matching anything
itself. If you want the behavior of a shell pattern *, it is spelled .* in regexes; that matches any
number of any character. Note that the repetition operator repeats the previous matching
construct; .* can match any number of different characters, not just the same character over
and over.

In fact, the * operator doesn’t really operate on characters. It operates on indivisible
chunks of regex, called atoms. A character is always an atom because there is no way to match
just part of it. Another way to create an atom is to group things manually, using parenthe-
ses. Material between \(and \) is called a subexpression, and is matched as a single unit.
For instance, the expression ba\(na\)* can match ba, bana, banana, or bananana, but it can-
not match banan. The n and a have been grouped into an atom. Character classes and the
period are also atoms. When an atom is repeated, it is possible for it to match a different thing

10436ch02final 32 10/23/08 10:13:28 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 33

each time. The regex [aeiou]* can match any string of vowels; each repetition of the atom is
checked separately.

The same rules that allow a subexpression to join multiple characters into an atom allow
multiple subexpressions to be joined; subexpressions can be nested. Good examples of nested
subexpressions are rare in basic regexes; the best uses for them rely on additional operators
not provided in historic implementations of basic regexes.

The more general repetition operator is \{x,y\}, indicating a repetition of between x and
y copies of the preceding character; if y is omitted leaving only \{x,\}, any number of cop-
ies greater than or equal to x are matched. If the comma is also omitted, exactly x copies are
matched. Thus \{x\} is precisely equivalent to \{x,x\}.

The majority of what you need to know to write basic regexes can be summed up with
a list of atoms and a list of repetition operators, as shown in Tables 2- 3 and 2- 4.

 Table 2‑3. Basic Regular Expression Atoms

atom Description

. Match any character

[...] Character class

\(...\) Subexpression

Anything else Individual characters are atoms

So, for instance, in the regex ab*, there are two atoms (a and b), and the repetition opera-
tor * modifies the second atom. In \(ab*\)c, there is a subexpression consisting of two atoms
and a repetition operator, and the whole subexpression is itself an atom. Repetition operators
are not atoms; they operate on atoms. An atom followed by a repetition operator is not an
atom anymore. If you want to make an atom containing a repetition operator, you must wrap
it in parentheses to create a subexpression.

 Table 2‑4. Repetition Operators in Basic Regular Expressions

operator Meaning

* Zero or more

\{x\}	 Exactly	x

\{x,\} At least x

\{x,y\} Between x and y, inclusive

Backreferences
There is one other thing, which is neither an atom nor a repetition operator. In a basic regex,
a backslash followed by a single digit is a special construct called a backreference. As the name
suggests, a backreference is a reference to something earlier in the regex. When a group is
parenthesized, it becomes a subexpression. The backreference \1 refers to the first subexpres-
sion. Unlike a repetition operator, a backreference refers to the matching string rather than the
matching expression. So .\{2\} matches any two characters, but \(.\)\1 matches only two of
the same character. Backreferences are extremely powerful, and some edge conditions exist.

10436ch02final 33 10/23/08 10:13:29 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS34

Backreferences are counted by open parentheses, not closed parentheses; given the expres-
sion \(\(ab\)*c\)*, \1 refers to the outer subexpression and \2 to the inner subexpression. It
is not at all clear what should happen if you write \(\(b\)*\2\), and use of nested subexpres-
sions and backreferences within subexpressions is probably not safe or portable.

Using backreferences is a bit tricky. Very few regexes really need backreferences; in fact,
they are omitted in extended regexes (though some implementations offer them as an exten-
sion).	Even	worse,	their	performance	can	be	incredibly	bad;	a	carefully	crafted	regex	with	
many subexpressions and backreferences can take seconds or even minutes to match against
a string, even on ludicrously fast modern hardware.

Extended Regular Expressions
Extended	regexes	(often	called	EREs)	are	much	more	powerful	than	basic	regexes	in	some	
ways, but weaker in others. They are most prominently associated with the egrep utility. One
of the most obvious differences is the simplification of syntax; parentheses used for grouping,
and braces used for repetition, do not need backslashes in extended regexes. There are several
possible ways to get a literal open brace, but the only portable one is [{]. (More on this in the
“Common	Extensions”	section.)

Extended	regexes	offer	two	additional	repetition	operators,	? and +. The ? operator is
equivalent to {0,1}, and the + operator is equivalent to {1,}. Both offer greatly improved read-
ability, even though they do not offer new functionality.

One of the most significant enhancements of extended regexes is the alternation opera-
tor (|). This is usually pronounced “or,” not “pipe,” because it is the symbol used for logical or
bitwise or operations in some languages. In an extended regex, a|b matches either a or b. This
operator has a low precedence (lower than the joining of adjacent atoms), so hello|goodbye
matches either hello or goodbye, not hellooodbye or hellgoodbye. Furthermore, it applies to
atoms including subexpressions, which combines with nested subexpressions to make for
a number of interesting patterns. The extended regex ((0[1- 9])|(1[12]))? matches any num-
ber from 01 to 12, or an empty string. Patterns like this can be used to check for somewhat
more structured data than can easily be checked for with basic regexes.

Extended	regexes	do	not	have	backreferences	(although	many	implementations	offer	
them	as	an	extension).	They	do	have	subexpressions,	though.	See		Table	2‑5	for	the	list	of	ERE	
atoms.

 Table 2‑5. Extended Regular Expression Atoms

atom Description

. Match any character

[...] Character class

(...) Subexpression

Anything else Individual characters are atoms

The repetition operators are similar, although there are more of them, as shown in
 Table 2-6.

10436ch02final 34 10/23/08 10:13:29 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 35

 Table 2‑6. Repetition Operators in Basic Regular Expressions

operator Meaning

* Zero or more

? Zero or one

+ One or more

{x}	 Exactly	x

{x,} At least x

{x,y} Between x and y, inclusive

The interaction between the alternation operator and other components can be a bit con-
fusing; even experienced programmers sometimes forget how it works. Table 2-7 illustrates
how to use it.

 Table 2‑7. Alternation and Atoms

Expression Meaning

a|b a or b

good|bad good or bad

c|hat c or hat

(c|h)at cat or hat

a|b{2} a or bb

(a|b)c ac or bc

(a)|(b)c a or bc

(a|b){2} aa, ab, ba, or bb

The case in which I have most often gotten confused with alternation is the difference
between (expr1)|(expr2) and (expr1|expr2). These are, in fact, completely interchangeable,
as long as you are not going to refer back to the subexpression later and as long as you don’t
have any other text in your pattern. If there is other text, though, they are different. Consider
the following example:

(h[eu]llo)|(good(bye| night)) (world|moon)

It is pretty obvious what this is doing; it’s matching any of four statements (“hello” or
“hullo” or “goodbye” or “good night”), followed by either “world” or “moon.” Unfortunately,
while this is obvious, it is also wrong. In fact, it can match either “hello” or “hullo” with noth-
ing following them. The | between the hello and goodbye subexpressions is dividing the whole
expression; the space before (world|moon) is not special in any way in a regex, so it just con-
tinues extending the subpattern on the right side of the |. In terms of Table 2-7, this is actually
(a)|(b)c, not (a|b)c.

10436ch02final 35 10/23/08 10:13:30 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS36

Common Extensions
A number of extensions to both basic and extended regexes are quite common. Many imple-
mentations of basic regexes allow \? and \+ as synonyms for the extended regex ? and +
repetition operators. Some also allow alternation using \|. Similarly, some implementations
of extended regexes support backreferences. Another very popular extension is the special
 pseudo- anchors \< and \>, which match the beginning and end of a word; these may be
found in both basic and extended regex implementations. Some systems spell these instead
as [[:<:]] and [[:>:]]. Historical egrep did not support \{ as a literal open brace, but many
modern implementations do. The POSIX standard specifies that a { not followed by a digit
is also literal, but do not rely on this; even if computers always understood it, programmers
would not.

Most modern systems tend to offer a sort of hybrid mode in which extended regexes sup-
port backreferences, and basic regexes support at least a few of the extended regex operators.
On some systems, a plain ? may work even in an alleged basic regex. Text editors that support
regexes are particularly likely to offer strange hybrid feature sets.

In terms of portability, nearly every system has some programs that support extended
regexes,	but	many	programs	provide	BREs	by	default,	or	exclusively,	for	compatibility	reasons.	
 Table 2-8 lists a few of the most common programs that support regexes of one variety or
another.

 Table 2‑8. Regular Expression Support

Program regex Type notes

awk	 Extended	 Also	true	of	awk variants, such as gawk or mawk.

emacs Basic Also supports ? and + (without backslashes) and \| as a synonym for
ERE	|.

expr Basic Some versions may offer ?.

sed Basic Very few versions support ?.

grep Basic See also egrep.

egrep	 Extended	 	Most	commonly	known	variant;	also	known	as	grep -E on some sys-
tems.

fgrep N/A Does not actually use regexes; matches fixed strings only.

vi Basic nvi has an option to	switch	to	extended	REs;	vim supports \? and \+.

Replacements
As has been previously pointed out, patterns are usually implicitly anchored to the ends of
a string; to match a pattern anywhere in a string, you must write *pattern*. Regexes, by con-
trast, are not usually anchored. There is a particularly important reason for this; it is often
desirable to be able to replace the matching text with something else. The most common
place this is encountered in scripting is in sed’s s/pattern/replacement/ operator. This finds
any chunk of a string matching pattern and replaces it with replacement. If the pattern were
implicitly anchored and had to start and end with .* to match text in the middle of a string,
replacements would always replace the whole string. This is not usually what you want.

10436ch02final 36 10/23/08 10:13:30 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 37

In general, replacement text allows some reference back to the matched string. In general,
there are two ways to do this; one is by using \N to refer to subexpressions, much like a back-
reference. The other is to use & (or \& in a few programs) to refer to the entire matched string.
The sed substitution operator allows repeated matches, each starting from immediately past
the previous match, with the g suffix; s/./&- /g replaces word with w-o-r-d- .

Elaborate	replacement	strings using subexpressions are one of the places where the sim-
pler syntax of extended regexes is the most rewarding. It is fairly tedious to type a pattern with
multiple subexpressions. Consider this simple pattern for replacing Random, John Q. with
John Q. Random:

s/\([^]\{1,\}\), \([^]\{1,\}\) \([^]\{1,\}\)/\2 \3 \1/
s/([^]+), ([^]+) ([^]+)/\2 \3 \1/

The extended regex is quite a bit shorter and easier to read. Note that while extended
regexes may not support backreferences, replacements using extended regexes typically sup-
port references to subexpressions.

Using Regular Expressions
Regular expressions are mostly found in external utilities (although some shells may imple-
ment expr as a built in for performance reasons). Because of this, in cases where you can use
a shell pattern instead of a regex, it may be more efficient to use the shell’s built- in pattern
matching, such as the case statement, instead of using an external utility. When using POSIX
shells, the pattern- matching parameter substitutions (discussed in Chapter 7) make it even
easier to get a lot done without needing regexes.

The expr utility offers a fairly flexible regex feature; expr string : pattern performs
a regex match of string against pattern. In this case, the regex is implicitly anchored to the
beginning of the string, as though it had a leading ^; to bypass this, start your pattern with .*.
The value produced by expr depends on whether pattern has subexpressions. If there is at
least one parenthesized subexpression, expr prints the contents of \1, or an empty string if
there is no match. Otherwise, expr prints the length of the match, or 0 if there is no match:

$ expr foobar : foo
3
$ expr foobar : '\(foo\)'
foo

Unlike grep, expr does not consider a zero- length match to be a success; to grep (and most
editors), the pattern b* matches the word hello because the word hello contains zero or more
repetitions of the letter b. To expr, only a match of at least one character is a real match.

One use of the expr utility is extracting parts of file names. A pair of common utilities,
basename and dirname, allow you to extract part of the name of a file from its path. These utili-
ties are not completely portable, but you can do the same thing with expr:

$ expr /path/to/file : '\(.*\)/[^/]*'
/path/to
$ expr /path/to/file : '.*/\([^/]*\)'
file

10436ch02final 37 10/23/08 10:13:30 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS38

Each	of	these	expressions	matches	the	same	string;	an	arbitrarily	long	string	of	any	char-
acters whatsoever, followed by a slash and then any string of characters other than slashes.
The difference is in which part of this pattern is marked as a subexpression; in the first pat-
tern, it is the material before the slash, and in the second, it is the material after the slash. One
weakness of expr is that you can only use it to extract the first subexpression of a regex. If you
need to use a subexpression for grouping before the material you want, you will have to do
something more elaborate to extract the desired text. However, in the most common cases,
you can get what you want.

The preceding example assumes there is always a slash in the expression. What if there
isn’t?

$ expr filename : '\(.*\)/[^/]*'

$ expr filename : '.*/\([^/]*\)'

The expression doesn’t match because there’s no slash. So, of course, the thing to do is
make the slash optional:

$ expr filename : '\(.*\)/\{0,1\}[^/]*'
filename
$ expr filename : '.*/\{0,1\}\([^/]*\)'

This doesn’t work either. The second result might surprise you, but with the slash made
optional, the .* on the left end of the expression can match the whole string; there is nothing
to force it to leave any characters for the subexpression on the right to consume. In practice,
you have to use another layer of testing to determine whether there is a slash before trying to
split the string around it. (More advanced pattern- matching tools, such as the pcre library,
could do this in one pass.)

Regexes are one of the most powerful tools of the UNIX system. With experience and
practice, they become second nature; nothing is so maddening as a program where search-
ing does not support regular expressions. The biggest problem users tend to have early on is
confusing regexes with patterns; there seems to be no cure for this but practice and habit. In
general, patterns are used only in the shell and in file name matching; everything else uses
regexes. The equivalences are simple enough, and anything complicated in a regex gener-
ally cannot be done with a shell pattern to begin with. The hard part is getting the habit for
which one to use when.

Something that might help you develop a feel for the differences between patterns and
regexes is to run some tests and experiment. The following script shows how different strings
do, or do not, match against patterns and regexes. (An explanation of how this script works will
have to wait for a couple of chapters.)

#!/bin/sh
pattern="$1"
shift
for string

10436ch02final 38 10/23/08 10:13:31 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 39

do
 if expr "$string" : ".*$pattern" >/dev/null 2>&1; then
 echo "regex: $string matched $pattern."
 else
 echo "regex: $string didn't match $pattern."
 fi
 case $string in
 $pattern) echo "shell: $string matched $pattern.";;
 *) echo "shell: $string didn't match $pattern.";;
 esac
done

To use this script, save it in a file and mark it as executable (chmod +x filename). Run it
with at least two arguments; the first is a pattern you wish to test, and the second and later
arguments are strings you wish to see matched against the pattern. Here’s a sample:

$./patcheck '*' aardvark
regex: aardvark didn't match *.
shell: aardvark matched *.

Be aware that this script does not try to anchor regexes for you, and it even suppresses the
default anchoring on the left provided by expr. If you want to compare only against anchored
regexes, change the expr line to read as follows:

 if expr "$string" : "$pattern$" >/dev/null 2>&1; then

Regexes offer a number of improvements over shell patterns. The repetition operators
allow for much more specific tests for common patterns, such as a string of unknown length
containing only digits; the regex [0- 9]* simply can’t be expressed correctly in shell patterns.
You can, however, use the pattern *[!0- 9]* to detect any string that does not contain only
digits.

Many utilities default to basic regexes, but optionally accept extended regexes. For the
most part, if you haven’t got a specific reason to think otherwise, any given program prob-
ably uses basic regexes as a default, usually with some extensions. More tips on managing the
diversity of utility behaviors may be found in Chapter 8.

Replacing Patterns with Regular Expressions
Mechanically, it’s quite easy to replace a pattern with a comparable regular expression. What
is not so easy is getting the shell to use regexes in these places. The following discussion
assumes some familiarity with statements and control structures, which are explained in the
following chapters; you can come back to it later if too much of it is unfamiliar.

The two primary uses of shell patterns are file name matching and case statements.
Replacing globs with regexes is not always easy. In the simplest case, you can use ls and grep
together to generate a list. If you want a list of all files whose names have only digits in them
before a particular suffix, such as .txt, you can express this as follows:

$(ls | grep ‘^[0- 9]*.txt$’)

10436ch02final 39 10/23/08 10:13:31 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS40

The ls command, when running in a pipeline, lists each file name on a separate line by
default; the grep command then shows only the lines matching the given regex. The $() con-
struct (explained in Chapter 5; not portable to a few older shells) substitutes the output of
this command, split into words. For files not necessarily in the current directory, this can be
harder, and you may need to use the find command.

The case statement is hard to replace idiomatically. My advice is to replace it with a series
of if and elif statements. Because only one branch of a case statement can match, these
statements should be nested:

if expr "$1" : "$2" >/dev/null 2>&1; then
 echo "$2"
elif expr "$1" : "$3" >/dev/null 2>&1; then
 echo "$3"
elif expr "$1" : "$4" >/dev/null 2>&1; then
 echo "$4"
elif expr "$1" : "$5" >/dev/null 2>&1; then
 echo "$5"
else
 echo "no match"
fi

Another option, which may be more expressive in some cases, is to use regexes (and sub-
stitution) to generate a new string that is more amenable to pattern matching. Imagine that
you wished to check for each of four flags, as in the previous example:

matches=""
expr "$1" : "$2" > /dev/null 2>&1 && matches="2$matches"
expr "$1" : "$3" > /dev/null 2>&1 && matches="3$matches"
expr "$1" : "$4" > /dev/null 2>&1 && matches="4$matches"
expr "$1" : "$5" > /dev/null 2>&1 && matches="5$matches"

case $matches in
2) echo "$2";;
3) echo "$3";;
4) echo "$4";;
5) echo "$5";;
*) echo "no match";;
esac

While this structure separates the matching operation into two passes, it preserves the
semantics of the case statement precisely. On the down side, it does require processing all four
tests before evaluating any of them.

Common Pitfalls of Regular Expressions
The two most common problems with regexes are matching too much and matching too little.
In particular, it is extremely easy to be surprised when a .* matches nothing, and you expected
it to match something, or to be surprised when it matches everything.

10436ch02final 40 10/23/08 10:13:31 PM

CHAPTER 2 ■ PATTERNS AND REGULAR EXPRESSIONS 41

Some time ago, I wrote a script in which I intended to reverse the first two words of a line:

sed -e 's/\([^]*\) \([^]*\)/\2 \1/'

This did exactly what I expected; it selected everything up to the first space, and the next
block of spaces, and reversed them. But then I wanted it to keep doing this to additional pairs,
so I modified it:

sed -e 's/\([^]*\) \([^]*\)/\2 \1/g'

This seemed to work, but then I tried it on another system, and it didn’t seem to work at
all. While a b became b a, a b c d became b ac d. (In fact, there was a trailing space after this,
which I did not initially notice.) In fact, “buggy” system was correct. The first iteration matches
a b. The second matches an empty string of nonspaces, a space, and the letter c, and reverses
them. Because I “knew” that my intent in writing [^]* was to match the largest available
series of non- words, I forgot that the regex takes the first match it can find, matching as much
as it can, not the longest match it can find no matter where it has to start to make that match.
Interestingly, several systems had a bug, which caused them to skip that first character in this
circumstance and “correctly” do what I wanted. (The bug seems to have been an unusual edge
condition.)

Forgetting anchors or including extra anchors are both common mistakes made when
trying to match something specific. Just during the time I’ve been working on this book, I’ve
been bitten several times by the fact that expr anchors regexes implicitly to the beginning of
the string.

When you have an expression that could be seen as matching a string in more than one
way, the general rule is that the leftmost expressions are greedy first. So, if part of a string
could go in either of two subexpressions, it will be in the leftmost one.

The distinctions between basic and extended regexes are another common source of con-
fusion. If you have been using one heavily, and you switch to the other, all sorts of things go
wrong. Subexpressions become literal parentheses, and vice versa; both are confusing. There
is no such thing as a nontrivial regex that can be used both as a basic and an extended regex.
If you have two editors, one that uses each syntax, expect to spend a lot of time puzzling over
warnings about invalid repetition operators and unmatched parentheses, or wondering why
a search didn’t turn something up that is right there in the page.

What’s next?
The ability to decide which of several pieces of code to execute, or to execute code repeatedly,
is essential to programming. Chapter 3 introduces the basic control structures that make the
shell into a programming language rather than a mere macro language, as well as some of the
tools the shell provides for the creation and manipulation of data files.

10436ch02final 41 10/23/08 10:13:31 PM

10436ch02final 42 10/23/08 10:13:31 PM

C h a p t e r 3

Basic Shell Scripting

This chapter introduces the basics of control flow in the shell. The shell’s functionality is
moderately baroque, and many shell features have elaborate interactions. This chapter glosses
over the full (and rather gory) details of the shell’s quoting and variable expansion features,
leaving them for Chapter 4. Instead, this chapter introduces the basic programming features
of the shell, showing how to control the execution of shell scripts, join programs together,
and interact with files. This framework makes it much easier to provide meaningful examples
while exploring the rather more complicated territory of the shell’s expansion and quoting
mechanisms.

Scripts presented without command prompts may be run directly on the command line
or saved in a file and run as scripts.

Introducing Control Structures
By default, the shell executes commands in the order it encounters them, whether on the
command line or on the keyboard. Certain inputs, however, instead of having direct effects of
their own, cause the shell to change which commands it executes and in what order; these are
called control structures. Control structures are what make the shell a programming language,
rather than a very simple macro expansion language.

There are several kinds of control structures. Conditional execution causes the shell to
execute some code, while skipping other code. This allows a script to adapt to different cir-
cumstances; for instance, a script might wish to ask a user for confirmation before taking
a risky action. Iteration allows a script to run a given block of code more or fewer times. A typi-
cal example would be a program that performs the same operations on every file in a directory
or on each line of input.

Control structures are sometimes used even when their function could be obtained
without them; for instance, you might write a loop to perform a given task five times, rather
than simply duplicating the code for that task five times. This makes it easier to generalize
later (if the number of times you want to repeat the task varies, for instance) and also makes
it easier to maintain code. This can also be done using shell functions, a feature introduced in
Chapter 5.

In both cases, shell control structures depend on testing conditions. To make a decision
about what to do, the shell has to be able to express the concept of a yes or no question; the
shell has to have a concept of truth and falsehood, whether the question is “did the user say
yes?” or “are there any more files?”

43

10436ch03final 43 10/23/08 11:28:47 PM

Chapter 3 ■ BaSIC SheLL SCrIptING44

A word on STyle

The scripts used in this book employ a consistent indentation style. It is not necessary that you indent your
scripts exactly the same way. The shell is, with rare exceptions, unaffected by your indentation choices. How-
ever, future readers will usually care quite a bit. A good indentation style ought to make it easy for the reader
to see what is going on. Unfortunately, programmers rarely agree on what constitutes “easy to read.” This
book uses an indentation style familiar to readers of GNU shell scripts, with two spaces of indentation.

One other important note: When modifying existing code, never change the indentation policy if there
is one. It is more important that a given module be consistent than that you like the way your additions read.
Users can learn nearly any indentation style fairly quickly, but they cannot hope to easily read code with
inconsistent indentation.

What Is Truth?
In nearly every programming language, most control structures come down to tests and the
concept of whether a condition “is true.” In the shell, control structures are based on the exit
status of commands. Every program that is run on a UNIX- like system has a numeric exit
status (or return code), which indicates something about the final state of its execution. Two
programs provided on all UNIX systems, true and false, are guaranteed to always yield a true
or false exit status, respectively. The : built- in command always produces a true exit status.
Under the hood, the return code is zero for a successful command execution, and non- zero for
a command that is reporting any kind of failure or abnormality. This conflicts with the com-
mon convention in C- like languages of executing code inside if (1) and not executing code
inside if (0). Many shell programmers use the : command, which is a synonym for true. I like
the natural language form, but the use of : is quite common, too. It has advantages. While only
some shells provide true as a built- in, : is a built- in command in every shell, making it more
efficient. It is also shorter to type and to read. (And for those of you targeting minimal embed-
ded systems, : works when /bin/true is missing. This is less important with /bin/false; if it is
missing, the execution fails, so the false command always fails.) The examples in this book are
written more for clarity than for performance, in this respect.

While people often think of control structures as applying only within script files, the shell
happily accepts control structures typed directly on the command line. For instance, you can
verify the behavior of true and false on the command line:

$ if true
> then echo "True!"
> fi
True!
$ if false
> then echo "False!"
> fi
$

The exit status is not the output of the program; it is a separate piece of data made avail-
able to the calling program, such as the shell. The true command doesn’t print the zero value,
it simply makes that value available to the program calling it.

10436ch03final 44 10/23/08 11:28:47 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 45

For now, I ignore the question of whether commands are built in or external. It turns out
not to matter; built- in commands produce a return code, just as external commands do, and
use the same conventions. If you are curious about the return code of a command, you can
echo the built- in shell parameter $? immediately after running it. After a successful command,
this value will be 0. After an unsuccessful command, it will typically be non- zero. Standard
POSIX shells have a feature where any command can be prefixed with !, reversing the return
code of that command. For instance, the echo command usually succeeds, but ! echo hello
performs the echo successfully, then yields a return code indicating failure. Unfortunately,
a few shells omit this feature; in code that has to run on /bin/sh on every common system, it is
best to avoid it. Here is an example of how to test for the function of the ! command prefix:

if eval "! false" > /dev/null 2>&1; then
 echo "This shell supports !"
else
 echo "This shell does not support !"
fi

This shell supports !

There are only a couple of shells (most notably /bin/sh on Solaris) that will run into this.
You can replace !command with a construct like this:

if command; then false; else true; fi

One command is particularly important—the test command, which can perform a vari-
ety of logical tests, such as comparing numbers or strings, or testing attributes of files (such as
whether they exist, have contents, or are accessible). Unlike many commands, the test com-
mand generally produces no output at all; rather, it indicates success or failure only through its
return code. For historical reasons, and also because it looks pretty, the test command has an
alias of [, which expects a trailing] after its arguments. If you have ever wondered why there
is a file /bin/[, now you know. However, this variant can not be safely used in shell code being
used with m4sh or autoconf, so it is a good habit to use the plain test form.

wHy IS TeST eXTernAl?

This is sort of a trick question; in fact, in many shells, the test command (and [) are actually implemented
internally by the shell for efficiency. The real question is why test is conceived of as a command rather than
as some kind of syntactic feature of the shell. The answer is that the shell’s syntax is more generic this way;
you can write new programs, and they can immediately become part of the shell’s extremely flexible control
structure. The various tests (and there are many) performed by the test program are only a small subset of
the sorts of things you might want to check for within a script. In general, in terms of portability, it does not
matter whether a command is a built- in or external command, as long as its behavior is predictable.

10436ch03final 45 10/23/08 11:28:48 PM

Chapter 3 ■ BaSIC SheLL SCrIptING46

When expanding variables as arguments to the test command, be careful about what
could happen with variables whose expansions look like parts of the test command’s argu-
ment grammar. While most of the time the test command figures out what was intended, it
can be easier for everyone to ensure that arguments are unambiguous. A common idiom for
this is to precede arguments with X where possible, as in the following example:

if test X"$answer" = X"42"; then
 echo “Forty- two!”
fi

There are three key points to this idiom. First, putting a letter in front of the variable
ensures that, even if a user enters something like = or -f, test treats the argument as a plain
string, not an operator. Putting quotes around the variable ensures that it will not be split
into multiple words. Finally, putting the X outside the quotes on both sides makes the intent
clearer. The user can easily see that the X is the same on both sides. Another common idiom
is to reverse the positions of the values. This eliminates possible ambiguities, presenting test
with an expression that can only be understood as intended:

if test 42 = "$answer"; then
 echo “Forty- two!”
fi

Of these two, I prefer the X form, simply because I find it easier to read “answer equals 42”
than “42 equals answer.” This is purely a style question; either is portable.

The test program performs string comparisons by default; the expression test 1 = 1.0
is considered false because the strings differ. However, it also supports numeric comparisons,
which are spelled as hyphenated operators, like -eq; test 1 -eq 1.0 is true. Numeric com-
parisons are needed because string comparisons pay no attention to magnitude; test 100 < 2
succeeds because the digit 1 is before the digit 2 in standard character sets. Table 3-1 shows
the relational operators supported in test.

 Table 3‑1. Relational Operators in test

String operator numeric operator Meaning

a = b a -eq b a and b are equal

a != b a -ne b a and b are not equal

a > b a -gt b a is greater than b

a < b a -lt b a is less than b

a >= b a -ge b a is greater than or equal to b

a <= b a -le b a is less than or equal to b

Developers from other languages should note two distinctions. The first is that the ==
equality operator is not portable, although some variants support it as an extension. The
second is that Perl precisely reverses the sense of these operators; in Perl, == is the numeric
equality test, and eq is the stringwise one.

10436ch03final 46 10/23/08 11:28:48 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 47

The test command supports a number of logical operations allowing you to combine or
invert tests. First, any test can be preceded by ! to reverse the sense of the test. This is portable
among shells and implementations of test, even in shells that do not allow commands to be
preceded by !.

Some versions of test allow combinations of multiple tests, conjoined with -a (and) or -o
(or) operators. This is not fully portable; instead, use the shell’s && and || operators (which are
explained in Chapter 4).

Introducing Conditional Execution
There are two primary mechanisms for conditional execution in the shell. The first is the
if statement, which executes code if a specified condition is true. The second is the case
statement, which can select among multiple sections of code based on the contents of an
expression. In both cases, only one section of code is actually executed, and others are com-
pletely bypassed.

Introducing the if-then- else Statement
The if statement executes code if a specified command succeeds. The syntax of the if state-
ment follows this basic pattern:

if command; then
 actions
fi

The use of fi, rather than something generic like end, reflects the original shell developer’s
fondness for ALGOL. The then part of the statement does not need to be on the same line as
the if; in fact, it must be separated by a command separator (the semicolon in the previous
example). Some users prefer to write if statements as follows:

if command
then actions
fi

In this book, I use the first structure, but they are equivalent. A simple program to check
whether the reader can perform simple arithmetic could be implemented as follows:

printf "What do you get if you multiply 6 by 9? "
read answer
if test X"$answer" = X"42"; then
 echo "You read too much science fiction."
fi

If the user enters 42, the shell counters with a reference to a popular novel. But if the user
enters anything else, the shell just says nothing. You could resolve this by checking for other
values:

10436ch03final 47 10/23/08 11:28:48 PM

Chapter 3 ■ BaSIC SheLL SCrIptING48

printf "What do you get if you multiply 6 by 9? "
read answer
if test X"$answer" = X"42"; then
 echo "You read too much science fiction."
fi

if test X"$answer" != X"42"; then
 echo "You do not read enough science fiction."
fi

As you can see, this has the potential to become large and unwieldy rather quickly. Fur-
thermore, if some clever sort comes along and “corrects” the value used, it’s quite possible
that one of the statements will be changed, and the other will not, leading to inconsistent or
unwanted behavior. Luckily, the shell has another keyword that may be used in if statements:
else. The else clause of an if statement, if present, is executed if the specified command indi-
cated failure. A more idiomatic implementation of the previous script would be as follows:

printf "What do you get if you multiply 6 by 9? "
read answer
if test X"$answer" = X"42"; then
 echo "You read too much science fiction."
else
 echo "You do not read enough science fiction."
fi

As with then, else may be placed on the same line as the following actions; however, this
is often harder for the reader to understand. Conditional statements may be nested arbitrarily,
as well:

printf "What do you get if you multiply 6 by 9? "
read answer
if test X"$answer" = X"42"; then
 echo "You read too much science fiction."
else
 if test X"$answer" = X"54"; then
 echo "Boring, but arguably correct."
 else
 echo "You do not read enough science fiction."
 fi
fi

This works well as long as there are not too many alternatives, but imagine for a moment
a test to determine whether the user has entered a valid state or province name using this pat-
tern. Clearly, something more flexible is needed. One method is to use the optional elif test:

10436ch03final 48 10/23/08 11:28:48 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 49

printf "What do you get if you multiply 6 by 9? "
read answer
if test X"$answer" = X"42"; then
 echo "You read too much science fiction."
elif test X"$answer" = X"54"; then
 echo "Boring, but arguably correct."
else
 echo "You do not read enough science fiction."
fi

Any command may be used as the controlling expression for an if or elif statement.
Since most UNIX commands indicate their status in their return code, this can also be used for
error detection during a script’s execution. Most programs print their own error messages, but
sometimes the output from a program would not be informative to the user.

if grep $user /etc/passwd; then
 echo "$user is already in /etc/passwd."
fi

seebs:x:1000:1000:Peter Seebach,,,:/home/seebs:/bin/bash
seebs is already in /etc/passwd.

The first line of output is the output from the grep command, not the intended error mes-
sage. There are two ways to resolve this. One is to use the -q (or -s) command- line flag to grep;
this suppresses output, causing grep to indicate success or failure only through its exit status.
Unfortunately, these flags, while widespread, are not universal; some implementations sup-
port one, some the other, and some neither. The portable solution is to redirect the output of
the command:

if grep $user /etc/passwd >/dev/null; then
 echo "$user is already in /etc/passwd."
fi

The output is redirected to /dev/null, preventing the user from seeing it. (Redirection is
explained in the “Introducing Redirection” section later in this chapter.)

When you need to store a user preference or other decision, the simplest idiom is to store
either true or false in a variable, then use the variable as a condition:

do_this=true
do_that=false
if $do_this; then
 echo "Do this."
fi
if $do_that; then
 echo "Do not do that."
fi

Do this.

10436ch03final 49 10/23/08 11:28:49 PM

Chapter 3 ■ BaSIC SheLL SCrIptING50

This idiom is easy to read and runs efficiently. You can also store values such as Y or N
in a variable and test for them using the test command, but using true and false is simpler
and cleaner. Implemented with string values and the test command, the previous example
becomes:

do_this=Y
do_that=N
if test "$do_this" = "Y"; then
 echo "Do this."
fi
if test "$do_that" = "Y"; then
 echo "Do not do that."
fi

Do this.

The behavior is the same, but the code is harder to read. Experienced programmers may
prefer to use : and false for brevity or performance reasons.

You can test for patterns as well. While there is no portable way to match patterns or
regular expressions using test (the regular expression operator is not universal), the expr com-
mand can be used to compare strings to regular expressions:

if expr "$do_this" : "[Yy].*"; then
 echo "Do this."
fi

In some cases, you will find that the if and elif constructs are not as expressive as you
would like for a given problem, and what you really want to do is compare a string against
a series of possible patterns, not just against an individual pattern. There is a way to do just
that.

Introducing the case Statement
The case statement compares a string to a series of patterns. One of the advantages of this
is that you can have multiple different tests without an ever- increasing indentation spiral of
doom. One of the disadvantages is that, while expr tests regular expressions, case tests only
shell patterns. However, shell patterns with alternation are flexible enough to serve well. The
basic layout of a case command looks like this:

case word in
 pat1) actions;;
 pat2) actions;;
esac

As with if, the case command is ended by its own name, spelled backward. There may not
be spaces between the two semicolons that terminate each list of actions. The value of word is
expanded but is not subject to field splitting after expansion. So if word is just a single variable,
you never need quotes around it. (The only time you could need spaces would be if word con-
tains spaces prior to expansion; the value "$a $b" needs to be quoted, as the shell takes only

10436ch03final 50 10/23/08 11:28:49 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 51

a single word before the in keyword.) The value is checked against each pattern in turn, and
the actions from the first matching pattern are executed. Some systems also provide pattern
matching in test, but this is nonportable. Use case instead.

 Pattern matching is explained in more detail in Chapter 2. This section assumes some
familiarity with pattern matching but uses simple patterns to illustrate how the case statement
works. For instance, the following test implements a draconian user interface policy:

printf "Would you like to play a game? (please enter yes or no): "
read input
case $input in
 yes) echo "I would like to play a game too, but I am only a sample script.";;
 no) echo "I am very disappointed.";;
 *) echo "I said to please enter yes or no. Now formatting your disk...";;
esac

User input that contains “yes” or “no” plus other contents will not pass muster in this
example. For instance, if the user entered “yes, please,” the script would not consider this valid
input. A more forgiving writer might use something similar to the following:

printf "Would you like to play a game? (please enter yes or no): "
read input
case $input in
 [Yy]*) echo "I would like to play a game too, but I am only a sample script.";;
 [Nn]*) echo "I am very disappointed.";;
 *) echo "I said to please enter yes or no. Now formatting your disk...";;
esac

Additionally, it is permissible to provide multiple patterns for a single case, separating
them with pipe characters (|). For instance, the following script accepts a number of variants
but is not quite as general as the preceding example:

printf "Would you like to play a game? (please enter yes or no): "
read input
case $input in
[Yy]|[Yy][Ee][Ss]) echo "Me too, but I am only a sample script.";;
[Nn]|[Nn][Oo]) echo "I am very disappointed.";;
*) echo "I said to please enter yes or no. Now formatting your disk...";;
esac

This accepts y or yes in any combination of capitals, or n or no in any combination of cap-
itals, but it will not recognize other inputs. If there is no way to manage what you want using
shell patterns, you may have to fall back on if statements and expr or grep. See Chapter 2 for
more information about patterns and regular expressions.

Between if and case, you can control the behavior of a great number of programs; but if
you stop there, you will shortly notice that programs that need to repeat actions become very
tedious to write and maintain, even with a modern text editor to handle your cut and paste
needs. What you need is a way to do the same thing over and over, without getting bored; this
brings us to iteration.

10436ch03final 51 10/23/08 11:28:49 PM

Chapter 3 ■ BaSIC SheLL SCrIptING52

Introducing Iteration
The real strength of the shell (or of anything computers do) is not in doing a single thing, but
in doing similar things over and over. The shell provides two primary mechanisms for itera-
tion. The while loop (and its relative, the until loop) repeat as long as a condition is true (or
false). The for loop iterates over a fixed list of items, processing each item once.

the while Loop
The simplest loop in the shell is the while loop, which performs a series of actions as long as
a condition remains true. The basic syntax is this:

while command; do
 actions
done

As with the if statement, command can be any shell command. The actions can be a shell
command or a sequence of shell commands. If command indicates failure, the shell leaves the
loop. For instance, if command fails the first time the shell executes it, the actions are not per-
formed even once. Otherwise, after each time performing actions, the shell runs command again.
For instance, Listing 3-1 might induce a positive frame of mind.

 listing 3‑1. Positive Thinking Made Easy

while test X"$answer" != X"yes"; do
 printf "Say yes: "
 read answer
done

This loop runs until the variable $answer contains the string yes. The variable is not initial-
ized prior to the loop; assuming it wasn’t already set somewhere else in the script, it simply
expands to an empty string until the user supplies a response to the read command. It is not
an error to use an uninitialized variable in the shell (but you can check for a value; see the dis-
cussion of variables in Chapter 4).

You can make the code inside the loop as complicated as you want, including using other
features such as conditional execution, as in the following example:

while test X"$answer" != X"YES"; do
 printf "Are you ready? "
 read answer
 if X"$answer" = X"yes"; then
 echo "I can't HEAR you!"
 elif test X"$answer" != X"YES"; then
 echo "When I ask you a question, you say YES!"
 fi
done

10436ch03final 52 10/23/08 11:28:49 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 53

For convenience, the shell also offers an until loop, which is precisely like a while loop,
except the sense of the condition test is reversed. For instance, Listing 3-1 would be written as
follows using until:

until test X"$answer" = X"yes"; do
 printf "Say yes: "
 read answer
done

Some writers feel that the until loop adds substantial clarity, but others dislike it. I recom-
mend that you use it when it seems clearer. If a natural language description of the process
would start with “do X until . . . ,” then use until.

Introducing break and continue
Sometimes, you may find out early in a loop iteration that you cannot usefully continue. The
shell only checks command at the top of the loop, though; the shell will not stop the sequence
of commands halfway through just because command would indicate failure if run again. To
escape the loop immediately, use the break command. In some cases, this is especially useful
when combined with the true program, which always succeeds. For instance, you may want to
ensure that a loop is run at least once (C programmers may be familiar with this as the do {}
while () idiom). There is no explicit syntax for this. Idiomatically, you run an eternal loop, and
break when the loop condition is no longer true.

while true; do
 printf "Say yes: "
 read answer
 if test X"$answer" != X"yes" ; then
 echo "Oh, come on now. You can do it!"
 else
 echo "You did it! Way to go!"
 break
 fi
done

Another possibility is that, while this particular iteration of the loop has lost interest for
you, you wish to continue iterating. For this, you use the continue statement, which jumps
back to the top of the loop. The continue statement jumps to the iteration test; if that test now
fails, the loop exits.

Note that break and continue only have meaning within loops, such as while or for, not
in terms of if or case statements. The break statement in this example skips out of the while
loop. If you want to break out of more than one loop, the break and continue statements take
an optional argument indicating how many nested loops to break out of.

while true; do
 printf "Are you bored yet?"
 answer=""

10436ch03final 53 10/23/08 11:28:50 PM

Chapter 3 ■ BaSIC SheLL SCrIptING54

 while test X"$answer" != X"yes" && test X"$answer" != X"no"; do
 read answer
 case $answer in
 no) ;;
 yes) echo "I never liked you either."
 break 2;;
 *) echo "I am but a humble script, and only understand yes and no.";;
 esac
 done
done

The preceding example uses break 2 to leave both the inner loop (waiting for an answer it
understands) and the outer loop. If the inner loop used only a plain break statement, it would
jump to the end of the inner loop, but the outer loop would continue to iterate.

Introducing for loops
In the shell, the for loop does only one thing: iterate over a provided set of arguments. This
is not analogous at all to the C for loop, which can iterate over essentially any circumstance.
Perl users may be familiar with it as foreach. The basic form of the for loop is this:

for var in list; do
 actions
done

The value provided for list is subject to parameter substitution followed by globbing, and
then subject to field splitting (unless it is quoted). The for loop runs once for each member
of list, assigning that value to var. For instance, the following script looks almost like a very
simple mail- merge program:

for name in "Occupant" "Our Friends" "Current Resident" "Postal Customer"; do
 echo "Hello, $name"
 echo "Look! A personalized letter! Buy our stuff!"
done

Because the most common usage of the for loop is to iterate over the arguments given
to a script, there is a special syntax to do this. If the in list is omitted, the shell iterates over
the arguments given to the script. (Actually, it iterates over the positional parameters, which
are usually but not always the arguments given to the script; the positional parameters are
discussed at length in Chapter 6.) However, this produces a rare portability issue; some older
versions of bash do not cope well with a semicolon after the variable name. When using for
without in, put a new line before the do keyword. For instance, the following script identifies
the first file in its arguments that contains a given string:

10436ch03final 54 10/23/08 11:28:50 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 55

string="test"
for i
do
 if grep "$string" "$i"; then
 echo "$i"
 break
 fi
done

As you can see, break works the same way in for loops that it does in while loops. This
script has a number of flaws, but it can be used. The most obvious flaw is the display of the
unneeded output from grep. Another flaw is that, if $string expands to something that looks
like a grep option, the script misbehaves; similarly, some versions of echo may behave surpris-
ingly with file names that have hyphens or backslashes in them. The following script is a little
cleaner:

string="test"
for i
do
 if grep -e "$string" "$i" >/dev/null; then
 printf "%s\n" "$i"
 break
 fi
done

The -e option to grep specifies that the following argument is the expression to match,
even if it might otherwise be interpreted as an option. The printf command displays the file
name no matter what it is, suppressing the strange and unportable behavior of echo.

Thinking About Control Structures
The preceding introduction to control structures is not a substitute for using them frequently
to get comfortable with them, but it should be complete enough to let you understand the
sample programs used to illustrate other features. It takes some experience to know when to
use the different control structures, and the best way to develop a good sense for this is prob-
ably to look at, and write, lots of examples. If you are new to programming, this is usually one
of the hardest parts to get used to.

The shell control structures have names that describe their behaviors. You can usually
decide which one to use by trying out verbal descriptions such as “for each file” (a for loop),
“while there is more data” (a while loop), or “if the file exists” (an if statement). The case
statement is the hardest to map to idiomatic English, but if a description of what you are doing
can be phrased starting with “in the first case,” it is probably going to map well onto case.

Some of the most powerful uses of these constructs depend on the use of additional tools.
One of the most crucial of these is the ability to change the sources of input, and the destina-
tions of output, of shell programs.

10436ch03final 55 10/23/08 11:28:50 PM

Chapter 3 ■ BaSIC SheLL SCrIptING56

Introducing redirection
In most cases, when you are using a shell interactively, commands accept input from your key-
board and direct output to your screen. When you run a script from an interactive session, it
works the same way. UNIX systems treat files, keyboards, and other data sources in essentially
the same way, calling them all streams. A stream is simply a source of data, or a place data can
be written to. Some streams can be both read from and written to. Changing the source of
a program’s input, or the destination of its output, is called redirection. This section provides
an introduction to redirection, although there are additional features to be explored later.

The examples in this section are often presented as interactive sessions, with user input
in bold and shell prompts and output in plain text.

Here’s an example of redirection in action:

$ echo "hello, world" > hello
$ cat hello
hello, world

This differs from the direct echo in that a new file, named hello, has been created. The
output of echo is redirected into the file. When redirecting to a file, the shell empties the file
first. If you want to add on to the existing contents, use >>, as in the following example:

$ echo "goodbye, now" >> hello
$ cat hello
hello, world
goodbye, now

A particularly common redirection target is the special file /dev/null. This special file is
not a regular file storing data, but a special file that simply discards anything and everything
written to it. For instance, the for loop example emitted unwanted output, until it was elimi-
nated by the use of redirection to /dev/null; here it is again:

for i
do
 if grep -e "$string" "$i" >/dev/null; then
 printf "%s\n" "$i"
 break
 fi
done

Without the redirection, the user sees all of the matching lines in each file, followed by its
name. This is annoying, but there is no portable way to tell grep not to produce any output.
What you can do portably is redirect that output, discarding it; then, the script produces only
the file names, rather than the grep output and the file names.

Similarly, commands can be run using a file as input instead of the keyboard, using a < for
redirection. For instance, you might want to run one command on the output of another, like
this:

$ ls > list
$ grep hello < list
hello

10436ch03final 56 10/23/08 11:28:51 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 57

In this example, a complete list of files in the current directory is stored in a new file
named list. Then, the grep command is used to display lines in that file containing the string
hello. This is inefficient, though; you have to remember to clean up the intermediate file, and
if the output is large, it takes up a lot of space. UNIX solves this with pipes. A pipe is a single
stream that provides output from one program as input to another. For instance, the following
command displays every file in the current directory with hello in its name:

$ ls | grep hello

On some (non- UNIX) systems, a similar syntax is available, but the shell implements it
by writing the output to a temporary file, running the second program on that file, and then
deleting the file. On UNIX, both commands can run simultaneously.

A series of commands joined by pipes is called a pipeline, and in general, a pipeline can be
used in any case where a single command could be used. A pipeline can have more than two
commands. This command displays a count of files in the current directory with hello in their
names:

ls | grep hello | wc -l

The exit status of a pipeline is the exit status of the last command in it. So the first example
can be used, combined with redirection, to create a simple test:

if ls | grep hello > /dev/null; then
 echo "you have a file with hello in its name."
fi

The output from the ls command is fed into grep as input. The grep command then prints
any matching lines, but its output has been redirected to /dev/null. However, the grep com-
mand’s exit status is success when it finds at least one match. So, without actually looking at
the output, the shell can still tell whether grep would have printed anything, and thus whether
there were any matching lines. Note that it does not matter at all what exit status the ls com-
mand yields; only the exit status of grep is being used by the shell. Thus this script won’t work:

if ls | grep hello | wc -l > /dev/null; then
 echo "you have a file with hello in its name."
fi

Whether grep produces any output or not, the wc (word count) command is unlikely to
fail. This highlights the difference between the output of the command and its return code.
If there are no matching files, wc -l prints 0 to standard output; if there are matching files, it
prints the number of lines it received as input. However, its return code will be zero as long
as no errors occurred. Because wc is the last program in the pipeline, it determines the return
code of the whole pipeline.

Understanding File Descriptors
The discussion so far has talked about input and output streams, but it has not mentioned
any other streams. UNIX programs usually start with three streams: standard input, standard
output, and standard error. Standard input reflects the input to the program, whether that is
a terminal, another program, or a file. Standard output is where the program’s output goes,

10436ch03final 57 10/23/08 11:28:51 PM

Chapter 3 ■ BaSIC SheLL SCrIptING58

while standard error is a separate stream used for error messages. When standard output is
redirected to a file or to another program, standard error is unchanged:

$ grep string nonexistent- file > /dev/null
grep: nonexistent- file: No such file or directory

If you are running in an interactive session, standard error is usually your terminal. As
another example, when a CGI script is being run by a web server, it is common for standard
output to be the eventual web page to be presented to the client and standard error to go into
the web server’s log files.

Streams have associated numbers, called descriptors. Standard input is always descrip-
tor 0, standard output is descriptor 1, and standard error is descriptor 2. By default, output
redirection redirects descriptor 1, and input redirection redirects descriptor 0. So, in this
example, standard output is redirected, but standard error is not:

$ ls nonexistent- file > output
ls: nonexistent- file: No such file or directory

The file named output is created, but empty, because the ls command did not send any
messages to standard output. You can specify the descriptor to redirect explicitly:

$ ls nonexistent- file 2> error
$ cat error
ls: nonexistent- file: No such file or directory

The ls command produces no messages to standard output, and its error messages are
directed into the file named error. However, if the file did exist, the error file would be empty
and the file name would be displayed; standard output has not been redirected. This kind of
technique can be used to defer the display of an error message, or prefix it with some kind of
explanation. Consider the preceding example with a loop calling grep. You might want to defer
those messages or suppress them entirely:

string="test"
found=0
show_errs=true
for i
do
 if grep "$string" "$i" >/dev/null 2>error
 printf "%s\n" "$i"
 show_errs=false
 break
 fi
done

This writes any errors it encounters into a file named error; a more robust script would
use a temporary file with a name that is not likely to clash with a user- created file. However,
you need a way to report these errors. If there were errors encountered before a matching file
showed up, it is undesirable to follow the file with errors. Thus the show_errs variable is cre-
ated to indicate whether to display errors. It is used as follows:

10436ch03final 58 10/23/08 11:28:51 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 59

if $show_errs; then
 echo "Couldn't find '$string' in any files."
 if test -s error; then
 echo "Errors were encountered:"
 cat error
 fi
fi

If the show_errs value still contains true, no matches were found, and it is useful to display
an error message to the user. The if statement becomes if true; then, which executes the
conditional code. On the other hand, if matches were found, show_errs has been set to false,
and the conditional code is not executed; there is no reason to warn the user about possible
errors reading other files when the file the user cared about was read successfully.

In the case where no matches were found, any error messages from the grep commands
might be relevant, so they should be displayed. This is conditional on the test -s command,
which checks that a file exists and has contents. Unfortunately, there is a subtle bug; since
each call to grep is redirected separately, the file contains only any errors produced by the last
file. Each run through the loop empties the error file before running grep. One solution would
be to use >> redirection, but there is a simpler way. Redirection can be applied to any shell
command, not just individual statements. Redirecting the whole loop truncates the file only
once, at the start of the loop, and accumulates all of the errors. Another is to use a more robust
name for the temporary file. That gives you the following improved script:

string="test"
found=0
show_errs=true
error=${TMPDIR:-/tmp}/err.$$
for i
do
 if grep "$string" "$i" >/dev/null; then
 printf "%s\n" "$i"
 show_errs=false
 break
 fi
done 2>"$error"
if $show_errs; then
 echo "Couldn't find '$string' in any files."
 if test -s "$error"; then
 echo "Errors were encountered:"
 cat "$error"
 fi
fi

Just as the shell restores the previous streams after redirecting a single command, it
restores the previous streams after redirecting a compound command. The TMPDIR envi-
ronment variable, when set, is used to hint at a location other than /tmp in which to store
temporary files. By convention, temporary files usually embed the shell’s PID in their names

10436ch03final 59 10/23/08 11:28:51 PM

Chapter 3 ■ BaSIC SheLL SCrIptING60

to avoid clashes. Each use of the file name error has been changed to "$error". The quotes
protect the script in the event that someone has set TMPDIR to a name including spaces or new
lines, which could otherwise cause the shell’s field splitting to render the script syntactically
invalid.

However, this script now has a serious bug. Its output is only sometimes the name of the
first file containing the string. If there were no such files, its output is an error message. This
requires any program using the output from this program to be more careful. What you want is
some way to distinguish between the output of a script and diagnostic messages about it. And,
as it turns out, that is exactly what standard error is for. Thus the following cleaned up version
does the right thing:

string="test"
found=0
show_errs=true
error=${TMPDIR:-/tmp}/err.$$
for i
do
 if grep "$string" "$i" >/dev/null; then
 printf "%s\n" "$i"
 show_errs=false
 break
 fi
done 2>"$error"
if $show_errs; then
 echo "Couldn't find '$string' in any files."
 if test -s "$error"; then
 echo "Errors were encountered:"
 cat "$error"
 fi
fi >&2

As with the redirection of the for loop, the entire trailing if statement can be redirected.
The redirection >&2 redirects the output of the if statement to standard error; this technique is
explained further in a few paragraphs. If this command is used in a pipeline with another com-
mand which expects to receive the name of a file, the second command will get either a file
name or nothing; this prevents the second program from trying to find a file named Couldn't
find 'test' in any files.

In most cases, this is a useful feature. However, separating output and errors is not always
desirable. In some cases, such as running large software builds, it is common to want to put
standard output and standard error together in a single file. For instance, if you wanted both
the output of a build and any error messages stored in a log file, you might try this:

make >log 2>log

This does not work as intended. The first redirection creates a file named log, truncates it,
and starts writing output to it. The second opens the same file and starts writing to it. Unfortu-
nately for you, this means that the output and error streams can overwrite each other because

10436ch03final 60 10/23/08 11:28:52 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 61

they are each writing separately to the same file. Each redirection has created a separate
stream going into the same file, and each stream has its own notion of where in the file it will
write next. What you want, however, is to have a single stream that both standard output and
standard error appear in. The shell has a special syntax for this, allowing any file descriptor to
be copied (also called being cloned or duped) from any other file descriptor:

make >log 2>&1

The ampersand (&), in this context, indicates cloning of an existing descriptor rather than
opening of a file by name. Thus standard output is redirected into a file named log, and then
standard error is redirected to wherever standard output goes—in this case, the file named
log. The two descriptors are now both attached to the same stream for the duration of the
redirection. Note that, although only a single > is used, duplication of a file descriptor does
not truncate anything; it is not opening the file, but copying the already open stream to a new
descriptor. As with any other redirection, this is temporary, and after the command exits,
the descriptors go back to their original, separate streams. There are a number of other cases
where this technique can be used, but joining standard error to standard output is by far the
most common. The same technique can be used for input streams using <&.

Throughout this section, redirections have always been shown at the end of a command
line. In fact, redirections can occur anywhere in a command line. Redirections are processed
separately from arguments and are not visible to the command being run. In general, redirec-
tions are processed from left to right. However, in the case where a command is in a pipeline,
redirecting standard error to standard output has the effect you probably want—standard
error is merged into the pipeline.

Redirection Using exec
One other use of redirection is common enough to be worth mentioning. It is incredibly
tedious to run a large number of commands all with the same redirection appending their
output to a file. The shell allows you to redirect the shell’s file descriptors, rather than just
the file descriptors of a particular command, using the exec shell built in. If you call exec with
some redirections, but no other arguments, it redirects those streams within the shell itself.
Be very careful to do this only within scripts; if you do it on the command line, you can quite
thoroughly hose your shell session. (This is a technical term.) Redirecting the shell’s descrip-
tors means that all future commands run by the shell will be affected by these redirections.
For instance, the following line in a shell script stores all errors generated by future commands
within that script in the file log:

exec 2>log

The exec command can be used to open and close streams. UNIX systems do not use
a special character to indicate end of file. In a pipeline, the program receiving data needs to
know whether there is more data coming. To distinguish between no data available yet, and
no more data coming, UNIX uses a special condition called “end of file”, which is not sent as
a character on the stream. This means that streams can contain completely arbitrary data;
there is no chance of accidentally terminating a stream. To indicate end of file on a pipe, the
writer closes the pipe.

10436ch03final 61 10/23/08 11:28:52 PM

Chapter 3 ■ BaSIC SheLL SCrIptING62

Closing files can matter under a number of circumstances, so a discussion of redirection
needs to talk about it. The first case where closing occurs is when a program terminates; all of
its file descriptors close. So, for instance, in a simple pipeline like ls | grep hello, when the
ls command terminates, its output stream is closed. When the grep command finishes reading
the data written into the pipe, it detects the end of file on the pipe. If a command is generating
data slowly but has not terminated, there is no end of file; UNIX distinguishes between “end of
file” and “no data available right now.” The following example shows that, even if no data are
ever written to a pipeline, it remains open for the duration of a command:

$ sh -c 'sleep 3' | (date; cat; date)
Sun Jun 15 14:53:17 CDT 2008
Sun Jun 15 14:53:20 CDT 2008

The two date commands show how long it takes for cat to execute, so you don’t even need
a stopwatch to see how this works.

Secondly, when a descriptor is redirected, the previous descriptor is closed, even if the
program is still running. When a redirection is temporary, as with a redirection on a particular
command, the original descriptor is saved and is not closed. However, when you use exec to
redirect a descriptor permanently, the original descriptor can be closed. Two variants on the
previous fragment illustrate the difference:

$ sh -c 'sleep 3; exec >/dev/null' | (date; cat; date)
Sun Jun 15 14:56:01 CDT 2008
Sun Jun 15 14:56:04 CDT 2008
$ sh -c 'exec >/dev/null; sleep 3' | (date; cat; date)
Sun Jun 15 14:56:13 CDT 2008
Sun Jun 15 14:56:13 CDT 2008

When the sleep command executes before the redirection, the output pipe does not close
until after the sleep command completes. When the output stream is redirected first, the out-
put pipe closes immediately (and there is a three second delay before the shell prints a new
prompt).

Between these two rules, you very rarely need to explicitly close a descriptor in shell
programming. However, both input and output streams can be closed explicitly using the
cloning syntax, giving - as the name of the descriptor to clone. For instance, the redirection
2>&- closes standard error for the command being redirected, and the command exec 2>&-
closes standard error for the whole script. The preceding fragments could use >&- just as well
as >/dev/null because the script actually produces no output. However, many programs
will malfunction if they are run with standard output closed rather than merely directed to
/dev/null.

Redirections of individual commands or shell structures are carefully isolated; the shell
restores the previous state of its descriptors after running them. However, when you use exec
to redirect streams, these changes can have permanent effects. For instance, after the previous
command, it may not be possible to restore the previous value of standard error; if standard
error was attached to a pipe, there is no way to reopen the pipe.

More complicated shell programs may use a surprising number of redirections to achieve
particular goals. For instance, what do you do if you want to run a number of commands,
with standard error redirected, then recover the old state of standard error? If you use exec to

10436ch03final 62 10/23/08 11:28:52 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 63

redirect standard error to a file, the old standard error stream is closed. One solution is to run
such redirections in subshells (or functions).

However, there is another way to preserve a stream. If you have more than one descriptor
attached to the same stream, the stream is not closed until the last descriptor attached to it is
closed. The following fragment illustrates this:

$ sh -c 'exec 5>&1; exec >/dev/null; sleep 3' | (date; cat; date)
Sun Jun 15 15:10:13 CDT 2008
Sun Jun 15 15:10:16 CDT 2008

The first redirection redirects descriptor number 5 to a duplicate of standard output, after
which standard output is closed. You may notice that I have not previously described descrip-
tor number 5. Descriptors numbered 3 and higher are not initially defined or opened, but you
can redirect them wherever you want, using the same syntax used for the first three.

This is often useful if you want to temporarily alter your shell environment, preserving the
ability to restore it. Much of this can be done by running commands in subshells, but some-
times explicit control is more expressive.

The following script illustrates the use of extra descriptors to control the display of both
errors and output:

exec 3>&1 # stash standard output in descriptor 3
exec 4>&2 # stash standard error in descriptor 4
exec 1>output.tmp # send output to output.tmp
exec 2>error.tmp # send errors to error.tmp
printf "Filename? " >&3 # display message on descriptor 3 (old stdout)
read file
printf "String? " >&3
read string
grep -e "$string" "$file" # output to output.tmp, errors to error.tmp
status=$?
exec >&3 # restore standard output
exec 2>&4 # restore standard error
if test $status = 0; then
 echo "'$file' contained '$string'."
else
 if test -s error.tmp; then
 cat error.tmp >&2
 else
 echo "'$file' did not contain '$string'."
 fi
fi

The control structures at the bottom of the script operate in the original environment,
with descriptors 1 and 2 directed wherever they were at the start of the script. While it would
generally be ridiculous to do something this elaborate in such a simple case (it would have
been much simpler to redirect the output and error streams of the grep command), the prin-
ciples apply well to larger and more complicated scripts.

10436ch03final 63 10/23/08 11:28:52 PM

Chapter 3 ■ BaSIC SheLL SCrIptING64

There is no real standard for how to use descriptors 3 and higher. Unfortunately, this
exposes a weakness of the shell; there is no convenient way to keep track of descriptors. You
can mitigate this somewhat by using variables to store the values used for a given function, as
in the following example:

exec 3>/tmp/log.txt
logfd=3
log() { echo "$@" >&$logfd; }
log "Hello, world!"
log "All done."

This script emits two lines to /tmp/log.txt. However, this technique is still imperfect.
For one thing, it still offers no assurance that some other piece of shell code will not redirect
descriptor 3. Secondly, you simply have to be sure to use the same descriptor number in both
lines. You might think to try setting the variable first:

logfd=3
exec $logfd>/tmp/log.txt

This fails because redirection is shell syntax, and a redirection operator (such as 3>) can-
not result from parameter expansion. You can work around this using eval, though:

eval "exec $logfd>/tmp/log.txt"

If this seems a bit much to keep track of, the m4sh utility (part of GNU autoconf) provides
a somewhat automated way to keep track of descriptors and avoid clashes.

CoMMon ConvenTIon: USIng ‑ AS A fIle

A great number of UNIX programs, but not all, will treat the file name - as referring to standard input or stan-
dard output, whichever is appropriate. This is a very useful idiom, even in utilities that process standard input
by default, as it allows standard input to be specified along with other files. For instance, the following trivial
command displays its standard input between a pair of files named header and footer:

cat header - footer

Inconveniently, not every utility recognizes this convention. If you actually create a file named - and
want to pass it to a utility that uses this convention, use the name ./- .

This is not related to the use of redirection to &- to close a descriptor.

Introducing Here Documents
Often, a program needs input that could be read from a file, but creating (and then remov-
ing) a small temporary file is awkward or inconvenient. The shell has a special syntax for this,
which looks much like the syntax for redirection. A piece of text introduced using a << rather
than a < for redirection is called a here document. The here document consists of every fol-
lowing line of input until a special string, which is called a sentinel. It is generally equivalent

10436ch03final 64 10/23/08 11:28:53 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 65

to creating a temporary file holding those input lines and redirecting input from that file. For
instance, the mail merge program might well use a here document:

for name in "Occupant" "Our Friends" "Current Resident" "Postal Customer"
do
 cat <<EOF
Hello, $name
Look! A personalized letter! Buy our stuff! Really!

We are even expanding variables for you, $name!
EOF
done

In this, the <<EOF starts a here document, which continues until a line consisting only of
the word EOF. Parameter substitution applies normally within the here document, although
globbing and tilde expansion do not. You can embed a dollar sign literally by prefixing it with
a backslash. A here document is subject to the same quoting rules as double- quoted text.

There are two special modifications available when using a here document. The first is
that a hyphen after the << tells the shell to strip leading tabs (but not leading spaces) from
the text:

cat <<- EOF
 Not indented!
EOF

Not indented!

The second is that, if the sentinel is quoted, no substitutions are performed on the text;
it is treated as pure literal data, like a string in single quotes. This can be useful if you want to
produce text that uses dollar signs. For more details on how quoting works in general, see the
discussion of quoting and expansion in Chapter 4.

It is possible to provide multiple here documents in a single command line. They are pro-
cessed in the order they are specified. For instance, the following script fragment concatenates
two here documents:

(cat <&3; cat <&4) 4<<EOF 3<<EOF
world!
EOF
Hello,
EOF

Hello,
world!

Note that, because descriptor 4 is redirected first on the command line, the first here doc-
ument is used as descriptor 4, which is displayed by the second cat command.

However, if there are multiple here documents for the same descriptor (including the
default descriptor 0) of the same command, only the last document’s contents are presented.

10436ch03final 65 10/23/08 11:28:53 PM

Chapter 3 ■ BaSIC SheLL SCrIptING66

(cat; cat) <<EOF <<EOF
world!
EOF
Hello,
EOF

Hello,

In this case, the second redirection replaces the first, so only the second document is
available on standard input. As always, redirecting a file closes the old one.

Redirection and Loops
Loops, such as a while loop, are themselves shell commands, and any shell command can
have its input and output redirected. For instance, on an embedded system that lacks the grep
binary, you can always cheat. (This script may also be faster in some cases than using an exter-
nal command.) The following script is similar to a simple case of grep. Invoked as shellgrep
pattern files, it shows all lines from files matching pattern, although it matches shell pat-
terns, not regular expressions:

pattern="$1"
shift 1
cat "$@" | while read line ; do
 case $line in
 $pattern) printf "%s\n" "$line";;
 esac
done

(The "$@" construct is explained in more detail in Chapter 4, and you may also need to
know about some special cases discussed in Chapter 7.) If you want to know which file each
line came from, you have to make it a bit more complicated:

pattern="$1"
shift 1
for file
do
 while read line; do
 case $line in
 $pattern) printf "%s: %s\n" "$file" "$line";;
 esac
 done < $file
done

This script checks each file separately; if it finds a matching line, it echoes the name of the
file before the line. If all you want is the names of matching files, you can do that, too:

10436ch03final 66 10/23/08 11:28:53 PM

Chapter 3 ■ BaSIC SheLL SCrIptING 67

pattern="$1"
shift 1
for file
do
 while read line; do
 case $line in
 $pattern) printf "%s\n" "$file"; break;;
 esac
 done < $file
done

This version jumps ahead immediately upon finding a matching line; the break in the
inner loop prevents the script from repeating the names of files with multiple matches. Note
the similarity to the previous examples using the external grep program to look at each file, or
to the -l flag provided by many versions of grep. Note that tricks like this are not only useful
on tiny little embedded systems. Because commands like grep are external to the shell, and the
case command structure is built in, performance may be better using an idiom like this. On
systems with particularly expensive command spawning, such as Windows, the performance
difference may be quite surprising.

One limitation of for loops in the shell is that they always perform field splitting; if you
want lines split instead of words, you can use a redirected while loop. For instance, consider
this example from earlier in the chapter:

for name in "Occupant" "Our Friends" "Current Resident" "Postal Customer"; do
 echo "Hello, $name"
 echo "Look! A personalized letter! Buy our stuff!"
done

If you have a file containing the names of your close personal friends, you might try to use
command substitution to adapt this:

$ cat friendslist
Occupant
Our Friends
Current Resident
Postal Customer
$ for name in $(cat friendslist); do
> echo "Hello, $name!"
> done
Hello, Occupant!
Hello, Our!
Hello, Friends!
Hello, Current!
Hello, Resident!
Hello, Postal!
Hello, Customer!

10436ch03final 67 10/23/08 11:28:53 PM

Chapter 3 ■ BaSIC SheLL SCrIptING68

Well, that didn’t go as planned, and now you know where that really weird junk mail
comes from. What you need is a way to distinguish between word breaks and line breaks.
A simple way to do this is to use a while loop, with its input redirected from the friends list. The
read command exits successfully every time it reads a line and fails when it has no input:

$ while read name; do
> echo "Hello, $name!"
> done < friendslist
Hello, Occupant!
Hello, Our Friends!
Hello, Current Resident!
Hello, Postal Customer!

This idiom is extremely useful and is often used in conjunction with programs such as
find, which generate lists of file names. Just be careful; UNIX allows newlines in file names,
which can produce surprising results. If you do not have control over the inputs to a loop like
this, be very careful about relying on the inputs and sanitize them carefully.

what’s next?
Chapter 4 explains the core methods by which the shell interprets its input: parsing, quoting,
and substitution. I introduce tokens and explain how the shell determines what parts of a shell
script are commands, what parts are control structures, and what parts are arguments to com-
mands. I then explain the basics of quoting, the mechanism by which you control how the
shell interprets words and when it performs substitutions. Finally, I’ll go over the basic ways in
which the shell substitutes new text, such as replacing variable names with the values of those
variables.

10436ch03final 68 10/23/08 11:28:54 PM

C h a p t e r 4

Core Shell Features explained

This chapter gives a more detailed explanation of the structure of shell programs and the
interactions between some of the basic features introduced in Chapter 1. This chapter also
introduces the basic grammatical structure of shell programs, then explores the interactions
of the quoting, substitution, and globbing mechanisms.

There are a number of exceptions and special cases, which are explained throughout the
chapter, but an overview makes it easier to follow what happens. The first thing the shell does
is split input into words and special punctuation items, called tokens. After this, substitutions
and expansions are performed, replacing variable references with the contents of variables,
shell glob characters with file names, and so on. The order of operations is as follows:

 1. Tokenizing. The shell splits inputs into tokens. Keywords and special shell syntax
characters are identified at this point, before any substitutions or expansions have
occurred.

 2. Parameter and command substitution. Parameter and command substitutions are
performed. Quoting may cause some strings that look like parameter or command sub-
stitutions to be ignored. (Command substitution is explained in Chapter 5.)

 3. The results of substitution are subject to field splitting.

 4. Globbing is performed on any words that have unquoted glob characters.

 5. Commands and control structures are executed.

There are some complications (for instance, some shells might perform tilde expansion
prior to parameter substitution), but this basic order of operations covers what the shell really
does. Most of the time, confusion about what a script will do can be resolved by thinking
through these steps. Why doesn’t this script work?

IF=if
$IF true; then echo hello; fi

It doesn’t work because tokenizing happens before parameter substitution. The shell
identifies $IF as a word, not a keyword. When it is later replaced with text, it is too late for it to
try to become a keyword.

Similarly, the expansion of a glob pattern into file names occurs after parameter expan-
sion. Thus, even if there were a file named $PATH, echo * would not produce the same output
as echo $PATH.

69

10436ch04final 69 10/23/08 11:01:03 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD70

The case statement provides exceptions to rules about what happens after substitution;
there is neither field splitting nor globbing after substitution in the control string or the pat-
terns of a case statement. In fact, in the patterns, quoting suppresses pattern matching rather
than preventing globbing.

Parsing
When reading input, the shell begins by breaking input into a collection of symbols, called
tokens. For instance, in a simple shell command such as echo hello, world!, there are four
tokens. The first three are the command name and its arguments, and the fourth is a new line
(see Table 4-1).

Table 4-1. What the Shell Sees

Token Description

echo Word

hello, Word

world! Word

<newline> Command separator

The spaces separating the arguments are not tokens; they just separate tokens. The
meanings of tokens, and even which tokens a given string contains, are sometimes affected
by context; something might have special meaning on one line of a shell script and be an
ordinary word on another.

Tokens
There are several different kinds of tokens. The most common are plain words, such as com-
mand names and arguments. Some words that have special meaning to the shell, such as if or
for, may be special tokens called keywords. Finally, special shell punctuation, such as redirec-
tion operators or semicolons used to separate commands, are also tokens.

The special characters are as follows:

| & ; < > () $
` \ " ' <space> <tab> <newline> *
? [# ˜ = %

Not all of these characters are always special; some may be special only in specific con-
texts. (In some traditional shells, ^ is also special and a synonym for |.)

Anything that is quoted, or which results from substitution, is always a plain word even if
it looks like something else. For instance, a new line is normally a token that can end a com-
mand. However, a new line in quotes is no longer a special token. Instead, it is just another
character that is part of a normal shell word. In this example, there are three tokens:

echo "hello,
world"

10436ch04final 70 10/23/08 11:01:03 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 71

The first token is echo. The second is the quoted string hello,<newline>world, with a new
line between the comma and the w. The third is the new line after the quoted string. Because it
is outside a quoted string, that new line is a token. Similarly, any quoted characters at all in a
word ensure that it is treated as a plain word, never as a shell keyword. The text \if is simply a
plain word if, not the beginning of a control structure.

When forming tokens, the shell sometimes discards things; for instance, unquoted
whitespace (such as spaces or tabs) separates tokens, but does not itself become a token. The
process of splitting input into words around space is called word splitting. If the shell encoun-
ters a sharp (#, also called pound, hash, or octothorpe) while looking for tokens, it reads from
that character to the end of the current line and discards the results as a comment. As a matter
of style, many programmers prefer to only start comments at the beginning of a line, but it is
often easier to read a script with short comments after individual lines.

The underlying principle of the shell’s token parsing, common to shell and to many other
languages, is that a token is always the longest possible series of characters. This is often called
the maximal munch rule. While a # may start a comment, it can also be part of a word. Here’s
an example of how this works:

echo a #b
echo c# d

a
c# d

In the first line, the first argument ends at the space. The # is encountered in a place where
it would have to start a new token, so it starts a comment; the #b is discarded. In the second
line, the # occurs as part of a word. Since # can be part of a word, it simply is, and it does not
start a comment is. Thus, if there is ambiguity about whether a character is part of the current
token or starts a new token, it is always part of the current token.

Similarly, these two lines are very different:

ls hello 2>error
ls hello2>error

The first line tries to list the file hello, sending any error messages to the file error. The
second line, however, tries to list the file hello2, sending any output to the file error. The 2
can be part of the word, so it is treated that way. This is a quirk of redirection parsing. You do
not need space before a redirection if it is of standard input or standard output, but if you are
modifying one of the other descriptors, you generally need a space in front of the redirection
so the shell doesn’t interpret the descriptor number as part of the previous word.

The redirection operators highlight this because the whole redirection operator is a
single token. Thus a number followed by a greater-than or less-than sign is a redirection, but
a number separated from a greater-than or less-than sign is not. However, that works only if
the number is itself looking like a token; if it is the last part of the previous word, it can’t start a
new token. This also shows why you cannot use a variable to create a new file descriptor:

logfd=3
exec $logfd>/tmp/log.txt

10436ch04final 71 10/23/08 11:01:03 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD72

As described previously, this ends up trying to execute the command 3. You cannot
expand variables into special tokens, only into plain words.

On the other hand, the target of a redirection can be quoted, can result from substitution
or globbing, or even both.

exec 3>"$logfile"

This does exactly what you would expect: it expands the variable $logfile and redirects
descriptor 3 to it. The redirection (3>) is a token; the thing redirected to is a separate token,
which can be any word.

Words and Keywords
A token such as if or while is called a keyword, and can only be recognized in certain contexts.
Tokens with no special meaning to the shell are called words. A word may have the same spell-
ing as a keyword but is not treated specially by the shell. For instance, in the following script
fragment, if is just a word, not a keyword:

echo if

The results of substitution, globbing, or quoting are always words. As an example, con-
sider the following script fragment:

X="Y=3"
$X

Y=3: not found

While the sequence Y=3 would normally be a variable assignment, it resulted from substi-
tution, so it became a plain word. The right-hand side of an assignment can be any word and
can result from substitution or globbing. However, the variable name and equals sign must be
literals. Likewise, a redirection operator must be a literal, but the name of the file to redirect to
can be any word, including one resulting from substitution or globbing. (You can get around
this; see the “The eval Command” section in Chapter 5.)

Context often determines the meaning of something to the shell. Context determines
whether a new line terminates a command or is simply more whitespace. As with some other
languages, the shell interprets a new line as ending a command when the command line so far
is grammatically valid and otherwise expects additional input. Similarly, the same characters
that would be a variable assignment at the beginning of a line are just another word later in a
line:

echo A=B

A=B

10436ch04final 72 10/23/08 11:01:04 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 73

The shell usually looks for keywords only in particular places, such as the beginning of a
line. Otherwise, words are simply accepted as tokens producing a series of plain words with no
special significance to the shell. In the standard shell, the keywords are as follows:

! { } case do done

elif else esac fi for

if in then until while

Command Lists
In the examples so far, simple commands and pipelines have been used as the controlling
expressions for if and while statements. In fact, the controlling expressions for these have the
same grammar as their bodies and are sequences of commands called lists. A list is a series of
commands or pipelines, usually joined by some combination of semicolons (;), new lines, and
ampersands (&), and terminated by one of these. In nearly every case, you can replace a new
line with a semicolon. The shell does not distinguish between these two forms of the same
command:

if test -f "$file"; then
 echo "$file exists."
fi
if test -f "$file"; then echo "$file exists." ; fi

A series of commands entered on the command line are a list, grammatically. The shell
determines the end of a list to have occurred when a special keyword or token shows up that
ends the list. For instance, the grammar of a simple if-then-fi statement is as follows:

if list
then list
fi

Starting from an if, the shell reads commands until it encounters a then. The set of com-
mands read is a list. The exit status of a list is the exit status of the last pipeline within the list,
just as the exit status of a pipeline is the exit status of the last command within that pipeline.
The exit status of the various flow control statements is usually zero if no code was executed,
or the exit status of the last code executed. The following contrived example illustrates this:

while if true; then false; fi do
 false
done

The if statement used as a conditional for the while loop always executes its body, which
consists of a single false command. The overall exit status of the if statement is the exit status
of the last statement executed, the false command, so the while loop terminates immediately,
and the exit status of the whole chunk of code is zero (indicating success). The false com-
mand inside the while loop is never executed.

10436ch04final 73 10/23/08 11:01:04 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD74

flexible grammar

You may have been surprised to see no semicolon after the fi ending the if statement. The semicolon after
true is needed because the shell has no other way to recognize that then is intended as a keyword rather
than an argument to the true command. Similarly, the semicolon after false is necessary. However, after
the shell has detected the fi token, it knows that it has finished parsing the if statement; it does not need a
special separator or terminator to tell it to start looking for either a keyword or another statement.

While tricks like this can make scripts several characters shorter, you should generally avoid them. Write
for clarity first. In general, expand constructs onto multiple lines. The shell will not be any slower, but future
readers of your code will find it more comprehensible.

Similarly, the if statement’s controlling expression can be any list, not just a single com-
mand. This list can contain a series of commands, including other conditional statements. For
instance, the following example asks the user how picky it should be before asking another
question:

echo "Would you like me to be picky?"
read picky
echo "So, do you have any grapes?"
read answer
if case $picky in
 [Yy]*) test X"$answer" = X"yes";;
) case $answer in [Yy]) true;; *) false;; esac ;;
 esac
then
 echo "You said yes!"
else
 echo "I don't think you said yes."
fi

The condition for the if statement is a pair of nested case statements. If the user’s answer
to the first question begins with either a capital or lowercase Y, the program will accept only
the exact text “yes” as an answer. Otherwise, the program will accept any string starting with
a capital or lowercase Y as being close enough to a “yes.” In each case, the exit status is sim-
ply the status of the last exiting command: either the test command, used to check for the
answer, or the true or false commands used to yield a status from the second case statement.

New lines and semicolons are mostly interchangeable as command separators, with the
exception that the shell will politely ignore a series of blank lines but will object to a series of
semicolons. Each semicolon must follow a command. Regardless, whether you use semicolons

10436ch04final 74 10/23/08 11:01:04 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 75

or new lines, each command is executed sequentially, and each command completes before
the following command starts.

While ampersands are syntactically command separators, their semantics are different.
When a command is followed by an ampersand, the command is run asynchronously; the
shell continues immediately, while the command continues running at the same time. This
is called running the command in the background. While the most common usage of this on
the command line is to run a single command in the background, the ampersand is simply a
generic command separator; you can also write multiple commands on a line, separated by
ampersands. Each command that is followed by an ampersand is run in the background.

Short Circuits
There are two other command separators, which perform logical tests. They are the “and”
operator (&&) and the “or” operator (||). The exit status of a pair of commands joined by && is
true if both commands had a true exit status, and false otherwise. Similarly, the exit status of a
pair of commands joined by || is true if either command had a true exit status, and false other-
wise. As in many programming languages, the shell only executes the second command if the
exit status of the pair has not already been determined; this is called short-circuiting. This can
be used to express the same functions as an if statement, but is shorter; for simple code, it is
often idiomatically better to put the operations together like this. For instance, the following
idiom emits a logging message if the variable verbose has been set to true:

$verbose && echo >&2 "Processing $i..."

When the first command supplied to one of the short-circuit operators is an imperative,
the meaning is reasonably easy to keep in mind. For instance, the following code fragment
might be described as “remove the file or emit an error message”:

rm $file || echo >&2 "Could not remove $file."

When a command line contains only the previously discussed command separators, such
as semicolons, commands are simply treated in order. The logical short-circuit operators,
however, are special; commands joined with these operators are treated more like a single
command. For instance, the following fragment has an exit status of success:

false && false; true

The second false is not executed, but the semicolon separates the whole && operation
from the true command. The way in which commands group more closely around the logical
operators than around the other command separators is often described as the logical opera-
tors having higher precedence. It is, however, possible to force the shell to group the second
two commands together. To do this, you must tell the shell where you want the lists to be
formed.

10436ch04final 75 10/23/08 11:01:04 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD76

explicit Lists
You can join a series of commands together into a single list, which can then be joined with
other lists using pipes, used as one side of a short-circuit operator, or otherwise treated as a
single unit. There are two ways to do this. The first is to put a list of commands inside braces
({}); such a list is often called a compound statement. In this case, the list of commands must
be terminated by a statement terminator, such as a semicolon or new line; otherwise, there is
no way for the shell to recognize that the terminating brace was not simply a parameter to a
command. In fact, some shells (bash and zsh) recognize the trailing brace without an explicit
terminator. Do not rely on this, but do not rely on being able to use an unquoted } as an argu-
ment part way through a list either.

Grouping makes a group of commands act like a single command. For instance, the previ-
ous example can be converted using braces to separate commands:

false && { false; true; }

This now has an exit status of false; the initial false command generates a false return
code, so the compound command in braces is not executed.

The other way to group commands is to put the series of commands inside parentheses
[()]. Parentheses have an additional effect beyond forcing commands into a single list; they
create a new shell process, called a subshell. Subshells are explained in more detail in Chap-
ter 5. In general, commands within a regular list can affect the environment of the shell, but
commands within a subshell have no effect on the environment of the rest of the shell pro-
gram. On many platforms, subshells are substantially more computationally expensive than
compound statements. Avoid using them when you don’t need to.

Debugging SubSTiTuTiOn anD QuOTing

Throughout this chapter, you may find yourself unsure about the interactions of different kinds of quoting
and substitution (or globbing). The following simple script shows you exactly what arguments it ultimately
received:

#!/bin/sh
echo "$# argument(s):"
for arg
do
 echo "'$arg'"
done

Save this script to a file named printargs somewhere in your path, and make sure it is executable
(chmod u+x). The special variable $# holds the number of arguments given to the script. To run the script,
invoke the shell on the test file with whatever additional arguments you want:

10436ch04final 76 10/23/08 11:01:05 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 77

Shell Quoting
Quoting is the process of suppressing the special meaning of a character. Three different kinds
of quoting are provided by the shell. Backslashes, often called escapes, suppress the special
meaning of a single character and work in almost every context. Single quotes are used for
purely literal text, while double quotes allow some of the shell’s substitution behaviors.

Experienced UNIX users looking for a prank often start by creating files in a novice’s home
directory, which are hard to remove. The simplest way, addressed briefly in the introduction,
is to put spaces in the name of a file. Each of the quoting mechanisms can overcome this.

Escaping Characters with a Backslash
The backslash is the most complex quoting mechanism because its behavior is almost, but not
quite, perfectly consistent. Normally, a backslash followed by any other character is treated by
the shell as that other character, deprived of any special meaning; this is called an “escaped”
character. A backslash followed by a space is a space character that does not separate words. A
backslash followed by a double quote is a double quote character that does not begin a quoted
string. A backslash followed by a backslash is just a plain old backslash.

The first major exception is that a backslash at the end of a line does not create an escaped
new line character. Instead, the backslash and the new line are both removed. Of course, it
would be too simple if this were always true. If the backslash is inside a comment, it is com-
pletely ignored, but the new line has its normal effect. This is the backslash equivalent of the
400-year rule for leap years, and it comes up about as often.

printargs foo bar

2 argument(s):
'foo'
'bar'

A bit of explanation may be in order. The initial echo command uses quotes because (and) are spe-
cial characters to the shell. Note the unusual quoting around $arg. That is a double quote, a single quote,
$arg, a single quote, and a double quote. The double quotes ensure that the shell displays the argument
exactly as it was passed in, and the single quotes around it make it easier to see whether the argument
begins or ends with any spaces or tabs. Because the single quotes occur inside double quotes, they have no
special effect; they are just plain characters that are then echoed. If you still have questions, keep reading,
the rest of this chapter explains this in more detail.

The new line before do is there for compatibility with a few old shells that did not handle the shorter
for arg; do syntax for a for loop without an in clause.

10436ch04final 77 10/23/08 11:01:05 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD78

The second is that, inside double quotes, backslashes are not mostly suppressed by the
shell; they escape only dollar signs, new lines, backticks (grave accents), double quotes, and
backslashes. A backslash followed by anything else is just a backslash in this context.

The third exception is that backslashes are in no way special inside single quotes. No mat-
ter how many or how few backslashes you put between single quotes, or what comes after
them, they are just backslashes.

There is one other major source of confusion: Many programs do special things with
backslashes. For instance, consider what happens if you use echo to test the behavior of back-
slashes in a single-quoted string:

$ echo '\\'

You would expect this to produce \\ as output. In most shells, it will. However, if you try
this in zsh, you get only a single \. The problem is that, while the shell has not done anything
special with the backslash, the built-in echo in zsh does, in fact, use backslashes specially. You
can try to outsmart the shell by calling /bin/echo explicitly, but there is an astounding variety
of ways in which the echo command can differ from one system to another. Utility portabil-
ity is discussed in more detail in Chapter 7. In the meantime, be aware that people have been
complaining about the complete nonportability of any but the simplest uses of echo for well
over 20 years.

SlaSH anD baCKSlaSH

Many users find it difficult to distinguish between forward slashes and backslashes. On a US keyboard, the
forward slash is the one under the question mark; it is the one that is leaning “forward”—that is to say, the
top is farther to the right than the bottom. This confusion is amplified by the tendency of Windows users to
think of backwards slashes as path separators, while UNIX users tend to use forward slashes. (In fact, under
the hood, Windows uses forward slashes, too; the command interpreter translates backslashes into forward
slashes.)

My first thought was to say, “Slash is the one that is used in URLs,” but I have seen hundreds of adver-
tisements, business cards, and other things that use backslashes. The problem seems to be not only that
people are not sure which one they want, but that many people have the words themselves confused, and
thus carefully verify the word “backslash” only to actually mean the thing that everyone else calls a forward
slash.

To save you trouble, here’s the complete list:

 * Forward slash: /

 * Backward slash: \

 * In general, unqualified slash means forward slash.

10436ch04final 78 10/23/08 11:01:06 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 79

Escaping Characters with Single Quotes
Single quotes are very simple. Absolutely everything from a single quote to the next single
quote is literal. New lines, backslashes, dollar signs, it doesn’t matter. Everything is literal.
This means that there is no way to include a single quote inside a single quoted string. You will
occasionally see this idiom:

echo 'Peter'\''s favorite language'

Peter's favorite language

The first single quote starts a string, and the second ends it. This is followed by an
unquoted backslash, which escapes the next character, which is a single quote. This results in
a quoted single quote; because it is quoted, it does not start a new string. The next character
after that is another single quote, starting a new single-quoted string that runs to the end of
the line. Because the character between the two strings was not an unquoted word separator,
the two strings, and the character between them, are joined into a single string.

Escaping Characters with Double Quotes
Double quotes suppress the meaning of many special characters, but parameter substitution
(see the “Understanding Parameter Substitution” section later in this chapter) occurs normally
within them. Double quotes are probably the most commonly used form of quoting, as they
give the useful combination of allowing for parameter substitution while preventing field split-
ting. Knowing this, you now know what one of the lines in the argument printing script does:

echo "'$arg'"

The double quotes eliminate the special meaning of the single quotes, allowing the con-
tents of the variable $arg to be expanded. However, the double quotes perform an additional
function, which is to prevent globbing or field splitting from being performed on the contents
of the variable $arg. Thus if the user passed a string with multiple spaces in as an argument,
the string echoed back by the shell will preserve those spaces.

Quoting Examples
The interactions of the different quoting mechanisms can be fairly confusing at first. In
general, use single quotes for maximal predictability, double quotes for material that needs
parameter substitution, and backslashes to suppress the value of a single special character,
such as $.

10436ch04final 79 10/23/08 11:01:06 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD80

There are many things you may wish to write that cannot be done within a quoted string
of any sort or are excessively awkward in one kind of string but easy in another. In many cases,
the simplest thing to do is to use a double-quoted string and use backslashes to suppress addi-
tional special meanings. However, if you have a string that uses a great number of backslashes
and special characters, you may find single quotes preferable. If you find single quotes useful,
but you want to interpolate a single variable, the following idiom may prove useful:

'some text'"$VAR"'more text'

This concatenates the value of $VAR with the surrounding text, while protecting that text
from all varieties of shell substitution.

Substitution and expansion
When processing input, the shell replaces parameters with their values. This replacement is
called parameter substitution, parameter expansion, or (rarely) variable interpolation. I use the
term substitution because the term expansion might be taken as suggesting that the resulting
text is always larger. The POSIX spec uses the term expansion. After parameter substitu-
tion, the shell expands certain patterns into file names; this is called pathname expansion, or
globbing. This section reviews the basics of parameter substitution and globbing. Chapter 5
discusses command substitution, which is similar in many ways to parameter substitution.
Some shells offer additional parameter substitution options that are not portable; these are
discussed in Chapter 6.

ParameTerS Or variableS

What is the difference between a variable and a parameter? The answer depends on which book or manual
you are reading. The POSIX spec uses the term parameter for the general case; variables are parameters
whose names are identifiers (alphanumeric characters and underscores, with the first character being a letter
or an underscore). The special parameters which refer to the arguments of a script program or the shell are
called positional parameters.

Many users are more familiar with the term parameter being used to mean arguments; these are what
the POSIX spec calls the positional parameters. Someone who refers to $* as a variable rather than a param-
eter will probably call $1 a parameter rather than a positional parameter.

Substitution and Field Splitting
Often, when parameters are substituted, the output is described as being subject to word
splitting. In fact, what really happens to them is something different, called field splitting.
The original splitting of input into tokens always uses the same rules; words are split around

10436ch04final 80 10/23/08 11:01:07 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 81

whitespace (spaces, tabs, and new lines). When a substitution is split, however, different rules
may be used.

The shell defines a special variable, $IFS, which defines the field splitting rules. If $IFS is
not set, the shell behaves as though it contained space, tab, and new line characters (in that
order). If $IFS is set to an empty string, fields are not split at all. Finally, if $IFS is set to a string,
then the characters in that string are used to split fields, just as whitespace splits words. The
following example illustrates the difference:

$ IFS=:
$ a="hello:world"
$ echo hello:world
hello:world
$ echo $a
hello world

When expanding $*, the shell joins the positional parameters with the first character of
$IFS; if $IFS is an empty string, the parameters are concatenated.

Setting $IFS allows you to parse more complicated input. You can check the components
of $PATH using $IFS and a for loop:

IFS=:
for dir in $PATH; do
 echo $dir
done

A similar idiom, using the set command to reset the positional parameters (discussed in
detail in Chapter 6), is as follows:

IFS=:
set -- $PATH
for dir
do
 echo $dir
done

As a side note, you cannot put the assignment to $IFS on the same line as the command.
The command is parsed before the assignment takes effect, even though the command is run
after the assignment takes effect.

Although the name $IFS is capitalized, $IFS is not usually exported. The behavior of child
shells to which $IFS has been exported is not portable. Don’t do that.

Understanding Parameter Substitution
Parameter substitution occurs only in double-quoted strings or outside of any quoting
and is introduced by a dollar sign. A dollar sign that has been escaped, or that occurs in a
single-quoted string, has no special meaning. If the first character after the dollar sign is a

10436ch04final 81 10/23/08 11:01:07 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD82

punctuation mark that denotes a built-in shell parameter or a digit, it is taken as the name
of a built-in shell parameter to substitute. There are a number of built-in parameters, and
many shells define additional such parameters. For now, the short list in Table 4-2 of common
parameters will suffice.

Table 4-2. Common Shell Parameters

Parameter Description

$0 Name of current program; usually the name of a script file, or just the shell’s name.

$1 First parameter of current script or function.

$2 Second parameter of current script or function. (This pattern continues, but param-
eters 10 and higher require special treatment.)

$* All parameters of current script or function, separated by spaces.

$@ All parameters of current script or function. Outside of quotes, identical to $*. Inside
double quotes, expands to each parameter inside separate double quotes.

$$ The process ID of the shell.

$# The number of positional parameters.

If the first character after the dollar sign is a letter or underscore, the shell takes that
character, plus any following letters, numbers, or underscores, to be the name of a variable
to expand. This creates an interesting problem: What do you do if you want to append some
characters after the substitution of a variable? For instance, the following script might have
been intended to produce “hello, world,” but it actually produces only an empty line:

$ hello="hello, "
$ echo $helloworld

The output is an empty line because the shell is expanding the unset variable helloworld,
not the recently set variable hello followed by the text “world.” There are a number of clever or
sneaky tricks to get around this, but the best solution is to use braces to delimit the variable:

$ echo ${hello}world
hello, world

When the shell sees a curly brace after the dollar sign, it searches for the next matching
brace to determine which parameter to substitute. Braces are also needed to refer to positional
parameters ${10} and higher. The shell replaces $10 with a literal “0” appended to the value of
$1; this is the reverse of the behavior that mandates the use of parentheses when working with
identifiers. Older shells do not recognize ${10}; in these shells, you must use shift to access
positional parameters past $9. (See Chapter 6 for more discussion on positional parameters.)

Sometimes, you may be unsure of whether a variable will have been set or not before a
given piece of code executes. The shell has a variety of features to allow for alternative substi-
tutions in place of variables that are not set (or set to an empty string, also called a null string).
The most commonly used variant is the ${parameter:-word} construct, which is equivalent to
${parameter} if it has a value, or word otherwise. In the case where the construct is substituted

10436ch04final 82 10/23/08 11:01:08 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 83

with word, that is subject to substitution as well. The following fragment greets the user in an
even less-efficient way than usual:

foo=""
bar="world"
echo hello, ${foo-$bar}

hello, world

The substitution rules in Table 4-3 are a common and well-supported subset of those
available in standard shells (and even a number of prestandard shells).

Table 4-3. A Subset of Special Parameter Substitutions

Pattern Description

${parameter:-word} If parameter is null or unset, substitute word; otherwise, substitute pa-
rameter.

${parameter:=word} If parameter is null or unset, assign word to parameter. Then substitute
parameter.

${parameter:+word} If parameter is null or unset, substitute null; otherwise, substitute word.

${parameter:?word} If parameter is null or unset, print word (or a default message if word is
null) to standard error and exit the shell.

In each of these substitutions, the colon may be omitted; in this case, the shell tests only
for a parameter that is unset, not an empty string (also called a null value). With the colon, an
empty string is treated the same as an unset parameter. Each of these forms is useful under
different circumstances.

The hyphen form of substitution is primarily used to provide a default value, while allow-
ing a user to override it. This is especially likely to be useful with environment variables,
allowing the user to override the default behavior of a script. A typical example from a compi-
lation script would be to provide a default value for the CFLAGS environment variable, which is
used by convention to hold compiler options:

cc ${CFLAGS-"-O2"} -o hello hello.c

If the CFLAGS environment variable is set, it is passed to the compiler. Otherwise, the value
-O2 is passed in as a default. The quotes around the flag are not needed but are allowed; in this
case, I used them because it helps visually distinguish between the hyphen in the shell syntax
and the intended replacement text. Also, it is useful to get in the habit of providing quotes in
cases where they might or might not be necessary because the alternative is usually to omit
them when they were necessary. Program defensively.

Of course, in a longer script, it is quite possible to imagine a lack of interest in typing that
same construct over and over. One improvement is to use the equals sign substitution rule the
first time and thereafter use the variable’s value:

10436ch04final 83 10/23/08 11:01:09 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD84

cc ${CFLAGS="-O2"} -o hello hello.c
cc $CFLAGS -o goodbye goodbye.c

When the shell expands ${CFLAGS="-O2"}, one of two things happens. If the CFLAGS vari-
able was already set, it expands, and its value is unchanged. If the variable was not set, or
was empty, it is replaced by the assigned value (-O2, in this case), and then expanded. Thus,
whether or not the variable was set before the first line was executed, it will definitely be set
after that line is executed.

This is functional but a little clumsy. It creates an unfortunate ordering dependency on
the lines in the script; if you later discover that your new boss lives backward in time and
requires that goodbye.c be compiled before hello.c, you cannot simply reverse the lines
in the script; you have to edit both of them. (While the particular circumstance may seem
unusual, being obliged to reorder operations in a script is quite common.) You have two work-
able options. One is to switch to a more elaborate construct, possibly using test to check the
existing value of the variable before assigning it. You should not simply place the variable sub-
stitution on a line by itself; the substitution would then be executed as a command. However,
you can use it as an argument to a command that does nothing:

: ${CFLAGS:="-O2"}
cc $CFLAGS -o hello hello.c
cc $CFLAGS -o goodbye goodbye.c

This is a very expressive idiom. In this case, true and : are not equivalent; some imple-
mentations of true inexplicably react to some possible combinations of parameters by doing
something:

$ /bin/true --version
true (GNU coreutils) 6.10
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by Jim Meyering.

This kind of thing can be fairly disruptive of the output of a script. Stick with : for such
usage.

The plus sign substitution rule has an interesting history. One of its most powerful uses is
nearly entirely obsolete now, and it involves the special shell parameter $@. In some very early
shells, if there were no parameters at all, "$@" substituted a quoted empty string rather than
to nothing. (The more convenient behavior is specified by POSIX and is reasonably close to
universal in modern shells. For details, see the discussion of shell versions in Chapter 7.) One
idiom for working around this is ${1+"$@"}. This expands to "$@" if $1 is set; otherwise, it’s set
to null. In this case, using the colon would undermine the entire point of the exercise; it would
result in an incorrect substitution for the arguments of a script whenever the first argument
was an empty string. It is useful in this and other cases where you wish to avoid substituting
something unless there is something to substitute.

10436ch04final 84 10/23/08 11:01:09 PM

http://gnu.org/licenses/gpl.html

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 85

The +: form is a little harder to find really good uses for, but it has its place, too. As an
example, consider appending a series of words together. You want spaces between words,
but you do not want extra spaces. You can write an elaborate hunk of code to append spaces
suitably, keeping everything quoted, or you can use ${var+:" $var"}. This expands to a space
followed by $var, if var has a nonempty value, or to nothing at all, if var was empty or unset.

The question mark substitution rule is of limited utility. In most cases, you will want to
write your own, more robust, error handling. On the other hand, if you really do not feel there
is any sensible default, you can always use this to force people to pick one:

cc ${CFLAGS?:Cannot compile without compiler flags.} -o hello hello.c

build.sh:1: CFLAGS: :Cannot compile without compiler flags.

The exact format of this error message may vary between shells.
When a parameter substitution occurs outside of double quotes, the results of the substi-

tution are usually subjected to field splitting and globbing, but never to parameter substitution
again; if a variable expands to $FOO, it does not get expanded again. Inside double quotes,
nothing happens after parameter substitution. (Parameter substitution cannot occur within
single quotes, making the question of what would happen if it did moot.) As a rather unusual
special case, the word used as the controller for a case statement is subject to tilde expansion,
and then parameter substitution, but the results of the parameter substitution are not subject
to any further modifications, not even field splitting. The common habit of quoting a single
variable used to control a case statement is unnecessary, although some people prefer it as a
matter of style.

Tilde Expansion
Tilde expansion is a special expansion that replaces certain strings starting with tildes (~) with
the home directories of named users, or the current user if no user is named. An unquoted
tilde at the beginning of a word may be subject to tilde expansion. If a user name is provided
(consisting of everything from the tilde to the first unquoted slash, or simply the whole word),
that user’s home directory replaces the tilde and user name. If no user name is provided, the
tilde is replaced by the current user’s home directory. For instance, ~bob is replaced with the
home directory of the user bob. If there is more text, it is appended to the results of the expan-
sion. For instance, ~/bin refers to the bin subdirectory of $HOME. Tilde expansion does not
check its results against the file system; it expands only based on user account information or
the $HOME environment variable. The behavior if a nonexistent user is named is nonportable,
although many shells simply omit any substitution. Tilde expansion can occur after colons in
a variable assignment. For instance, the shell expands tildes in the following:

PATH=/bin:/usr/bin:~bob/bin:~amy/bin

Standard shells expand both ~bob and ~amy in the preceding example (assuming both
users exist). Tilde expansion is universal among POSIX shells, but some older shells do not
provide it.

10436ch04final 85 10/23/08 11:01:10 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD86

Globbing
The basic globbing rules were described in Chapter 2, along with shell patterns (which they
somewhat resemble). Although multiple matching path names expand into multiple words,
the individual file names are not subject to field splitting.

Globbing never occurs within quotes, because glob characters have no special meaning
within quotes. Glob characters next to quoted text are expanded with the quoted text as part
of the pattern. Quoting is often useful when you wish to match a path that includes a variable
substitution. For instance, the following shell command has a hidden bug:

rm -rf build/$version/*.log

As long as $version is something simple, like 4.2 or 3.1415, this command behaves as
expected. However, imagine your chagrin should you ever attempt this on a version with
spaces in it, such as 1.2 / prerelease. The result would be the following:

rm -rf build/1.2 / prerelease/*.log

This may be one of the few cases where one might, for a brief moment, wish for the csh
feature of responding “No match” when a glob fails. The shell simply performs no globbing,
leaving you with a command that, if you are very smart and were not running as root, probably
eventually tries to remove prerelease/*.log and fails. Worse yet, the -f flag means you do not
even get a warning message. You might try to resolve this by quoting as follows:

rm -rf "build/$version/*.log"

However, glob characters have no effect inside quotes, so rm simply tries to find a file with
the literal name build/1.2 / prerelease/*.log, and it probably fails. The solution is to com-
bine quoted and unquoted text:

rm -rf build/"$version"/*.log

This causes the shell to try to find every file in build/1.2 / prerelease with a name
matching the pattern *.log, and then pass their names as arguments to rm. This still may not
do what you want, as it denotes a directory named “ prerelease” inside a directory named
“1.2 ,” but at least it won’t turn into a 16-hour night with the backups. You did make backups,
right?

10436ch04final 86 10/23/08 11:01:11 PM

Chapter 4 ■ COre SheLL FeatUreS eXpLaINeD 87

unuSual file nameS

The greatest weaknesses of the shell are two simple characters: space and new line. The classic UNIX file
system allows all but two characters in file names; one is the slash, used as a directory separator, and the
other is the ASCII NUL byte (with the integer value 0, which is not the same as a literal 0 digit). Unfortunately,
many shell programs and scripts do not cope gracefully with file names containing spaces. Many, many more
can do horrible things given a file name containing a new line.

You can mostly work around the space character with experience and practice. For the new line, there is
often nothing you can do. The utility features needed to let you work reasonably safely with names containing
new lines are not portable enough.

Spaces, while they can be dealt with given sufficient care, are simply too hard to get right for it to be
safe to assume that arbitrary script programs will deal with them gracefully. Do not use spaces in file names.

With the widespread adoption of Mac OS X, many more UNIX developers are becoming familiar with
environments in which spaces in file names are more common. Still, don’t take chances when you don’t
have to.

If a glob pattern is assigned to a variable, nothing special happens; the text of the pattern
is stored in the variable. However, when the variable is substituted, it will generally be subject
to globbing.

What’s next?
Now that you understand the quoting and substitution rules, you can write a broad variety of
very powerful shell scripts. However, there are a few things that can’t be done without more
powerful tools. The next chapter introduces ways to organize and reuse code, as well as how to
run pieces of code as if they were separate scripts, giving you a lot of additional flexibility.

10436ch04final 87 10/23/08 11:01:11 PM

10436ch04final 88 10/23/08 11:01:11 PM

C h a p t e r 5

Shells Within Shells

This chapter discusses the relationship between the shell and the programs it calls, with a
particular focus on subshells—additional shells run by a shell script in a new process. This
chapter also discusses shell context and the distinction between shell variables and environ-
ment variables.

Understanding Processes
This chapter relies more heavily than previous chapters on a firm understanding of the UNIX
process model. (While Windows does not use this model, UNIX-like shell environments run-
ning on Windows tend to emulate it at least some.) UNIX systems can run multiple programs
at once. In fact, not only can multiple programs be running at once, but multiple instances of
a single program also can be running at once. Each instance of a running program is called a
process and has a unique numeric process identifier, or pid. The pid of the shell is expanded in
the shell parameter $$. While a pid may be reused after a process has exited, a process keeps its
assigned pid for its entire lifetime, and there can never be another process with the same pid
during that lifetime. Each process has its own separate memory space, although in some cases
processes may arrange to share memory. The ps command gives a list of processes currently
running. UNIX does not distinguish as some systems do between “applications” and other
kinds of processes; all programs run the same way. Note that the output of the ps command is
nonportable; you cannot use it safely in a portable shell script, as the formatting of the display
varies from one system to another, as do the options used to specify what to display. There is
no useful portable subset. It is generally easy for humans to read, but not very useful to shell
programmers.

The fundamental tool of UNIX process creation is the fork, in which a single process
becomes two identical processes. In a lower-level language, such as C, this is done by using
the UNIX system call fork(). When a process invokes this fork() successfully, the process is
duplicated, and both processes then return from fork(), differing only in the return status
of the fork() system call. In the original process (called the parent), the fork() system call
returns the pid of the child; in the child, the fork() system call returns 0. Apart from that, each
process has the exact same environment; the same objects are stored at the same addresses in
memory, for instance. However, the child process has a distinct copy of these objects; modi-
fications in the child have no effect on the parent. (The fact that two processes can have the
same memory locations holding different values can be a bit of a surprise; each process has its
own distinct mapping from memory addresses to physical memory.)

89

10436ch05final 89 10/23/08 11:34:55 PM

Chapter 5 ■ SheLLS WIthIN SheLLS90

There is no UNIX system call to launch a new program as a subprocess. The fork() system
call does not launch a new program, but rather duplicates an already-running one. The exec()
system call (actually a family of related system calls) allows the replacement of the current
process with a named program. Thus to spawn a new process, you first use fork(), then in the
child process use exec() to launch the new command. The C library includes a wrapper func-
tion, system(), to run a command as a subprocess; on UNIX systems, this function works by
passing the provided command to the shell. There is no way to explicitly fork in a shell script;
instead, you run commands, create pipelines, or run subshells. The shell offers common tasks
built in terms of fork() and exec(), rather than giving direct access to the system calls.

In some cases, a process may have multiple simultaneous paths of execution, called
threads. I mention these only to stress that the UNIX shell does not use threading; each pro-
cess started by the shell is a fully separate process. Within a portable shell script, you generally
do not need to even be aware of threading. If you do find yourself using the output of ps,
though, be aware that one of the least portable things is whether or not threads might show up
in the output of ps, possibly giving several lines of output for a single pid. Be cautious.

Threading is newer than the shell and is not all that heavily used in the basic UNIX envi-
ronment. On UNIX systems, the cost of launching a new process is fairly low, so there is little
incentive to avoid spawning new processes. One of the greatest challenges of shell programs
that need to run on Windows systems in emulated UNIX-like environments is that process
creation costs are extremely high on Windows. If you anticipate a need to run your code on
Windows, you may want to pay extra attention to the cost of new processes; avoid anything
that would imply a fork() on UNIX, such as subshells or external commands, whenever you
can.

All of this may seem rather complicated and even irrelevant, but the shell’s behavior is
closely tied to this underlying model. Whenever the shell runs any external command, it does
so by this fork()/exec() pair. The one exception is the use of the exec built-in command to
replace the currently running shell with another program; in this case, the shell uses only the
exec() system call.

Variables and the Environment
So far, the discussion of variables in this book has looked at how they are used within a shell
script. Some variables are available not only to the shell, but also to any child process it starts.
These variables are called environment variables, and the set of environment variables in a
given process is called the environment of that process. Environment variables are available
to any program, not just the current script. Any programming language used on UNIX-like
systems will typically offer some way to access (and possibly modify) environment variables.
Processes have additional state beyond their environment variables, such as the collection of
open file descriptors or current working directory. I refer generally to the set of environment
variables and other per-process state as the context of a process.

The set built-in command, called without arguments, prints all shell variables, whether
or not they are in the environment. The env utility, called without arguments, prints its
environment.

A common convention among shell programmers is to use capital letters exclusively in
the names of environment variables (e.g., $PATH) and use all lowercase names for unexported
shell variables (e.g., $answer). This is an excellent convention, and this book uses it. Many

10436ch05final 90 10/23/08 11:34:55 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 91

developers put all shell variables in all caps. However, because there is no reasonable portable
way to determine whether a variable has been exported, it is generally better to use the former
convention. Shell variable names should use underscores (_) to separate words, not mixed
capitals and lowercase letters. (The shell doesn’t care, but future readers do.)

Manipulating the Environment
There are three primary changes you can make to the environment: You can add variables to
it, remove variables from it, or modify variables in it.

Adding variables to the environment is sometimes called exporting them, probably
because it is done using the export command. The export command adds its named argu-
ments to the environment. As with assignment, you do not use a dollar sign ($) to mark the
names of the variables. For instance, the command export FOO adds the variable FOO to the
environment. A common idiom is to assign a variable, and then immediately export it:

NAME=John
export NAME

Many recent shells allow variable assignments to be used on the export command line,
providing an equivalent, but not fully portable, shorthand:

export NAME=John

If you are comfortable relying on POSIX shell features, you can use this, but it offers little
advantage. There is no portable way to remove a variable from the environment. The unset
command removes a variable from both the environment and the current shell, but is not
universally portable. For purposes of a shell script, it is typically enough to set a variable to an
empty value, then make sure to use the colon (:) variants of the shell’s substitution rules, for
instance, using ${foo:-bar} instead of ${foo-bar}. However, this still leaves an empty string
in the environment. If you really need to remove environment variables, you will need to rely
on POSIX shell features; consider using an execution preamble (see Chapter 7) and the unset
command. An unset variable that is later assigned a value does not become part of the envi-
ronment without being exported again.

Environment variables are modified like any other variables, using the shell’s assignment
operator. You cannot portably check whether a variable has been exported; this is one of the
reasons a naming convention is so useful.

The environment is passed to child processes, but there is no way for children to modify
the environment of the parent process. For instance, the following script does not do what its
author perhaps intended:

$ cat path.sh
#!/bin/sh
PATH=$PATH:/usr/local/bin
$ echo $PATH
/bin:/usr/bin
$./path.sh
$ echo $PATH
/bin:/usr/bin

10436ch05final 91 10/23/08 11:34:56 PM

Chapter 5 ■ SheLLS WIthIN SheLLS92

The user probably expected the shell assignment in path.sh to alter the PATH variable.
In fact, it did alter the PATH variable in the new shell that ran the script; however, this had no
effect on the shell that invoked the script. Ways to modify the shell’s environment are dis-
cussed in the section, “Modifying the State of the Shell,” later in this chapter.

Issues like this are extremely widespread. Many UNIX systems use startup scripts with
names like /etc/rc or /etc/rc.local. While researching shell features, I stumbled across a fas-
cinating discussion among users trying to get an environment variable set on their system at
boot time so that all users would share it. Their discussion revolved around adding the variable
setting to /etc/rc.local, a file for local system administrator additions to the system’s startup
scripts. Here’s how that system runs its rc.local script, if it exists:

if [-f /etc/rc.local]; then
 sh /etc/rc.local
fi

Since the rc.local script was being run by a separate shell, the variables would not have
propagated anyway. Of course, sometimes you do not want a chunk of code to be able to
modify your environment; I suspect the preceding code was written with the conscious intent
to prevent the local script from making changes to the environment of the parent script, which
could have affected the rest of the boot process.

Temporary Changes
Many UNIX utilities rely on environment variables, so it is common to set variables to influ-
ence their behavior. This can lead to a cluttered environment in which future script code
behaves unexpectedly because of values left in the environment. There are several ways to
resolve this. Some scripts simply set an environment variable, run code depending on that
setting, then unset it. This technique has a couple of flaws. One is that, if the variable had a
previous value, it is lost. Another is that some scripts need to be portable to systems without
unset. What is needed is a way to restore the previous value. There are three options.

The first is to stash the value in a temporary variable. Save the old value, set the new one,
then restore the previous value. As an example, running make with a modified path might be
implemented as follows:

save_PATH="$PATH"
PATH="/usr/local/bin:$PATH"
make
PATH="$save_PATH"

In this example, the make command is run with the /usr/local/bin directory in $PATH, but
the previous value of $PATH is restored afterward. This works, and it may even be useful in the
case where you want to run a number of commands with a temporary variable assignment.
Saving previous values becomes more useful in cases where you need to change a value back
and forth.

A particularly common case of this is using a similar idiom to change the $IFS shell vari-
able. You can iterate through $PATH by setting $IFS to : and using a command like for dir in
$PATH. However, you might want to restore the old value again occasionally during the loop:

10436ch05final 92 10/23/08 11:34:56 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 93

save_IFS=$IFS
IFS=:
for dir in $PATH; do
 IFS=$save_IFS
 # now you can run commands with the normal value of $IFS restored
 echo "$dir"
done
IFS=$save_IFS

The second way to get a temporary change to the environment is to use the external env
command. The env command can modify its environment and then run another program. For
instance, the following script has the same behavior as the previous example:

env PATH="/usr/local/bin:$PATH" make

This has two limitations; the first is that it can run only a single command and the second
is that the command it runs must be an external program, not a shell builtin (see the “Shell
Builtins” section later in the chapter for more information about builtins). One likely pitfall of
this technique is that parameter substitution occurs in the calling shell, which means that it
uses the existing value, not the value passed in:

X=yes
export X
env X=no echo $X

yes

Although the echo command is run with the environment variable $X set to no, the argu-
ment passed to it is the already-substituted value from the parent shell. The command
executed is echo yes, and it does not matter what $X is when this is executed. You can force the
substitution to occur in the called program by using a shell with a quoted string argument:

X=yes
export X
env X=no sh -c 'echo $X'

no

The third technique for temporary variable assignments is to prefix a command with one
or more variable assignments. This special syntax tells the shell to make an exported assign-
ment only for the duration of a single command. A previous example is simplified a little
further this way:

PATH="/usr/local/bin:$PATH" make

This syntax creates a temporary environment variable. The existing value (if any) of the
variable assigned is not changed. If the variable assigned was not an environment variable

10436ch05final 93 10/23/08 11:34:56 PM

Chapter 5 ■ SheLLS WIthIN SheLLS94

before, it is not exported after the command runs, but only while the command is running. As
with the env technique, this works only for a single shell operation. The command must be a
simple command or pipeline; you cannot use braces or parentheses to group commands used
this way. As with the env technique, the command is substituted, globbed, and subjected to
field splitting before the variable assignments take effect. So, for instance, you cannot use the
following to change $IFS:

IFS=: echo $PATH

This echo command shows you $PATH subject to field splitting using the previous value
of $IFS. The shell first substitutes and splits the arguments, then creates the environment
(assigning the new value to $IFS) and runs the echo command. This technique has a portability
limitation; it is not safe to use this with built-in commands, such as read or cd. In general, it is
probable that a shell will keep any variable assignment made in that context. Modern (POSIX)
shells will restore previous values if the built-in command is eval or set, but older shells may
not. This topic is explored further in the section “The eval Command” later in this chapter.

Exploring Subshells
The term subshell refers to a second instance of the shell program run under the control of
an existing shell. A subshell is simply a shell context created by calling fork(). The subshell
does not need to load the shell’s executable from disk, perform any kind of initialization, or
otherwise do anything at all except execute a command or list of commands; typically, the
commands have already been parsed for it by the calling shell. What this means is that, even
though a subshell is another process, the performance penalty of launching one is much
smaller than people typically expect for a new process (except on Windows, where it is still
quite high). Subshells may be created explicitly or implicitly. When () is used to separate out
a list, this creates a subshell. Commands in a pipeline typically run in subshells.

A subshell is a separate shell context, and like any child process, it cannot modify the state
of the parent shell. Directory changes, variable assignments, and redirections within subshells
do not affect the parent shell. This is often useful, and subshells are used to make temporary
changes to the shell’s environment or state. Note that although command-line variable assign-
ments are temporary and do not affect the shell’s environment permanently, they do not
create an implicit subshell.

Subshells and External Shells
A subshell is not the same as running a new shell to execute a command. You can issue a com-
mand to the shell using the -c command-line option or feed commands to another shell either
through a script file or using a pipe to the shell’s input. There are several major differences
between an external shell and a subshell. A separate shell invocation parses the command (or
commands) provided, performs word splitting, substitution, globbing, and so on. A subshell
starts with material that has already been split into words but still performs substitution,
globbing, and field splitting; it mostly executes the already-parsed material in a new process
context. A separate invocation of the shell inherits environment variables but not unexported
shell variables. By contrast, a subshell has all of the parent shell’s variables accessible to it. As
a special case of this, the subshell keeps the parent shell’s value of the special shell parameter

10436ch05final 94 10/23/08 11:34:56 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 95

$$. Finally, a separately invoked shell may (depending on the shell) run some standard initial-
ization or startup scripts, which may cost substantial time or produce surprising behavior. For
more information on shell startup, see the discussion of shell invocation in Chapter 6.

Command Substitution
Subshells are used in a kind of substitution that I glossed over in the previous section on
substitution: command substitution (also often called command expansion). In command sub-
stitution, the shell replaces a string of text with the output from running that string of text as a
command. The command is run in a subshell, and any substitution or globbing occurs in the
subshell, not in the parent shell.

The output of the subshell is treated the same way as the results of parameter substitu-
tion. For instance, the output is subject to field splitting and globbing (unless it is in a context,
such as the control word for a case statement, where these are not performed), and the sub-
stitution can be put in double quotes to prevent this. Standard error from the command is not
included as part of this output; it goes to the shell’s regular standard error unless explicitly
redirected.

Just as pipes allow you to use the output of a program as input to another program,
command substitution allows you to use the output of a program as arguments to another
program. There are two crucial differences beyond the difference in how these are used. The
first is that argument lists may have limited length, while pipes can consistently handle giga-
bytes of data. The second, closely related, is that commands in a pipeline run simultaneously,
but when you use command substitution, the command being substituted must run com-
pletely before its output can be used.

The shell’s original syntax for command substitution, which is still universally available,
uses backticks (`, also called backquotes) to delimit command substitutions, as in `command`.
The text of command is executed in a subshell (which performs any substitutions or globbing),
and the backticks and their contents are replaced with the output of command. As an example
of usage, you can extract the name of a file using expr and store that name using command
substitution:

filename=`expr "$file" : '.*/\([^/]*\)$')`

In most modern shells, another syntax for command substitution is $(command). Unfortu-
nately, there are a few shells left where this is not portable; most notably, the Solaris and Irix /
bin/sh. For some scripts, you may prefer to use the older form, but you may also prefer to use
a preamble to get your script into a more recent shell (see Chapter 7). In newer shells, the pre-
vious example could be rewritten as:

filename=$(expr "$file" : '.*/\([^/]*\)$')

This sets the variable filename to the file name component of a longer path. The $() syn-
tax may be nested:

all_files=$(find $HOME -name $(expr "$file" : '.*/\([^/]*\)$'))

There is no easy way to nest command substitution using the backtick syntax. The reason
is that backticks do not have distinct left and right forms, so the shell simply treats text up to

10436ch05final 95 10/23/08 11:34:57 PM

Chapter 5 ■ SheLLS WIthIN SheLLS96

the first backtick it encounters as being a single subshelled command. For instance, imagine
that you were to try to perform the preceding find assignment using backticks:

all_files=`find $HOME -name `expr "$file" : '.*/\([^/]*\)$'``

The shell sees an opening backtick, then reads until it finds another backtick. So the first
command is find $HOME -name . The expr command (and its arguments) show up outside of
backticks, and the two backticks at the end look like substitution of an empty command. So
this is treated by the shell as though you had written the following (using the other syntax):

all_files=$(find $HOME -name)expr "$file" : '.*/\([^/]*\)$'$()

The results of the empty $() construct are simply empty strings, and
$(find $HOME -name) also produces no output. (The error message about a missing argument
to -name goes to standard error). So after substitution of the commands, this becomes the
following:

all_files=expr "$file" : '.*/\([^/]*\)$'

The net result is that the shell sets $all_files to the string expr and tries to execute $file
as a command with the remaining arguments you had meant for expr as its arguments. On
some shells, you can obtain the expected results by escaping the inner backticks:

all_files=`find $HOME -name \`basename $file\``

Now the parent shell sees escaped backticks, which do not end the command it is
constructing, and it passes them into the child shell, which executes the subcommand as
expected. This is hard to read, gets harder to read if you add more nesting, and is not com-
pletely portable. Do not do it. There is a much simpler solution:

file_name=`basename $file`
all_files=`find $HOME -name "$file_name"`

In this case, the output of the first command is used as an argument to the second.
The complete list of files generated is assigned to the all_files variable. The behavior of
backslashes in backticks may not be consistent between shells; avoid it. Backslashes in $()
command substitution seem to be consistently passed unaltered to the subshell.

file_name=`expr "$file" : '.*/\([^/]*\)$'`
for path in `find $HOME -name "$filename"`; do
 echo `expr "$path" : '\(.*\)/\([^/]*\)$'`
done

The command substitution’s results are subject to field splitting, providing a list of files
in $HOME with the specified name. Note that this does not behave well if some of the file names
have spaces in them. If you want to prevent field splitting, you can use backticks (or the $()
syntax) inside double quotes. If you do this, you have to escape any nested quotes.

The choice of which command substitution syntax to use is more complicated than some
shell portability decisions. The $() syntax is substantially better, except for the surprise of
running into a system that doesn’t support it. These issues are discussed more in Chapter 7’s
discussion of shell language portability. If you have other reasons to require a POSIX shell,

10436ch05final 96 10/23/08 11:34:57 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 97

I would recommend the $() syntax, but it is probably not in and of itself enough justification
to make the additional requirement.

In general, the best way to handle nested command substitution is not to use it; use tem-
porary variables to hold intermediate results. Nesting of command substitution is a frequent
source of confusion or bugs in shell scripts. Avoid it. By the way, while the $() syntax is more
robust in the face of nesting, it has its own limitations; some shells behave surprisingly if you
try to use command substitution of shell code that has mismatched parentheses, such as a
case statement. (The workaround of using (pattern) in case statements is also nonportable.)

Implicit and Explicit Subshells
Subshells can be formed implicitly under several circumstances. The most important to know
about for most scripts are pipelines and background tasks (background tasks are discussed
in Chapter 6). In a pipeline, every command may be run in a subshell. There is no explicit ()
to indicate where the subshells go, but there will typically be one per command or possibly
one for each command but the first or last. In a portable script, you must not assume that
any command in a pipeline runs in the parent shell. A common idiom to allow you to use the
output of a pipeline is to use a while loop as the last command in the pipeline; you can then
access the output of the pipeline within the loop, but be aware that changes to shell variables
may not affect the parent shell. (Worse yet, they may affect the parent shell, so you should not
casually assume you can overwrite variables the parent shell is using.)

Here’s a script I wrote once with the intent that it would list the contents of all subdirecto-
ries of the current directory:

#!/bin/sh
ls | while read file
do
 cd "$file"
 ls
done

This script has a surprisingly high density of bugs for such a tiny program. In fact, the
only time it will work is when it is in a completely empty directory. If $file is not a directory,
the cd command prints an error message, and the script runs ls in the current directory; this
is probably not what I want. If $file is a directory, the shell changes to that directory and
lists its contents as expected. So what’s the bug in that case? The shell never changes back to
the parent directory, so the next cd command will probably not work as expected. Finally, it
is possible (and even common) that the ls command is subject to aliases that could cause
it to behave differently or to environment variables that set default options causing it to, for
instance, emit output in color. You can avoid the aliases by specifying the path to ls. The envi-
ronment variables are harder to address; for more information on the portability problems
such features can create, and how to avoid them, see the discussion of utility portability in
Chapter 8.

There are a number of ways to address these issues. The first thing to do is distinguish
between directories and files. In the case where $file is a directory, I want to change to it, run
ls, and change back out.

10436ch05final 97 10/23/08 11:34:57 PM

Chapter 5 ■ SheLLS WIthIN SheLLS98

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 cd "$file"
 ls
 cd ..
 fi
done

Now this will work in the most common cases. However, there is a new problem. If one
of the directories in question has permissions such that cd "$file" fails (or if the script writer
made the extremely common mistake of not quoting $file and one of the directories has
spaces in its name), the cd .. moves the script back up into the shell’s parent directory, leav-
ing the script once again behaving unexpectedly. You can resolve this at least in part by using
&&:

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 cd "$file" &&
 ls &&
 cd ..
 fi
done

This now works in most cases. The only case where it will fail is where you can change
your working directory to a given directory, but ls fails in it, and this is pretty uncommon.
However, there’s a much simpler way; you can use an explicit subshell:

#!/bin/sh
/bin/ls | while read file
do
 if test -d "$file"; then
 (cd "$file" && ls)
 fi
done

Because the cd command is now in a subshell, the parent shell doesn’t have to do any-
thing; it just keeps on executing in the directory it came from, rather than trying to figure out
how to get back to the right directory. Note that, unlike the {} command group, a subshell
does not need a trailing semicolon. This is because the) character is a metacharacter, which
the shell recognizes unless it has been quoted, while } is merely a very terse keyword.

Explicit subshells are often used simply to group commands; this may be inefficient on
any system, but it is especially inefficient if you need to worry about portability to Windows. If
all you need is to group a few commands together, use {}.

10436ch05final 98 10/23/08 11:34:58 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 99

Modifying the State of the Shell
Sometimes, it is desirable to change the environment of the current shell. Subshells are used
to prevent changes to the child shell’s context, especially the environment or current direc-
tory, from affecting the parent shell. However, sometimes you want precisely the opposite
effect; you want to force something to have an effect on the parent shell. Many shell builtins
exist to change the shell’s state. You could not implement cd as an external program in UNIX
because it would only change its own directory. The shell offers three other ways to run
chunks of shell code within the current shell’s environment: shell functions, the eval com-
mand, and the dot (.) command.

Shell Builtins
There are two major reasons for some commands to be built into the shell. The first is simple
performance; for instance, many modern shells implement test as a built-in command so
conditional operations do not require a process to be spawned. When a program is a builtin
for this reason, it mostly matches the behavior of an existing program that is found in the file
system. For instance, the built-in test program can generally accept any standard arguments
that /bin/test would work with. While the external utility programs and the shell builtins may
both provide extensions, the standardized part of their behavior is usually the same. On the
other hand, the nonstandard behaviors may vary widely. There is more discussion of utility
(and built-in command) portability in Chapter 8. In general, whether something is a builtin or
not, you should be careful about relying on extensions.

The second reason for a command to be a builtin is that it has to modify the shell’s
context. For instance, the cd command is a builtin because a program that changed its own
working directory would be useless to the shell calling it. Commands that modify or view shell
variables have to be builtins. The env command is not a builtin because it does not view unex-
ported shell variables, and because it never changes the caller’s environment. By contrast, the
set command is a builtin. The set command can display unexported shell variables or control
shell options; both of these functions require it to run as part of the shell process.

Shell Functions
Shell functions offer an interesting compromise between running within the shell’s environ-
ment and creating a new environment. A shell function is a block of code that is assigned a
name and can thereafter be used just like a builtin command. This section introduces the
common and portable subset of what you can do with shell functions; there is a great deal of
variance between shells. (Some rare shells lack functions entirely; use a preamble to get to a
real shell on those systems.) Shell functions are defined with the following syntax:

name () block

By convention, block is nearly always a {}-delimited list. However, you can use a
()-delimited list, in which case the function’s body runs in a subshell. The block should be
one of these two lists; other options are not portable. For instance, you cannot use a plain
pipeline or list as a function body using this syntax. Some shells offer other syntax for defining

10436ch05final 99 10/23/08 11:34:58 PM

Chapter 5 ■ SheLLS WIthIN SheLLS100

functions or even accept a plain pipeline as a function body. In many cases, shells that accept
multiple ways to declare functions provide different semantics for different types of functions.
The previous structure, whether with {} or () for the body, is the only portable option.

Functions operate a little like separate scripts. For instance, during the execution of a
function, the positional parameters refer to the function’s arguments, not the calling script’s
positional parameters. ($0 may or may not be changed; do not rely on either behavior.) How-
ever, calling exit within a function exits the whole script. If you wish to return early from a
function, the special return built-in command exits the current function with a specified
return code; in portable scripts, this still has to be a small integer value, the same as any other
exit status. Once the function completes, the positional parameters are restored. The function
runs in the shell’s environment, so code within the function can modify the shell’s state; for
instance, it can change the working directory or modify variables in the calling shell.

The name of a function may clash with the name of a variable; because of this, it may be
beneficial to use a consistent prefix, such as func_, on function names. Some shells distinguish
between function names and variable names, but older shells may not.

If you want to return a more complicated value or a string, you can store the result in a
shell variable or design your function to be used with command substitution. For a shell vari-
able, I recommend the name $function_result, as in the following example:

func_display_dpi () {
 func_display_dpi_result=$(xdpyinfo | awk '/resolution:/ { print $2; exit }')
}

The typical result of this function (a string like 75x75) would not be a possible return value
in some shells, but it can be stored in a variable. Of course, it could also be simplified if the
function just displays its output, and you use command substitution when calling it:

func_display_dpi () {
 xdpyinfo | awk '/resolution:/ { print $2; exit }'
}

I tend to favor the command substitution path when defining functions with useful
outputs. It is more terse and usually more idiomatic; on the other hand, each call to such
a function has to be run in a subshell, which can impose performance costs. The uniquely
named variable offers better performance in most cases. (Not in the preceding example,
though, where there’s a subshell anyway.)

In shells other than zsh, redirections at the end of a function’s definition are performed
every time the function is called, but only for the duration of the function. For instance, the
following script logs multiple lines to the /tmp/log file:

func_log () {
 echo $*
} >> /tmp/log
func_log hello
func_log goodbye
cat /tmp/log

hello
goodbye

10436ch05final 100 10/23/08 11:34:58 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 101

Each invocation of the func_log function results in output to /tmp/log; note that >> must
be used, or each invocation of the function would truncate the file. Because the redirection
affects the entire function body, individual statements within it do not need separate redirec-
tion. However, the shell’s standard output is not redirected, so the cat at the end displays the
log file normally. This offers an interesting compromise between individual redirections and
using exec to redirect the whole shell. This technique may be better avoided if you may need
to target a system where zsh is otherwise the best POSIX-like shell available; it is also quirky
enough that it may be better avoided if other people need to read your code—which they do.

While every modern shell provides some way to provide local variables within shell
functions, there are differences between the shells, and no one method for doing this is por-
table. This is actually more frustrating than it would be if there were simply no way to do it
at all in some shells. You can sometimes obtain results similar to local variables by using a
couple of tricks.

One solution is to run a chunk of code that needs local variables in a subshell. Getting data
out of such a function is hard; if you need results from it, you must use command substitution
to obtain them. If your function uses a subshell, and then you always call it in another subshell
for command substitution, Windows users will hate you.

Another option is to use shell variables with names that are unlikely to clash. For instance,
you could extend the function_result idiom to other values you need during the execution of
a function.

 If you really need local variables, though, you can use a subshell for them. You can sim-
ply declare the function using a subshell as the function body; the subshell code can create
or modify variables freely without worrying about affecting the parent shell environment. For
instance, this script uses a subshell to avoid stomping on the parent shell’s variable value:

func_add () (
 value=0
 for i
 do
 value=$(expr $value + $i)
 done
 echo $value
)
value="Save me!"
func_add 3 4 5
echo "Value: $value"

12
Value: Save me!

The func_add function stomps on the variable value, but only in its subshell. The code
outside the subshell does not stomp on any variables, so it can be called safely. If you need to
modify the parent shell’s environment, you can use braces for the function body, then use a
subshell within the function’s body. You can use command substitution to get information out
of the subshell, as in this nearly equivalent example:

10436ch05final 101 10/23/08 11:34:58 PM

Chapter 5 ■ SheLLS WIthIN SheLLS102

func_add() {
 add_result=$(
 value=0
 for i
 do
 value=$(expr $value + $i)
 done
 echo $value
)
}
value="Save me!"
add_result="Overwrite me!"
func_add 3 4 5
echo $add_result
echo "Value: $value"

12
Value: Save me!

The variable value is preserved, as it is modified only in the subshell. However, the
add_result variable is given a new value. You could execute other shell code from the subshell,
too; it is not limited to variable assignments. This technique allows you to distinguish between
“local” variables in a function and shell globals. However, it has two key limitations. The first
is that it really requires nested command substitution (at least in the case where the function’s
core behavior involves the output of external commands). This restricts portability to relatively
modern shells. The other is closely related; this technique uses a couple of subshells, and as
such, may perform poorly on Windows machines.

The behavior of temporary assignments made on the command line is not quite portable
when the command is a function; in pdksh, such assignments are not reversed after function
execution unless the function was declared using an alternative syntax (discussed in Chap-
ter 7). To pass data to a function without altering the caller’s environment or context, pass the
data in as arguments and access them using the positional parameters ($1, $2, etc.) in the func-
tion. (Do not assume that $0 refers either to the function's name or the script's previous value
for $0; it might be either.)

Although they have their limitations, shell functions are exceptionally useful in develop-
ing larger shell programs. Functions offer a quick way to bundle up frequently used code and
reuse it, generally without the expense of spawning subshells. Many users are unaware of the
availability of shell functions or assume they are an extension. While many function features
are extensions (and no two shells offer quite the same set of features), functions themselves
are essentially universal.

The eval Command
The eval command executes its arguments as shell code. It may seem odd to need a special
command for this; if you have code you wish to execute, why not just write it? There are two

10436ch05final 102 10/23/08 11:34:59 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 103

factors that make eval necessary. The first is code that is being generated in some way, usually
through parameter substitution or command substitution. Because the results of substitution
can never be keywords or other shell syntax features, such as variable assignments, anything
that generates code needs to be parsed again by the shell. However, that could easily be han-
dled by feeding the resulting code to another shell. The second factor is the desire to execute
that code within the current shell. This is most obvious with variable assignments, although in
some cases it is simply a matter of efficiency.

The eval command takes its arguments and concatenates them (separated by spaces) into
a string that is then parsed and executed. Because the arguments to eval often include bits
of shell syntax or metacharacters, many programmers habitually pass a single-quoted string
as an argument. The quotes are not always necessary, but it can be a good habit to include
them when the arguments are complicated or contain metacharacters so that you can be sure
whether it is the calling environment or the eval command performing any splitting, substitu-
tions, or globbing.

One usage of eval is to create a shell syntax item, such as a variable assignment, by assem-
bling it from other components (such as an escaped dollar sign and a name). Since there are
no arrays in standard shells, programmers sometimes use sequences of variable names to sim-
ilar effect. For instance, instead of using an array named a, you might use a series of variables
named a_0, a_1, and so forth. If the variable count holds the value of an item of the array, you
can assign a value to that member like this:

eval "a_${count}=$value"

This does not work if $value contains spaces or other special shell characters. The first
step in correcting this is to use quotes:

eval "a_${count}=\"$value\""

This works unless $value contains double quotes or dollar signs. The trick is to prevent the
shell from expanding $value until it is inside the eval so that it only gets expanded once. To
solve this, escape the dollar sign so the shell passes the dollar sign and variable name to eval
rather than the substituted string:

eval "a_${count}=\"\$value\""

Now, no matter what string $value contains, the eval command executes the following
code (assuming $count was 0):

a_0="$value"

Nothing generated by parameter substitution is a special syntax character; no matter what
$value contains, the result of the substitution is a plain string inside double quotes, and the
contents of the string are reliably stored in $a_0. In fact, you can go a little further. The shell
does not perform field splitting on the right-hand side of an assignment, so you can omit the
inner quotes now that the dollar sign is escaped:

eval "a_${count}=\$value"

10436ch05final 103 10/23/08 11:34:59 PM

Chapter 5 ■ SheLLS WIthIN SheLLS104

Even the outer quotes are actually unneeded. There is only one argument, and it contains
no spaces or special characters that require additional protection:

eval a_${count}=\$value

The following fragment stores a collection of file names in a series of named variables,
which can later be used somewhat like an array:

count=0
for file in *; do
 eval a_${count}=\$file
 count=`expr $count + 1`
done

On the first iteration, the shell assigns the name of the first file to a_0. This can only be
done using eval. If you used a second shell, it would not affect variables in the parent shell,
and if you didn’t use eval, the shell would fail because there is no command named a_0=file.
On the second iteration (assuming there are multiple files), $count is 1, so the second file is
assigned to the variable a_1. This allows you to store the results of a glob separately and access
them individually later. This gives you a safe way to treat a list of results as an array.

Most shell programs use a simpler idiom, simply accumulating values within a single
variable:

for file in *; do
 a="$a $file"
done

While this is common and idiomatic, it is not quite as reliable. There is no way after this
has run to distinguish between a file name containing spaces and two separate file names.
You could use a different idiom, using other characters (such as colons) as separators, but any
character can exist in a path name. In the special case where you are looking only at file names
guaranteed not to have directory components in them, you could use path separators safely.

The eval command is also needed to extract these variables. The shell cannot handle
nested substitutions like ${a_${count}}. Some languages, like Perl, can. For the shell, you must
use eval. You can use the same kind of expression used to create dynamically named variables
to access them later:

eval value=\$a_${count}

The shell generates the string value=$a_0, then evaluates it. The contents of $a_0 are sub-
stituted and stored in $value. Again, the right-hand side of the assignment is not subject to
field splitting, so there is no need for quotes.

The following function provides a moderately complete implementation of arrays using a
shell function interface:

func_array () {
 func_array_a=$1
 func_array_i=$2
 case $# in

10436ch05final 104 10/23/08 11:34:59 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 105

 2)
 eval func_array_v=\$func_array_${func_array_a}_${func_array_i}
 return 0
 ;;
 3)
 func_array_v=$3
 eval func_array_${func_array_a}_${func_array_i}=\$func_array_v
 return 0
 ;;
 *)
 echo >&2 "Usage: func_array name index [value]"
 func_array_v=''
 return 1
 ;;
 esac
}

This function can be called to either set a named variable or extract its value. The
values are all stored in variables using the prefix func_array_ to avoid name clashes. If
you call func_array a 1 hello, this function stores the string hello in a variable named
func_array_a_1. If you call this as func_array a 1, it then stores the current value of
$func_array_a_1 in $func_array_v. You could easily change this to generate an error mes-
sage for access to an unset array member; as is, it honors the shell’s normal convention of
substituting an empty string for an unset variable. Note that the index need not be numeric;
it can be any string consisting only of underscores, letters, and numbers. This function could
do with more error checking for valid indexes, but it illustrates the flexibility of eval.

Another use of eval would be displaying commands before running them for debugging
or feedback purposes. The following function runs its arguments using eval, after optionally
displaying them:

func_do () {
 cmd=$*
 if $verbose; then
 printf 'running %s\n' "$cmd"
 fi
 eval "$cmd"
}

The printf command displays the command prior to any substitutions or globbing, which
is usually the most informative choice. Printing out the results after substitutions is quite a bit
harder; there is a working example of how to do this embedded in libtool. In essence, you do
it by using other tools (such as sed) to generate multiple versions of the text to be used in dif-
ferent contexts (for instance, inside and outside of double quotes). If you need to do this, pick
up the existing code rather than trying to reinvent it, as there are a number of special cases to
deal with.

10436ch05final 105 10/23/08 11:34:59 PM

Chapter 5 ■ SheLLS WIthIN SheLLS106

In the section “Introducing Redirection” in Chapter 3, I pointed out that you cannot
write code that tries to pick streams to redirect out of a variable. For instance, this code
doesn’t work:

logfd=3
exec $logfd>/tmp/log.txt

This fails, because the 3 which replaces $logfd is not seen as part of a redirection; instead,
the shell looks for a command named 3, which it can execute with standard ouptut directed
into /tmp/log.txt. The eval command makes this possible, however:

logfd=3
eval "exec $logfd>/tmp/log.txt"
echo "hello" >&$logfd

This example echoes hello into /tmp/log.txt. The shell substitutes $logfd, producing the
string exec 3>/tmp/log.txt, then eval executes that string in the current shell environment.

The string passed to eval must be syntactically correct, or the shell reports a syntax error.
The following fragment is just an elaborate syntax error:

eval "if $condition; then $action; "
fi

The eval statement fails because the if statement is incomplete; the following fi is a
syntax error because it does not occur at the end of an if statement. You can use control
structures within eval, but the entire control structure has to be within the code evaluated.
By contrast, break and continue statements can be executed from within eval; the break state-
ment is not a part of the syntax of the enclosing loop, but a command that affects the shell’s
flow control.

If the code passed to eval is syntactically valid, the return status of eval is the return sta-
tus of the evaluated code. Otherwise, eval indicates failure (and displays an error message on
standard error).

In modern shells, the eval command can be used to make a temporary assignment to
$IFS:

IFS=: eval echo \$PATH

The eval command is run with $IFS changed, so when it substitutes $PATH, the shell uses
the temporary value (a colon) for field splitting. Temporary variable assignments preceding
built-in commands are not reverted with most built-in commands, but POSIX shells do this for
eval or set. Unfortunately, some older shells do not handle this as expected.

Another common usage for eval is to run shell code (nearly always assignments)
generated by other programs. Programs that want to generate modifications to the shell envi-
ronment, such as the tset utility (which manipulates terminal settings), often have a mode in
which they emit a series of shell commands. These commands are designed to be incorporated
into the shell environment using command substitution and eval. For instance, the tset utility
can produce shell assignments as output, intended to be evaluated by the calling shell:

eval `tset -s`

10436ch05final 106 10/23/08 11:35:00 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 107

This displays basic terminal setup commands to ensure that other settings (such as those
controlled by stty) are synchronized with the terminal type. (Many users also use the -Q
option to prevent tset from overriding the choice of character used to erase the previous char-
acter typed, as this is typically idiosyncratic.) The tset utility also makes an interesting use of
standard error; in its normal usage, it sends terminal reset instructions to standard error once
it has identified a terminal type. If you have inadvertently displayed binary data to a terminal,
and the terminal is displaying characters incorrectly, running tset will often correct this. The
standard error stream is used so that, even when standard output is being directed to the shell
(for command substitution), the special reset sequences go to the terminal anyway.

Another good example of a command with shell command output is the widely available
ssh-agent command. The ssh-agent command provides a uniform way to handle secure shell
authentication for a number of programs. When programs are run as children of ssh-agent, or
children of another program (typically a shell) that ssh-agent started, they can get the infor-
mation they need to use these authentication features from the environment. What about
programs started elsewhere? To resolve this, the ssh-agent program can produce a series of
environment variable assignments on standard output. Thus running eval `ssh-agent -s`
gets variables into the current shell’s environment for use by the shell and its children.

In most cases, the code generated by such programs is limited to variable assignments.
In the case of ssh-agent, there is also an echo command to display additional information:

$ ssh-agent -s
SSH_AUTH_SOCK=/tmp/ssh-00024095aa/agent.24095; export SSH_AUTH_SOCK;
SSH_AGENT_PID=29018; export SSH_AGENT_PID;
echo Agent pid 29018;

Of course, displaying these values to standard output is useless (unless you’re writing a
book); the agent is now running, but no variables have been set in the calling shell. Programs
expecting to be run in this manner tend to emit semicolons after every command to ensure
that their output will be usable even if it has been combined into a single line by field splitting.

The purpose of this command is not just to allow programs that use an SSH agent to
access it, but also to let you avoid rerunning the agent if you do not need to. For instance, this
chunk of (nonportable, sadly) profile code would reuse an existing ssh-agent process if one
existed:

if test -n "$SSH_AGENT_PID" &&
 ps x | grep ssh-agent | grep $SSH_AGENT_PID >/dev/null; then
 echo "Existing ssh agent: $SSH_AGENT_PID"
else
 eval `ssh-agent -s`
fi

The nonportability in the preceding code is the option specified to ps; there is no univer-
sally portable set of options that will display background processes. You could also use kill
-0 $SSH_AGENT_PID to check for a process with the expected pid, but this would not prove that
it was an ssh-agent process.

There are a number of security concerns with running eval on code generated by external
utilities, as there is no way to constrain the code. When running eval in a production script,
always specify the full paths to programs whose output you will be running. Of course, you

10436ch05final 107 10/23/08 11:35:00 PM

Chapter 5 ■ SheLLS WIthIN SheLLS108

may not be able to predict those paths; ssh-agent, for instance, might be in any /usr/bin,
/usr/local/bin, /opt/gnu/bin, or any of a number of other common paths, depending on the
system. You can search the common or reasonable places; beyond that, you have to make a
security policy decision about how much to trust the user.

 If you know a fair bit about the output you are expecting, you may be able to perform
some sanity checks on it before executing it. In the fairly common case where you are substi-
tuting only a small portion of a piece of code, such as the name of a variable, you can check to
make sure that the substitution is reasonable before executing it.

The dot (.) Command
The dot (.) command reads a named file in and executes it in the current shell. (The name
“dot” is not the actual name of the command; you cannot invoke dot at a shell prompt, but
people often refer to the command as “the dot command” for clarity in English, where a single
period on its own is not a word.) This is often called sourcing the file, and bash accepts source
as a synonym for ., although this is not portable to other shells (in fact, it’s a csh feature). The
named file is searched for in the current execution path; if you want to execute a program in
the current directory, you must specify its path explicitly (unless you have the current direc-
tory in your path, in which case you should change that, as it is a very bad idea). Apart from
the use of a search path, . file is generally equivalent to eval "$(cat file)".

do noT PUT . in PaTh
Do not put . in your $PATH. It is even worse if you put it at the front of your path, but even at the end, it is
dangerous. In the real world, people make typos. An attacker who can arrange to have a file named sl in a
directory where you run a command can cause you to execute that file; if it prints the error message you'd
have expected from your shell, you might not even notice. This is most important when working on shared
machines, but even for personal use systems, it is a good habit to use commands in . only by explicitly speci-
fying a path of ./command.

There is an additional reason, other than security, to care about this. If you are used to . being in your
path, you will make more mistakes. For instance, you may write a simple script that uses a helper script,
only to discover that it works only when you are in a given directory. Better to specify paths and directories
consistently.

Note that a path with a leading or trailing : also searches the current directory. Don't do that either.

The . command is mostly used for setup scripts that configure the shell’s environment.
For instance, the previous script intending to modify the user’s path can be sourced by the
shell, in which case it works:

10436ch05final 108 10/23/08 11:35:00 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 109

$ cat path.sh
#!/bin/sh
PATH=$PATH:/usr/local/bin
$ echo $PATH
/bin:/usr/bin
$. ./path.sh
$ echo $PATH
/bin:/usr/bin:/usr/local/bin

Sourcing can also be used in cases similar to those where you would use eval, but where it
is convenient or desirable to create a file to store a series of commands you wish to run in the
current shell.

Using Shells Within Shells
The various ways of spawning subshells have some overlapping functionality, but there are
significant differences between them. The primary differentiations between ways of running
subshells (or external shells) are whether the code can affect the parent shell’s environment,
whether the parent shell performs substitution on the code, and whether the child shell per-
forms substitution (see Table 5-1).

Table 5-1. Shells Calling Shells

Shell Type affects Caller Context Parent Substitutes Child Substitutes

sh, sh -c No Yes Yes

eval, . Yes Yes Yes

() No No Yes

fn () Yes No Yes

``, $() No No Yes

When arguments are passed to eval or to sh -c, they are plain strings to the parent shell
and subject to normal shell substitution rules. However, when the parent shell creates a sub-
shell, whether for command substitution or not, the code passed to the subshell is not subject
to substitution in the parent. Similarly, the bodies of shell functions are subject to substitution
and globbing each time the function is called, not when it is defined. If the body of a function
consists of a subshell, it cannot modify the parent shell’s context.

When to Use an External Shell
A full external shell should be used when you want to run code in a completely separate con-
text and want the shell to parse that code. External shells have the highest cost of any of the
shell execution mechanisms, but they give the cleanest behavior least affected by the current
shell’s context. External shells have a comparatively high cost, however. In most cases, wrap-
ping an eval in a subshell is an acceptable substitute for launching a command with sh -c and
may perform marginally better.

10436ch05final 109 10/23/08 11:35:01 PM

Chapter 5 ■ SheLLS WIthIN SheLLS110

The external shell’s arguments are potentially subject to parameter or command substitu-
tion before they are created, but the external shell will not have any local shell variables you
have set. Similarly, it will not have any shell functions or other unusual local environment
setup. Use an external shell instead of eval when you want to run a command that might affect
the shell’s environment or be affected by the shell’s context. Similarly, use an external shell
instead of . when you want to run an external shell script in a separate context.

External shells do have one very significant portability weakness: If the standard system
shell lacks features, and you’ve used an execution preamble to get into a more modern shell,
sh -c will probably call back to the old-fashioned shell. Pay attention to which shell you are
calling when you use external shells.

Idiomatically, external shells are often used to express self-containment of a command;
in many cases, the external shell command could have been run in a subshell quite easily. One
other thing external shells can do is completely detach a child process from the parent shell.
A job run in the background is still affiliated with the shell that started it. By contrast, a grand-
child process can be completely disconnected. Processes designed to run as daemons often do
this internally, but some lightweight programs expect the caller to do it. So one use of an exter-
nal shell is to start a completely independent background task:

sh -c "background_task >/dev/null 2>&1 </dev/null &"

The external shell runs background_task disconnected from all the standard streams, then
exits. After the external shell has exited, background_task is not connected to the parent shell in
any way. Redirection of the standard streams is important; otherwise, background_task might
still have the parent shell’s input or output streams open, preventing those streams from clos-
ing when the shell exits.

Other typical uses of an external shell might look like this:

sh -c "tar cf - $dir | bizp2 | ssh user@remote "bzip2 -dc | tar xf -" &

This copies a directory tree to a remote host (and only works if ssh has been set up to
allow passwordless access to that site).

bash installer $source $target > install.log 2>&1

This runs an external script explicitly. You would not want to use . to run the script; it
might change the shell’s context radically. The choice of a specific shell suggests that perhaps
the installer script depends on bash extensions.

for shell in ksh ksh93 sh bash; do
 $shell test > test.$shell
done
ok=true
echo "---output---"
cat test.sh
echo "------------"
for shell in ksh ksh93 bash; do
 diff -u test.$shell test.sh || ok=false
done
$ok && echo "All shells matched!"

10436ch05final 110 10/23/08 11:35:01 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 111

This scriptlet would provide a very minimal start on testing whether a test script’s behav-
ior is consistent across a small range of shells. In this case, the explicit choice of which shell to
execute is very much intentional.

When to Use eval or dot (.)
The eval command is used when you want to assemble a chunk of shell code and evaluate it
within the current shell context. You should use eval instead of an external shell primarily if
you need to modify the current shell’s context. In some cases, though, the performance advan-
tage of not starting a new shell may be worth it as long as executing code in the current context
does not cause problems. The eval command is useful when the generated code involves shell
syntax or when you need to perform another pass of substitution on the results of a parameter
or command substitution. If you need to interact with a variable, but which one must be deter-
mined dynamically, you need eval. Likewise, because substitution cannot create shell syntax
features, such as control structures, you need eval to generate control structures.

The . command is used mostly for existing code rather than dynamically generated code.
Larger projects written in shell may use . to incorporate a set of shared shell commands writ-
ten as functions. The system startup scripts on several Linux systems, as well as many of the
BSDs, use shell functions to provide consistent and reliable implementations of common tasks
used in startup scripts. For instance, nearly every startup script on NetBSD starts with the
following:

$_rc_subr_loaded . /etc/rc.subr

The rc.subr script provides a number of function definitions to simplify the development
of startup scripts. At the end of the script, the $_rc_subr_loaded variable is set:

_rc_subr_loaded=:

If the support file has not already been loaded, the line expands to . /etc/rc.subr and
loads the support file. If it has been loaded, the line expands to : . /etc/rc.subr, which does
nothing.

Supporting files like this are useful for a number of reasons. Shell functions are generally
faster than external commands. Furthermore, they can modify the environment of the script
using them. This makes them essentially new built-in commands that can be written on the
fly, allowing a great deal of convenience and flexibility in scripting.

When to Use Subshells
Subshells are often used because the parentheses offer a visually intuitive way to group com-
mands. However, if you do not need any of the additional features of the subshell, using a
command list (enclosed in braces and terminated by a semicolon or new line) is typically more
efficient.

Any time you find yourself about to save, modify, and then restore part of your shell con-
text or environment, a subshell is probably better. One of the most widely used examples of a
subshell is this idiom for copying files:

tar cf - . | (cd target; tar xpf -)

10436ch05final 111 10/23/08 11:35:01 PM

Chapter 5 ■ SheLLS WIthIN SheLLS112

Unlike the cp command, this preserves a broad variety of nonstandard files, such as device
nodes. If run with root privileges, it also preserves ownership. Users on systems that provide it
may prefer the pax utility, which can perform this operation with a single command. However,
the pair of tar commands lends itself to another common idiom, which cannot be done using
only a single command, doing the same thing to or from a remote machine:

ssh user@remote 'cd source; tar cf - .' | (cd target; tar xpf -)

Whether local or remote, the unpacking operation could be done instead using plain shell
compound commands, but then the current directory of the shell would be changed. Using
a subshell is more idiomatic. If you are using a remote shell, remember that it cannot expand
local shell variables; make sure any variable arguments sent to the remote shell have already
been expanded on the local end.

When to Use Command Substitution
Command substitution is one of the central strengths of the shell, allowing arbitrary new
functionality to be added to the shell on the fly. Common uses of command substitution
include generation of data and performing operations that the shell does not provide natively.
For instance, although some modern shells have built-in arithmetic evaluation, historically
shell scripts have used the expr utility to perform arithmetic, and you should stick with it in
code that you expect to ever need to port. For instance, when using getopts (see Chapter 6;
of course, this isn’t all that portable either) to parse options, the shell sets a variable $OPTIND
to the index of the first nonoption parameter. To remove the options from the parameter list
using shift, you need to shift one less than that many values off the parameter list:

shift `expr $OPTIND - 1`

There may still be shells that only let you shift one argument at a time (because their
shift command takes no arguments), in which case you must use a loop to accomplish
this, but I haven’t been able to find one. Similarly, you may want to count files that match
a given test:

total=0
for file in *
do
 test -d "$file" && total=$(expr $total + 1)
done
echo "$total file(s) are actually directories."

Another very common use of command substitution is modifying strings using the sed or
tr utilities (with which there are many portability issues; see Chapter 8). For instance, a script
that wishes to shout at the user might use tr to uppercase a message:

10436ch05final 112 10/23/08 11:35:01 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 113

func_toupper () {
 func_toupper_result=`echo "$@" | tr a-z A-Z`
}
func_toupper "I can't hear you."
printf "%s" "$func_toupper_result"

I CAN'T HEAR YOU.

In this case, of course, it might make sense to remove the command substitution and
simply display the output immediately. A common pitfall when using command substitution
is to carefully store the output of a command, only to immediately display it. This habit prob-
ably reflects the idiom in many languages, where you use a special command to display things;
thus if you want to display the result of an operation, you obtain the result and then display it.
Be careful about falling into this habit. The example displays the output immediately because
its only purpose is to display the output. In a real program, if you were always going to display
the output immediately, it might make more sense to write the function to display output
rather than returning a result:

func_toupper () {
 echo "$@" | tr a-z A-Z
}

Command substitution like this is often used when a given data manipulation exceeds
the native capability of the shell to perform pattern operations. Some shells offer substantially
more flexible variable manipulations, but the basic pattern remains, and there are always
things that external utilities are better at.

It is important to note that the commands in a command substitution do not need to be
external programs and do not need to be simple shell commands. You can expand the output
of functions, lists, or shell control structures, such as while loops.

Combinations
One of the most common idioms with all of the previous is combining them. As you have
probably noticed, many of the examples of how to use eval use it on the results of command
substitution. The shell is fundamentally a glue language, and each of these mechanisms is
used for a different kind of glue. The following example lumps everything together:

: ${MD5SUM="md5sum"}
find . | while read file; do
 test -f "$file" || continue
 md5=`"$MD5SUM" < "$file"`
 eval assoc=\$md5_$md5
 if test -z "$assoc"; then
 eval md5_$md5=\$file
 else
 printf 'duplicate: "%s" and "%s"\n' "$file" "$assoc"
 fi
done

10436ch05final 113 10/23/08 11:35:02 PM

Chapter 5 ■ SheLLS WIthIN SheLLS114

A few words of explanation may be in order. This script attempts to identify duplicate files
in the current directory, using the MD5 checksum algorithm. (This may not be available on all
systems; on some systems, it may be named md5, or not be installed at all.) The essential loop,
on the outside, looks like this:

find . | while read file; do
 # DO SOMETHING WITH $file
done

This loop uses the output of the find command (a list of file names, one to a line) as a list
of file names to process. Now, what exactly is happening inside the loop?

test -f "$file" || continue

The first operation is a check that the file is a plain file, as opposed to a directory or a
UNIX special file (such as the file system representation of a physical device). The short-circuit
operator is a little terse, but expressive. This kind of usage is idiomatic in shell; while it might
be dismissed as unwarranted “clever” programming if it were not a common idiom, familiarity
makes up the difference. This idiom is very similar to the Perl idiom condition || next.

 md5=`"$MD5SUM" < "$file"`

This line sets a variable, $md5, to the output of the selected checksum command. The md5
and md5sum programs I used are verbose when invoked on a named file, but nicely terse when
invoked with only an input stream, producing nothing but a 32-character string. This string is
a 128-bit number derived from the file contents, which is typically different for any two files
that are different. Of course, there are many possible clashes, but in practice the chances of a
clash are low (extremely close to one in 2^128, if you can believe that).

 eval assoc=\$md5_$md5
 if test -z "$assoc"; then
 eval md5_$md5=\$file
 else
 printf 'duplicate: "%s" and "%s"\n' "$file" "$assoc"
 fi

This is the actual guts of the script. If you store a list of files and their MD5 checksums, you
must search the whole list for each potential clash. This is annoying. In a language that sup-
ports associative arrays (also often called hashes), you would probably store each file name as
a value with its checksum as a key. In fact, you can do nearly the same thing in the shell using
computed variable names. Computed variable names, of course, mean using eval. Let’s have a
closer look at the bolded code fragment:

eval assoc=\$md5_$md5

This is a useful idiom for obtaining the value of a variable whose name you must compute
at runtime. If the MD5 checksum of a file were 12345678 (it wouldn’t be; it’d be four times that
long, but a short name is more readable), this would expand to the following:

assoc=$md5_12345678

10436ch05final 114 10/23/08 11:35:02 PM

Chapter 5 ■ SheLLS WIthIN SheLLS 115

This stores the value of the dynamically selected variable in a variable with a predictable
and constant name.

If the MD5 variable had a value, it must have been stored from a previous match, and
you have a duplicate; you have identified a match between the new file $file and the file
name now stored in $assoc. If it has not, you want to stash the name of the current file in that
variable:

 eval md5_$md5=\$file

Because the calling shell does not substitute $file, you do not need to worry about spe-
cial characters; the eval command does the substitution, and the results are guaranteed to be
treated as a plain word, not as shell metacharacters, even if the file name contains quotes, new
lines, spaces, or other unusual characters.

The use of assignment reduces the number of subshells and command substitutions you
might otherwise need. A very common idiom is to use eval in a command substitution to
extract the value of a variable:

assoc=`eval printf %s "\"\$md5_$md5\""`

Direct assignment is quite a bit simpler to use, but be aware of this idiom, as you may see
it frequently. The combination of eval and command substitution merits attention because
this combination is fairly common. In general, using eval and echo (or printf) to obtain the
output of dynamically generated code is a useful idiom. The eval command lets you generate
a variable name dynamically, printf lets you display its contents, and command substitution
lets you embed those contents into another command or variable assignment. The weak-
ness of this idiom is that command substitution implies field splitting and removal of trailing
new lines, so it does not preserve all contents precisely. This may be unavoidable, when the
dynamically generated code includes references to external commands.

What’s next?
Chapter 6 goes from fiddly little details of shell syntax into gory details of shell invocation and
execution. I explain more about the positional parameters, the meaning and nature of shell
options, and the grand unified theory of why the shell is not doing what you expected it to do,
as well as some of the debugging tools and techniques that may become necessary if a script is
misbehaving.

10436ch05final 115 10/23/08 11:35:02 PM

10436ch05final 116 10/23/08 11:35:02 PM

C h a p t e r 6

Invocation and execution

This chapter discusses the runtime of the shell. The shell must be started in some way; this
is discussed in the next section, “Shell Invocation.” Once the shell is running, it is important
to understand what the shell actually does, the order in which substitutions occur, and the
way the shell interacts with other processes. It may even be necessary on rare occasions to use
additional tools to debug a script that behaves unexpectedly.

Shell Invocation
This section discusses the process of starting the shell (or a shell script) and telling it what
to do; this is called invocation. The shell itself is a command, like any other, which takes
command-line options and arguments; similarly, each shell script becomes a command that
can be invoked, and most take options, arguments, or both.

The words following a command’s name on the command line are generally called
parameters or arguments. I use the term arguments to avoid confusion with shell parameters
(which are sometimes called variables to avoid the same confusion). Many commands take
special arguments, called options, which change the way the program behaves. The UNIX con-
vention is that options are generally introduced with a hyphen and typically have single-letter
names. Multiple options can be combined; foo -ab is usually the same as foo -a -b. Some
options may take an additional word as an argument, such as the -e option to grep, which
takes a regular expression as an argument.

The meaning of arguments that are not options may vary. Many UNIX utilities treat all of
their arguments the same, typically as a list of file names. However, there are many exceptions;
it is also common for the first nonoption argument to a command to be special. In grep, for
instance, if no -e option is provided, the first argument is a regular expression, and following
arguments are file names.

How UNIX Runs Scripts
When a UNIX-like system tries to execute a file, the kernel checks to see what kind of file it is.
If it is a regular file with execute permission, the kernel tries to execute it. The kernel starts by
examining the file to see if it is a known type of executable by looking for a distinctive header;
for instance, on many modern systems, the kernel checks for an Executable and Linking For-
mat (ELF) header denoting an executable in the ELF format.

On essentially every “real” UNIX-like system (all UNIX systems and all UNIX clones), there
is a common standard executable script format—a file starting with the characters #! (called

117

10436ch06final 117 10/23/08 10:57:17 PM

Chapter 6 ■ INVOCatION aND eXeCUtION118

a shebang, short for sharp-bang). Strictly speaking, this behavior is not mandated by POSIX,
and there are subtle variances between systems; in practice, it is universal as long as you are
reasonably cautious. Such a file is taken to be a script file to be run by an interpreter. The rest
of the first line of the file indicates what program the script is to be used with. For instance, the
common shell header #!/bin/sh indicates that the script is to be used with /bin/sh. To execute
the file, the kernel executes the command /bin/sh with the name of the script as its first argu-
ment. Spaces after the ! are permitted but ignored; you can ignore the occasional rumors that
it is nonportable to omit the space.

The command name in a shebang line is nearly always an absolute path. The kernel does
not search $PATH for a binary; it just tries to find a file of the given name. So a script starting out
#!sh is treated as a script for the sh program in the current directory. The command cannot
itself be another #! script.

Traditional shells treat a file marked as executable, but lacking a header, as a shell script.
This behavior is required by POSIX, but you should never rely on it. In particular, it is harder to
tell which shell will be used to run a script invoked in this way, especially if it is being invoked
by a shell other than the standard shell. Some shell documentation describes a script run
this way as a “subshell,” but the shell context (functions, aliases, shell variables, and so on) is
cleared out as though it were a new shell.

 Interestingly, the POSIX definition of the shell explicitly does not specify what happens if
a file starts with #!; this is because a hypothetical non-UNIX system could comply with POSIX
but treat all scripts as shell scripts. In fact, many UNIX systems simply treat all executable files
(which are not recognized by the kernel) as shell scripts, even if they are not text files! A typical
result from trying to execute an executable from another machine is a cryptic error message:

$./somega
./somega: 1: Syntax error: "(" unexpected

This file was an old executable compiled on an older machine and copied around with the
rest of my files. Because the executable was not compatible with the hardware I tried it on, the
kernel failed to execute it. Since it was marked executable, the shell tried to execute it anyway.
POSIX allows the shell to print a warning and fail to execute non-text files, but many shells
don’t bother.

■Warning The shell does not necessarily check whether an executable file is actually a shell script!

There are two places where other arguments may be passed to the new script. If there
is a space after the command’s name, anything else on the line is also passed to the com-
mand, before the script’s name; for example, #!/bin/sh -x runs a script in trace mode. The
remainder of the line may or may not be split into multiple arguments; most systems pass it
as a single argument, even if it contains spaces—but do not rely on this. If a script’s header is
#!/bin/sh -x -y, the options are usually passed as a single argument containing a space, not
two separate arguments.

Secondly, if the script command originally had arguments, those arguments are passed
after the script file’s name. If a script starting with #!/bin/sh -x is invoked as ./script hello,
the original arguments passed to the shell are /bin/sh, -x, ./script, and hello. The shell

10436ch06final 118 10/23/08 10:57:18 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 119

interprets -x as an option. It then uses ./script as a script file (setting $0 to ./script, and
reading commands from that file instead of standard input) and passes hello as $1. This
behavior is precisely the same as you would get by explicitly invoking the shell on the file.

#! noTaTIon and $PaTH
An obvious problem with shebang notation is that the path to a program may not always be consistent or
predictable. While this has no immediate effect on most shell scripts, it can crop up in some cases (such as
where you are writing a script for a particular shell), so a brief discussion is in order.

If you want a script to run on two systems and both provide ksh, but one provides it in /bin and the
other in /usr/local/bin, it is quite easy to end up with the script failing on one system or another just
because the shebang line is wrong. One surprising solution is to use the env command; when it runs its
nonassignment arguments as a command, it searches the $PATH environment variable for the command. If
you know that you want to run ksh, and you are confident that it is in the user’s path, a script starting with
#!/usr/bin/env ksh executes ksh correctly. The env utility can be used to run another program, even if
no variable assignments have been provided.

There are a couple of limitations to this trick. One is the existence of a few systems where env is in
/bin, not in /usr/bin. Furthermore, most systems do not allow you to specify multiple program arguments
on the shebang line; if you change the line to #!/usr/bin/env ksh -x, the env utility may try to find a
program named ksh -x to run, rather than trying to run the ksh program with the -x argument. Execution
preambles (see Chapter 7) may allow you to avoid some of these issues.

The POSIX spec recommends the use of the getconf utility to obtain the default system search path
(getconf PATH) and iterate through it looking for the standard shell. Another option is to use the command
utility; command -v sh should give you a path to the shell, for instance.

Shell Options
Options passed to the shell control various implementation choices or settings, some of which
are visible within a script as flags. Some command-line options set flags that can be changed
later using the set command. You can see the current status of shell flags in the special shell
parameter $-, which represents them as a string:

$ echo $-
ilms

This means that the shell has the -i, -l, -m, and -s flags set. These options may not apply
to all shells, and not all shell options are portable. If you want to check for a given option,
check to see whether its letter is present. For instance, a script can determine whether or not it
is in trace mode:

case $- in
x) ;;
*) echo "+ $cmd" >&2;;
esac

10436ch06final 119 10/23/08 10:57:18 PM

Chapter 6 ■ INVOCatION aND eXeCUtION120

This rather quirky bit of code displays $cmd on standard error if the trace flag is not set.
The trace flag displays simple commands before executing them, but it does not display shell
control constructs, such as case statements; if it is set, no simple commands are executed, so
none of this code is displayed.

The most common flag to check for is the -i flag, which is set in an interactive shell ses-
sion (discussed in more detail in the section “Shell Startup and Interactive Sessions”).

Additional settings may be available using the special -o option; for instance, in ksh or
bash, set -o vi enables vi-style command-line editing. These settings are generally not por-
table between shells. Furthermore, some shells may abort if asked to set an unknown option.
Be aware of this, but avoid it in scripts.

Using Positional Parameters
Any additional words after the last shell option are arguments to the shell. If no commands are
provided using the -c option, the shell treats its first argument as the name of a script to run,
and following arguments as arguments to that script. Otherwise, all arguments are passed on
to the script.

The arguments passed to the shell are stored in special shell parameters named $1, $2, and
so on. These are called the positional parameters. The name of the shell itself is stored in $0 for
an interactive session, but when the shell is running a script, $0 holds the name of the script.
Although the shell in the previous example actually received four arguments (the first being
the path of the shell executable), it sets $0 to ./script and $1 to hello. The name of the shell,
and the command-line options to the shell, are consumed by the shell and not exposed to the
script program. The number of positional parameters is stored in the special parameter $#. For
historical reasons, the shell’s parser treats $10 as the value of $1 with the string 0 appended to
it. To use parameters past $9, use ${N} in a modern shell. Older shells, including the SVR4 shell,
will not accept larger values under any circumstances; in these, you must extract earlier values
and use shift to move other parameters into the first nine slots.

Although some shells offer extensions providing for array variables, the positional param-
eters are the only array conveniently available to a portable shell script. Because of this, they
are used for much more than just argument processing. One common idiom is to extract all
options and arguments from the positional parameters at startup to free them up for later use
in argument parsing. (Trickery such as using many similarly named variables to substitute for
arrays, while portable, is awkward and not always efficient.)

the set Command
Unlike variables, the positional parameters cannot be directly set using variable assignment;
1=2 is just an unknown command to the shell, not an assignment into $1. The set command
can be used to set the positional parameters.

The set command takes a special option (--) to indicate that you are setting something
other than shell options; any following arguments are assigned to the positional parameters,
with the first argument going into $1. The general syntax for this usage is set -- values.
Although set is a special shell builtin, the arguments are processed normally; parameter and
command substitution, globbing, and field splitting all apply.

10436ch06final 120 10/23/08 10:57:18 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 121

WHaT IS dummy and WHy IS IT beIng SeT?
A common idiom in older scripts is to use the word dummy instead of -- when setting the positional param-
eters. Very old shells did not recognize -- as the end of shell options and the beginning of the parameter list.
As a result, you had to put something that was definitely not a shell option in front of the parameters. In a
shell that didn’t know about the -- convention, set -- makes the shell set $1 to the string --.

An idiomatic resolution is to use the word dummy, which does not start with a hyphen, then immediately
shift it off the parameter list:

set dummy $array ; shift

This is moderately idiomatic (some people prefer shorter names like X, but I find dummy to be particu-
larly self-documenting). However, it may not be necessary anymore; the shells I have access to, including
the traditional SVR4 shell, all work using the modern syntax. (It was probably added in the System III shell in
1981.)

There is one other reason to use this. The SVR4 shell can set positional parameters with set -- args,
but plain set -- does not clear them. To clear the positional parameters, use shift $#.

In some scripts, this is used as a simple way to get access to the results of variable expan-
sion and word splitting applied to one or more variables, or to add values to the positional
parameters before executing something. For instance, if you want to insert a value in front of
the existing arguments, you can use $@ and the set command:

set -- new "$@"

Another common idiom is to use $IFS and the set command to split a value around some-
thing other than whitespace. For instance, a classic UNIX password file entry uses colons as
separators. You can read it in the shell using the following idiom:

save_ifs=$IFS
IFS=:
set -- $passwd
IFS=$save_ifs

The set command is not particularly complicated in and of itself, but using it effectively
can be complicated. Setting all of the arguments at once can be awkward when you want to
build or modify argument lists. You can also append additional arguments:

set -- "$@" "$new"

This appends $new to the argument list at the end.

removing positional parameters
It is sometimes desirable to remove parameters from the shell’s parameter list. This is done
using the shift command, which removes positional parameters. You can use shift with or
without an argument. With an argument (shift N), it removes the first N positional parame-
ters, renumbering the later parameters to the front of the list. Without an argument, it removes

10436ch06final 121 10/23/08 10:57:19 PM

Chapter 6 ■ INVOCatION aND eXeCUtION122

the first parameter. The standard for loop that iterates through the positional parameters is
nearly equivalent to the following while loop:

while test $# -gt 0; do
 echo "$1"
 shift
done

The equivalent for loop is as follows:

for i
do
 echo $i
done

In fact, there is a significant difference between these loops. After the for loop completes,
the positional parameters are unchanged, but after the while loop completes, there are no
positional parameters remaining. This can be useful. A common idiom for parsing command-
line options is to consume options, leaving arguments for further processing:

opt_a=false
opt_b=false
opt_c=""
while test $# -gt 0; do
 case $1 in
 -a) opt_a=true ;;
 -b) opt_b=true ;;
 -c) opt_c="$2"; shift ;;
 --) break ;;
 esac
 shift
done
for arg
do
 # process non-option argument $arg
done

The first loop consumes any arguments that look like known options. The special option
-- indicates the end of options, allowing the user to specify an argument that happens to start
with a hyphen. This provides robustness in the face of programs whose arguments might oth-
erwise look like arguments. This is one of the ways to deal with problems, such as needing to
remove a file named -rf.

Manipulating Parameters for Fun and Profit
Individually, the tools the shell provides for argument manipulation may seem a little weak.
There is no way to assign a single parameter or to insert a parameter later in the list. There
are a number of shell idioms for argument list manipulation, but many of them are unreli-
able when confronted with arguments containing spaces. Consider the following simple loop,
intended to extract options and separate them out from file arguments:

10436ch06final 122 10/23/08 10:57:19 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 123

files=""
opts=""
for arg
do
 case $arg in
 -*) opts="$opts $arg";;
 *) files="$files $arg";;
 esac
done
set -- $opts -- $files

This works pretty well, as long as none of the files, or options, contain spaces. (If you want
this functionality, without those bugs, you should probably use getopt or getopts, discussed
in the section “Handling Options and Arguments”; I picked the example because it is tricky
to get it right and interesting to think about.) There are several ways to attempt to resolve this
difficulty.

If you can think of a character that you are confident cannot occur in any of your options,
this is actually easy to do. Unfortunately, techniques like this are pretty limited; they rely on
coincidence in many cases. For instance, very few file names contain colons; so you might use
colons to separate a list of files, but then a file with a colon in its name can wreck your whole
day. Here is an example of how you could use a colon to separate words:

files=""
opts=""
for arg
do
 case $arg in
 -*) opts=${opts+$opts:}$arg ;;
 *) files=${files+$files:}$arg ;;
 esac
done
save_IFS=$IFS
IFS=:
set -- $opts -- $files
IFS=$save_IFS

There are three major changes here. The first is the use of a different character (in this
case, a colon) to separate words within the $opts and $files variables. The second is the use
of a corresponding value of $IFS to split the variables again. The third, closely related to the
second, is a more complicated inner assignment. Without this, the shell generates a spurious
empty argument at the beginning of each list. For example, if the arguments were foo bar,
$files would end up set to :foo:bar. Note the subtle difference between this behavior and
what happens when $IFS is unset (or has its default value); normally, a variable with a leading
space does not expand into an extra field.

You can use other values for $IFS. Some scripts use control characters for this, precisely
because they are very unusual in file names. However, there may be quirks; for instance, at
least one version of bash can’t handle $IFS being set to control-A.

You can also use simulated arrays using eval (as explained in Chapter 5) to store argu-
ments without worrying about separators:

10436ch06final 123 10/23/08 10:57:19 PM

Chapter 6 ■ INVOCatION aND eXeCUtION124

filec=0
optc=0
for arg
do
 case $arg in
 -*) eval opt_$optc=\$arg
 optc=`expr $optc + 1`
 ;;
 *) eval file_$filec=\$arg
 filec=`expr $filec + 1`
 ;;
 esac
done
shift $#
while test $filec -gt 0; do
 filec=`expr $filec - 1`
 eval 'set -- "$file_'$filec'" "$@"'
done
set -- "--" "$@"
while test $optc -gt 0; do
 optc=`expr $optc - 1`
 eval 'set -- "$opt_'$optc'" "$@"'
done

The array code here is similar to what was done in Chapter 5. The script extracts the argu-
ments, then clears the argument list and repopulates it using while loops.

Each while loop goes through pushing arguments to the front of the list. Single quotes are
used to reduce escape characters. For the first file argument, the eval command string ends up
as follows:

set -- "$file_0" "$@"

No matter what values the variables contain, this works—they are substituted in as plain
words, not keywords or shell syntax. The "$@" expansion preserves the existing arguments as
separate arguments, regardless of their contents. In fact, the same basic techniques allow you
to do arbitrarily complicated things, such as replacing a specific parameter while leaving the
rest alone.

The most obvious limitation is that it does not work if you try to bundle it into a shell func-
tion. As shell functions have their own local set of positional parameters, modifications to the
positional parameters within a function have no effect on the calling script.

handling Options and arguments
Although it is certainly possible to manually process arguments, as in the previous example,
the task is common enough to have been solved repeatedly. Unfortunately, the solutions are
not entirely portable. The first is the getopt command, which parses a command line and pro-
duces a new command line conveniently ordered. The syntax is getopt string parameters,
and the output of the command is the parameters reordered, with options separated out and

10436ch06final 124 10/23/08 10:57:20 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 125

identified, according to the list of options in string. (In fact, the previous loop does most of
the work of implementing getopt.) The options string lists the letters of accepted options;
options that take an argument are followed by a colon.

Because the getopt command is not a shell builtin, and does everything by producing out-
put, you can experiment with it at the command line to see how it works:

$ getopt a hello, world
 -- hello, world
$ getopt a -a hello, world
 -a -- hello, world
$ getopt a -b hello, world
getopt: illegal option -- b
 -- hello, world
$ getopt ab -ab hello, world
 -a -b -- hello, world
$ getopt ab: -ab hello, world
 -a -b hello, -- world
$ getopt ab: -ba hello, world
 -b a -- hello, world

The output of the getopt utility is options -- non-options. As each parameter begin-
ning with a hyphen is evaluated, it is converted into a series of options. If an option that takes
an argument is encountered, its argument is either the rest of the word (if there is any left)
or the next word, whatever that may be. Options in clusters are separated out; -ab becomes
-a -b. As with many utilities, getopt treats -- as ending options and beginning the nonoption
parameters. The output of the getopt utility is intended to be used to replace the positional
parameters; the canonical usage is combined with the set command:

set -- `getopt options "$@"`

This usage is portable on recent systems. You can then iterate over the positional param-
eters, extracting options, without having to worry about exactly what characters are part of
which options. Doing this by hand is exceedingly difficult in shell and not really worth the
trouble. However, the getopt utility does have one crucial limitation—it cannot gracefully
handle parameters containing whitespace.

Modern shells generally provide a getopts built-in command, which is able to set shell
variables, and thus provide more reliable handling of parameters. As the phrase “modern
shells” suggests, this is not completely portable yet. Surprisingly, the shell in older versions of
Cygwin was compiled so that it included the code for getopts, but it did not actually recognize
the command. This has been fixed in modern releases.

The getopts command is used more like the read command, returning true or false
depending on whether or not there is a next option, and returning one option at a time. The
syntax of the command is getopts string variable parameters; if parameters are omitted,
getopts uses the positional parameters. Each time getopts is invoked, it looks for another
option and stores the option character in $variable. If there are no more options, getopts
returns false. If there is an error, getopts returns true and sets $variable to ?. A typical usage
of getopts looks like this:

10436ch06final 125 10/23/08 10:57:20 PM

Chapter 6 ■ INVOCatION aND eXeCUtION126

while getopts ab: o; do
 case $o in
 a) echo "received flag a";;
 b) echo "received option b: $OPTARG";;
 esac
done
shift `expr $OPTIND - 1`

The special shell variable $OPTARG holds the argument provided for an option that requires
an argument. The special shell variable $OPTIND holds the number of the first nonoption posi-
tional parameter. For example, if there are no options, $OPTIND has the value 1 after getopts
has run (and returned false). Because the positional parameters number from one, executing
shift $OPTIND would remove the first nonoption parameter from the list. Like getopt, getopts
recognizes -- as the end of options and uses the remainder of a word as an argument if an
option expects an argument.

Because getopts can handle arbitrary arguments reliably, I prefer it. While traditional
shells did not provide the getopts builtin, modern shells, including the SVR4 shell, do.

Older Shells: Now What?
While nearly all modern shells support getopts (and you could write it as a function fairly
portably), it may occasionally become necessary to work with a very old shell that lacks this
feature. The following boilerplate code handles a broad variety of arguments fairly well. (Many
of the names are placeholders used to illustrate how to handle common tasks in shell code.)

opt_boolean=false
opt_accumulator=0
opt_argument=''
opt_list='' this is unset so that ${opt_list+item} will work

sed scripts:
my_sed_single_opt='1s/^\(..\).*$/\1/;q'
my_sed_single_rest='1s/^..\(.*\)$/\1/;q'
my_sed_long_opt='1s/^\(--[^=]*\)=.*/\1/;q'
my_sed_long_arg='1s/^--[^=]*=//'

while test $# -gt 0; do
 opt=$1
 shift
 case $opt in
 # standard usage patterns:
 -a|--accumulator) opt_accumulator=`expr 1 + $opt_accumulator` ;;
 -A|--argument) opt_argument=$1
 shift
 ;;
 -b|--boolean) opt_boolean=:
 ;;

10436ch06final 126 10/23/08 10:57:20 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 127

 --composite) set dummy --boolean --list element ${1+"$@"}
 shift
 ;;
 --list) opt_list=${opt_list+$opt_list:}$1
 shift
 ;;

 # Add your own long and short option branches here, and then
 # change the branch match expressions below to match the
 # appropriate options for splitting and reparsing...

 # Separate optargs to long options:
 --argument=*|--list=*)
 arg=`echo "$opt" | $SED "$my_sed_long_arg"`
 opt=`echo "$opt" | $SED "$my_sed_long_opt"`
 set dummy "$opt" "$arg" ${1+"$@"}
 shift
 ;;

 # Separate optargs to short options:
 -a*|-p*|-q*|-r*)
 arg=`echo "$opt" |$SED "$my_sed_single_rest"`
 opt=`echo "$opt" |$SED "$my_sed_single_opt"`
 set dummy "$opt" "$arg" ${1+"$@"}
 shift
 ;;

 # Separate non-argument short options:
 -b*|-x*|-y*|-z*)
 rest=`echo "$opt" |$SED "$my_sed_single_rest"`
 opt=`echo "$opt" |$SED "$my_sed_single_opt"`
 set dummy "$opt" "-$rest" ${1+"$@"}
 shift
 ;;

 -\?|-h) func_usage ;;
 --help) func_help ;;
 --version) func_version ;;
 --) break ;;
 -*) func_fatal_help "unrecognized option \`$opt'" ;;
 *) set dummy "$opt" ${1+"$@"}; shift; break ;;
 esac
done

While this may seem like a lot of work to avoid getopts, it is worth noting that this sup-
ports a number of helpful idioms, such as long argument names. The functions used for the
last few options are left as an exercise for the reader; their behavior should be obvious from

10436ch06final 127 10/23/08 10:57:20 PM

Chapter 6 ■ INVOCatION aND eXeCUtION128

the context. Of particular interest is the code used to separate out multiple options given as
a single argument. If you call this code with -bx as an option, the first pass through the loop
replaces this with -b -x. You would have to define the -b) case for this to be processed cor-
rectly, though. As long as the -b case occurs before the -b* case, the first one matches and the
shell processes the argument appropriately.

For extra credit, modify the preceding example to detect and warn the user if no argument
is provided for an option requiring one.

Shell Startup and Interactive Sessions
There are several different kinds of shell sessions. If the shell is expecting to read commands
and respond with prompts, that is called an interactive session. When the shell reads com-
mands from a file, it generally is not an interactive session. A shell taking input from a pipe is
also not an interactive session; the distinction is whether the input device is considered to be a
tty (a terminal device; the name is short for “teletype”). Some shell sessions are further consid-
ered to be login sessions; a login session is normally interactive.

During startup, the shell may read (and execute) one or more startup scripts. The exact
rules for this are, sadly, nonportable between shells. If your home directory contains a file
named .profile, an interactive login shell will probably execute it during startup. Unfor-
tunately, this is merely probable, not certain; as an example, bash looks for files named
.bash_profile or .bash_login first, and it does not execute .profile if it finds one of the others.
The intended benefit, of course, is that you can have a startup specific to bash that need not be
portable to other shell variants. However, if you have a standard .profile you bring from one
machine to another, it can be surprising trying to debug why it isn’t being used.

Shells other than login shells may also run startup scripts. This is even less predictable and
may be subject to strange rules. For example, many POSIX shells will execute the file named
by the environment variable $ENV at startup. Pre-POSIX shells do not, and bash executes $ENV
only if it is being run in its POSIX mode or was invoked under the name sh; otherwise, it uses
$BASH_ENV instead. Contrary to its behavior with .profile, bash does not execute $ENV just
because $BASH_ENV is not set. In short, you can not rely on startup behavior in a portable script.
What’s worse is that you cannot rely on such files being run at startup; but also you cannot rely
on them not being run at startup.

This brings us to one of the few genuinely intractable problems of portable shell scripting:
A hostile user can misconfigure the shell so that it will not work by creating a startup file which
prevents successful execution of your script, most commonly by creating aliases for common
commands (the alias command is described in Chapter 7). You can override this somewhat
by specifying full paths or quoted names for most commands, but it is very difficult to get
right.

There is not very much you can do about the possibility that someone, somewhere, will
end up feeding your script to a shell that is configured to alias various common commands
on startup. However, you can avoid doing this to your own scripts. In any file that affects shell
startup, be sure to execute aliases and similar code only when you are not in an interactive
shell. The safest idiom to use for this is as follows:

10436ch06final 128 10/23/08 10:57:21 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 129

case $- in
i) alias yes=no
 echo "Do you want me to hit you?"
 ;;
*) ;;
esac

This causes the shell to execute its initialization commands only when the shell is not
interactive. I have seen a different idiom for this:

case $- in
i) ;;
*) return 0;;
esac

This is not safe. While there are shells in which the return command (used, in some
shells, to exit from a function) can also end the execution of a file being executed by the shell
using ., there are shells in which a return command outside of a shell function exits the
entire shell. As it is not unheard of for a startup script to end up getting picked up by a differ-
ent shell, this can cause a perfectly ordinary shell script to unexpectedly terminate without
any diagnosis of errors.

When looking at startup scripts, there are three common cases. A login shell typically
needs to perform additional setup to populate the environment; on many systems, this would
also be the place to configure things like terminal types or start an ssh-agent process. After
this has been done, other shells can simply inherit this environment. Among non-login shells,
there is still a noticeable difference between interactive and noninteractive sessions. If you are
working with a shell that can execute a startup script in a noninteractive session, be sure your
startup scripts don’t do anything time-consuming or interactive in a noninteractive session.

execution
It is possible to program fairly effectively in shell without needing to know the exact details of
how certain things are done. The shell reads and executes code. However, there is some possi-
bility for confusion. When does the shell parse? What order do various substitutions occur in?
Where is this error message coming from?

This section gives a more detailed view of the runtime behavior of the shell and introduces
some of the debugging tools that may come up when the shell behaves unexpectedly.

More on Jobs and Tasks
Job control features, allowing a shell to control or manipulate multiple tasks, are mostly used
on the command line, but there are cases in which you can take advantage of the shell’s abil-
ity to manipulate multiple tasks to simplify some shell script design tasks. Some shells offer
extensions (such as ksh’s co-process feature) that make additional use of background tasks.
For portable scripting, the primary thing you can do with background tasks is continue doing
some other work while a long task processes. For instance, you could have a script that plays a
game with the user while waiting for an archive to unpack—although most users would prob-
ably rather you didn’t.

10436ch06final 129 10/23/08 10:57:21 PM

Chapter 6 ■ INVOCatION aND eXeCUtION130

Signals and Interprocess Communication
It is often necessary to communicate between processes. UNIX provides several mechanisms
for interprocess communication (IPC), of which three are available to the shell. Two of them
have already been introduced: exit status and pipes. The exit status of a process is only sort of
an IPC mechanism, but it allows for a child process to communicate to its parent whether or
not it has succeeded. Pipes are an exceedingly flexible IPC mechanism, but the shell pipe syn-
tax only allows one-way communication between a pair of programs.

The other IPC mechanism available to the shell is signaling. Signals are unusual in that the
recipient of a signal may not have any opportunity to interact with it. Signals can simply ter-
minate the receiving process. However, most signals may be intercepted by a program, which
can define a piece of code to execute when it receives the signal. This piece of code is called a
signal handler. The shell allows the user to define handlers for several of the common signals.

Signals are referred to by their names or by their numbers; there is a consistent mapping
of names to numbers for the most common signals. The signals most likely to be used in shell
programming are outlined in Table 6-1.

Table 6-1. Signals by Number

number name Trap description default behavior

0 EXIT Yes Shell is exiting.

1 HUP Yes Session ended.

2 INT Yes Interrupt.

9 KILL No Kill.

13 PIPE Yes I/O error on pipe.

14 ALRM No Timer expired.

15 TERM Yes Default termination signal.

17 STOP No Process stopped.

18 TSTP No Process stop request from terminal.

19 CONT No Continue stopped process.

21 TTIN No Stopped waiting for input.

22 TTOU No Stopped waiting for output.

30 USR1 No User-defined signal #1.

31 USR2 No User-defined signal #2.

The default effect of a signal varies. For HUP, INT, TERM, ALRM, and KILL, the default
behavior is for the process to terminate. If a process is killed by a signal, its exit status is gener-
ally reported as 128 plus the signal number. For instance, a program interrupted by an INT
signal has an exit status of 130. The USR1 and USR2 signals are usually ignored. They exist
to allow programs to define specific behaviors in response to those signals without changing
handling of any of the standard signals that normally have an effect.

The STOP and TSTP signals, as well as TTIN and TTOU, cause a process to cease execu-
tion but not to exit; execution resumes on a CONT signal.

10436ch06final 130 10/23/08 10:57:21 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 131

Some signals are generated automatically by the UNIX kernel. Any signal can also be
generated artificially. You can send any signal to any program (running with the same user
ID) using the kill command. The default signal (sent if no signal is specified) is TERM. Other
signals can be specified using their name or number with a leading hyphen. For example, kill
-9 pid sends a KILL signal to the process with process ID pid, as does kill -KILL pid. Num-
bers are more portable.

Signals can be caught by a shell program using the trap built-in command, although
only some signals may be trapped portably. This command specifies an action to be taken in
response to a signal. The syntax for the command is trap action signals. If action is omitted
or an empty string, the shell ignores the given signal or signals. If action is a hyphen (-), the
shell resets the signal to its default behavior. Otherwise, action is executed as though passed as
an argument to eval when the signal is received; this replaces the usual behavior for the signal.
Multiple signals may be specified in a single trap command, and signals may be specified by
number (portably) or name (on modern systems). However, only one action may be specified;
if you want to run multiple commands, you must quote them (and separate them with semi-
colons or new lines) or use a shell function.

Do not assume that $? is passed into a trap handler correctly; some shells do not do this.
In general, avoid starting a trap handler with a shell function call.

When a signal is generated by the kernel, it may be sent to the shell and its child processes
rather than only to the shell. For instance, if you hit Ctrl-C while running a script, the shell pro-
cess and its associated children all receive the INT signal. The trap command only affects the
signal received by the shell itself; child processes can still receive, and be affected by, signals.

The shell defines a special signal, signal number 0 (named EXIT), that is handled when the
shell exits. For instance, the following shell script greets the user:

NAME=world
trap "echo Hello, $NAME!" 0

Hello, world!

The action specified in the trap command executes automatically at the end of the script.
The handler for signal 0 is frequently used for cleanup of temporary files created during the
execution of a script. Note, though, that the exit handler is not invoked if the shell is termi-
nated by another signal. The special value 0 (but not the symbolic name EXIT) may be used as
a signal for the kill command, too. In this case, kill sends no signal but yields a return code
indicating whether or not the process exists. A successful return indicates that the process
exists, and a failed return indicates that it does not. No signal is delivered by kill -0, so a han-
dler for signal 0 does not execute except when the script exits.

Run with no arguments, trap prints a list of the current signal handlers, quoted such that
evaluating this output restores the signal handlers:

$ trap 'echo "you cannot defeat me so easily!"' TERM
$ trap
trap -- 'echo "you cannot defeat me so easily!"' TERM

10436ch06final 131 10/23/08 10:57:22 PM

Chapter 6 ■ INVOCatION aND eXeCUtION132

It is not portable to attempt to save only a single signal’s output from this list by scanning
the list for a particular value, as the existing handler might be more than one line of code. In
this case, the shell command to recreate it would also be more than one line of code, and a
simple check of matching lines would fail. However, if you have full control over a script, you
can resolve this by ensuring that all signal handlers are a single line of code, allowing you to
save individual values. The obvious solution is to pipe the output of trap into a while loop; this
does not work because signal handlers are reset to their defaults within a subshell. To store
trap values, store the output in a file, then read the file:

trap 'echo "you cannot defeat me so easily!"' TERM
trap 'echo "whoops, driving under a bridge."' HUP
trap > /tmp/trap.$$
while read sig
do
 set -- $sig
 eval "signum=\${$#}"
 eval "sig_$signum=\$sig"
done < /tmp/trap.$$
rm -f /tmp/trap.$$
set | grep ^sig_

sig_HUP='trap -- '\''echo "whoops, driving under a bridge."'\'' HUP'
sig_TERM='trap -- '\''echo "you cannot defeat me so easily!"'\'' TERM'

The output of this script may vary between shells. In bash, the signals are spelled out as
SIGHUP and SIGTERM, while ksh93 uses an extension to simplify the quoting of the strings.
This means you cannot reliably expect one shell to correctly read or execute the output of a
trap command run in another shell. However, all the shells are internally consistent; the out-
put of the trap command in a given shell can be evaluated by that shell. Once you have saved
the current signals, you can modify them or restore them individually. After running the pre-
ceding script, you could temporarily remove the HUP handler, then restore it:

trap - HUP
echo "Doing something long and boring. Will accept SIGHUP."
sleep 5
eval $sig_HUP

There are a few conventions about the use of signals. Interactive utilities generally abort
upon receiving a HUP signal. Long-running daemons, though, often use the HUP signal as a
cue to refresh their configuration, possibly rereading configuration files. Some use USR1 or
USR2 for related tasks, such as refreshing or reopening log files.

Understanding Background tasks
Background tasks and subshells have unique pids. When a task is launched in the background,
the parent shell gets the child’s pid in the special shell parameter $!. However, if the job is run-
ning in a subshell, it does not know its own pid; it gets the parent’s pid in the $$ parameter. By
contrast, a job run with sh -c gets its own pid in the $$ parameter.

10436ch06final 132 10/23/08 10:57:22 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 133

Shell background tasks may be distinguished by their pids. Background tasks (along with
interactive control of multiple jobs, called job control) are primarily used interactively. How-
ever, it is possible to make some use of background tasks in shells.

Background jobs are always run in subshells, so they do not affect the parent shell’s con-
text. A background job cannot change the calling shell’s directory, set variables, or otherwise
modify the caller except by sending signals. If you wrote a loop to read values from a file and
ran it in the background, it would not set variables in the calling shell. Similarly, you cannot
change a directory in the background:

cd /tmp &

This creates a subshell that changes its working directory to /tmp, then exits. The parent
shell is unaffected.

So what do background jobs do? Background jobs are often used when you want to run
a longer command while you continue working; for instance, at the command line, it is quite
common to run a long compile process or file operation in the background. In a script, you
might still want to run a long task in the background. To do so, you need to be able to deter-
mine whether the task is still running, wait for it to complete, or even abort it if you change
your mind. All of this can be done.

Shell scripts that wish to use background tasks can keep track of them using their pids.
Immediately after launching a background task, you can obtain its pid from the $! shell
parameter. This can be used to send signals to the background task (using the kill command)
or to wait for it later. If you have a large file-manipulation task to run, which may take several
minutes and requires no user interaction, it might make sense to start it in the background,
perform other tasks, then wait for it after those tasks are finished.

The wait command waits for background tasks to complete. Without arguments, it waits
for all background tasks to complete and returns a successful exit status. If you specify the pid
of a specific background task, it waits for that task to complete and returns the return code
of that task. If the task has already completed, or the pid in question is not the pid of a child
process of this shell, the wait command returns immediately indicating failure. The following
trivial script begins an operation, then waits for it to complete:

tar cf archive.tar files &
child=$!
echo "Waiting for archive..."
wait $child

While waiting for a child is easy, and killing it is also easy, it is a little harder to check
whether it is still running. The command kill -0 pid might work; if it succeeds, you know
that there is a process numbered pid and that you have permission to send signals to that pro-
cess. However, you do not know for sure that it is the child process you started; that process
could have ended, and the pid then recycled.

Making effective Use of wait
The wait command exits immediately if you ask it to wait for a process that is not a child of the
current shell. However, if the process is still a child, the wait command waits for it. There is no
portable way to check reliably whether a given process is a child of the current shell. The wait

10436ch06final 133 10/23/08 10:57:22 PM

Chapter 6 ■ INVOCatION aND eXeCUtION134

command runs in the calling shell, so to interrupt it, you must send a signal to the parent shell.
If the signal would normally interrupt the shell, the signal will terminate the shell unless the
signal is trapped.

If you send a signal to the shell while it’s waiting, and the signal is trapped, the resulting
behavior is unportable. Possible outcomes include the wait command aborting immediately
or continuing until the child dies. Typically, the trap executes after the wait completes, but in
zsh the trap executes immediately and the wait command continues anyway. This varies not
only between shell families but between systems; the ash in use on NetBSD and FreeBSD sys-
tems differs from dash on Linux.

So, once the wait is started, you can’t reliably interrupt it without killing your shell. You
can’t run wait on a background task in a subshell because the subshell is not the parent of the
background task.

In practice, you can usually get away with checking the pid with kill -0 and expect that
this will give you a good guess as to whether the child process is still running. This is not per-
fectly reliable, but is usually pretty good.

If you only need to monitor a single background task, you can solve the problem by hav-
ing the background task notify the parent shell when it is done, rather than the other way
around. To do this, you can have the child process send the parent shell a USR1 signal, which
you have cleverly trapped. The following script prints “Nope, still waiting. . .” three times, but
it could perform any activities you wanted while waiting; the point of the example is that you
can tell when the subshell has exited:

done=false
trap 'done=true' USR1
(sleep 3; kill -USR1 $$) &
while if $done; then false; else true; fi; do
 echo "Nope, still waiting..."
 sleep 1
done

The subshell keeps the parent shell’s pid as $$, so the kill command sends a USR1 signal
to the parent shell after the previous command completes. It is a bit harder to use this with
more than one background task; you cannot tell which process sent you a particular signal.

A similar technique can be used to once again invert the sense of the problem. Imagine
that you have a task you wish to run, but you do not want to run it forever because it might
hang. If it has not completed within a given amount of time, you want to kill it. The following
rather ugly one-liner does fairly well at this:

sh -c 'sh -c "sleep '$delay'; kill $$" >/dev/null 2>&1 & exec sh -c "'"$*"'"'

This shell fragment runs the provided arguments ($*) in a child shell, but it terminates
that shell after $delay seconds if the child shell has not already exited. The exit status is the exit
status of the child shell, which reflects the abnormal exit if the kill command fires. This exam-
ple shows off a variety of expansion rules, subshells, and quoting behaviors. The first thing to
note is that, at the top level, this command invokes a shell (using sh -c) that actually executes
a command in which some variables have been expanded. Assuming that $delay contains

10436ch06final 134 10/23/08 10:57:23 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 135

the number 5, and the positional parameters contain the string command, the child shell then
executes this:

sh -c "sleep 5; kill $$" >/dev/null 2>&1 & exec sh -c "command"

The command line is assembled from a single-quoted string (up through sleep and the
space after it), the expansion of $delay, another single-quoted string (up to the last sh -c and
the following double quote), a double-quoted expansion of $*, and finally a single-quoted
double quote. This brings us to the question of what this elaborate list actually does.

The child shell executes two commands. The first is another child shell, which I’ll call the
grandchild for clarity, running the command sleep 5; kill $$. Because $$ occurs in double
quotes, it is expanded by the child shell, not by the grandchild shell; this matters because the
grandchild shell is not a subshell and does not inherit the child shell’s $$.

The grandchild shell’s output and error streams are directed to /dev/null. So, after 5
seconds, the grandchild shell attempts to kill the child shell. Meanwhile, because the shell
command that started the grandchild ends with the & separator, the child shell goes on to
execute the next command in its list. This command is another shell, which runs the external
command. The command is passed to a new shell to allow it to be parsed, to contain arbitrary
keywords, and so on. However, to ensure that this process can be stopped, the script must
know the process ID it will run under. Conveniently, the exec command runs the new com-
mand in place of the caller; thus the new shell is run using the same process ID—the one that
was passed to the grandchild shell to be killed in $delay seconds.

This has a couple of weaknesses. The first is that, if the grandchild process (containing the
command you are actually interested in) exits quickly, the kill command fires anyway. This
could result in a new process getting sent the signal, if the pid is reused. This is uncommon,
but not impossible. Also, it is often better to send more than one signal (first a polite reminder,
then an actual KILL signal) so commands that need a second or so for shutdown can do it
cleanly. This actually increases the window for possible problems, but it improves the reli-
ability of execution in the common case where the child process has important cleanup work
to do before exiting. The following code is based on an elegant solution suggested by Alan Bar-
rett, used by his kind permission:

func_timeout() (
 timeout=$1
 shift
 "$@" &
 childpid=$!
 (
 trap 'kill -TERM $sleeppid 2>/dev/null ; exit 0' TERM
 sleep "$timeout" &
 sleeppid=$!
 wait $sleeppid 2>/dev/null
 kill -TERM $childpid 2>/dev/null
 sleep 2
 kill -KILL $childpid 2>/dev/null
) &
 alarmpid=$!

10436ch06final 135 10/23/08 10:57:23 PM

Chapter 6 ■ INVOCatION aND eXeCUtION136

 wait $childpid 2>/dev/null
 status=$?
 kill -TERM $alarmpid 2>/dev/null

 return $status
)

This is a rather elaborate shell function and deserves some careful explanation. The first
four lines are straightforward:

 timeout=$1
 shift
 "$@" &
 childpid=$!

The first two lines extract the timeout value (passed as the first argument to the function)
from the positional parameters of the function, then remove it from the positional param-
eters. The function then executes the remaining arguments as a command. Note that they are
executed as a single command, with no shell syntax (such as semicolons); if you wanted to
support additional shell syntax, you would have to pass them to a new shell, probably using
sh -c. The shell then obtains the pid of the background task, storing it in the shell variable
$childpid.

 (
 trap 'kill -TERM $sleeppid 2>/dev/null ; exit 0' TERM
 sleep "$timeout" &
 sleeppid=$!
 wait $sleeppid 2>/dev/null
 kill -TERM $childpid 2>/dev/null
 sleep 2
 kill -KILL $childpid 2>/dev/null
) &
 alarmpid=$!

This is where the magic happens. This runs a second background task in a subshell. The
task starts by trapping the TERM signal. The handler kills $sleeppid, then exits. The handler
is specified in single quotes, so $sleeppid isn’t expanded yet, which is good, because it hasn’t
been set yet either. (If this subshell gets killed before it gets any farther, the handler executes
the command kill -TERM, with no arguments; an error message is emitted to /dev/null and
nothing happens.)

The subshell now launches a background sleep task, stores its pid in $sleeppid, and waits
for the sleep to complete. If the sleep command completes normally, the subshell then tries to
kill the original child, first with a TERM signal, then with a KILL signal. This whole subshell is
run in the background, and its pid is stored in the variable $alarmpid.

 wait $childpid 2>/dev/null
 status=$?
 kill -TERM $alarmpid 2>/dev/null

 return $status

10436ch06final 136 10/23/08 10:57:23 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 137

Now the parent shell waits for the child process. If the child process has not completed when
the background subshell finishes sleeping, the background subshell kills it. Either way, when the
child process terminates, the parent shell extracts its status, and then tries to kill the alarm pro-
cess. There are two ways this can play out. The first is that the child process might not die from the
TERM signal, in which case, the alarm process tries to kill it with a KILL signal and then exits. In this
case, the parent shell’s attempt to end the alarm process could theoretically hit another process,
although the window is very narrow. The second (more likely) possibility is that the child process
dies from the TERM signal, so the parent shell kills the alarm process, which then tries to kill its
sleep process (which has just exited) and then exits. In any event, the function returns the status of
the child process; if it was terminated by a signal, the status usually reflects this. (Some shells may
strip the high bit, which indicates that a process was terminated by a signal.)

The variables set locally in the function, such as $childpid, do not show up in the calling
shell because the whole function is run in a subshell. Of course, the nested subshells and back-
ground tasks impose a noticeable performance cost, especially on a Windows system, but on
the other hand, this kind of code is likely only to be run with tasks that can run for some time.
Even if spawning subshells takes a noticeable fraction of a second, a 10- or 20-second runtime
will dwarf that cost completely.

Techniques like this can be very useful while trying to perform automated testing, but a
caveat is in order: There is no safe estimate available for what $timeout should be. If you are
using something like this to catch failures, be sure you have thought about the performance
characteristics of the command you want to time out waiting for. For instance, retrieving a
web page typically takes only a couple of seconds, so you might set a time limit of 10 seconds.
However, if a DNS entry has gotten lost or misconfigured and a web server is trying to look up
names, it is quite possible for a connection to a host to take over 30 seconds simply to start up.
Aborting too early can give misleading results.

Understanding Runtime Behavior
Previous sections of this book have introduced a number of things the shell does to its input.
Input is broken into tokens, parameters and commands are substituted, and globs are
replaced. Nearly every time a shell script has really mystified me, it turned out that I had for-
gotten the order of operations or the special circumstances under which an operation did not
occur. The first thing to know is the basic order of operations, as shown in Table 6-2.

Table 6-2. Shell Operations in Order

order operation notes

1st Tokenizing Creates tokens. This is the only phase that can create keywords or
special shell punctuation. Words are split on whitespace.

2nd Brace expansion Only in some shells; see Chapter 7.

3rd Tilde expansion Replaces tilde constructs with home directories. Not universal.

4th Substitution Variable and command substitution (also arithmetic substitution
in some shells; see Chapter 7).

5th Field splitting Results of substitution split on $IFS.

6th Globbing Glob patterns expanded into file names, possibly producing mul-
tiple words.

Continued

10436ch06final 137 10/23/08 10:57:23 PM

Chapter 6 ■ INVOCatION aND eXeCUtION138

Table 6-2. Continued

order operation notes

7th Redirection Redirection operators processed, and removed from command
line.

8th Execution Results executed.

Of course, nothing in shell is this simple. There are two contexts in which field splitting
and globbing are not performed. These are the control expression of a case statement and
the right-hand side of variable assignment. Quoting also changes many behaviors. In single
quotes, no expansion, substituting, splitting, or globbing occurs. In double quotes, tilde
expansion, field splitting, and globbing are suppressed; only substitution is performed.

In the case where the command executed is eval, the arguments are subject to all of these
steps again and subject to the same rules (including quoting, if there are any quotes in the
arguments to eval).

These steps are taken one command at a time. The shell does not parse a whole script
before beginning execution; it parses individual lines. At the end of each line, if the shell
needs more tokens to complete parsing a command structure or command, it reads another
line. When the shell reaches the end of a line (or the end of the whole script file) and has one
or more valid commands, it executes any valid commands it has found. The following script
always executes the initial echo command, even though the line after it is a syntax error:

echo hello
case x do

hello
script: 2: Syntax error: expecting "in"

However, if the commands are joined by a semicolon, the shell tries to finish parsing the
first line before running the command:

echo hello; case x do

script: 1: Syntax error: expecting "in"

Even if the command is long and complicated, such as a case statement containing nested
if statements, the whole command must be parsed before anything is executed.

Behavior with subshells is more complicated. Some shells perform complete parsing (but
no substitution) of code that will be executed in a subshell. Others may let the subshell do
some of the parsing. Consider the following script fragment:

10436ch06final 138 10/23/08 10:57:24 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 139

if false; then
 (if then)
else
 echo hello
fi

Should this script work? We can tell by inspection that the subshell command (which
is invalid) is never run. However, every shell I have tried rejects it for a syntax error. A more
subtle variant may escape detection:

if false; then
 (if then fi)
else
 echo hello
fi

This version passes muster with ash and zsh, but it is rejected by ksh93, pdksh, and bash.
Replacing the subshell with command substitution makes it easier to get shells to accept such
code, but even then ash rejects it if the fi is omitted.

In practice, the best strategy is the simplest—ensure that code passed to subshells is syn-
tactically valid.

Command Substitution, Subshells, and parameter Substitution
When commands are executed in subshells, they are not subject to any kind of expansion,
substitution, field splitting, or globbing in the parent shell. This is true whether you are dealing
with an explicit subshell or the implicit subshell used by command substitution.

This behavior is closely tied to the fact that nothing can ever expand to a keyword. The
parent shell can always determine which tokens belong in a command to be passed to a
subshell without performing any kind of substitution; it simply passes those tokens to the sub-
shell, which performs any needed substitutions.

This is generally true even for implicit subshells used in a pipeline, although it is not true
of zsh in some cases:

true | true ${foo=bar} | true

In zsh, if $foo was initially unset, it is set to bar. In other shells, it remains unset.
The previous example may seem a bit contrived. There are very few reasonable cases in

which it matters at all whether it is the parent shell or a subshell performing substitutions; out-
side of the = form of variable assignment and special variables like $BASH_SUBSHELL, it simply
never matters. However, understanding it can make it easier to see how the shell works.

Quoted and Unquoted Strings
It is easy to understand the behavior of both quoted and unquoted strings when each token is
one or the other. The shell’s behavior when quoted and unquoted strings are not separated by
space is a bit more intricate, but you have to use it sometimes; very few interesting scripts can
be written without combining quoted and unquoted text.

10436ch06final 139 10/23/08 10:57:24 PM

Chapter 6 ■ INVOCatION aND eXeCUtION140

For the most part, quoting is predictable. Each quoted block is interpreted according to
its own quoting rules, and the results are concatenated into a single string. Substitution occurs
only within unquoted or double-quoted text, and field splitting occurs only outside of quotes.

The interaction of globbing and quoting, however, can be confusing. If you have quoted
and unquoted glob characters in a single string, the quoted ones remain literal and the
unquoted ones are available for pattern matching. Thus the pattern '*'* matches file names
starting with an asterisk.

The interaction of tilde expansion with quoting is not portable; some shells will expand
~'user' the same way as ~user and others the same way as '~user'. Since tilde expansion itself
is not completely portable, this has little effect on portable scripts.

Quoting in parameter Substitution
A number of parameter substitution forms contain embedded strings. The quoting rules for
these are not entirely portable. In general, omit quotes in these strings and rely on quoting
around the substitution. If you need to escape a dollar sign or similar character in a literal, use
a backslash. If you want to prevent globbing, quote the whole substitution, not just the right-
hand side.

The examples in Table 6-3 assume two variables, $a and $e; $e is unset and $a holds an
asterisk.

Table 6-3. Trying to Predict Shell Expansion

expression output

${e} Empty string

${a} Expansion of glob *

${e:-$a} Expansion of glob pattern *, except in zsh where it is literal

"${e:-$a}" *, except in ash, which expands the glob

"${e:-*}" * expression

"${e:-"*"}" *, except in ksh93, which expands the glob

"${e:-"$a"}" *, except in ksh93, which expands the glob

"${e:-\$a}" $a

${e:-'$a'} $a

"${e:-'$a'}" '*', except in pdksh, which gives $a

'${e:-'$a'}' ${e:-*} as a glob pattern, except in zsh, where it is literal

To make a long story short, it is hard to predict the behavior of nested quotes in variable
substitution. Avoid this as much as you can. However, be aware that you may need quotes to
use assignment substitution. The following code does not work in some older shells:

$: ${a=b c}
bad substitution

10436ch06final 140 10/23/08 10:57:24 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 141

To work around this, you can quote either the right-hand side of the assignment or the
whole operator. Quoting the word only is more idiomatic:

$: ${a="b c"}

In the preceding example, if $a has a value, that value is expanded outside of quotes, but if
it did not have a value, the assigned value is in quotes:

$ sh echoargs ${a="b c"}
b c
$ sh echoargs ${a="b c"}
b
c

Trying to predict this behavior is essentially futile; there are simply too many specialized
bugs or special cases. In general, the interactions between assignment substitution and other
quoting rules make it best to use this substitution form only as an argument to : commands,
not in cases where you have any expectations about the substituted value.

The POSIX expansion forms using pattern matching (discussed in Chapter 7) treat the
pattern as unquoted by default, so you must quote pattern characters in them. As you can see,
this behavior may be hard to predict consistently. Backslashes are usually safe for escaping
single characters.

a Few Brainteasers
While all of the shell’s rules are individually comprehensible, it is easy to think so hard about
one of the shell’s quoting or substitution behaviors that you forget about another one. This
section gives a handful of code fragments that have surprised me or other people I know,
resulting in confusion about why a given shell fragment didn’t work or even confusion about
why it did.

$ echo $IFS

I am a little ashamed to admit that I’ve used this several times to try to debug problems
with the shell’s behavior. It seems perfectly sensible, and if you think $IFS is unset or contains
only whitespace, it even does what you expect. The problem is that unquoted parameter sub-
stitution is subject to field splitting. This means that any characters in the value of $IFS that
are found in the value of $IFS are taken as field separators. If a word expands to nothing but
field separators, there is no word there; all this does is pass no arguments to echo, producing a
blank line. You wouldn’t think it surprising that the characters in $IFS are in $IFS, but the habit
of using echo $var to display a value is pretty well set in many shell programmers.

$ a=*
$ echo $a

This fragment clearly shows that the shell performs globbing on variable assignment; after
all, $a was set to a list of file names, right? In fact, it is quite the opposite; $a was set to *, but
since the substitution isn’t quoted, the results are globbed.

The next example shows a case that seems surprising if you don’t know that field splitting
does not occur in an assignment operation. Most shell users are familiar with the problem of
trying to assign multiple words to a variable:

10436ch06final 141 10/23/08 10:57:25 PM

Chapter 6 ■ INVOCatION aND eXeCUtION142

$ a=one two
sh: two: command not found
$ echo $a

$ a="one two"
$ b=$a

The second assignment does not need quotes; there is no field splitting in the assign-
ment. However, you will see quotes used there quite often, mostly by people who have been
burned by trying to assign a list of words to a variable without quotes. This is the big difference
between word splitting (tokenizing) and field splitting. An assignment must be a single word,
so if it is to contain spaces, they have to be quoted. However, once the assignment is identi-
fied, the right-hand side is substituted without any field splitting or globbing.

case $var in
"*")
 echo "*";;
" ")
 echo "* *";;
*)
 echo "anything else";;
esac

The case statement has two interesting special cases, if you’ll pardon the term. The con-
trol expression is not subject to field splitting or globbing. The pattern expressions are stranger
still. Shell pattern characters in the patterns are obviously treated as pattern expressions
(rather than globs) when unquoted. To get literals, you must quote them. However, other shell
characters may need to be quoted; the quotes in *" "*) are needed, or the script becomes a
syntax error. This is understandable if you think of the abstract form of the syntax:

case expression in
word) commands ;;
esac

All you have to do is remember that each test expression has to be a single shell word at
tokenizing time; it is not subject to field splitting or to globbing.

Debugging Tools
This section is, of course, not very important. Your scripts will work on the first try because you
are paying very careful attention to all the wonderful advice on how to write good code. Per-
haps you even have flow charts. However, on the off chance that you might sometimes find a
script’s behavior a little surprising, a discussion of debugging tools is called for.

The shell’s trace mode (-x) is fairly close to a debugging tool, but it is, unfortunately, fairly
limited. All it can show you is actual simple commands as they are executed; control structures
are not shown. The verbose flag (-v) shows the shell’s input as it is read, but this doesn’t show
you the flow of control.

10436ch06final 142 10/23/08 10:57:25 PM

Chapter 6 ■ INVOCatION aND eXeCUtION 143

It is sometimes useful to display commands before executing them, but the usual mech-
anisms work only for simple commands or pipelines. If you have a variable containing a
command, you can display it easily enough with echo "$command". However, you cannot nec-
essarily execute it and get the results you expect. If you simply use the variable as a command
line, any shell syntax characters or keywords will be ignored; if you pass it to eval, however, a
whole new pass of shell substitutions and quoting takes effect, possibly changing the effect of
the command. Each of these conditions may prevent you from using this technique generi-
cally, but in the majority of cases, it can be used.

To debug shell scripts, you must use a variety of tools, depending on the problem you are
having. You can generally start with trace mode to see at least where in the script things are
acting up. Once you have isolated the approximate location, inspection is often enough to
reveal the bug. When it isn’t, you will need to use additional code to figure out what the shell
is doing. For instance, if you have a case statement, trace mode will not show you what branch
it takes, but seeing the code executed may tell you what you need to know. If not, start by dis-
playing the value you used to control the case statement right before executing it.

Sometimes, especially with a larger script, reproducing a problem can take a long time
per run. You can copy chunks of code out of your script to see what is happening; for example,
if you have a misbehaving case statement, first modify the script to display the control value,
then copy the case statement into a temporary file and change the contents of the branches to
display which branch is taken. The temporary file can be run as a miniature script.

When you are debugging a script, be aware of enhancements or local features a given shell
provides. While you should stick to portable code for the final version, sometimes an extension
can be extremely useful for debugging. For instance, bash offers special traps like DEBUG, which
lets you run a trap before every shell command. This can be very useful for tracking a shell
variable that is getting changed unexpectedly. The DEBUG trap is also available in ksh, but not in
pdksh; in ksh93, it also sets the parameter ${.sh.command} to the command that is about to be
executed.

In general, debugging in the shell is not all that different from debugging in any program-
ming language, although the tools available are generally more primitive. For a really difficult
bug, you may wish to look into the bashdb debugger, which works only with bash but offers a
variety of useful debugging tools for interactive debugging of scripts. A similar debugger exists
for ksh and was introduced (with source code) in Learning the Korn Shell (2nd Edition) by Bill
Rosenblatt and Arnold Robbins (O’Reilly, 2002).

Focus on developing a way to reproduce the bug reliably, isolating it by removing irrel-
evant components, and you should be able to track the bug down.

What’s next?
Chapter 7 explores the portability of shell language constructs and introduces a few common
extensions that you may find useful in more recent shells. It also discusses ways to identify
which shell a script is running in, and possibly find a better shell if the shell you've been given
isn't good enough for you.

10436ch06final 143 10/23/08 10:57:25 PM

10436ch06final 144 10/23/08 10:57:26 PM

C H A P T E R 7

Shell Language Portability

So far, this book has mostly discussed the portable subset of shell languages, with an occa-
sional warning that a useful technique may not always be portable. This chapter discusses
shell portability in much greater detail, starting with more discussion on what portability is
and how bugs and features differ. The next sections discuss some of the most common addi-
tional features and extensions, with brief notes on where you might find them. This includes
substitution rules, redirections, and even additional syntax structures found in some shells.
There is also a discussion of which features may be omitted for a stripped-down shell.

Following the discussion of extensions is a list of common shell variants, including ways
to identify them and ways to invoke them to get behavior closer to the POSIX standard. Fol-
lowing this is a discussion of ways in which a script can configure itself for more complete
shell functionality, whether by defining additional features as shell functions or by searching
for a more powerful shell to execute itself with.

More on Portability
A portable program is one that runs correctly on any standard system. But what about non-
standard systems? What about buggy systems?

There is no perfect answer. When writing portable code, give some thought to what you
are likely to run into. The autoconf maintainers recommend avoiding any features introduced
more recently than V7 UNIX (1977). Most modern systems have a shell at least a little newer,
although some famously continue to ship with a “traditional” Bourne shell. This advice may
sound very drastic, but it is almost certainly the right choice for autoconf scripts because the
entire purpose of autoconf is to be able to figure out what is wrong on your system and work
around it. In that case, having a script fail on an old system would be exceptionally frustrating.
If you are writing the installer for a set of 3D video drivers for X11, by contrast, you can prob-
ably make few more assumptions about your target platform.

Err on the side of caution. The assumption that Linux systems would always use bash as
the primary shell probably seemed reasonable once, but Debian and Ubuntu desktop systems
have switched to dash. Furthermore, many Linux programs have been run in emulation on
BSD systems, where their installers get run using the BSD /bin/sh, usually an ash derivative.

Think about your use cases. A script that is going to be run by end users probably needs to
simply work out of the box on their systems. A script that is used by developers and is expected
to be installed and ported to a new system can be a little more flexible; it’s enough that it is
easy to make it run. For something that is used internally, it may be fine to need a few minutes
to migrate a script to a new box. Even then, attention to portability makes your life easier; a
few minutes is a lot easier to manage than a few days.

145

10436ch07final 145 10/23/08 10:35:30 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY146

In theory, you are usually best off avoiding extensions. However, extensions may not
always avoid you; you may have to port existing code that relies on them, or you may find that
an extension changes the behavior of a program that was written without it. Likewise, while it
would be nice to simply avoid prestandard or broken shells, sometimes you have no choice.

Standardization
Standardization offers a useful way to think about the shell portability question, as it does
for most other portability questions. If you are not quite sure what to do, targeting the POSIX
shell is a good first step. This gives you a good baseline that nearly any system can meet with
only a little work. This may not be enough for some programs; for instance, it is not enough
for autoconf and may be a poor choice for something like an installer. Dependencies beyond
the POSIX spec are almost always a poor choice. While ksh, bash, and pdksh are quite common,
they are not universal. If you are finding that the additional features in these shells are par-
ticularly crucial to a script, it may be a warning sign that you have gotten into an area where
another programming language may be a better choice. While the shell can certainly be used
as a general-purpose scripting language, it is probably not as good of a general-purpose script-
ing language as Perl, Python, or Ruby. One of the shell’s core strengths is its universality; if you
start relying on specific features of bash version 3 or ksh93, you have lost that universality.

Most systems provide at least one shell that is reasonably close to a POSIX shell, but it
is not always /bin/sh. In some cases, the best POSIX-compliant shell on a system may be an
optional component, so some users won’t install it. Depending on your target audience, it may
be perfectly adequate to declare such a shell to be a system requirement, and tell people where
to get it for their particular target system.

Standardization of a programming language describes two sets of requirements. One is
implementation requirements—a shell must meet these requirements to be considered com-
pliant with the standard. The other is requirements of programs in the language—a program
must meet these requirements in order to run reliably on implementations. It is often helpful
to view a standard as a contract; a vendor claiming POSIX compliance for a shell is promising
to run your code correctly if you write your code correctly, allowing you to refer to the stan-
dard to determine whether something is a bug or not.

The POSIX standard distinguishes between behavior required for conformance, behavior
permitted in a conforming shell, and optional extensions. Support for $() command sub-
stitution is required; a shell that lacks this is not conformant. When running commands in
a pipeline, a shell may run any or all of them in subshells; the standard allows for one of the
commands to be run in the parent shell (as the Korn shell does) but does not require it. A pro-
gram that relies on a particular decision about which commands are run in subshells is not
portable among POSIX shells, but any answer a shell gives to that question is compliant with
the POSIX standard.

POSIX explicitly blesses some extensions, warning that they may exist and have special
behavior; for instance, POSIX reserves the [[token as having possible special meaning to the
shell, even though it does not specify anything at all about the syntax or semantics of such a
token. This allows ksh and bash to be considered compliant (at least on this issue) even though
they provide an extra feature (see the section “Built-In Tests” later in this chapter).

Brace expansion (also described in this chapter in the section “Portability Issues: Wel-
come to the Club”) actually violates the POSIX standard; it causes at least some well-formed

10436ch07final 146 10/23/08 10:35:31 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 147

shell programs to behave contrary to the standard, but the standard doesn’t make any allow-
ances for this. Many extensions are arguably standard violations, and shells that provide them
may allow you to disable them. However, in portable code, you have to be aware of these
extensions and avoid tripping on them.

Bugs
Previously, I’ve mostly ignored the topic of bugs. Bugs are not the same thing as lack of a
standard feature; they are special cases where a particular feature misbehaves. Bugs are usu-
ally more narrowly defined. A shell that lacks $() command substitution simply lacks it all the
time; any test program will confirm its absence. A bug often manifests only under particular
circumstances, making it much harder to figure out what went wrong. For instance, one early
shell (long since patched) omitted the last trailing slash of any command-line argument con-
taining two trailing slashes. The shell doesn’t lack the ability to pass slashes in arguments, or
even pairs of slashes, and it doesn’t truncate characters otherwise; it’s just a special case. Find-
ing this out and identifying the problem could be a real pain.

Unfortunately for shell programmers, obscure bugs are plentiful. The worst are mostly in
systems that have mostly left commercial use, but there are plenty left floating around. The
good news is that you will rarely encounter them, but there are plenty of special cases. Most
bugs are specific to a particular version of a shell; a bug might exist in zsh 4.x, but not in zsh
3.x. While features are usually added but not removed in newer shells, bugs can come and go.
The documentation for autoconf has a particularly large list of shell bugs, including a few you
can probably safely ignore:

www.gnu.org/software/autoconf/manual/html_node/Portable-Shell.html

Portability Issues: Welcome to the Club
These portability issues are not unique to shell programming; C programmers have been living
with a similar problem for a very long time. The ANSI/ISO C89 standard, released in 1989 (and
again in 1990, which is a long story), offered substantial improvements to the language; and
code written in “C89” offers substantial improvements for developers, compared with code
written for previous language versions. However, many vendors continued to ship compil-
ers that did not implement this language at all for a long time. The net result is a complicated
tangle of portability rules, habits people have developed, urban legends, and more. A huge
number of the tests generally performed by configure scripts have been essentially guaranteed
to produce particular answers on many modern systems; indeed, most of the systems where
they wouldn’t work as expected never got Y2K upgrades.

When the ANSI/ISO C99 standard came out, I decided that I had probably had about
enough of worrying about portability to pre-ANSI compilers. While it is true that they still
exist, and some vendors still ship them, there is not much point in trying to deal with them;
instead, if I even find myself on such a system, I’ll get gcc and move on. This is practical for C
code because I already know I’m going to have to compile it on a new target system. It is not as
practical for shell code because it imposes an additional step of shell development that might
not otherwise apply.

10436ch07final 147 10/23/08 10:35:31 PM

http://www.gnu.org/software/autoconf/manual/html_node/Portable-Shell.html

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY148

Common Extensions and Omissions
This section introduces features common enough that you should be aware of them, even if
you don’t plan to use them. They matter anyway because they may change the behavior of
programs that were otherwise valid. Furthermore, you may find them useful enough to justify
imposing some requirements on shells your code will run on. Some, like the additional POSIX
parameter expansion features, are found in nearly all modern shells. Others are found only in
a few shells, such as ksh, zsh, or bash.

Other Kinds of Expansion and Substitution
The parameter substitution and globbing rules shown so far are a minimal subset widely avail-
able even on fairly old shells. However, there are a number of additional options you might
run into. This section introduces brace expansion, additional forms of parameter substitution
common to POSIX shells, arithmetic substitution, and some additional globbing features.

Brace Expansion
Brace expansion is a variety of expansion introduced by csh, and later adopted by ksh, bash,
and zsh. While brace expansion is primarily used with file names, it is not a form of file glob-
bing. In brace expansion, lists of alternatives in braces are expanded into multiple words. The
brace expression {a,b} expands into two words, a and b. When a brace expression occurs in
part of a word, the whole word is duplicated for each of the resulting words: a{b,c} expands to
ab ac.

At first look, brace expansion looks a lot like a form of globbing, but there are several sig-
nificant differences between brace expansion and globbing. The first is that brace expansion
generates all specified names, whether or not any of them exist as files:

$ ls a{b,c}
ls: cannot access ab: No such file or directory
ls: cannot access ac: No such file or directory

Pathname globbing produces names sorted in order; by contrast, brace expansion always
generates names in the order they were given:

$ echo X{h,e,l,l,o}
Xh Xe Xl Xl Xo

Brace expansions can be nested, as well. Nesting works from the inside out; inner groups
are expanded to create more words, then those words are used for the next level of expansion.
The following two examples are equivalent:

$ echo a{b{c,d},e{f,g}}
abc abd aef aeg
$ echo a{bc,bd,ef,eg}
abc abd aef aeg

Brace expansion occurs after parameter substitution, but before globbing. In zsh, if brace
expansion results in glob patterns, the shell displays an error message instead of executing a
command if any of the glob patterns do not match any files.

10436ch07final 148 10/23/08 10:35:32 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 149

Brace expansion does not occur within double quotes. In shells that provide brace expan-
sion, it occurs prior to other forms of expansion; thus you will not see brace expansion on the
results of parameter substitution or globbing. Brace expansion only occurs if you explicitly
include braces in your code, making it easy to avoid being affected by it unintentionally.

Brace expansion is available in ksh93, pdksh, bash, and zsh. In pdksh, bash, and zsh, brace
expansion can be disabled. In zsh and pdksh, brace expansion is disabled by default in POSIX
mode. In bash, it must be disabled separately by set +B. In practice, it is very rare for brace
expansion to break a script that otherwise works, but it is possible. Brace expansion is often
used to generate a list of file names, leading many users to assume that it is part of globbing.
However, brace expansion can be used for many other purposes in a script. While this feature
is not portable enough to rely on, it is powerful and expressive, and it is good to be aware of it.

BraCE ExPanSiOn in CSh

In csh, brace expansion is sort of part of file name globbing. If there are no regular pattern characters in any
of the words generated by brace expansion, it behaves the same as it does in the other shells. However, if
there are pattern characters in any of those words, and any of those words match any files through regular
globbing, then only the glob results are generated; the globs that didn't match anything are discarded. If there
are pattern characters, but they don't match anything, they are generated normally.

This behavior leads to a lot of surprises when habitual csh users try to use brace expansion in ksh or
bash.

Additional Parameter Expansion Features
A number of additional parameter expansion forms are provided by POSIX shells (see
Table 7-1). These are additional variants similar in syntax to the ${param:-word} forms dis-
cussed in Chapter 4.

Table 7-1. A Few More Parameter Expansions

Pattern Description

${#parameter } Length of parameter. (0 if null or unset.)

${parameter#pattern} Substitute parameter, removing the shortest match of pattern from the
beginning.

${parameter##pattern} Substitute parameter, removing the longest match of pattern from the
beginning.

${parameter%pattern} Substitute parameter, removing the shortest match of pattern from the
end.

${parameter%%pattern} Substitute parameter, removing the longest match of pattern from the
end.

The ${#parameter} construct expands to the length of $parameter. It is sometimes used
in expressions like test ${#parameter} -gt 0, which is another way of spelling test -n
"${parameter}". The advantage of ${#parameter} is that it can be used without nearly as much
worry about quoting; it expands into a plain integer value (sometimes zero), which never
requires quoting.

10436ch07final 149 10/23/08 10:35:32 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY150

The four pattern-based substitution rules all use a half-anchored pattern. Normally, a
shell pattern must match all of the text it is being compared with; it is anchored at both ends
of the text. In these rules, however, the pattern can match part of the text. The shell substi-
tutes, not the matching text, but whatever text did not match. These are easiest to illustrate
by example:

$ file=/home/seebs/shell/example.txt
$ echo "${file%/*}"
/home/seebs/shell
$ echo "${file%%/*}"

$ echo "${file#*/}"
home/seebs/shell/example.txt
$ echo "${file##*/}"
example.txt

The shortest-match forms are an exception to the general rule that pattern matching
always matches the longest string it can. Instead, they look for the shortest possible sub-
string that matches the given pattern. So, in the first example, the shortest substring (at the
end of the whole file name) matching the pattern /* is /example.txt. The shell can’t match
any shorter pattern because that is the first slash (counting from the end); it doesn’t match
a longer pattern because it doesn’t have to.

The longest match forms behave more like normal pattern matching but are only
anchored on one side. Because the string starts with a /, followed by other characters, the
whole string is matched by /* when looking for the longest match.

The rules that match at the beginning behave much the same way. The shortest match of
*/ just removes the leading /; remember that a * matches anything at all, including an empty
string (this is why ${file#*} just substitutes $file). The longest match is the full path, leaving
the file name.

The reason these rules remove the match, rather than leaving it, is that shell patterns are
sometimes a little weak on complicated expressions. It is often useful to be able to obtain the
name of a file with a file name suffix removed, but it is very hard to write a shell pattern to
express “everything but a file name suffix.” For instance, in a build script, you might have a list
of source files and want to identify the corresponding object files. You can replace the suffix
easily:

$ file=hello.c
$ echo "${file%.c}".o
hello.o

As with other parameter substitution rules, the word on the right-hand side is itself sub-
ject to parameter substitution. If you want to know what a pattern matched, you can use two
of these rules to find out:

$ file=/home/seebs/shell/example.txt
$ echo "${file%/*}"
/home/seebs/shell
$ echo "${file#${file%/*}}"
/example.txt

10436ch07final 150 10/23/08 10:35:33 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 151

In this example, the pattern used is the substitution of ${file%/*}, or /home/seebs/shell.
Removing this from the beginning of $file shows /example.txt, which is the exact pattern
matched by the /* in the first substitution. This does not always work if the inner substitution
yields pattern characters:

$ file=[0-9]/hello
$ echo "${file%/*}"
[0-9]
$ echo "${file#${file%/*}}"
[0-9]/hello

The shell interprets [0-9] as a pattern, not as a literal string, when substituting it on the
right-hand side. However, you can prevent this using quoting:

$ file=[0-9]/hello
$ echo "${file%/*}"
[0-9]
$ echo "${file#"${file%/*}"}"
/hello

This latter behavior is documented in the POSIX standard, and pdksh, ksh93, and bash all
do it; however, at least some ash derivatives ignore the quotes (for more information on quot-
ing inside parameter substitution, see the detailed discussion in Chapter 6).

If you want the effect of this sort of substitution in a pre-POSIX shell, you can usually
duplicate it using sed or expr. Remember that these utilities use regular expressions, not shell
patterns. To strip the directory name off a file, you would use the regular expression .*/, not
just */:

file=`expr "$file" : '.*/\(.*\)$'`

This feature is a significant performance advantage in general, although less so in shells
that implement expr as a builtin. (If you are wondering why you shouldn’t just use basename
and dirname, the answer is that they are not as universally available as expr; see the discussion
of utility portability in Chapter 8.)

Arithmetic Substitution
The POSIX spec provides for arithmetic substitution, using $((expression)). The shell evalu-
ates expression and substitutes its result. This is substantially similar to $(expr expression),
but there are three key differences. The first is that the syntax is different; arithmetic sub-
stitution does not need special shell syntax characters in expression quoted, but expr does.
Furthermore, expr requires each operator to be a separate argument; arithmetic substitution
can parse expressions where operators have not been separated out by spaces. The following
examples are equivalent:

$ echo $(expr \(3 + 1 \) * 5)
20
$ echo $(((3+1)*5))
20

10436ch07final 151 10/23/08 10:35:33 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY152

The parentheses and asterisk need to be quoted for expr but do not in an arithmetic
substitution; similarly, arithmetic substitution doesn’t need spaces around the operators. If
(3+1)*5 were passed to expr as an argument, it would be interpreted as a string, and no arith-
metic would be performed.

The second major difference is that the available operators vary widely. The length and :
(regular expression match) operators of expr (see Chapter 2 for a discussion of regular expres-
sions and expr; the length operator just yields the length of its argument) are not available;
instead, all operations work on numeric values. However, arithmetic substitution provides
many additional operators, such as bitwise operators. In expr, & and | are logical operators
(similar to the && and || operators in the shell). In arithmetic substitution, they are bitwise
operators:

$ echo $((1 | 2))
3
$ echo $(expr 1 \| 2)
1

In expr, the first operand of | is evaluated, and if it is neither zero nor an empty string,
its value is the result of the expression; otherwise, the second operand is evaluated and is
the result. So, 1 | 2 evaluates 1, finds out that it is not zero or an empty string, and results in
that value. In arithmetic substitution, 1 | 2 is the bitwise union of the two numbers, so the
result is 3.

Finally, the third difference is that the arithmetic substitution itself can (in most shells)
assign values to shell variables. While idiomatically it is often clearer to write x=$((x+1)), you
can also write $((x=x+1)). This feature is not available in some implementations of ash. Note
that the final result is still substituted, so $((x=1)) expands to 1; if it is on a line by itself, the
shell tries to find a program named 1 to run.

Arithmetic expressions have a number of shorthands. A variable name is implicitly
expanded when encountered without a leading $. Thus $((x)) is the same as $(($x)). Shell
arithmetic may be limited to a signed 32-bit value. However, many shells provide additional
functionality; some shells support floating point operations in arithmetic substitution, or pro-
vide C-style increment (++) and decrement (--) operators.

In portable scripts (assuming you’re willing to rely on arithmetic substitution at all), you
can count on basic C-style integer math, including bitwise operations. Don’t rely on assign-
ment to variables, the increment or decrement operators, or floating-point math.

Even if you don’t plan to use arithmetic substitution, you have to be aware of it if you are
using $()-style command substitution and subshells. In shells that support arithmetic sub-
stitution, $((and)) are tokens. To be on the safe side (and to avoid possible bugs), separate
parentheses when nesting them. This comes back to the maximal munch rule described in
Chapter 4; when $((is a token, then $((foo)|bar) is a syntax error because there is no corre-
sponding)) token.

Globbing Extensions
The ksh, zsh, and bash shells offer additional globbing options. These are not particularly
portable to other shells. There are two major sets to consider. One is the pattern grouping
operators, introduced originally in ksh. These are available in ksh and pdksh; they are available

10436ch07final 152 10/23/08 10:35:34 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 153

in bash if the extglob shell option has been set and in zsh if the KSH_GLOB option has been set.
These operators all work on grouped sets of patterns, called pattern lists. A pattern list consists
of one or more patterns; if there are multiple patterns, they are separated by pipes (|) as they
would be in a case statement. A special character followed by a pattern list in parentheses
becomes a special glob operator. There are five such operators, as shown in Table 7-2.

Table 7-2. Extra KSH GLOB Operators

Pattern Description

@(pattern-list) Exactly one of the patterns in pattern-list.

?(pattern-list) Zero or one of the patterns in pattern-list.

*(pattern-list) Zero or more of the patterns in pattern-list.

+(pattern-list) One or more of the patterns in pattern-list.

!(pattern-list) None of the patterns in pattern-list.

There are a number of additional variants possible in ksh93, but this subset is available in
bash, pdksh, and zsh as well.

The @, ?, *, and + variants are reasonably intuitive if you have worked with regular expres-
sions. The @ pattern operator functions a bit like a character class, only matching larger
patterns. The pattern *.@(tar.gz|tar.bz2|tgz|tbz2) matches any file name ending in one of
the four suggested suffixes, which are common names for compressed tar archives. Note that
while the @ operator itself matches only one of the provided patterns, this pattern quite happily
matches x.tgz.tbz2.tar.gz; the @ operator matches the trailing suffix, the period matches the
period before that suffix, and the whole rest of the pattern matches the initial *. The @ operator
is similar to a regular expression using \{1,1\}; it is used only to introduce the pattern list. The
?, *, and + operators perform the same function as their equivalents in an extended regular
expression (although they come before the pattern list, rather than following it).

The ! operator can be a lot more confusing to use. The pattern *!(foo)* can still match
a file name containing the word foo because the foo can match one of the asterisks. In fact,
even the pattern !(foo) can match a file name containing the word foo, as long as the file
name contains something else as well. To match any file name without the word foo in it, use
!(*foo*). Getting used to the way in which the generally greedy behavior of pattern expres-
sions mingles with a negation operator can take time. Similarly, the expression !(foo)?(bar)
can match a file named foobar; the initial !(foo) matches the string foobar, and the ?(bar)
matches zero repetitions of the pattern bar.

Another globbing feature is recursive expansion, available primarily in zsh. The Z
shell recognizes a special pattern rule of (word/)# as matching zero or more subdirectories
matching word. As a particular shorthand, **/ is equivalent to (*/)# and can match both
anything in the current directory and anything in any subdirectory of the current directory
(or their subdirectories; it’s recursive). With the -G option, ksh93 also recognizes **/, and
also recognizes ** as a shorthand for every file or directory in the current directory or its
subdirectories. This feature is moderately dangerous; it can easily do surprising or unwanted
things, and it is not especially portable. If you want to find files in subdirectories, look into
the find command.

10436ch07final 153 10/23/08 10:35:35 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY154

Alias Substitution
Aliases allow a command name to be replaced with some other command name or code.
Unlike other kinds of substitution, aliases can result in shell control structures. (However, it is
not remotely portable to try to alias shell reserved words.) An alias typically takes the following
form:

alias text=replacement

In general, aliases should be valid command names. Aliases are never substituted when
quoted. This can offer a workaround for concerns about aliases interfering with the behavior
of a script, as the name "ls" (including the quotes) is not subject to alias substitution. How-
ever, it is subject to confusing anyone trying to read your code.

The behavior of aliases varies noticeably between shells, and not all shells provide this
feature. I do not recommend relying on this except in cases where you are quite sure what
shell will execute a given piece of code. Some shells allow arbitrarily complicated alias expres-
sions, whereas others can alias only simple command names.

The real problem with aliases in scripts, however, is not the portability problem; it is the
maintainability problem. Just as C code that relies heavily on preprocessor behavior can be
extremely difficult to understand or debug, shell code that uses aliases often becomes unmain-
tainable quickly. The primary use of aliases in historical code has been developing shorthands
or abbreviations for common tasks. Use shell functions instead.

Syntax Extensions
A few shells offer additional syntactic features that do not fit well in other categories. This sec-
tion reviews three of particular and common interest: additional forms of redirection, support
for arrays, and the [[expr]] syntax for built-in test functionality, similar to the test program.

Redirections
There are a handful of additional redirection syntax features available in some shells. Both ksh
and bash offer a rich selection of additional redirections. There are a few features unique to
ksh93 and others found also in pdksh.

The >|file redirection operator opens and truncates file. This is the normal behavior
for > redirection. However, in ksh and bash, the shell option noclobber prevents redirecting to
existing files; this redirection overrides that option.

The bash-only <<<word operator operates a little like a here document, but instead of send-
ing following lines of the shell script to a command as standard input, it expands word and uses
that as the command’s standard input. So, cat <<<$foo is similar to echo $foo. This is useful
for commands that need only a small amount of input directed to them.

Another bash extension is the >&N- redirection operator (and the corresponding <&N-).
These operators move one file descriptor to another, closing the original. The shell command
exec 3>&2- is equivalent to running first exec 3>&2, then exec 2>&-.

Both bash and ksh support the <> operator, which opens a file for both reading and writ-
ing. If no descriptor number is provided, <> opens a file as standard input.

10436ch07final 154 10/23/08 10:35:35 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 155

The final three operators are found only in ksh. The first is the coprocess operator (|&),
which opens a special process in the background. This is only sort of a redirection; it is in some
ways more like a command separator, and it occupies the same basic function as a pipe. When
a program is run with |& as a redirection, the program is run in the background, with input
and output attached to a special file descriptor maintained by the shell. You can write data to
the coprocess by running commands >&p and read by running commands <&p. The coprocess
continues until it exits, but you can close its input stream (which will typically cause most filter
programs to exit) by redirecting its input stream to another file descriptor, and then closing it,
as in the following code:

exec 3>&p
exec 3>&-

The first line duplicates the coprocess’s input to file descriptor 3, and the second closes it.
(Remember that the shell’s output to the coprocess is the coprocess’s input.)

The coprocess feature is moderately difficult to duplicate in any other shell; it may not be
practical to rework a program that depends on it, so avoid depending on this feature in por-
table scripts.

Finally, ksh93 provides two additional redirection forms that are available only on sys-
tems that provide the /dev/fd directory containing special files that represent the standard
file descriptors (so /dev/fd/2 is standard error). On these systems, you can specify input to, or
output from, a command as though it were a file argument using the syntax <(list) to refer
to the output of list, and >(list) to refer to its input. The shell runs the command in the
background, with its output connected to a particular file descriptor; then the shell provides
the name of that file descriptor’s special file as an argument to a command. This is only useful
with programs that expect their arguments to be file names:

$ echo <(ls)
/dev/fd/4

All of these redirection options are a bit specialized, and I do not recommend relying on
any of them in portable scripts. Still, forewarned is forearmed. I have often wished that the
coprocess feature had made it into the POSIX shell; it is one of the most persuasive arguments
for writing a script that requires ksh.

Arrays
One of the most significant weaknesses of the shell as a general programming language is the
lack of arrays. Arrays are available in ksh, zsh, and bash. All shells that support arrays support
integer array subscripts. Additionally, zsh and ksh93 support associative arrays, which use text
keys rather than integer values. Array subscripts (for regular arrays) are treated as arithmetic
expressions, according to the rules described previously for arithmetic substitution. The num-
ber of elements in an array may be limited; pdksh restricts array subscripts to the range 0–1023.

In general, arrays are created either using the set command or by direct assignment. The
expression x=(a b c) creates x as an array variable holding three values: ${x[0]} is a, ${x[1]}
is b, and ${x[2]} is c. (In zsh, the indexes start at 1 unless the KSH_ARRAYS option has been set.)

10436ch07final 155 10/23/08 10:35:36 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY156

In ksh93 and zsh, associative arrays are declared using the typeset -A command:

typeset -A foo
foo[a]=hello,
foo[b]=world
echo ${foo[a]} ${foo[b]}

hello, world

The associative array feature is probably familiar to programmers who have worked in just
about any modern language; it first became commonly known to UNIX users through the awk
utility.

Arrays are not portable to most shells. In practice, portable shell scripts must use the
positional parameters as an array or engage in elaborate constructions using eval to create
variable names dynamically (see the examples in Chapter 5). If you only need one array, it is
fairly practical to use the positional parameters as that array (although, if you need more than
nine items, you will have to get clever in traditional shells). If you need more than one, you
can store long strings using delimiter characters (typically colons or spaces), then use the set
command to extract them into an array. If your delimiter character is spaces, this is easy; the
following code extracts the members of an array into the positional parameters:

set -- $array

Similarly, you can store the positional parameters into a variable using $*:

array=$*

If you need to use a different delimiter, you have to set (and restore) $IFS:

save_IFS=$IFS
IFS=:
set -- $array
IFS=$save_IFS

When substituted, $* delimits the positional parameters with the first character of $IFS,
providing symmetry. Remember that there is no field splitting in assignment; you do not need
to quote $* to assign from it.

Another array-handling option is to switch to m4sh, which gives you some limited “com-
pile-time” array functionality; you can use m4 arrays to develop scripts that act somewhat as
though the shell had arrays. Finally, depending on the data you need to work with, you may be
able to use a temporary file and a tool like awk or sed to extract and modify values. This is pretty
high overhead, though; I prefer to just use eval.

Built-In Tests
The ksh, bash, and zsh shells support a more flexible conditional test expression using double
brackets. This is somewhat different syntactically from the [synonym for the test command,
much as arithmetic substitution differs from expr. The syntax is [[expression]], and the rules

10436ch07final 156 10/23/08 10:35:36 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 157

for evaluating expression are somewhat simpler than the rules for the test utility. As with
arithmetic substitution, expression is not subject to some of the normal shell features, such as
field splitting. The exact set of tests supported varies somewhat from one shell to another, but
in general this form handles most of the same expressions as the test program. As an addi-
tional feature, the shell recognizes && and || operators in these expressions (although some
shells do not recognize -a and -o in these expressions).

Of particular note is that all three shells recognize file names of the form /dev/fd/N as
referring to file descriptor N while processing these expressions. Thus even if the special
/dev/fd files do not exist on a particular system, [[-t /dev/fd/0]] succeeds if standard
input is considered to be a terminal device.

Unlike the regular test program (whether it is implemented as a builtin or not), the
[[expression]] form does not recognize operators that were quoted, and operators are never
optional. This eliminates the two common problems that require special treatment of values
in conditional expressions; there is never any ambiguity over what is, or is not, an operator, so
tricks like prefixing values with X are unneeded.

The [[expression]] syntax is not described by POSIX, although POSIX does reserve the [[
and]] tokens as potentially having special meaning to the shell.

The select Loop
One of the really interesting features introduced in ksh is the select loop, which allows the
user to pick an item from a list in an unambiguous manner:

echo "Where would you like to go for your vacation?"
select answer in Oz Detroit
do
 echo $answer
 break
done

The output of this script in ksh looks like this:

$ ksh vacation
Where would you like to go for your vacation?
1) Oz
2) Detroit
#? 1
Oz
$

This can be used to select items from lists. As with a for loop, parameter substitution or
command substitution on the list is subject to field splitting, so you can build a list and then let
the user pick a word from it. This feature is available in ksh, bash, and zsh; it is not present in
ash, however, and is not in the POSIX standard.

The select control structure loops until the loop is explicitly terminated. Because select
is implemented as a control structure, a script using it is always a syntax error in another shell.
However, you can come surprisingly close; a detailed discussion of this is included at the end
of this chapter in the section “Emulating Features.”

10436ch07final 157 10/23/08 10:35:37 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY158

Common Omissions
It is not always obvious what ought to count as a standard feature that has been omitted
and what ought to count as an extension that has not been provided. The pattern-matching
parameter substitution forms previously listed are defined by POSIX but are a little more eso-
teric than more basic features, such as the use of ! to negate the exit status of a command.

Stripped-down shells usually start by omitting interactive features (such as command his-
tory, expansion of parameters in prompts, and so on). Some shells omitted shell functions in
the distant past, but no one’s seen a shell without shell functions in years.

Another common way to strip a shell down is to omit built-in commands. As long as the
commands also exist as separate programs, this may hurt performance slightly but has no
other impact. However, some shells omit builtins that cannot be run as external commands,
such as getopts. (In fact, every modern POSIX-like system seems to have this, with the obvious
caveat that the default shell on Solaris is still pre-POSIX.)

In general, the biggest impact of a stripped-down system will be in utility programs, rather
than in the core shell language itself. For instance, many embedded systems lack sed, awk, or
the printf utility. Utility portability issues are discussed at greater length in Chapter 8.

Common Shells and Their Features
This section introduces some of the most common shells you are likely to encounter, giving
a brief overview for each of where it fits in the shell family tree, what sorts of features it has
or lacks, and how to invoke it for maximal POSIX compliance if you need that. These shells
are introduced in alphabetical order by name; for example, dash is under the section “Debian
Almquist Shell.” Shells specific to a given system are prefixed with the system’s name, as in the
“Solaris /usr/xpg4/bin/sh” section.

You can sometimes guess which shell you are in by checking the value of $SHELL, but this
is useless in determining which shell has been used as /bin/sh.

Almquist Shell
The Almquist shell (ash)) was developed by Kenneth Almquist as a compatible replacement
for the Bourne shell shipped with SVR4 UNIX, plus POSIX features. Modern variants are
POSIX-compliant by default. You can also find ash on many other systems; a variant of it is
included in busybox, and it is also used in Cygwin and Minix. This is also the ancestor of the
Debian ash (called dash), described in the “Debian Almquist Shell” section later in this chapter.
The big strength of ash is that it is small, reasonably efficient, and fast. Some versions of ash are
a little light on features like command-line editing, variable expansion in prompts, and other
interactive features, but it is fine for scripting.

How to Identify
There is no simple way to figure out that you are running under ash. There is no standard pre-
defined magic variable provided by the shell. Because ash is often used as /bin/sh, you can’t
check the shell’s name, either. Luckily, there are relatively few version-specific quirks. The
closest way I have found to identify ash is to check for everything else. If a shell is not a variety
of ksh, bash, or zsh and does not seem to be a pre-POSIX shell, it may very well be ash.

10436ch07final 158 10/23/08 10:35:37 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 159

Version Information
There is no formal numbering of ash versions. The initial release was in 1989, and since then
ash has been in continuous development on the various BSD systems. Particular versions have
been extracted from NetBSD (most often) and imported into Linux or other systems, but there
are not usually version strings to identify them.

Major Compatibility Notes
There are two major bugs in early versions of ash that could affect portability, both involving
command substitution. Probably the most significant is that in older versions of ash, com-
mand substitution of a single built-in command does not spawn a subshell, so the built-in
command can modify the parent shell’s environment. The other is that command substitution
inside variable expansion did not work in one of the early versions migrated to Linux systems;
${FOO=`echo hello`} did not work as expected.

Getting POSIX Behavior
Conveniently simple, ash is by design a fairly closely matched POSIX shell. Very early versions
were missing a few features, but the versions being distributed today are unlikely to hold many
surprises.

Bourne-Again Shell
The GNU Bourne-again shell is probably one of the largest and most feature-filled variants.
It has been in development since 1987. Unlike most of the other shells described as Bourne
shell derivatives, bash incorporates a couple of features from csh. There are a lot of similarities
between the extensions in bash and the extensions in ksh.

How to Identify
Check the environment variable $BASH_VERSION. This variable is set even when the shell is run-
ning in POSIX mode and contains the version number of the current shell.

Version Information
Early versions of bash (1.x) had a number of surprising behaviors that are mostly gone now.
The 2.x and later versions use a new syntax for the output of set; older versions of bash, and
other shells, may not be able to read this output. Finally, the 3.x versions introduced the sup-
port needed for the bash debugger; this is not available for older versions.

Major Compatibility Notes
Early versions of bash provided !-style history expansion, as used in csh. This only affects
interactive use but is a major surprise in that it is one of the only cases where something inside
single quotes can be expanded. In modern versions, this feature must be explicitly enabled.
Also, bash introduces source as a synonym for the . command. In most cases, the compat-
ibility problem is not that bash cannot run scripts written for other shells, but that other shells

10436ch07final 159 10/23/08 10:35:37 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY160

cannot run scripts written for bash. The bash shell provides a broad variety of builtins, often
with extensions and added features, and the same caveats apply to these. The general caveats
of modern POSIX-like shells, such as arithmetic substitution, apply to bash as well.

Getting POSIX Behavior
To force POSIX behavior, invoke bash with the --posix option or run set -o posix in the
shell. The environment variable $POSIXLY_CORRECT also forces this behavior when set;
setting it during the operation of a script takes effect immediately. Finally, if the bash pro-
gram has the name sh, it goes into POSIX mode once it has read its startup files. You must
also separately disable brace expansion (set +B) if you want better conformance; the fea-
ture is left on because it is very rare for a script that does not intend to use it to get affected
accidentally.

Debian Almquist Shell
The Debian branch of the Almquist shell is an import of ash to use as a standard system shell.
It was adopted because it is smaller and faster than bash and also with an eye to reducing the
tendency for Linux scripts to be unportable to other UNIX-like systems. It was ported to Linux
in 1997 by Herbert Xu and renamed to dash in 2002. It first showed up as /bin/sh on desktop
Ubuntu around version 6.10, and is expected to be /bin/sh in Debian Lenny (frozen, but not
shipped, as of this writing).

How to Identify
As with other ash variants, there is no obvious way to tell that you are running in dash. For
instance, on a modern desktop Ubuntu system, /bin/sh is a symlink to /etc/alternatives/sh,
which is a symlink to the selected shell, usually /bin/dash by default.

Version Information
On a desktop system, the package management system will usually have a version number
available:

$ dpkg -l | grep dash
ii dash 0.5.4-8ubuntu1 POSIX-compliant shell

The exact way to extract this information varies from one system to another. However,
the version number here does not necessarily correlate to a particular version of the ash shell.
In general, a system providing dash provides a version modern enough to ignore the historical
early quirks and lets you just write for the POSIX shell spec.

Major Compatibility Notes
There are no major surprises with dash, but be aware that many scripts on Linux systems may
behave surprisingly in a non-bash shell. As a result, you may find that a system administrator
has changed the default shell back to bash, so you have to watch out for bash extensions even if
you think the shell should be dash.

10436ch07final 160 10/23/08 10:35:38 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 161

Getting POSIX Behavior
As with ash, POSIX behavior is the default.

Korn Shell
The Korn shell was developed at Bell Labs by David Korn. It has been in use internally in vari-
ous forms since 1982. An early version from 1986 has been distributed some, but widespread
external use started with the 1988 releases. A variant of ksh was around in SVR4, and many
System V–derived commercial UNIX systems have provided it. The current versions are avail-
able under an open source license, but earlier versions were not.

How to Identify
There is no simple way to identify whether you are in ksh, let alone what version. In ksh93,
the special shell parameter ${.sh.version} contains the shell’s version string; in ksh93t
(June 2008) and later, this can also be accessed as $KSH_VERSION. Some systems provide a
utility called what for identifying the versions of commands:

$ what $(which ksh93)
/usr/pkg/bin/ksh93
 [. . .]
 $Id: Version M 1993-12-28 q $

At a prompt, if you set the shell for its emacs-style command-line editing mode (set -o
emacs), typing Ctrl-V displays the version information.

If you are willing to do some extra work, you can detect ksh by testing for the select con-
trol structure and then excluding other shells that offer simpler tests. The following script
determines whether a shell has the select primitive and runs the last command of a pipeline
in the parent shell:

eval "echo 1 | select no_select in false; do break; done" > /dev/null 2>&1
if $no_select; then
 echo "no select"
else
 echo "select"
fi

This script incorrectly indicates that there is no select control structure in pdksh or
bash (because they run the select in a subshell). However, you can check for them using
$KSH_VERSION and $BASH_VERSION, respectively. This script detects the select structure in zsh,
ksh88, and ksh93; if this test determines that select is available, you can check $ZSH_VERSION
to determine whether or not you are in zsh, and if you are not, you must be in some variety
of ksh.

You cannot simply check ${.sh.version} because the invalid (for any other shell) param-
eter name causes a script to abort. Even eval is not enough to protect you from this in some
shells, but a subshell can come to the rescue:

10436ch07final 161 10/23/08 10:35:38 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY162

if (test -n "${.sh.version}") 2>/dev/null ; then
 echo "ksh93"
else
 echo "not ksh93"
fi

You have to use a subshell here; ksh88, ash, and traditional sh all abort when trying to
expand that variable.

Version Information
There are three major revisions of ksh: ksh86, ksh88, and ksh93. You are unlikely to encoun-
ter ksh86 in the wild. The ksh88 version is still used in some commercial UNIX systems as
an implementation of the POSIX shell. There are a number of new features in ksh93, such as
associative arrays and floating-point arithmetic, as well as a variable namespace feature using
parameter names containing periods. Brace expansion is found in ksh93, but not in ksh88.

Major Compatibility Notes
The only compatibility problems you are likely to encounter with ksh are with scripts that hap-
pen to match some of the ksh syntax extensions. Brace and tilde expansion are both performed
by ksh93; ksh88 performs tilde expansion, but not brace expansion.

Unlike most other shells (including pdksh), ksh runs the last command of a pipeline that
runs in the parent shell; in ksh, echo hello | read greeting sets $greeting in the shell. This
rarely breaks programs that were not expecting it, but it can be a source of portability prob-
lems if you rely on it.

Getting POSIX Behavior
There is no switch to make ksh behave more like a POSIX shell than it usually does. How-
ever, its features are mostly extensions, and all of the modern POSIX features are available by
default. A POSIX script will, with rare exceptions, execute without difficulty in ksh.

Public Domain Korn Shell
The public domain Korn shell is a clone of ksh. It was written because ksh was not open source,
and many systems lacked a POSIX shell. Since then, ksh has become open source, POSIX shells
have become much more common, and bash has become much better for scripting. However,
pdksh is still found on a number of systems. There are a few features in pdksh not found in
ksh88 or ksh93, and pdksh has acquired some of the new ksh93 features.

How to Identify
The special shell parameter $KSH_VERSION contains the version information of the shell.
Most versions of ksh do not, but ksh93t (June 2008) adds $KSH_VERSION as a synonym for
${.sh.version}.

10436ch07final 162 10/23/08 10:35:38 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 163

Version Information
Every installation of pdksh I’ve seen over the last fifteen years has been version 5.2.14. The
mainline ksh shell became more widely available, and pdksh hasn’t been substantially
upgraded since 2001. While it has some quirks, pdksh is stable.

Major Compatibility Notes
Unlike ksh, pdksh runs the last command of a pipeline in a subshell. There are other subtle
differences between ksh and pdksh, described in the pdksh documentation, but most scripts
written for ksh88 will run in pdksh.

Getting POSIX Behavior
Like bash, pdksh supports a POSIX mode in which it deviates from ksh behavior in favor of the
POSIX specification; this can be controlled through set -o posix or the $POSIXLY_CORRECT
environment variable.

Solaris /usr/xpg4/bin/sh
The /usr/xpg4/bin/sh program, when it has been installed, is a ksh88 shell modified a little to
be a bit more like a POSIX shell. The name comes from the X/Open Portability Guide, Issue 4
(X/Open Company, 1992), which is one of the precursors to modern UNIX standards.

How to Identify
As with other ksh88 shells, there is no way to identify this shell from within a script (but see the
previous “Korn Shell” section for some workarounds).

Version Information
This is a late, fairly well bug-fixed ksh88. It does not come in multiple versions.

Major Compatibility Notes
The only compatibility problems you are likely to encounter with this ksh variant are with
scripts that happen to match some of the ksh syntax extensions. Being based on ksh88, this
shell does not have brace expansion. Unlike most other shells (including pdksh), ksh runs the
last command of a pipeline that runs in the parent shell; in ksh, echo hello | read greeting
sets $greeting in the shell. This rarely breaks programs that were not expecting it, but it can be
a source of portability problems if you rely on it.

Getting POSIX Behavior
This shell is already configured to offer POSIX shell functionality. It has no configuration
choices to change this.

10436ch07final 163 10/23/08 10:35:39 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY164

SVR2 Bourne Shell
The SVR2 Bourne shell, or derivatives of it, are the oldest shells I know of that are still in use
today. Specifically, the Tru64 UNIX shell is an SVR2 derivative. (The documentation claims it is
an SVR3.2 shell, but it has characteristic behaviors of older shells.)

How to Identify
The SVR2 Bourne shell is the only shell I am aware of in which the historical behavior survives
of expanding "$@" to an empty quoted string when there are no parameters. It also lacks the
getopts builtin. The following code identifies a shell with the old "$@" behavior:

(set dummy; shift; set dummy "$@"; shift; echo $#)

In an SVR3 or later shell, this should consistently print 0; in the SVR2 shell, it prints 1.

Version Information
There were a couple of variants of this, but most are now gone. The 8th Edition UNIX shell was
a derivative, but it added modern "$@".

Major Compatibility Notes
In theory, the SVR2 Bourne shell wipes out the positional parameters when calling a shell
function. However, the only known living version of this shell includes the SVR3 fix for this
bug, and the positional parameters are restored after calling a shell function. This is the only
shell lacking getopts or modern "$@" semantics.

This shell lacks the ! modifier to invert the status of a command, and it recognizes ^ as
a synonym for | as a command separator. See also “Major Compatibility Notes” under the
“SVR4 Bourne Shell” section; this shell has all of the quirks of the later shell.

Getting POSIX Behavior
You can’t, but you can look for another shell on the system. A Korn shell is available on most
variants. If you need to target this system, you may want to use an execution preamble to
switch to that.

SVR4 Bourne Shell
The SVR4 Bourne shell program is extraordinarily stable, offering essentially a stable feature
set since 1988, with occasional bug fixes or small updates in some systems. It is not a POSIX
shell. For most modern users, this is the only non-POSIX shell you will find in regular use. This
is the shell used by Solaris and Irix systems as /bin/sh.

10436ch07final 164 10/23/08 10:35:39 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 165

How to Identify
While the SVR4 shell has no direct identifying cues as to its version, you can detect that you are
probably running in it by running eval "! false" and checking $?. Most other shells will con-
sider this to succeed, yielding 0; the SVR4 shell reports failure because there is no command
named !.

Version Information
The SVR4 shell has only minor bug fixes and enhancements between the original SVR4
releases and the current version. The shell’s version is determined by the system version; use
uname to find that.

Major Compatibility Notes
This shell is included in Solaris and Irix, even today, and that is the reason to worry about the
portability of POSIX-specified features. While there are other systems with pre-POSIX shells
installed, these are by far the most common. Many systems seem to have migrated to the
POSIX shell sometime in the last ten years or so, but these vendors have stayed with the old
one for compatibility with older scripts, some of which might have their semantics changed by
an update.

The SVR4 shell lacks the ! modifier used to reverse the return status of a command. It can-
not access positional variables past $9; ${10} is an invalid construct in it. It supports backtick
command substitution, but not $() command substitution. In the SVR4 shell, ^ is equivalent
to a pipe on the command line; it must be quoted to be used in normal words or arguments to
other commands.

The SVR4 shell provides getopts, unset, and modern "$@" behavior. (In fact, these were all
introduced in SVR3 or so.)

A particular surprise is that, while set -- args sets the positional parameters, set -- does
not clear them.

Getting POSIX Behavior
You can’t; if you need POSIX behavior, you have to use another shell. Luckily, Solaris ships
with several shells. Some of them are optional, but zsh appears to be installed by default on
every remotely recent system and can be used as a POSIX shell. See the following section,
“Execution Preambles,” for information about getting into a more modern shell.

Traditional Shell
The V7 shell (the shell of 7th Edition UNIX) is generally regarded as the starting point of the
modern Bourne shell. It can be identified as much by what it lacks as by what it provides. In
practice, every shell has since evolved, but it is worth considering this shell simply for contrast.
Table 7-3 gives a brief overview of major features that were not found in the V7 shell and when
they were added.

10436ch07final 165 10/23/08 10:35:39 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY166

Table 7-3. Shell Features and Their Arrival

Feature First available notes

Functions SVR2 Shell functions did not support local positional pa-
rameters at first.

unset SVR2 Not always found on small or specialized shells.

Function arguments SVR3 Positional parameters can be used safely after a func-
tion call.

getopts SVR3 Replaces the getopt utility.

8-bit support SVR3 Previous shells used 8th bit for quoting information.

Symbolic signal names SVR4 Previous shells allowed only numeric signal numbers.

Z Shell
The Z shell is an interesting offshoot or variant; it has been around for a long time, but by
default is noticeably incompatible with the Bourne shell derivatives. However, it is also
extremely configurable. Just as bash can emulate a POSIX shell, zsh can do a pretty good job
of emulating ksh88 or a POSIX shell. This is important for portable code because zsh may be
the closest thing to a POSIX shell available on some systems. The Z shell has been in devel-
opment since 1990.

How to Identify
The special shell parameter $ZSH_VERSION indicates the version of zsh being run.

Version Information
You will rarely see versions prior to the 3.x version series in the wild. 4.x is more common now,
and 4.2 is considered stable as of this writing.

Major Compatibility Notes
The most surprising change for users is that variable expansions are not subject to field split-
ting in zsh. The Z shell documentation describes this as a bug in other shells. (They are not
alone in this view; Plan 9’s rc shell went the same way.) You can override this behavior by set-
ting the shell compatibility option or explicitly with setopt shwordsplit. There is an important
exception: "$@" works as expected.

However, when emulating plain sh, zsh performs too much word splitting on the common
idiom ${1+"$@"}. You can work around this using zsh’s fairly powerful aliasing feature:

alias -g '${1+"$@"}'='"$@"'

It may be simpler to use "$@" without qualification; it works even on nearly all traditional
shells still in use today.

10436ch07final 166 10/23/08 10:35:40 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 167

Getting POSIX Behavior
In modern zsh, you can issue the command emulate sh or emulate ksh to set the shell into an
emulation mode, primarily useful for running scripts. If zsh is invoked with the name sh or ksh,
it automatically uses the corresponding emulation mode. (There is also a csh emulation mode,
but it is of no use for POSIX shell scripting.)

Execution Preambles
Portable shell scripts face the common problem that sometimes a crucial feature is not avail-
able in a given shell. In some cases, the feature is important enough to justify going to some
lengths to obtain a more standard shell environment. Sometimes, the goal is just to have pre-
dictable behavior. The configure scripts generated by autoconf use a great deal of startup code
to ensure predictable behavior across a broad range of platforms. The following sample illus-
trates code to do this for a few shells:

Be Bourne compatible
if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then
 emulate sh
 NULLCMD=:
 # Zsh 3.x and 4.x performs word splitting on ${1+"$@"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '${1+"$@"}'='"$@"'
elif test -n "${BASH_VERSION+set}" && (set -o posix) >/dev/null 2>&1; then
 set -o posix
fi
DUALCASE=1; export DUALCASE # for MKS sh

This preamble causes three common shells (zsh, bash, and the MKS Toolkit sh used on
some Windows systems) to behave more like a standard POSIX shell than they otherwise
might.

There are three primary things you can do with an execution preamble. The first is simply
to set shell options or variables that you use later in a script to simplify your code. The sec-
ond is to feed the script into a shell that has a particular feature you need. Finally, the third
option is to actually modify the script before executing it (whether through the same shell or
a different one). This section discusses the general principles of developing and using execu-
tion preambles. For more information, look into the m4sh utility, which is used to build more
portable shell scripts. As an m4sh script, the preceding sample preamble code (and a great deal
more) would be written as follows:

AS_SHELL_SANITIZE
$as_unset CDPATH

This provides a fairly predictable and standardized environment, with a number of utility
features and functions defined in a fairly portable way. While m4sh scripts are somewhat differ-
ent from conventional shell scripts, they are extremely good at running in a variety of outright
hostile environments. If you need bulletproofing, this may be the way to go.

10436ch07final 167 10/23/08 10:35:40 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY168

Setting Options and Variables
In many cases, merely tweaking a couple of shell options will get you behavior that is standard
enough to be useful. The “Common Shells and Their Features” section covers some of these.
Another technique is to use variables to hold command option flags, command names, or
other values that vary from one system to another. If a command is available only on some
machines, and possibly optional on others, you can use a variable to hold the command’s
name. A historic example of this is the use of a RANLIB variable in makefiles. On some systems,
the ranlib utility had to be run on archives; on other systems, it was not only unnecessary but
unavailable. The solution is to store the name of the utility to run after creating an archive in a
variable. You can do this in shell scripts, too:

save_IFS=$IFS
IFS=:
ranlib=:
for dir in $PATH; do
 if test -x "$dir"/ranlib; then
 ranlib="$dir"/ranlib
 break
 fi
done
IFS=$save_IFS
$ranlib archive

If there is a ranlib utility in the user’s path, it is identified by the loop and stored in the
$ranlib variable. The quotes around $dir are there because someone’s path could contain
directories containing spaces. If there is no ranlib utility available, the script continues any-
way, running the : command (which ignores its arguments). Using variables to hold command
names can simplify a lot of shell development.

This technique only works for commands, not for shell syntax. Some shells provide bet-
ter semantics for shell functions when they are declared as function name() { . . . } rather
than just as name() { . . . }. However, you cannot set a variable to expand to function and
use it in this context because function is a keyword to those shells, and the result of substitu-
tion is not a keyword.

You can also use similar techniques to hold particular command-line arguments or other
values that affect the behavior of a program. Imagine that you want to display a line of text
without a trailing new line; there is no consistently portable way to do this, unfortunately (the
flaws with echo are discussed in more detail in Chapter 8, which discusses utility portability).
However, there are two very common ways to deal with this problem, and a script can test
whether either of them is available:

case `echo -n "\c"` in
-n*c) func_echo_n() { echo "$@"; } ;;
*c) func_echo_n() { echo -n "$@"; } ;;
*) func_echo_n() { echo "$@\c"; } ;;

10436ch07final 168 10/23/08 10:35:40 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 169

esac
func_echo_n Testing...
echo "Ok."

Testing...Ok.

This script defines a function called func_echo_n that will echo without a trailing new line
if either of the common mechanisms works. (If neither does, the script just displays its output
with a new line.) System V systems often supported a \c suffix to do this, while BSD systems
tended to recognize the -n flag. If neither works, the output of the trial command begins with
-n and ends with a c. If the output ends with a c but did not begin with -n, then the -n flag is
accepted and presumably works. If the output does not end with a c, then the \c worked. This
does not guarantee success, but it does prevent printing extraneous output; in the worst case,
there will be new lines but no stray -n or \c strings floating around. (Outside of embedded sys-
tems, though, you should probably just use printf.)

Picking a Better Shell
Sometimes access to a particular feature is sufficiently crucial to make it necessary to run a
script in a shell that provides it. Some of the POSIX features are extremely useful in shell pro-
gramming, and it is quite possible to be surprised when you find yourself compelled to add
support for a target you were sure was never going to come up.

One workaround is to find a shell providing the needed features and ensure that your
script is always run in that shell. For a script full of bash-isms, the following preamble ensures
execution in bash or warns the user as to what has gone wrong:

if test -z "$BASH_VERSION"; then
 save_IFS=$IFS
 IFS=:
 for dir in /bin /usr/bin /usr/local/bin /usr/pkg/bin /sw/bin $PATH; do
 bash="$dir/bash"
 if test -x "$bash" && test -n `"$bash" -c 'echo $BASH_VERSION'`
 2>/dev/null; then
 IFS=$save_IFS
 exec "$bash" "$0" "$@"
 fi
 done
 echo >&2 "Help! I must be executed in bash."
 exit 1
fi
echo $BASH_VERSION

This preamble searches $PATH for a bash shell, and it exits if it cannot find one. A few
points are of interest. One is the use of a common set of likely directories to search before
$PATH, in case the user has an ill-considered search path. The test running bash to ensure it

10436ch07final 169 10/23/08 10:35:41 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY170

is something that produces output when asked to expand $BASH_VERSION is in single quotes
because, if it used double quotes, it would require an unusually large number of backslashes.
The expansion has to be done in the target shell, so the command to pass to it should be
"echo \$BASH_VERSION". However, this quoted string occurs inside backticks, and the shell’s
initial scan of the command substitution also consumes backslashes (which it doesn’t inside
single quotes). So, to pass \$ to the bash called by the subshell, you would have to write \\\$:

if test -x "$bash" && test -n `"$bash" -c "echo \\\$BASH_VERSION"` 2>/dev/null; then

This is a great example of a case where selecting the right quoting mechanism makes your
life easier.

It is possible to base this kind of testing on a feature test, as well. For instance, if you are
fairly confident that the only target system you have with a pre-POSIX shell is Solaris, the fol-
lowing preamble gets you a fairly good POSIX shell:

if eval "! false" > /dev/null; then
 true
else
 exec /usr/bin/zsh "$0" "$@"
fi
if test -n "$ZSH_VERSION"; then
 emulate sh
 NULLCMD=:
fi

If the shell executing this does not know about the ! command prefix, the eval operation
fails, and the else branch is taken, executing the script with zsh (which supports that syntax).

The second test causes zsh to run in its standard shell mode, which is usually a good
choice for a script (and has no effect in other shells). There is a lot more you can do for an
execution preamble, but a simple preamble like this may be enough to get your script running
quickly on the targets you need it on. The combination of switching to a different shell, and
then configuring that shell to behave the way you want it to, is quite powerful. If you are think-
ing about more than one possible system, of course, the preamble gets longer. You would want
to search for multiple shells, not just zsh, and search a reasonable path. Because every step of
this is a new opportunity to make mistakes, you should probably not write an execution pre-
amble much longer than the previous example; if you need more, this is where tools like m4sh
become really useful. As with most tools, using an existing tool is generally better than writing
your own. In particular, since much of the benefit of shell programming is ease of develop-
ment, if you start getting bogged down in details someone else has already slogged through,
you are probably not getting a good return on your time.

Self-Modifying Code
If the feature you need is simple enough, it may be possible to emulate it in the current shell.
The standard configure scripts generated by autoconf use this technique to emulate the spe-
cial shell variable $LINENO in shells that don’t provide it. Doing this correctly is fairly hard,
and doing it portably requires a great deal of attention to additional special cases; if you write
a sed script, and one of the systems you need to run on has a buggy sed, you haven’t gained
anything.

10436ch07final 170 10/23/08 10:35:41 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 171

Don’t be too hasty to use this; it has very limited applicability for most cases, and in
general, you are better off with a generic execution preamble. Still, it is an option worth con-
sidering. The following fragment of the configure script shows how $LINENO can be replaced.
(This is a small fraction of the code involved, dealing only with the actual substitution.)

 sed '=' <$as_myself |
 sed '
 N
 s,$,-,
 : loop
 s,^\(['$as_cr_digits']*\)\(.*\)[$]LINENO\([^'$as_cr_alnum'_]\),\1\2\1\3,
 t loop
 s,-$,,
 s,^['$as_cr_digits']*\n,,
 ' >$as_me.lineno &&
 chmod +x $as_me.lineno ||
 { echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell
" >&2
 { (exit 1); exit 1; }; }
 . ./$as_me.lineno
 exit

This script, like much of autoconf, shows attention to a number of portability details com-
monly overlooked. The first line runs the script (the file name is stored in $as_myself) through
sed, using the = command to print the line number before each line. (The default behavior of
sed is to print every line after executing all commands, so the lines are printed after their line
numbers.) The next sed script (explained in detail in Chapter 11) replaces each instance of
$LINENO with the current line number; the output of this is stored in $as_me.lineno.

This script fragment highlights something that can be visually confusing in long blocks of
quoted code for another language (in this case, sed). In this line, it looks at first as though vari-
able names are being quoted for some reason:

 s,^\(['$as_cr_digits']*\)\(.*\)[$]LINENO\([^'$as_cr_alnum'_]\),\1\2\1\3,

In fact, the variable names are outside the quotes, and everything else is in them. The
single quote immediately preceding $as_cr_digits is the end of a quoted string starting on the
second line (the line containing only sed '). The variables $as_cr_digits and $as_cr_alnum
hold strings of standard ASCII digits and letters. This preserves behavior even on systems with
unusual character sets or with defective character range handling. These variables in question
are known to contain no spaces, so they don’t cause the argument to sed to get broken into
multiple words. If this were ambiguous, they might have been placed in double quotes:

 s,^\(['"$as_cr_digits"']*\)\(.*\)[$]LINENO\([^'"$as_cr_alnum"'_]\),\1\2\1\3,

Another interesting choice is illustrated here; the . command is used to read and execute
the created script. If the original script had used exec, the shell would have executed the cre-
ated script, using its name for $0, and error messages would be from configure.lineno rather
than configure. Furthermore, the positional parameters would need to be passed in again;
this way, the script environment is preserved. A bare exit command exits with the return code

10436ch07final 171 10/23/08 10:35:41 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY172

of the previous command, and the return code of the . command is the return code of the
executed code (assuming it was successful in finding and reading that code at all).

Emulating Features
In many cases, it is impossible to replace a shell feature. However, in a few cases, it may be
possible to come surprisingly close. The following shell function can be used to replace select
in most cases, replacing the select keyword with while func_select:

func_select () {
 func_select_args=0
 case $1 in
 [!_a-zA-Z]* | *[!_a-zA-Z0-9]*)
 echo >&2 "func_select: '$1' is not a valid variable name."
 return 1
 ;;
 esac
 func_select_var=$1
 shift
 case $1 in
 in) shift;;
 *) echo >&2 "func_select: usage: func_select var in ..."; return 1;;
 esac
 case $# in
 0) echo >&2 "func_select: usage: func_select var in ..."; return 1;;
 esac
 for func_select_arg
 do
 func_select_args=`expr $func_select_args + 1`
 eval func_select_a_$func_select_args=\$func_select_arg
 done
 REPLY=""
 while :
 do
 if test -z "$REPLY"; then
 func_select_i=1
 while test $func_select_i -le $func_select_args
 do
 eval echo "\"\$func_select_i) \$func_select_a_$func_select_i\""
 func_select_i=`expr $func_select_i + 1`
 done
 fi
 echo >&2 "${PS3:-#? }"

10436ch07final 172 10/23/08 10:35:42 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY 173

 if read REPLY; then
 if test -n "${REPLY}"; then
 case $REPLY in
 0* | *[!0-9]*)
 eval $func_select_var=
 ;;
 *)
 if test "$REPLY" -ge 1 && test "$REPLY" -le $func_select_args; then
 eval $func_select_var=\$func_select_a_$REPLY
 else
 eval $func_select_var=
 fi
 ;;
 esac
 return 0
 fi
 else
 eval $func_select_var=
 return 1
 fi
 done
}

Of course, if you’ve been following along, this function hardly requires comment. This is
a large enough block of code, however, that it may be worth a bit of exploration. While none of
the features used here are new, the combinations merit some discussion.

The first section of the function simply sets up variables. All variables are prefixed with
func_select_, except for $REPLY (which is part of the normal behavior this function is sup-
posed to emulate). The function validates its arguments minimally, insisting that the result
variable have a valid identifier name and that at least one additional argument was provided.
After this validation, the function builds an emulated array (see the in-depth discussion in
Chapter 5) storing each of the choices in a numbered variable.

The main loop begins by setting $REPLY to an empty string. On each pass of the loop, if
$REPLY is empty, the list is printed; this ensures that the list is printed the first time through.
After that, the script prints a prompt and attempts to read a new value. If it fails, the output
variable is emptied and the function returns. If a value is read, the function always returns; the
only way to repeat the loop is if $REPLY is empty.

The test for a valid $REPLY value accepts only strings of digits, starting with a non-zero
digit; this is accomplished by rejecting any pattern containing nondigits or starting with a zero.
It would also be possible to strip leading zeroes. (In fact, one of the bugs of this implementa-
tion is that it does not strip leading and trailing spaces, which the real select does.) If a valid
digit string is found, and it is between 1 and $func_select_args inclusive, the output variable is
given the corresponding stored value.

Even this function has a few design choices reflecting a desire for portability. If you could
safely assume you did not need to run in pre-POSIX shells, the $func_select_a_N variables
would not be needed; you could use the positional parameters. When targeting a specific sys-
tem, there might well be a better way to print the prompt; for instance, the printf command
might be usable. (This example didn’t use it because it was developed for use on an embedded

10436ch07final 173 10/23/08 10:35:42 PM

CHAPTER 7 ■ SHELL LANGUAGE PORTABIL ITY174

system.) So one weakness of this is that the prompt is echoed with a trailing new line, which
changes the output of the program slightly.

For purposes of getting a script that uses select running quickly on a shell other than
ksh or bash, however, this is probably good enough. It works on shells as old as the traditional
Bourne shell used in Solaris, and it also runs in modern shells. Be wary of that last part; it is
important to check a portability feature like this against new shells, not just the older shells
that originally needed it.

In fact, this emulation can be even closer in some shells; in ash, for instance, following the
function declaration with an alias can give you essentially complete compatibility:

alias select='while func_select'

While this may look like a significant improvement, I do not recommend it. Aliasing
behavior is a bit quirky and fairly unportable. Although aliases are now standard in POSIX
shells, they are not universally available, and they are a rich source of unexpected errors. They
are a wonderful interactive feature, but you should avoid them in scripting even when using a
shell that supports them.

What’s next?
Chapter 8 takes a look at the major portability issues you are likely to encounter with common
utility programs. While these programs are technically not part of the shell, they are essential
to most shell programs. Chapter 8 also gives you information about what the common ver-
sions are, how to find good versions of a utility on a system, and what common features are
not as portable as you might think.

10436ch07final 174 10/23/08 10:35:42 PM

C H A P T E R 8

Utility Portability

This chapter discusses the portability of programs external to the shell. Most shell scripts
need to use a number of programs other than the shell itself to achieve their ends. Compared
to the divergence in the functions and options offered by utilities, the variance of all the shell
languages is relatively trivial.

This chapter does not attempt to provide a complete or comprehensive list of differ-
ences between different utilities; such a list would be much larger than this book. A shell
script may have access to hundreds, or even thousands, of distinct programs. Many programs
exist in three or more distinct variants with different sets of options, different names for the
same options, and other sources of confusion. Utilities can acquire, or lose, features between
one version of a system and another. Keeping track of every detail specifically is impractical,
amplifying the need to stick with standard features most of the time. The autoconf docu-
mentation has a particularly good list of issues you are likely to run into. This chapter gives
a somewhat narrower list, but it also goes into general principles of portability and explores
some of the ways to go about finding out what will be portable.

This chapter begins with an overview of common families of utilities, such as BSD and
System V. Following this is a section on avoiding unnecessary dependencies, and ways to
check to ensure that your code will be portable. The third section discusses a number of spe-
cific examples of common utility portability issues. Finally, I close with a discussion of how to
cope when something you thought was portable enough turns out not to be.

Common Variations
While there are dozens of specific variants of many commands with particular local features
added, there are broad categories into which many utility programs fall. The famous histori-
cal distinction in UNIX utilities is System V and BSD, with BSD utilities often offering radically
different semantics and options than System V utilities. Often, if you recognize one utility on
a system as favoring a particular heritage, it will turn out that many other utilities on the same
system have the same background.

Many utilities on modern systems are more explicit about which of their features are stan-
dard and which are extensions. Start with the online manuals, called the man pages (they are
accessed using a command called man). When reading the man page for a utility, check to see
whether it has a “Standards” heading; if it does, this will give you guidance on where to look
for information about what that utility might do on other systems. With that in mind, it’s time
to look into some of the heritage of the UNIX utility environment.

175

10436ch08final 175 10/23/08 10:31:14 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY176

Days of Yore: System V and BSD
The first major portability problems from UNIX arose, unsurprisingly, when there started
being more than one kind of UNIX. When students at the University of California, Berkeley,
started distributing their own modified versions of UNIX, one of the most noticeable changes
was a huge upswing in the number of utilities and the number of options for those utilities. As
AT&T turned UNIX into a commercial product (System III, and then System V), some of these
ideas were adopted and others were not. Meanwhile, AT&T’s new features often didn’t make
it into BSD. The result was that, while the core features that had been present in the original
code base were usually portable, features added by one group or the other tended not to be.
Even worse, both groups showed some tendency to reject things they had not developed
locally, a syndrome often referred to as “not invented here” (NIH) syndrome.

A general trend was for Berkeley systems to add a lot more features and options, some-
times changing a utility from a fairly specialized program into a much more general one. The
love of special cases and options led to a famous quip:

Stop! Whoever crosseth the bridge of Death, must answer first these questions three, ere

the other side he see:

“What is your name?”

“Sir Brian of Bell.”

“What is your quest?”

“I seek the Holy Grail.”

“What are four lowercase letters that are not legal flag arguments to the Berkeley UNIX

version of ‘ls’?”

“I, er. . . AIIIEEEEEE!”

—Mark-Jason Dominus

Of course, he’s joking; in fact, there are five (e, j, v, y, and z).
Berkeley and System V UNIX continued to diverge in many respects, with subtle dif-

ferences in the C library as well as their utilities. Going from one to the other could be quite
confusing; the basic selection of utilities available differed widely, and even the utilities that
existed on both might have radically different behaviors. This is also where the difficulties with
echo originated (see the section “Common Utility Issues” later in this chapter).

Modern systems often support many of the idioms from both BSD and System V utili-
ties. For instance, some versions of ps accept Berkeley options without hyphens and System V
options with hyphens; on Mac OS X, you can use either ps aux or ps -ef, but ps ef complains
that the f option is not valid. (The original Berkeley ps did not use hyphens to introduce its
options, making this behavior moderately idiomatic for users of either system.)

10436ch08final 176 10/23/08 10:31:14 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 177

GNU Arrives
The GNU project began in 1984, when Richard Stallman began to work on developing free
utilities. It is important to note the distinction; he means “free” as in speech, not “free” as in
beer. That is to say, the emphasis is not on cost; you may sell GNU software if you want to.
Rather, the emphasis is on privileges or rights; if you have GNU software, you may sell it to
other people, modify it, or otherwise use it pretty much as you wish. However, you must offer
these same freedoms to others in any derivative works. So while you are free to acquire GNU
make, modify it in any way you want, and use it, if you begin to pass on modified copies, you
must make the source for the modifications available under equally nonrestrictive terms. (A
more detailed discussion of the licensing implications is beyond the scope of this book, but
if you write much code, you should make a point of being familiar with the common open
source licenses.)

As time went on, the GNU project began to develop mostly compatible versions of
a number of core UNIX utilities, such as grep. With many concerns in the air about software
litigation, the GNU project adopted a philosophy that went beyond writing utilities from
scratch to implementing them in ways that were expected to make it very unlikely that their
internals were even similar to those of other implementations. This is how the GNU coding
standards put it:

For example, UNIX utilities were generally optimized to minimize memory use; if you go

for speed instead, your program will be very different. You could keep the entire input

file in memory and scan it there instead of using studio. Use a smarter algorithm dis-

covered more recently than the UNIX program. Eliminate use of temporary files. Do it in

one pass instead of two (we did this in the assembler).

—GNU Coding Standards, Section 2.1

GNU utilities often mixed and matched pieces of both System V and Berkeley functional-
ity, as well as introduced many interesting new options. Some of these options later made it
back into other systems, but not quickly.

GNU utilities frequently have exceptionally broad feature sets. Information about stan-
dards conformance is often kept in a separate set of documentation to be browsed with the
GNU info reader, rather than put into man pages. For a long time, the GNU project advocated
putting only incomplete summary documentation into man pages; while the info format is
arguably better at many things, this results in users having to use more than one documenta-
tion reader, and many users remain unaware of the much greater documentation detail in the
info pages.

GNU utilities introduced a new convention of option flags, which were whole words
rather than single letters; these are called long options. The most commonly used options will
also have single- letter abbreviations, but sometimes the long form is easier to remember. Long
options are introduced with a double hyphen (--option). This behavior has shown up widely
in other utilities but has not been formally standardized.

The GNU utilities are fairly widely portable, and in many cases you can arrange to install
them even on a non- GNU system if you need a particular feature they offer. However, be
careful when doing this, as other scripts may be depending on the behavior of the system’s

10436ch08final 177 10/23/08 10:31:14 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY178

 non- native utilities. Typically, a system that has both GNU and non- GNU versions of a utility
prefixes the names of GNU utilities with g, as in gmake, gfind, or gtar.

Standardization
The POSIX standard is one of many UNIX standards that have come along; it is neither the
first standard to come out nor the most recent. UNIX users found the difficulty of porting
between systems frustrating, and standards and portability work began showing up. From
the early Uniform Draft Standard (UDS) and System V Interface Definition (SVID) guides
came POSIX and the X/Open Portability Guides. In many cases, these standards tended
to track AT&T more closely than BSD, but both systems had some decisions adopted and
ratified.

The POSIX and X/Open work has gradually converged on more recent standards, such
as the Single UNIX Specification. Unfortunately, these standards have become gigantic, and
conformance testing is large, complicated, and not always adequate. This is not to say the
standards are not useful; they are excellent, but very few systems are fully conformant. If you
are developing a system, you should pursue conformance, and scripts that do not need to be
portable to older systems gain a lot of benefit from increased standardization.

You will find two central problems in trying to rely heavily on standardized features in
portable scripting. The first is that many systems, especially open source systems, lack the
funding to pursue every last nook and cranny of the gigantic specifications. The second is that
many of the behaviors required need not be defaults. So, while POSIX does require a broad
range of basic shell functionality, it may not be the case that /bin/sh is the shell that pro-
vides that functionality. In practice, NetBSD’s /bin/sh is much closer to POSIX compliance
than Solaris’s /bin/sh, but the /usr/xpg4/bin/sh on Solaris might be more compliant than
NetBSD’s ash derivative. (As a disclaimer, I must admit that I have not done comprehensive
testing of either; neither of them has ever failed to run a POSIX script for me, though.) A third,
more subtle problem is that POSIX does not specify nearly as much as most people expect it
to. The shebang notation (#! at the beginning of scripts) is not mandated or defined by POSIX,
even though I have never personally seen a system that didn’t use it.

Similar issues apply throughout the utilities used by the shell. Commands often continue
to accept nonstandard options by default, converting to standard behavior only when you take
special effort to obtain that behavior.

A number of utilities, especially GNU utilities, will adhere somewhat more closely to the
POSIX specification if the environment variable $POSIXLY_CORRECT has been set.

In short, while standardization does help some, and your chances of getting a reasonable
selection of basic utilities with standard features are much higher than they were in the early
80s, you still can’t just code for the standard and forget about the details if you want your code
to be portable. Unlike shell language portability, where preambles can generally fix things up
well enough, utility programs are extremely difficult to replace on the fly in most cases; how-
ever, there are some cases where it may be practical to build a portable shell or C version of
a utility and use that.

busybox
The busybox program, used heavily in embedded Linux systems, offers customized (and
 stripped- down) versions of a number of standard UNIX utilities. You may be wondering

10436ch08final 178 10/23/08 10:31:15 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 179

whether busybox is a shell or a utility; in fact, it is a combined binary that performs different
functions depending on the name it is called with. Typically, a single binary containing a shell
and a number of basic utilities is installed in a root file system, with most of the standard utili-
ties as symbolic links to the busybox binary.

Porting to a system that uses busybox for most of its utilities can be a challenge. Not
all busybox systems offer the same utilities; individual utilities may be removed from the
busybox package to reduce space usage, and some systems install other utilities. While there
is a busybox variant of grep, a vendor could also install a standard grep on a busybox system.

In general, if you are expecting to run on embedded systems, you need to know that
before you start writing any code. You are no longer targeting a standard UNIX desktop envi-
ronment, and there are a number of surprises. The biggest, though, is how many programs
work just fine on busybox.

Shell Builtins
There are two significant aspects to shell builtins that affect utility portability. The first is the
question of which standard utilities, such as test or expr, a given shell may have chosen to
implement as built- in commands. The second question is this: Which of the features are pro-
vided that must be implemented as built- ins to work? The second question is better viewed
as a shell language portability question, but the first question is significant when considering
portability.

In many cases, the risk of shell builtins is that they will hide an underlying portability
issue. For instance, the exceptionally useful printf utility is not universally available. It is pro-
vided as a builtin by ksh93 and bash, though, so it is quite possible to run a quick test in your
preferred login shell on a target system and conclude that the command is provided by the
system. (In fact, in the particular case of printf, it turns out that no system I can find lacks it
in /bin/sh using the default path, whether as an external utility or a built- in command.) Even
worse, a built- in command may have different behaviors in some cases than the external
command or may offer additional features that you might accidentally use, thinking they are
provided as part of the standard behavior of the command.

In most cases, the solution is simple: Rely on the common behavior rather than on exten-
sions. However, you may want to ensure the use of an external command in some cases;
specify the path to the command you want to execute. By contrast, if you know that you want
a feature provided by the shell’s built- in command, and that the external utility lacks it, do not
specify the path.

Unfortunately, shells do not always document exactly which commands are built in or
provide a standard way to check. You can, however, determine this indirectly by temporarily
setting the $PATH environment variable to an empty string:

$ PATH="" ls; echo $?
ls: not found
127
$ PATH="" echo hello; echo $?
hello
0

The shell searches $PATH for a command (containing no slashes) that is not a builtin but
does not search the path for built- in commands. This allows you to at least find out whether

10436ch08final 179 10/23/08 10:31:15 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY180

a shell is providing its own version of a command. The which utility can tell you whether
a command is in your current path, but it does not tell you whether the shell has a builtin of
the same name. Some shells offer useful additional features to let you find out whether a com-
mand is a function, alias, built- in command, or external command, but these are not portable
or consistent between shells.

The question of whether a command is a builtin is not the only question; on some sys-
tems, there may be multiple versions of the same external command with different behaviors;
see the section “Multiple Different Versions” later in this chapter for more information on that
problem.

A third aspect of builtins and their impact on portability is more subtle; in some cases,
a shell builtin has nothing to do with a command- line utility of the same name. For instance,
some old systems had a FORTRAN compiler named fc. The POSIX history editing mechanism
uses a shell builtin named fc. This kind of thing can be a bit surprising. Luckily, it is also fairly
rare; developers tend to try to avoid clashing names, so it is atypical for two commands with
the same name to come into widespread use.

Avoiding Unnecessary Dependencies
A program often has requirements or assumptions about its operating environment. In gen-
eral, the things that must be true for a program to work are called its dependencies. When
developing a script, you should aim to eliminate as many dependencies as possible in order to
increase the number of systems your script will work on.

Determining whether a dependency is optional is not always easy. Be sure to distinguish
between the particular programs you have available and the functions for which you are
using them. For example, consider a script that uses a small Perl program to sort lines by their
length:

#!/bin/sh
perl -e 'print sort { length $a <=> length $b } <>;' "$@"

This script (which could also be implemented easily enough as a pure Perl script) obvi-
ously requires the perl program to run. You might conclude that, to port this script, you must
have perl installed on your target system. However, it is possible to duplicate this script’s
functionality without perl:

#!/bin/sh
cat "$@" | while read i
do
 echo "${#i} $i"
done | sort -n | sed -e 's/[0- 9]* //'

This script is probably less efficient than the original script. However, it produces the
same effect; each line is sorted by its length. The only external programs used are cat, sort,
and sed (and possibly echo in a shell that does not provide it as a built- in command). None of
these commands are rare, and none of the features used are rare or even particularly new. The
result is almost certainly a great deal slower, but it is quite portable.

10436ch08final 180 10/23/08 10:31:15 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 181

The cat "$@" idiom bears a moment’s examination. In general, the cat command is not
very useful in pipes; you can always just redirect something from a file or omit cat in the case
where input should just be standard input. However, in this case, it performs the useful service
of either concatenating all of the command- line arguments or simply passing standard input
into the while loop. (Remember that "$@" does not expand to an empty string when there are
no arguments, at least in recent shells; instead, it expands to nothing at all. In a very few older
shells, you may need to use ${1+"$@"}; this issue was discussed in more detail in Chapter 7.)

The hardest part of avoiding dependencies is usually identifying them. Most dependen-
cies are possible to work around, but it can be very easy to mistakenly rely on something
without realizing that it is not portable.

Relying on Extensions Considered Harmful
With all the material you’ve seen so far on portable programming, you might reasonably won-
der why there are so many features that are not portable. While some portability problems are
the result of a developer not completely implementing something, many more are the result
of a developer choosing to implement something additional. Many system utilities have short-
comings that may be frustrating enough that a developer would correct for them.

With that in mind, understand that one of the limitations of portable shell programming
is that it may be harder to write something portably than it would have been to write it relying
on an extension. So why bother? The answer is that the payoff in portability is usually worth
it. Often, a special option streamlines or simplifies something that you can do by a slightly
longer route. For instance, some versions of cat have a line- numbering option, but this is easy
enough to implement without using cat. While the option might be convenient, it is hardly
necessary. It may save you a minute while writing the script—and cost you an hour when try-
ing to use the script on another system.

Two major difficulties may arise when you try to run a script that relied on extensions on
a new system. The first is that the new system, lacking the extensions, will probably have no
documentation to tell you what they did. This can make it very difficult to determine what to
use to replace the nonworking code. The second is that there is a chance that the new system
may have different extensions using the same utility name or option flag; in this case, you get
no warning as to what has gone wrong.

This leads to a piece of advice you may not expect in a book advocating portable program-
ming: Learn to use the extensions available on the systems you use. Understand them because
they will save you a lot of time and effort in one- off scripts. Keep in mind that they are exten-
sions, but don’t be afraid to learn them and use them when they are appropriate. Despite the
apparent contradiction, I have generally found that familiarity with extensions makes it easier
to avoid them. It also makes it easier to understand scripts that were not written portably.

Try to ensure that any features you rely on beyond the basic standards are clearly identi-
fied and are genuinely necessary. You will find it easier to keep your scripts running, and you
will also find it easier to write new scripts if you have formed good habits.

During development, you may find it rewarding to use shell function wrappers that warn
you about nonportable options rather than accepting them. This can make it easier to develop
portable code during testing. If you wrote a number of these, you could put a directory con-
taining them early in your $PATH while developing. (I am not aware of an existing collection of
these, but it sounds really useful.)

10436ch08final 181 10/23/08 10:31:16 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY182

Test with More Than One Shell on More Than One System
For some reason, authors love to advise people to try things and see what happens. This is
excellent advice if you keep in mind that what happens today on a particular system may not
be what happens tomorrow on a different system. When writing portable code, you should
start by looking at documentation, standards, and other things that will be less ephemeral
than a particular implementation’s combination of bugs and extensions. However, sooner or
later you will probably need to test some things out.

When this time comes, test on multiple targets. Run your code in several shells. Run your
code on several systems. Developers sometimes refer to the set of possible combinations as
the “matrix of pain” because it can be very difficult to keep multiple combinations working
all at once. Luckily, portable shell code is not nearly as painful to maintain as some things are
(such as combinations of kernel options across multiple architectures). The purpose of tests
like these is to maximize the chance that you find out sooner, rather than later, about a pro-
spective portability problem.

If you are writing for the plain POSIX shell, it may seem counterintuitive to intentionally
seek out shells with additional features and extensions to test with. However, these additional
features and extensions might, in some rare cases, cause a nonobvious bug. Furthermore, in
many cases, differences are merely implementation choices, where any of several possible
outcomes is permissible. You want to find out whether you are relying on any of these as soon
as possible.

If you are writing significant production code, set up a test environment with all the target
systems available. It may be impossible to catch every possible target environment, but for
production code, it is reasonable to set up five or six target systems for testing. Be sure that
your test code is run in the default environment for each system, not just in your personal
shell. Most shell programmers have a number of changes in their environment that may create
surprises, such as an unusual path, special environment variables, and more. (Note that you
must also test your scripts in these environments, not just in the default environment.)

In fact, you may wish to steal an idea from developers who work in compiled languages
and set up regular and automated testing of scripts across a variety of systems. Automated
tests are more likely to be run than manual tests. In my experience, the times when I break the
portability of my code are not the times when I am worried that I am about to do something
nonportable, but rather the times when I am not thinking about it. Because of this, manual
testing is surprisingly unlikely to catch the real errors; the times when I think to run the tests
are the times when I’ve probably gotten the code right to begin with.

Document Your Assumptions
It is quite possible that, after reviewing your target environment, you will conclude that a par-
ticular dependency is simply too important. If you have a clear notion of what target systems
you need to worry about, and you are quite sure they all provide a utility or a particular exten-
sion, you can go ahead and use it. Do yourself (and everyone else) a favor, though, and identify
what the assumption was you made. A script that only runs in bash can be annoying. A script
that only runs in bash, but presents itself as a generic shell script, is maddening.

If your script requires particular utilities, especially if they are not very widely installed,
comment on them, or even check for them and warn the user if they are not available. A few
comment lines at the beginning of a script, or near the line where you do something risky,

10436ch08final 182 10/23/08 10:31:16 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 183

could save a future developer (possibly you) hours or days of work. The quilt patch utility is
excellent but relies heavily on GNU utility extensions. This is particularly difficult when tar-
geting Mac OS X, as simply building GNU utilities for that system does not always produce
desirable results; the file system has some unusual features not found in other UNIX systems,
which are supported by special code unique to the OS X versions of some core utilities. Gary V.
Vaughan, the technical reviewer for this book, spent a number of working days getting quilt
working on Mac OS X a couple of years back. I’ve personally spent as much as a day on a single
smallish script trying to make it work on a different version of UNIX; it can be very hard to
track down portability bugs, especially undocumented ones.

Good documentation can help a lot. If a script clearly indicates what it is relying on, this
makes it easier to understand the intended behavior. The biggest problem is often being
unable to figure out what the writer intended the program to do in the first place.

Common Utility Issues
While it is impractical to give a list of all the variances you will encounter in the wild while
writing shell scripts, there are a few issues so utterly persistent and pernicious that I want to
call special attention to them. These are the programs that have bitten me repeatedly across
a number of projects, have haunted me for years, and have otherwise caused more than their
fair share of grief.

Public Enemy #1: echo
The echo utility is in a class by itself. While other programs may vary more widely in their
behavior, none vary more widely per feature provided. The initial issue that started this all
is quite simple; it is very common to wish to display some text without going to a new line
immediately. This allows long lines of text or output to be assembled by bits and pieces and
often dramatically improves the user interface of a script. Unfortunately, it cannot be done.
The reason is that the Berkeley people added a feature to implement this using an option
flag; the -n option suppresses the trailing new line. The System V people also added a feature
to implement this; they added support for escape sequences and text ending with \c causes
echo to suppress a line ending.

Neither of these is a good choice for a fundamental utility like echo. The key function of
echo is to reproduce its arguments precisely. As soon as you create special cases, you have
made things hard for the user. How should a user of Berkeley echo cause it to produce the
string -n followed by a new line? Causing echo to interpret backslash escape sequences creates
an additional nightmare. Depending on the version (and different versions, of course, do it dif-
ferently), you not only have to deal with the shell’s usual quoting rules, but take care to handle
possibly differing versions of the quoting rules for echo. For instance, the command echo '\\'
produces two backslashes in ksh but only one in zsh. You can mitigate this by calling /bin/echo
explicitly, but it may not always have the behavior you want.

The blunt reality is that it is not portable to use echo when either the first argument begins
with a hyphen or any argument contains a backslash. What’s worse, there may not always
be a portable alternative. Many modern systems provide an extremely flexible utility called
printf. When it is available, this solves the problem by allowing you to specify both data
and format, as well as providing for a number of other useful features, such as alignment,

10436ch08final 183 10/23/08 10:31:16 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY184

significant digits, and so on. In fact, I know of no desktop or server systems lacking printf;
unfortunately, it is still sometimes omitted from embedded systems.

The Korn shell introduced a print built- in command to alleviate this problem, but it is
portable only to ksh and pdksh. The Bourne- again shell provides a printf builtin, reasonably
compatible with the common external utility.

The closest I have found to a remotely acceptable portable solution is to take advantage of
other commands to filter the output of echo:

func_echo_noline () {
 /bin/echo X"$@" | awk '
{
 if (lastline != "") print lastline;
 else sub("X", "");
 lastline = $0;
}
END { printf "%s", lastline; }
'
}

Instead of trying to coerce the echo command into doing something useful, you can filter
its output using the awk command. This small awk script strips the leading X (which is used to
prevent echo from interpreting a -n argument as an option), then prints every line it receives,
suppressing the new line after the last line. This is the simplest solution I’ve found to the “no
new line” problem. (This awk script is explained in more detail in Chapter 11.)

None of this gets into a much more fundamentally awful decision; some versions of echo
process backslash escapes and generally discard backslashes. This breaks the conventional
idiom for escaping backslashes:

foo=`echo "$foo" | sed -e 's/\\/\\\\/g'`

A complete solution to this is large (around 140 lines of shell code in recent configure
scripts). In short, it is extremely hard; this is a case where, if you can avoid embedded sys-
tems, the shortest path is to switch to printf or use a preamble to reexecute in a shell that has
a built- in echo without the bug. (I am aware that the bug in question was implemented that
way on purpose; it’s still a bug.)

Multiple Different Versions
Some vendors helpfully provide more than one version of some common utilities. This can
create a portability nightmare for scripts. For instance, on some older systems, utility pro-
grams might be found in /usr/bin, /usr/ucb, and /usr/5bin. The ucb directory would hold
Berkeley versions of utilities, while 5bin would hold System V versions or programs designed
to act mostly like them. Many modern systems have common programs stored in directories
with names like /opt/package/bin, /usr/local/bin, or /usr/pkg/bin. Furthermore, users may
have their own personal binaries in a directory in the path, and sometimes these binaries clash
with standard system binaries.

10436ch08final 184 10/23/08 10:31:17 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 185

Correcting for this is hard. If you provide your own setting for $PATH, you have to be sure
you get it right on a broad variety of foreign systems. Even worse, in some cases, users may
have chosen an unusual path value because they really do need your script to use different
binaries. In general, your best bet is to test your scripts with multiple path settings but not to
try to outsmart the user; use the provided path and hope for the best. However, do be aware
that on systems with multiple binary directories, a change in the order of the path sometimes
changes the behavior of utilities, even common and well- known utilities.

Archive Utilities
The UNIX environment provides a broad selection of archive utilities, but they are not as por-
table as you might hope. Archiving utilities are significant in many shell scripts because they
are often a useful way to copy a large number of files while preserving metadata—attributes
such as modification dates, permissions, or other traits beyond just the data in the file. Copy-
ing batches of files using an archive utility is frequently better than copying them using plain
old cp. For network copying, there is often a substantial performance improvement from using
archive files.

There are three primary archive utilities commonly used on UNIX systems: cpio, pax, and
tar. Historically, cpio originated in AT&T, tar originated in BSD, and pax was introduced by
POSIX. The tar utility is the least flexible but the most commonly available; it supports only
its own native format. (Some versions may handle two or three variants of the tar format, but
only variants within the format, not other formats.) The cpio and pax utilities support both
the reading and writing of a variety of formats. The modern cpio format is probably the most
comprehensive and flexible; it handles a variety of special cases (such as extracting only one
of several hard links to the same file), which the others lack support for. There is an additional
 pax- only archive format (referred to as the pax format in the documentation) that is a superset
of the POSIX tar format, which also supports hard links and very long pathnames.

All three produce uncompressed archives; if you want compression, you combine your
archive utility with a compression utility. Some versions of the tar utility have options to
do this automatically for you, but this is not portable. In general, all three are happy to work
with archives on standard input or standard output, so you can use them in a pipeline with
a compression utility. As an example, here are three roughly equivalent commands to create
a compressed archive of the directory files:

tar cf - files | gzip > files.tar.gz
pax -w files | gzip > files.pax.gz
find files -print | cpio -o | gzip > files.cpio.gz

The tar and pax utilities implicitly recurse through named directories (this behavior can
be disabled in pax). The cpio utility packs only those files explicitly named. Both cpio and pax
can take file lists from standard input; tar only takes them on the command line. If you send
the output of find into pax, be wary; it will generate multiple copies of files in a directory if you
name both the files and the directory containing them. This all gets very complicated, and it is
easier to see in tabular form, as shown in Table 8-1.

10436ch08final 185 10/23/08 10:31:17 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY186

 Table 8‑1. The Archive Utilities

 Files on Files on
Utility Recursive Input Command Line Passthrough Formats

tar Yes No Yes No tar, POSIX tar

cpio No Yes No Yes tar, POSIX tar, cpio

pax Option Yes Yes Yes tar, POSIX tar, cpio, pax

There are several common cpio archive formats; most modern cpio utilities (and most
versions of pax) can read and write each others’ archives.

Because the use of archive utilities to create an archive and immediately unpack it is so
common, both cpio and pax have the option of running in a direct copy mode. In this mode,
they are similar to cp -R, only much better at preserving metadata.

Finally, there are many sorts of metadata. While all three utilities can generally handle the
metadata traditionally supported by UNIX systems, many systems have newer features. Access
control lists (ACLs) are commonly supported on modern UNIX. Mac OS X can have additional
data stored under the same name in a separate “fork,” which no non- Mac utility can even
describe, let alone refer to or copy. (The utilities included with Mac OS X have, since Mac OS
X version 10.4, generally handled this for you transparently.) Unfortunately, it is not portable
to expect any of these utilities to copy such additional data. This is mitigated somewhat by the
fact that the additional data themselves are not portable either.

For the most part, you can use the native archive utilities provided with a system and
expect them to copy files well enough that they look the same to users. If metadata are lost,
they are usually metadata that users would not have noticed in the first place. There are excep-
tions; on Mac OS X version 10.3, tar did not preserve resource forks. However, if you wanted
to build a new version of GNU tar and use it on Mac OS X, it might not copy things correctly.
(Luckily for you, the system’s provided tar is a suitably modified GNU tar as of this writing.)

The implications of these differences for portable scripting are a bit of a pain. Nearly every
system provides at least one of these utilities. Many provide two of them. Right now, tar is
the most commonly available, but its limitations in dealing with long pathnames may make it
impractical for some tasks. If you can find pax on the systems you need to work on, it is usu-
ally pretty good; it has a broader set of fundamental functionality than either of the others.
However, if you need special features, such as reliable duplication of hard links in a copy, you
may need cpio. Luckily, the GNU project provides a workable cpio program in fairly portable
source.

Passing file names as standard input has one key limitation; file names containing new
lines break it. This is not a specific bug in either pax or cpio, but a general limitation of the
protocol. This bug does not necessarily result only in failures to archive files. If you are run-
ning as root and try to archive a user’s home directory with find | cpio, think about what the
archive ends up containing if the user has a directory named myroot<newline> containing files
with the same relative paths as system files. A user who wanted a copy of /etc/passwd.master
(the BSD convention for the file actually holding password data) could create a file called

10436ch08final 186 10/23/08 10:31:17 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 187

myroot<newline>/etc/passwd.master. Passed on standard input, this becomes two things: first,
a directory named myroot (which does not exist and is not archived) and second, a file named
/etc/passwd.master. You can pass file names as arguments to pax, but cpio does not have such
an option.

whAT AboUT zIP AnD AR?

Many modern UNIX systems have one or more utilities to handle archives in the semi- standardized zip file
format, which combines archiving and compression. Typically, these utilities would be named zip and
unzip, with the former creating archives and the latter extracting files from archives or listing their contents.
These formats may be a better choice if you have to share data files or output with Windows systems, but
not all systems provide these utilities. While very many desktop systems do provide these utilities, some
 server- oriented systems omit them or make them optional packages.

Another archive utility only occasionally used is the classic ar archiver, used to combine object files into
libraries. In fact, it can be used as a general- purpose archiver, but it lacks the flexibility of the other archivers,
and many versions have punitively short name restrictions (such as 15 or 16 characters). In general, do not
use this unless you are building libraries, and even then, more modern tools may be preferable.

Another common problem with archive utilities is their behavior when dealing with
absolute paths. A few utilities, such as GNU tar, do not restore absolute file names by default;
instead, they strip the leading slash and restore everything relative to the current directory.
This behavior is wonderful, except when you get used to it and assume other programs will do
it, too. Be very wary when unpacking archives that seem to have absolute paths, and be sure
you know how your archiver of choice behaves before unpacking any archive containing an
absolute path. Note that some variants may treat this differently; I have seen pax variants that
automatically stripped leading slashes and others that didn’t. Assuming that an archiver will
safely restore only into the current directory can cause you a lot of trouble; I’ve lost a lot of
data by assuming I could just extract a backup into a temporary directory, only to find that it
restored over the data from which it had been backed up a week earlier.

The final problem often encountered in archives is long file names (including the path).
The original tar header format allows the specification of file names up to 100 characters.
This is not long enough. Modern POSIX archivers can usually handle up to 250 characters and
should be able to handle each others’ files; but older tar programs may choke on them, and
they generally get file names wrong when extracting new archives containing files with names
over 100 characters. To avoid these problems, use terse file names or use one of the cpio
formats.

10436ch08final 187 10/23/08 10:31:17 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY188

Long FILe nAmes

We are not talking about the “innovation” of supporting file names longer than eight characters with more
than a three- character extension. The early System V file system supported file names up to 14 characters.
(Trivia point: This is why the semantics for strncpy() are inconsistent with all the other C library string
functions. Early UNIX used 16- byte directory entries, which allowed 14 bytes for the file name; null termi-
nating a 14- character string would have limited file names to 13 characters.) The original Mac OS HFS file
system was limited to 31 and Berkeley UFS/FFS to 255. These limits are for each individual component in
a directory path; paths may be much longer on some systems. A typical modern UNIX system will support at
least 4096 total characters in a file’s absolute pathname. Some will support relative paths of this length, even
from deeply nested directories.

In practice, most people never find out that tar can’t portably handle names over 100 characters, or
over 250 in modern tar. File names on UNIX are often typed; this imposes firm limits on how long most of
them get. Still, be wary of these issues. File name portability is a special challenge because you can’t always
control a user’s files.

Block Sizes
Many utilities give sizes or disk usage information in blocks. Most often, a block is 512 bytes,
but it may also be 1024 bytes. Some utilities have (sadly, not always portable) options to spec-
ify other block sizes. The environment variable $BLOCKSIZE is not portable; there is no reliable
expectation that BLOCKSIZE=1m du will give disk usage in megabytes rather than in kilobytes or
 half- kilobyte blocks. However, this variable does exist on many systems, especially BSD sys-
tems, and users may have set it. This can produce very surprising behavior; the typical failure
mode is for an installer to query for free space on a disk, apply a scaling factor to the reported
number of blocks, and conclude that your disk does not have enough space free. If you are
using any utilities that rely on a block size, be sure to check what block size they use and verify
that you know what units they are using. With larger disks, users may have set $BLOCKSIZE to
something large; a megabyte is not uncommon, and gigabytes are starting to show up.

This has no impact on the block sizes used by dd.

Other Common Problems
For a comprehensive and often- updated list of issues with common utilities, check out the
autoconf manual, which discusses issues you may face in writing portable shell scripts. This
section gives a brief overview of some of the general problems you might encounter, as well as
a few highlights from the larger list. Many of the issues described in the autoconf manual are
rare on modern systems.

Avoiding these problems can be tricky. As the size of this list suggests, it is difficult to
learn all the nooks and crannies of hundreds of utilities. A few basic techniques are avail-
able to you. The first is to be aware of standards. Check standard documentation, such as
The Open Group’s online standards (found in their catalog at www.opengroup.org/products/
publications/catalog/t_c.htm) showing the current state of the standard. Read the man
pages, and look in particular for information about standard conformance and extensions.

10436ch08final 188 10/23/08 10:31:18 PM

http://www.opengroup.org/products

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 189

When you see a new option you had not previously encountered, be sure to check the man
pages on other systems as well.

Testing a feature quickly on several unrelated systems may also help. You have to have
a representative sample of your target systems; if you are writing truly portable code, this can
be very difficult to obtain. Portability to systems you don't yet have access to is where a list like
the one in this chapter (or the longer one in the autoconf manual) comes in handy.

You cannot simply assume that the features of the oldest system you have available are
universal; in some cases, newer systems remove features when implementing new ones. This
can lead to a problem where two systems provide mutually exclusive ways to solve a given
problem. For instance, the option used with sort when using a key other than the entire input
line varies between systems, with some new systems no longer accepting the historical options
(details are provided in the following alphabetized list of commands).

While the core functions of utilities like sed are reasonably stable, many more esoteric
utilities are unique to particular systems. Many systems provide the column command to
convert input lines into columns (although not all do); only a few provide the rs command
(a more general program that reshapes input data).

Case-insensitive file systems can occasionally create an extra utility portability problem;
for instance, one common Perl module can provide aliases with names like GET and HEAD. If
you install this on a machine with a case- insensitive (or case- preserving) file system, your
path now determines whether the head command is a convenient utility to obtain results from
a web server or a standard utility to display the first few lines of a file.

When trying to guess how portable a program will be, check the man page for “Standards”
and “History” sections. A command that complies with POSIX is probably more portable than
one with no listed provenance or that claims to have been introduced in 4.4BSD.

awk
In general, every system ought to have some variety of awk. Check for variants; there may
also be nawk, gawk, or mawk. Any of these variants may be installed under the name awk. A few
systems provide an old pre- POSIX awk by default, so check for others. If there is an oawk com-
mand, it is quite possible that plain awk is really nawk. If you have to use one of the old versions,
it has a number of limitations, such as not supporting user- defined functions. The printf (or
sprintf) function may have gratuitous smallish limits on format lengths in old versions.

If you are writing a significant amount of awk code, be sure to test it against at least a cou-
ple of variants. (See Chapter 11 for more information on awk.)

basename
Unfortunately, this is not universally available. You can use expr, or you can use ${var%%*/}
constructs. The latter are marginally less portable, but if you find yourself committed to
a POSIX shell, they’re available.

cat
There are no options to the cat command in portable code. The things that some variants pro-
vide as options must be done using other programs or utilities.

10436ch08final 189 10/23/08 10:31:18 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY190

chmod
Do not rely on the behavior of chmod when you don’t specify which users a permission change
applies to; use chmod a- w, not chmod -w.

cmp
On systems that distinguish between text and binary files, cmp compares binary files; for
instance, on DOS systems, it will report differences in line endings and differences in content.
The diff utility treats files as text files.

cp
There is no portable -r option, and even when there was, its behavior was often undesirable.
Use -R or look at archive utilities as another option. The -p option may lose subsecond time-
stamps on file systems that provide them.

cpio
See the “Archive Utilities” section earlier in the chapter. Some versions have options (usually
-s and -S) to swap bytes of input data, which are useful when processing old binary archives;
but these are not universal and may be unimplemented on modern systems.

cut
Most systems now distinguish between characters (- c) and bytes (- b). Some older systems
may have only -c; these systems usually mean “bytes” when they say characters and are not
multibyte aware.

date
The use of specifiers similar to those of strftime() in date to format output is fairly standard,
but some systems may not implement all the standard specifiers. There is no portable way to
specify a time other than the present to format or display, and not all systems provide one.
BSD systems typically recognize -r seconds, where seconds is a number of seconds since the
epoch. GNU systems typically recognize -d date, where date is any of a number of common
date formats. One particular date format recognized by GNU date is @seconds, where seconds
is the number of seconds since the epoch. SVR4 date has neither.

While the GNU date utility does have a -r option, it is -r file to report the last modi-
fication time of file; there is no corresponding option in BSD date. This is an example of
a case where the error message you get using a construct on a different system might be
surprising; if a script written on a BSD system uses date -r, the error message on the GNU
system will not indicate an invalid argument, but rather complain about a nonexistent file.

diff
A few rare versions do not compare /dev/null to any file correctly. The unified patch format
 (- u option) is not completely portable. Patches in the "context diff" format (- c option) are
not as easy to read, but they are more portable.

10436ch08final 190 10/23/08 10:31:18 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 191

dirname
Not universally available. As with basename, you can use expr or the POSIX parameter sub-
stitution rules.

ditroff
See nroff.

dos2unix
Many systems include a program named dos2unix (and often another named unix2dos) to
translate line endings. This is not portable; many other systems lack it. The general difficulty is
that there are three common choices about line endings; new line only (UNIX), carriage return
followed by new line (DOS and Windows), and carriage return only (classic Mac OS). Translat-
ing between these generically is slightly difficult because line- oriented UNIX utilities do not
lend themselves well to translating line endings. You can use tr to remove trailing carriage
returns from files known to be in the carriage return followed by new line (CRLF) format.

Removing or adding carriage returns is easy. Translating carriage returns to new lines
is also easy. However, handling all three input formats generically is a bit hard. Even worse,
some files genuinely contain both carriage returns and new lines, such as captured output
from some programs. Be cautious when trying to translate line endings. (I know of no com-
pletely general solution. Sometimes you just have to know what the format is.)

echo
Not very portable. Avoid any backslashes in arguments to echo, and avoid first arguments
starting with hyphens. Sadly, this is still often all there is, but see the previous discussion
under the “Public Enemy #1: echo” section of this chapter. It may be better to just use printf,
if you do not need to target embedded systems.

egrep
Not quite universally available, but neither is grep -E. Modern systems are more likely to sup-
port grep -E, and older systems are more likely to provide egrep. You can test for this:

if echo foo | grep -E '(f)oo' >/dev/null 2>&1; then
 EGREP='grep -E'
elif echo foo | egrep '(f)oo' >/dev/null 2>&1; then
 EGREP='egrep'
else
 echo >&2 "Cannot find viable egrep/grep -E!"
 exit 1
fi

The pattern (f)oo matches the string foo only if it is an extended regex. While I have
never seen a system that provided an egrep (or grep -E) that did not work on extended regular
expressions, I am also deeply distrustful of vendors at this stage in my career.

10436ch08final 191 10/23/08 10:31:19 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY192

expect
The expect program is not a standard utility, although many systems install a variant of it.

expr
Prefix both strings and regular expressions (for the : operator) with X to avoid possible
confusion or misparsing. While other characters might work, X is idiomatic. Many imple-
mentations offer extensions that are not portable; be careful. There are a number of quirks
in regular expression handling in some systems; be careful. For additional information on
regular expression matching and expr, see Chapter 2.

fgrep
As with egrep, POSIX specifies a new grep -F usage, which is not universally supported. Old
systems may have fgrep, new systems may have grep -F. Unlike other grep variants, fgrep
does not check for regular expressions; it checks for fixed strings. Contrary to various rumors,
the “f” does not stand for “fast” or “file.”

find
The replacement of {} with a file name in -exec is portable only when {} is an argument by
itself. The -print0 option, which uses ASCII NUL characters instead of new lines to separate
file names, is unfortunately not universal. See the discussion of xargs.

Older implementations of find used special predicates such as -depth, -follow, and
-xdev to change searching behavior; newer implementations use corresponding -d, -h, and
-x options, which precede the pathname. Neither solution is completely portable now. The
-regex option is not portable either; the only portable name matching is the standard shell
globbing used by -name. Different versions of find that support -regex may not use the same
regex rules; GNU find defaults to the emacs regex rules (described in Chapter 2), for instance.
Remember that the glob matching is done within find, so switching shells does not change
which glob rules are used.

grep
Do not rely on options other than -clnv. There is no portable option to completely suppress
output and yield only a return code; instead, redirect the output (and error) from grep to
/dev/null. Some implementations of grep may behave surprisingly on binary files, and the
behavior is not portable. Do not pass non- text data to grep in portable scripts.

groff
See nroff.

info
The GNU info documentation system is not universally available. It offers a number of
very useful documentation tools, but info documentation tends to be underused because

10436ch08final 192 10/23/08 10:31:19 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 193

users prefer to read man pages. Do not rely on the availability of any of the tools usually
used with this.

killall
This is not particularly portable. Even worse, different systems offer wildly different semantics
for some common and likely command lines. Avoid this.

ldd
The ldd utility examines an executable file and tells you which shared libraries it uses. If you
are writing an installation utility or something similar, this is exactly the tool you are likely
to look at to see whether suitable shared libraries are available. Unfortunately, this utility is
not universal. In particular, Mac OS X does not provide any program named ldd; the closest
equivalent is otool -L, which is unique to Mac OS X. Some embedded systems will lack this, or
have a version that does not function, as the version distributed with glibc is a bash script, and
many embedded systems lack bash.

ln
Symbolic links are not totally portable, although they are pretty close these days; exceptions
will usually be Windows machines running one of the UNIX emulation layers. The -f option
is not portable. You may want to write a wrapper function that removes the destination file
before linking when called with -f. The question of what to do if you need symbolic links and
they are not available is difficult. In some cases, creating a hard link might be a workable alter-
native; in others, it could be a disaster (or simply not work). Copying files may be viable, but in
some cases won’t be. I do not think it is practical to try to develop a one-size-fits- all replace-
ment for ln -s if you need to target Windows machines. Instead, for each use, think about
what behavior you really want, and use it explicitly.

lp/lpr
The two most common printer commands, lp and lpr, are not quite compatible. The simplest
cases are fairly stable, but many of the options and control features vary widely, and some
historic options are unimplemented in some modern systems. If you need to do printing, you
have to know a lot about the specific host systems you need to print on; there is nothing even
approximating a portable way to guess at printer selection, printer options, and so on. Not all
systems will react gracefully to all inputs to the print command, either. Behavior such as auto-
matically converting input files to desired output formats is not portable. Do not pass large
binary files to the lpr command unless you are quite sure about your target system doing what
you want, or you will get a lot of scratch paper.

If there is a correctly configured printer at all, you should get consistently acceptable
results from sending plain text files to either lp or lpr as standard input. To do more printing
than this, you will have to accept that there is some lack of portability in your code. (Of course,
any printing at all is at least a little unportable; not every system has a printer.) You can do
quite well writing a small wrapper function that targets each of a handful of known systems,
though. A representative code fragment might look something like this:

10436ch08final 193 10/23/08 10:31:19 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY194

case `hostname` in
 server*)
 LP_TEXT='lpr -P line'
 LP_PS='lp -P postscript -o media=letter'
 ;;
 ...
esac
case $file in
 *.txt) $LP_TEXT "$file";;
 *.ps) $LP_PS "$file";;
 *) echo >&2 "Unknown file type for '$file'.";;
esac

This might be a good candidate for a separate wrapper script, which other scripts use for
printing.

m4
The m4 macro processing language is extremely common, and I have never seen a nonembed-
ded system without it. However, some programs may rely on additional features of GNU m4,
which may be installed as gm4 on some systems. (The name shares the counting etymology of
the term i18n for internationalization.) This program is especially useful if you decide to work
with m4sh, which is (of course) written in very portable m4, but it is of some general utility for
writing code to generate more code.

make
There is no portable way to include other files in a makefile. The good news is, if you are using
make from a shell script, you can assemble the makefiles yourself. While many of the more
elaborate make features are unique to a particular variant (usually GNU or BSD make, the two
most elaborate members of the family), you can do a great deal with a few simple rules.

If you need inclusion or similar features, you can look at tools like automake or autoconf,
which generate makefiles automatically. In simple cases, it may be sufficient to generate
makefiles using a preprocessing tool, such as m4, or even create them using a simple shell
script. Interestingly, while there is no single standard way to include other files in a makefile,
it seems to be quite consistent that every variant of make supports some variant of include
file or -include file. (See chapter 11 for information on how make uses the shell to execute
commands.)

makeinfo
See info.

mkdir
Do not rely on the -p option. If you ignore that advice, do not combine -p and -m; the
modes of intermediate directories are ambiguous. Some versions can fail if an interme-
diate directory is created while mkdir -p is running. You can use the widely available

10436ch08final 194 10/23/08 10:31:20 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 195

mkdirhier and mkinstalldirs shell code. You can also write your own wrapper for mkdir,
which handles the -p option:

func_mkdir_p() {
 for dir in "$@"; do
 save_IFS=$IFS
 IFS=/
 set -- $dir
 IFS=$save_IFS
 (
 case $dir in
 /*) cd /; shift;;
 esac
 for subdir in "$@"; do
 test -z "$subdir" && continue
 if test -d "$subdir" || mkdir "$subdir"; then
 if cd "$subdir"; then
 :
 else
 echo >&2 "func_mkdir_p: Can't enter $subdir while creating $dir."
 exit 1
 fi
 else
 exit 1
 fi
 done
)
 done
}

This function preserves the normal behavior of mkdir -p, including succeeding without
comment if a given directory or subdirectory already exists. A leading / creates an empty $1,
which is discarded using shift. The subshell is used to avoid having to keep track of the cur-
rent directory. Empty subdirectories are ignored by standard UNIX convention. Finally, note
the setting of the positional parameters inside a loop iterating over them. This works because
the loop is not executed until the shell has already expanded "$@".

mktemp
The mktemp utility is not universally available. If you need temporary files, create a directory
with mode 700, then create files in it. (To do this, create a directory after running umask 077;
you may want to use a subshell for this to restore the previous umask). There is an excellent
wrapper function for this (func_mktempdir) in libtoolize.

mv
Only the -f and -i options are portable. Do not try to move directories across file systems, as
this is not portable; use archive utilities or cp and rm. There is no easy way to check whether

10436ch08final 195 10/23/08 10:31:20 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY196

a move is across file systems, but in general, it is safe to rename a directory without chang-
ing its parent directory; anything else you should probably do by copying in some way. The
“Archive Utilities” section earlier in this chapter covers some of the issues you may face in
copying files; there is no completely portable good answer.

Moving individual files is portable, although very old versions might have a brief window
during which neither file exists. Windows- or DOS- based hosts do not allow you to rename an
open file.

nroff
The roff utilities (nroff, troff, groff, and so on) are fairly widely supported. However, they
do not always produce identical output; do not expect page layout or line break choices to be
identical between versions. Not every system has these installed, although they are usually
available.

pax
The pax utility is the POSIX “portable archiver,” which is a cleaned- up interface for a program
similar in functionality to tar. See the section “Archive Utilities” earlier in the chapter. pax is
widely available, but not completely universal. If you can verify its availability on the systems
you need to target, this may be the best choice.

perl
The perl program is the interpreter for the Perl programming language. Some systems use
perl for a Perl 4 interpreter, and perl5 for a Perl 5 interpreter. Others use perl4 and perl,
respectively. Do not count on perl being installed in /usr/bin, and do not count on the version
without testing it. In fact, do not count on perl being installed at all; but if you must, remem-
ber that it may be somewhere unusual. Some systems may have multiple installations, some
older and some newer. Many users like to use #!/usr/bin/env perl, but this prevents you from
specifying the -w option on many systems. (And you should always, always use the -w option.)

pkill
As with killall, pkill is not universally available. Do not rely on this.

printf
The printf utility is found on SVR4- derived systems, on BSD systems, and on Linux systems;
in fact, it is essentially universal outside of embedded systems. If you can be sure this is avail-
able on all the systems you need, this is infinitely superior to echo. Check your target systems,
but this should be considered reasonably portable now. Avoid using options; there are no
portable options. Avoid using format strings that begin with hyphens, as they might be taken
as options. Most versions should handle a first argument of -- as a nonprinting sign that there
are no options coming, but there is really no need for this. If you want to start a format string
with a variable of some sort, begin it with %s and specify the variable as the first argument.

Note that printf is not a direct replacement for echo. It is actually a much nicer com-
mand, but you cannot simply change echo to printf and expect scripts to work. The most

10436ch08final 196 10/23/08 10:31:20 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 197

noticeable change is that printf does not provide a trailing new line automatically. The
escape sequences used by printf all use backslashes, so it is simplest to use single quotes
around format strings.

You can implement much of this functionality through clever use of a one- line awk script
because the awk programming language has a standard printf function:

awk 'BEGIN { printf("%s", "foo") }'

Some very old awk implementations may only provide sprintf, requiring you to write
print sprintf(...) and making it impossible to omit the trailing new line.

Some printf implementations(…) have fairly short limits on total length of formatted out-
put or total length of individual conversions. The lowest limits I have encountered are a bit over
2000 characters for zero- padded numeric values. (Space- padded values did not have the same
problem.) If you stay under that limit, you should have no problems.

ps
Predicting the option flags available for the ps command is an exercise in futility. I planned to
write about how systems generally now support the modern POSIX (and historic System V)
flags, but the first system I tested doesn’t. On Berkeley systems, ps -ax will usually get you
a list of all running processes; on other systems, it is ps -ef. It is very hard to write anything
portable using ps output, but a partial example is provided in Chapter 10.

python
The python binary is the interpreter for Python. As with perl, you may have to look
around a bit to find a particular version. Conventionally, specific versions are installed as
pythonX.Y, so you can tell which version you have. One of my test systems has python2.4
but not python; do not assume that a system with Python installed will have a binary with-
out a version number.

ranlib
The ranlib utility is used to create headers for archives created by the ar archiver. It is only
rarely still needed on modern systems. Today, its primary function is illustrating examples of
how to choose a utility on the fly by pointing out the use of true as a substitute on systems that
no longer provide or require ranlib.

rm
Both the -f and -r options are portable. There is no guarantee that a silent rm -f has suc-
ceeded, and there are circumstances under which it can fail. It is not portable to call rm without
any file arguments.

rpm2cpio
The rpm utility is not available for all systems. The rpm2cpio utility is also not available on all
systems, but many systems provide it as a way to extract files from RPM packages without

10436ch08final 197 10/23/08 10:31:21 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY198

using the RPM database. Try not to depend on this in a script, but be aware that there is a way
to get files out of an RPM package even without the rpm utility. However, rpm2cpio does not
report the ownership of files in the package.

rs
The rs utility “reshapes” input; for instance, it can convert lines of data with one word to
a line into columns of data. It is not universally available, being most common on BSD sys-
tems. Many of the things rs would be used for can be handled by some combination of cut,
paste, or join; failing that, you can do just about anything in awk.

sed
The character used to separate patterns (like / in s/from/to/) may not portably appear in pat-
terns, even in a character class. Use a separator that does not occur in these strings. There are
a number of special case bugs with sed on older systems. On modern systems, you get the best
portability writing a sed script as a single argument using new lines to separate commands
and without the -e option. If you use ! on a command, do not leave a trailing space after the
!. Some versions of sed strip leading whitespace from arguments to the a, c, and i commands.
You can use a backslash at the beginning of a line to create an escaped space that suppresses
this obnoxious behavior. (See Chapter 11 for more information about sed.)

sh
It would take a book (this one, by preference) to describe all the portability issues you may
see in variants on the sh program. Remember that there is no guarantee that a shell script is
actually running in /bin/sh; if you call a script with sh, it may behave differently than it would
if you read it in with the . command or invoked $SHELL on it. If you call it with $SHELL, and
your script is being run by a csh or tcsh user, it could be even worse. Your best bet is usually
to make sure that all of your scripts either run correctly in /bin/sh or know how to reexecute
themselves if they have to, and then always use sh to invoke them.

In general, avoid options other than -c and -x. It is fine to pass commands to a shell
through a pipe, but you might be better off using some combination of eval and subshells.

sort
Pre-POSIX systems used +N to indicate an N- column offset in each line as the search key.
POSIX uses -k N to indicate the Nth column. So, sort +4 is the same as sort -k 5. The -k
option is available on all modern systems, so use it; you are much more likely to encounter
a system that does not handle the +N notation than a system that does not handle the -k nota-
tion. Behavior when handling complicated keys (such as numeric sorting by multiple keys,
or even just numeric sorting by anything but the beginning of the line) is occasionally buggy,
although most common cases work. Behavior when sorting nonnumeric keys numerically can
be unpredictable. Bugs are much more common when inputs are large enough to require tem-
porary files to hold intermediate results; try not to sort more data than can fit in memory.

10436ch08final 198 10/23/08 10:31:21 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 199

stat
The stat utility (usually a wrapper around the stat(2) system call) is not portable. Many GNU
and BSD systems provide utilities of this name, with comparable functionality, but they have
wildly different invocations and outputs. You can use the test command to answer many
questions about files and the ls command for others.

tar
See the section “Archive Utilities” earlier in the chapter. Remember to keep an eye out also for
GNU tar (sometimes named gtar) and Jörg Schilling’s “Schily tar,” usually named star. You
cannot safely assume that a particular version is available.

touch
On systems where the file system can represent subsecond timestamps, touch may not store
information more precise than the second; this can actually change a file’s timestamp to be up
to one second in the past. On fast machines, this can be a problem.

troff
See nroff.

tsort
The tsort utility performs topological sorts. The most common use of it is to identify the order
in which to specify object files to a linker that has to receive files in a sorted order. However,
this program can be used for just about any kind of dependency checking. A typical usage
would be to make a list of relationships between activities that must be performed in order.
For example, if you were writing a script to raid and terrorize coastal villages, you might begin
with a list of observations; you have to loot before you can pillage, and you must pillage before
you burn. Furthermore, you must defeat all who oppose you before you can loot. You would
express this to tsort as a file (or standard input stream) containing pairs of words. Idiomati-
cally, there is one pair to a line:

$ tsort <<EOF
loot pillage
pillage burn
defeat loot
EOF
defeat
loot
pillage
burn
$

This utility is available on most systems, but sometimes outside the standard path; on
Solaris, for instance, it is in /usr/ccs/bin.

10436ch08final 199 10/23/08 10:31:21 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY200

unix2dos
See dos2unix.

unzip
See zip.

xargs
The -0 option, which uses ASCII NUL characters instead of new lines to separate file argu-
ments, is not totally portable. Unfortunately, its absence creates a serious problem that is at
the very least a bug magnet and can create serious security holes. If you cannot ensure that
your script will generally be run on systems that provide this option, avoid xargs with file lists
that contain files you did not create. Note that this is no worse than the behavior you get pass-
ing a list into a while read var loop. It is a potential security hole if you aren’t alert to it, but
it may be livable. If you can be sure of systems where find and xargs support NUL character
separators, use those options.

zip
This is an archive utility, usually paired with unzip. It is not universally available, although it’s
quite common on desktop systems.

what to Do when something Is Unavailable
Sooner or later, you will find yourself in the uncomfortable circumstance of having guessed
wrong on utility portability. The field is too large to keep track of; there are too many utilities
to learn, and there are too many systems with local variants and surprises.

But all is not lost. You can generally work around the absence of a utility one way or
another, and this section goes into some of the techniques used to handle these circum-
stances. There are several possible solutions to the problem of a missing utility. You can
develop your own clone of it, if it is small, and include it with your script (or even imple-
ment it as a shell function in your script). You may be able to get the utility added to your
target system, if you have any influence over it. In some cases, you can patch other utilities
together to obtain the results you need. Sometimes, you can settle for something nearly
good enough. If a system simply does not have symbolic links, you may be able to make do
with hard links, or with copies.

One other resolution is on the table: Sometimes, you may find that the best you can do is
insist on a more complete or modern system. This is a rare choice and should never be your
first response to a problem, but keep it in mind.

Roll Your Own
Sometimes the best way to be sure you can rely on a utility or feature being available is to
develop your own. Many common utility programs can be implemented (sometimes more
tediously, or more slowly) in terms of other existing utility programs. There are a few ways to
approach this. You can write separate utility programs, whether as shell scripts or in another

10436ch08final 200 10/23/08 10:31:22 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 201

language. However, this leaves you with an additional problem at installation time, which is
ensuring that your helper programs also get installed. Many simpler utilities can be imple-
mented as shell functions, which allows you to embed them in a program. You can even use
your own script as multiple different programs by defining special command- line options to
tell your script to do something special; for instance, the standard autoconf configure script
behaves very differently when run with the --fallback- echo argument.

This technique is of limited and specialized applicability, but as long as the programs you
need are simple enough to duplicate, it can work. It is also sometimes your only option.

Add a Missing Utility
You can require the user to install additional software or install it yourself. This presumes
an environment with some control of the target system; for instance, a script to be run on
machines on a corporate network may be able to simply impose a requirement that particu-
lar packages must be installed for the script to work. If you are shipping a product and want
to rely on particular utilities, you can document them as requirements; this does not work
as well because users never read documentation, but it is better than not documenting the
requirement.

The weakness of this strategy is that there are times when it is simply impossible for the
user to comply. While most scripts do not need to run on embedded systems today, there
is a rapidly increasing pool of small portable devices that contain some variety of UNIX and
a somewhat stripped- down environment.

Use Something Else
If it turns out that a utility you thought was universal isn’t, use something else. The UNIX shell
environment is a fairly full- featured programming language, and you can do just about any-
thing in it with enough time and attention. Often, the problem is not that there is no portable
solution, but that the portable solution requires you to make effective use of a utility you’ve
never even heard of. This is a great time to go browsing around documentation, trying to think
of other key words to search for, and so on.

Demand a Real System
This is sort of the antithesis of portable code, but it may apply. In the case where other
requirements, such as performance or development time, are simply too crucial, and a par-
ticular system is causing you grief, you may want to see whether that system can be removed
from the project definition. As is often the case, 10% of the time does 90% of the work. If you
can establish that your code is fine except on systems with a particular flaw, but working
around it is going to be difficult and time- consuming, this may be the course to pursue.

Do not do this merely because a system lacks an extension it would be neat to have.
Reserve this for cases where the offending system is clearly wrong. Obviously, this never
applies when a particular target system is central to the problem specification. If you are trying
to write a script that will be used exclusively on an embedded system, you have to work with
what that system provides. On the other hand, if you have a script aimed at full- featured desk-
top systems, it may be impractical to expect you to make it run also on an embedded system
with only a stripped- down busybox.

10436ch08final 201 10/23/08 10:31:22 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY202

In some cases, after further discussion, this can become the friendlier case of adding
a missing utility (see the previous section). If the problem is just that a particular program is
absent or buggy, a replacement can perhaps be found and stated as an explicit requirement.

A Few Examples
The first example I ever saw of a common problem along these lines was a little script called
install.sh, which was common in free software packages. Because Berkeley and other sys-
tems had, in their typical fashion, all disagreed on how to write a program to copy a file to
a given location with particular ownership and permissions, many programmers took to writ-
ing a portable script that performed the expected functions. The full functionality of the script
can be quite complicated; some versions check to ensure they are not copying a file onto itself,
strip binaries of debugging symbols, and otherwise do things that are commonly needed or
useful when installing a file, but that are tedious to get right. Variants of this script are still
found in many systems (as are dozens of totally unrelated files named install.sh).

The portability problems of echo have been solved (or at least worked around) in several
different ways, illustrating some of the previously described strategies. Many scripts test for
common behaviors and define two variables (nearly always named $C and $N, or $ECHO_C and
$ECHO_N), which allow commands like echo $N No newline:$C. This is moderately idiomatic,
and most shell programmers will recognize it. The following variant of an example from
Chapter 7 illustrates this:

case `echo -n "\c"` in
-n*c) ECHO_N='' ECHO_C='' ;;
*c) ECHO_N='- n' ECHO_C='' ;;
*) ECHO_N='' ECHO_C='\c' ;;
esac
echo $ECHO_N Testing...$ECHO_C
echo "Ok."

Testing...Ok.

The AC_PROG_LIBTOOL macro in configure.in scripts (implemented by the libtool.m4
macro file distributed with libtool) provides a particularly complete workaround for a much
more insidious problem: working around echo implementations that interpret backslashes.
This code is about 250 lines of fairly complicated shell scripting. It is too much to reproduce
here, but this is a fairly typical sample:

if test "X$echo" = Xecho; then
 # We didn't find a better echo, so look for alternatives.
 if test "X`(print -r '\t') 2>/dev/null`" = 'X\t' &&
 echo_testing_string=`(print -r "$echo_test_string") 2>/dev/null` &&
 test "X$echo_testing_string" = "X$echo_test_string"; then
 # This shell has a builtin print -r that does the trick.
 echo='print -r'

10436ch08final 202 10/23/08 10:31:22 PM

CHAPTER 8 ■ UT IL ITY PORTABIL ITY 203

 elif (test -f /bin/ksh || test -f /bin/ksh$ac_exeext) &&
 test "X$CONFIG_SHELL" != X/bin/ksh; then
[...]

One of the cases used is to define a special argument, --fallback- echo, which causes the
script to try to display its own arguments. The implementation is excellent:

if test "X$1" = X--fallback- echo; then
 # used as fallback echo
 shift
 cat <<EOF
$*
EOF
 exit 0
fi

This does not handle the case where you want to produce output without a new line, but
it does eliminate the common problem of shells stripping backslashes.

Some users do something like any of the options previously discussed, but they cre-
ate a shell function to wrap the desired behavior; this has been the solution I’ve generally
encouraged (as in the original version of the $ECHO_N example, which was in Chapter 7). Some
programmers simply rely on the printf command or on shell builtins like ksh’s print. Any of
these can provide consistent behavior, and some allow reliable production of unterminated
lines. And, finally, a last option exists: Avoid starting the arguments to echo with a hyphen,
avoid backslashes, and just accept the lack of a portable way to produce output with no new
line at the end. This limits your output options, but it is completely portable.

A couple of counterexamples are also worth considering. A number of application install-
ers for Linux systems have been pretty awful. The most obvious and recurring theme is the
assumption that sh is always bash. A number of install scripts I have tried to use have choked
badly because I usually have $BLOCKSIZE set to 1m in my environment; this resulted in naive
install scripts declaring that a disk with 5GB free (5000 one- megabyte blocks) is not large
enough to support an installation that requires 10MB because they interpreted 5000 blocks
of reported free space as 2.5MB (5000 half- kilobyte blocks). Another common failure mode is
assumptions about the stat utility, which I’ve seen several times in different installers.

what’s next?
This is just about it for the fiddly little details. What comes next is a bit of a higher- level per-
spective of portability. Chapter 9 talks about how to design scripts so that they will be easier
to write portably and how to identify a good candidate for development as a shell script in the
first place. Portability is important for reusability and value out of code, but there are other
things you should consider as well. A portable script that is only useful once does you little
good; next up is the question of how to make a script you will want to reuse on other systems.

10436ch08final 203 10/23/08 10:31:23 PM

10436ch08final 204 10/23/08 10:31:23 PM

C H A P T E R 9

Bringing It All Together

So far, this book has focused mostly on technical details of the portability of the shell. Good
portable code, however, requires additional skills. It is impossible to successfully test on every-
thing; sooner or later, a script you write will be used on a system that didn’t even exist when
you wrote it. New standards will come out, new extensions will be defined, and new bugs will
sneak into production releases. This chapter discusses some of the ways in which you can
write scripts that are more likely to survive new systems.

It is not usually enough to have a script that will run on the existing systems you are tar-
geting. Furthermore, it may not be enough to have a script that runs everywhere. If your script
is confusing or unmaintainable as a result of your portability efforts, you will end up with more
bugs; this makes your script useless to you.

Robustness
A program is called robust when it works despite unexpected failures. Robustness is useful on
many levels. A robust program is more likely to work when something minor goes wrong; it is
more likely to give useful diagnostics when something major goes wrong. Robust programs
are more likely to detect and correct for bugs, to handle unexpected circumstances, and to sur-
vive transitions or changes in their working environment.

Robustness matters a little more in portable code than in other code because there are
more things that might go unexpectedly wrong. Programs may provide multiple incompatible
versions of a utility, but if you try to specify a particular one by path, your code may not sur-
vive a transition to other systems.

Computer security and reliability people often advocate a strategy of having multiple
redundant layers of protection against errors; this is called defense in depth. You should
design your code to detect, and protect against, errors at multiple points. Verify that file
names are valid; check that operations succeed. There will be bugs sooner or later, even
in your error- handling code. Test your assumptions early on, but test them later, too.
 Sanity- check values. If you think you’ve gotten the absolute path to a file, it had better have
a path separator in it; if it doesn’t, something went wrong.

Handling Failure
The essence of robust code is that it handles failure. You cannot ensure that nothing will ever
fail; all you can do is check for failure and handle it. Handling an error need not mean correct-
ing it. Sometimes, all you can do is diagnose that something went wrong and possibly abort
execution before things get worse.

205

10436ch09final 205 10/23/08 10:29:24 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER206

Handling Is Not Always Correction
In some cases, you can correct an error. That’s great. In some cases, it is not possible to cor-
rect an error. At this point, you should emit a diagnostic explaining what went wrong, clean
up, and abort. It is rarely beneficial to try to continue after a problem, although in some cases
it can be. As a general rule, if future operations are not dependent on previous operations, try
them all, reporting errors for the ones that fail. If operations are in a logical sequence, abort
execution once something has gone wrong.

If You Can’t, Don’t
Let me start with the most important lesson of all in failure handling: If you cannot do anything
about an error, it is useless to check for it. This doesn’t mean you shouldn’t check for errors that
you can’t completely correct; only errors you can’t do anything about. For instance, consider
the following code fragment:

func_die() {
 if echo "$@" >&2
 then :
 else # what goes here?
 fi
 exit 1
}

This function tries to display a message and then exit unsuccessfully, much like the stan-
dard Perl function die. It tests to ensure that the echo command succeeded, and if it doesn’t . . .
well, now what? If you can’t write to standard error, you can’t display a message on standard
error saying that you can’t write to standard error. The script was already going to exit with
an abnormal exit code, so it can’t use that to communicate that something has gone horribly
wrong. While being unable to display error messages is perhaps a problem, it is not a problem
you can solve. There is nothing that can be done to correct this error, or accommodate it, or
work around it. If you are thinking, “Well, you could try to write a message to standard out-
put,” you get bonus points for creativity. But this is a very bad idea. If there is one thing worse
than an undiagnosed error, it’s an error diagnostic making it into what should have been
a pure data stream.

There is another potential problem with this proposed function. If your script was expect-
ing to do cleanup after a problem, that cleanup code may not get run, leaving temporary files
or other objects in limbo, possibly cluttering things or causing errors on future runs. If you
have cleanup code, run it before calling any function that is designed to exit the script (or use
trap cleanup_code 0; see Chapter 6).

When You Find Yourself in a Hole, Stop Digging
The great disasters of my script programming career have usually been code that worked per-
fectly running after code that failed. Here is a sample of the sort of thing I have done wrong:

10436ch09final 206 10/23/08 10:29:24 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 207

for i in $names
do
 mkdir $i
 cd $i
 [... do stuff ...]
 cd ..
 rm -rf $i
done

Nice, simple script, right? Here’s my advice: Do not try this script when there is a possibil-
ity that one of the names in $names will be something like . (the current directory), will have
a space in it, or anything else weird. Here’s what happens with the word . in $names:

mkdir . # fails
cd . # succeeds, but I'm still in the directory I started in
[... do stuff ...] # might or might not work
cd .. # oops, I'm now above the directory I started in
rm -rf . # and now I remove the new working directory

Nicely catastrophic for a seemingly harmless chunk of code. Now, imagine that I’d written
this with even minimal error checking:

for i in $names
do
 mkdir $i || continue
 (cd $i || exit
 [... do stuff ...]
)
 rm -rf $i
done

In this case, if the initial mkdir fails, nothing gets done at all. (No diagnostic message,
which is bad style, but nothing happens, so at least I don’t have to go looking for backups.)
Putting the cd command in a subshell ensures that the next command after the subshell is in
the directory I started in, no matter what happens. Whether I create or change directories dur-
ing “do stuff,” whatever happens is in a subshell and does not affect the calling code. There is
still a lot of room for cleaning up this code and fixing it, but the two most common errors are
now prevented.

Do not omit error checking. For readability and brevity, this book omits a large amount of
error checking in many examples. Be more careful than that in production code.

One possibility to consider is using set -e to cause the shell to abort if an error occurs.
When the -e option is set, the shell exits immediately after executing any complete command
that yields a non- zero exit status. Commands that are in explicit tests, such as the control
statements of if or while loops, do not cause the shell to exit, but individual commands in
the body of a loop will cause an exit. If you use set -e, any command that could fail must be
explicitly tested, or the script will abort without comment. For instance, the following frag-
ment would not be safe:

diff -u file.old file.new > file.diffs

10436ch09final 207 10/23/08 10:29:24 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER208

The diff command, in addition to writing differences between two files to standard out-
put, returns a non- zero status if it encounters any differences. In cases where you simply do
not care about the exit status of a command, you can follow it by || true, ensuring that the
command as a whole yields a successful return status, as in the following example:

diff -u file.old file.new > file.diffs || true

I do not recommend using set -e; it is uncomfortably vulnerable to overlooking bound-
ary conditions that are genuinely harmless. Furthermore, the lack of any diagnostic message
from the shell makes it hard to figure out what went wrong. (You can use a trap to print some
kind of diagnostic, but there is still no way to say what went wrong.)

Temporary Files and Cleanup
In previous chapters, passing reference was made to using the trap command to handle
cleanup of temporary files. The first thing you must know is that you cannot ensure that
cleanup will be run successfully. If someone sends your script a SIGKILL command, execution
ceases and nothing more gets done. If you need to ensure that data are never exposed, do not
put them in temporary files.

The first stage of implementing good cleanup is simply to perform cleanup. If you create
temporary files, delete them when you are done with them. However, there are a number of
additional subtleties to the creation and use of temporary files. First, it is hard to create a tem-
porary file securely, ensuring that other programs cannot create problems for your script’s
temporary file, whether maliciously or accidentally. Secondly, cleaning up temporary files can
be complicated, especially if you create a number of them.

Creating Temporary Files
There are a number of issues you need to consider when creating a temporary file. First, you
must ensure that there are no clashes. You want to make sure that other programs will not
inadvertently end up using the same files you do. This applies both to instances of other pro-
grams and to multiple instances of the same script running at the same time. As a general rule,
a good starting place is to use the process ID as one component of a file name. This generally
provides reasonable protection against accidents. The only major caveat to keep in mind is
that a long- running system will eventually recycle process IDs, so be sure to empty or truncate
temporary files before using them even when using a process ID. Since two processes running
at the same time cannot have the same pid, this may be enough.

However, there are a few limitations. If the location in which your temporary files are
created is shared storage, there may be two programs running on different computers with
the same pid, leading to clashes. Subshells have the same $$ value as their parent process,
so a subshell trying to generate a unique name might clash. Finally, there is the most serious
problem: Not all clashes are accidents. Malicious users often use the semi- predictable naming
of temporary files as a way to attack vulnerable programs.

It is not sufficient to check whether a file exists before creating it; the window between the
existence check and the creation of the file is plenty of time for an attacker to create a file your
script can open, giving the attacker access to your temporary file. (Do not rely on the notion
that this is too rare to occur; the attacker only has to get lucky once, but you have to get lucky
every time.)

10436ch09final 208 10/23/08 10:29:24 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 209

Quite simply, you cannot portably avoid this problem in shell. It isn’t even entirely por-
table to work around this in C. The good solutions are not as widely standardized as you
might hope. When you open a file, it is possible that it already existed; if it did, your script is
compromised.

So, here is the secret to creating temporary files safely: Don’t. If you really need a tempo-
rary file, you have to be in control not just of the file, but of the directory it is created in.

Creating Temporary Directories
While file creation is prone to risks, directory creation has a significant advantage: If you try to
create a directory that already exists, mkdir fails. This allows you to be sure that the directory
you finally create is actually owned by you. The only hard part is ensuring that the directory is
not writeable by other users; otherwise, any attempt to create files in the directory is vulnera-
ble to the problems previously described for temporary files. Ensure that the directory’s mode
is restrictive by using umask or using the -m mode option to mkdir. The following two examples
are functionally equivalent:

(umask 077; mkdir $tmpdir)
mkdir -m 0700 $tmpdir

The -m mode option is portable to modern systems but avoids use of a subshell. If you
need to target Windows systems, you might prefer it. To use this in a script, be sure to check
whether mkdir succeeded. It is not sufficient to check whether the directory exists; if an
attacker created the directory already, it will exist but will not be under your control. A typical
usage might look like this:

if mkdir -m 0700 "$tmpdir" 2>/dev/null; then
 echo "Successful creation of temporary directory." >&2
else
 echo "Could not create temporary directory." >&2
fi

You might want to wrap this in a loop to try to generate likely directory names. For a more
complete solution, look at the func_mktempdir function in libtool. There are a number of
additional utilities, such as mktemp, that might help you out but are not universally available.
Know your target systems. If mktemp is not available, at least try to make your temporary file
names a little unpredictable. Using your pid ($$) alone is not very good at protecting against
attackers; in shells that have the $RANDOM variable, you can use that, as in the following example
(extracted from libtool):

my_tmpdir="${my_template}-${RANDOM-0}$$"

In a shell that has no special $RANDOM parameter, ${RANDOM- 0} expands to 0 (or whatever
a user may have set it to).

Once you have succeeded in creating a directory, you can use it to hold temporary files.
Because the directory is owned by you and has a restrictive mode, you do not need to worry
about race conditions or attackers, as long as the temporary directory itself is reasonably
secure. (Of course, a user with root privileges can override this, but a user with root privileges
always wins a security fight.)

10436ch09final 209 10/23/08 10:29:25 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER210

Do not use the -p option with mkdir in this circumstance. First, it is nonportable. Second,
mkdir -p silently succeeds if the target directory already exists. This eliminates the security
benefit of using mkdir instead of just creating individual temporary files. If you wish to make
an arbitrarily nested directory, you can do so by looping through making the directories one at
a time. For a more detailed example, examine the func_mkdir_p implementation in libtoolize.

Removing Temporary Files
When you are done with temporary files, delete them. (For debugging, you may wish to have
an option to your script that suppresses this normally desired behavior.) If you are using
a temporary directory, and you should be, this is made much easier by the fact that you can
simply delete the whole directory and its contents.

In general, you should be aggressive about deleting files as soon as you can; this reduces
the amount of junk left around the system if a script is killed unexpectedly. Try to avoid relying
on exit traps (see the discussion in the next section, “Handling Interrupts”); instead, ensure
that files are deleted as soon as you are done with them. It may make sense to store a list of
files to remove when done, or you can remove a whole temporary directory at once. In general,
though, leaving all the files until the end is careless and may result in unwanted surprises.

Unlinked fileS

There is a clever trick known to a fair number of UNIX users that helps eliminate the scourge of temporary
files: Delete them before you are done using them. On a UNIX system, in general, if you open a file, then use
rm to delete it, the file still exists. The file has been unlinked, and does not exist in the directory hierarchy
anymore, but the system does not actually clear the file out from the disk until the file has been closed. Some
programs make clever use of this to create files that are then used to store or share data. When the program
ends, the file descriptor is automatically closed, and the file ceases to exist. This works no matter how the
program terminates; even a SIGKILL doesn’t change it.

This is an exceptionally cool trick, which you can use to do all sorts of magic. It does have one tiny little
flaw—it is not portable. (It is also less useful in shell scripts than it would be in C because the shell has no
easy way to look around in an open file.) In particular, this is not available at all on Windows- like systems,
but even UNIX systems might sometimes use a file system that does not allow an open file to be deleted.
Be aware of the technique, but don’t use it in scripts.

Handling Interrupts
The shell does not have a real exception handling mechanism in the sense that some more
recent programming languages do. However, the trap command can provide for some simple
emergency recovery after errors. In particular, you can use the special signal 0 to perform
cleanup tasks whenever the script exits, assuming it exits cleanly (rather than being killed
by another signal, for instance). The following script fragment creates a temporary directory
(using an admittedly insecure name for brevity), then registers a handler to remove it on exit:

10436ch09final 210 10/23/08 10:29:25 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 211

mkdir /tmp/example.$$
trap "rm -rf /tmp/example.$$" 0

This example works as designed, but it is vulnerable to a subtle bug. Imagine that two
pieces of code in your script do the same thing:

mkdir /tmp/example_a.$$
trap "rm -rf /tmp/example_a.$$" 0
mkdir /tmp/example_b.$$
trap "rm -rf /tmp/example_b.$$" 0

This script removes the example_b directory, but not the example_a directory; the second
exit trap replaces the first.

While this provides for last- minute cleanup for normal script exits, it doesn’t do anything
when a signal is caught by another handler. If the shell exits from an interrupt handler, it is
likely to run an exit trap handler (though zsh does not).

There is no definite rule as to whether or not you should trap interrupts. In general, it is
nice to clean up any temporary files you are creating, although you may want an option to
suppress this behavior; it can be maddening to debug a script that deletes all the evidence
when it screws up. Leave that strategy to the politicians. The case where it’s most important
to start trapping interrupts is code with critical sections where a system’s intermediate states
are unusable. If you are modifying system files in a script, it may make sense to trap inter-
rupts to prevent accidents. Most scripts have no reason to trap most signals.

Startup Files and Environment Variables
The entire environment in which you write scripts is potentially subject to user interfer-
ence. Executing commands relies on the $PATH environment variable, but there’s more. Many
utilities have behavior that can be influenced by environment variables. The $BLOCKSIZE envi-
ronment variable can, on some systems, alter the output of many common utilities.

In some shells, there are startup scripts that may be processed even when running a shell
script. For instance, pdksh and ash run the $ENV setup script at the start of execution even when
running a script. Because shell functions and aliases both take priority over external com-
mands, it is possible that a user’s startup environment will substantially alter the behavior of
a script.

There is very little you can do to be sure that none of this has happened to you. You can
set the $BLOCKSIZE variable to an empty string while you are using utilities that rely on it. But
be sure to set it back later; users probably set it for a reason. By the time your code is execut-
ing, however, it is too late to try to prevent $ENV from being run.

Ultimately, this is an unwinnable fight. Take a few reasonable precautions, but apart from
that, if users run in a sufficiently misconfigured shell, scripts will fail. This is a good reason for
users not to configure their environment badly. There are clever tricks (quoting the names of
aliased commands, trying to reexecute the script with $ENV set to an empty string), but ulti-
mately it is not worth the hassle. It is up to the user not to give you a hopelessly misconfigured
environment.

10436ch09final 211 10/23/08 10:29:25 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER212

Documentation and Comments
In general, the shell does not care about comments. You should.

The concept of defense in depth extends beyond just the question of how you try to
ensure that there are no bugs. There will be bugs. You will need to maintain this code, or
someone else will. (And don’t get careless about that; you’ll be the “someone else” for other
peoples’ code some day.) When you have to debug a script that you or someone else wrote
long ago, you will need to understand how it works to identify the bugs. Good comments are
a big part of successful debugging.

Furthermore, beyond the mere question of individual code comments explaining code
fragments, be sure to have some top- level documentation. What is this script? What does it do?
What arguments does it take? What arguments are valid? What systems has it been tested on?
What assumptions does it make? Every one of those questions could, quite easily, turn out to
be the source of a major problem somewhere down the road. Answer them early on, ideally in
comments within your script.

When you validate arguments (and you should always do this), be sure you give a clear
error message (to standard error, not standard output) showing your script’s usage options.
Stick to the normal UNIX conventions to express options and arguments.

What to Document
Describe the basic purpose and design of your script. Explain what job it does, and how it
should be invoked. Here’s a sample:

errno: Explain error names or numbers
usage: errno error...
e.g., errno ENOENT
output:
ENOENT [2]: No such file or directory
inputs should be integers or symbolic errno values.
relies on /usr/include/sys/errno.h

This small chunk of text tells you pretty much what you need to know to maintain this
program, and if you’re an experienced C programmer who’s used a number of platforms, it
even gives you a pretty good idea of what’s likely to go wrong. Different systems use different
files to hold the error definitions, here described as existing in /usr/include/sys/errno.h. If
this utility gives cryptic error messages (other than those intended) on a new system, it is quite
likely that the problem has to do with the choice of header file. If I had taken the two minutes
it took to write that back in 1994 when I wrote this script, I would have saved myself about ten
minutes of staring at a script I no longer remembered anything much about in 2008. (This was
the one shell script from my previous work that needed modification when I started doing
more Linux work.)

What to Comment
Not everything. There is no code so unreadable as code that has been commented by someone
who thinks everything needs comments. Avoid commenting on common and well- known
idioms; use such idioms frequently so that you need fewer comments. Your goal is not to

10436ch09final 212 10/23/08 10:29:26 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 213

comment lots; it is to comment well and clearly. A reader only needs to see this once to lose all
hope that the program in question is going to work:

count=`expr $count + 1` # add 1 to count

In general, comments should tell the reader something that might not be obvious. Go
ahead and assume that your reader knows what basic UNIX commands do. The subject of
comments should be an explanation of why you are doing something, rather than just a simple
description of what you are doing. Compare these two comments:

args="$args $i" # append $i to $args
args="$args $i" # build list of files

The former comment is useless; the latter comment at least tells you what the purpose or
goal of the code is.

Any function you define should have at least a brief comment explaining its arguments,
behaviors, and any outputs. Distinguish between return code, output, and side effects (such
as file modification). This description should be in addition to any comments needed on the
function’s actual code.

Comment mechanisms sparingly, but there are times when this is appropriate. If it takes
you a while to get a very small piece of code right, go ahead and explain it. I have rarely seen
a shell using eval in a way that could not have benefited from an explanatory comment.

Stylistically, feel free to put small comments on the same line as the code they explain,
although I recommend a bit of extra space to make them visually distinct. If you have several
commented lines in a row, aligning the comments can make them easier to read. Longer com-
ments or comments on whole blocks of code tend to look better above the code they explain.
Some programs are obliged to process options, even if they occur later in the command line.
The following script fragment does this and explains what it is doing:

sort arguments into options and file names
files=""
opts=""
for i
do
 case $i in
 -*) opts="$opts $i";; # name starting with - is an option
 *) files="$files $i";;
 esac
done

The comment at the top of the fragment explains the purpose of the code; the inline com-
ment explains a particular convention to the reader. Of course, you would do better to use
something more flexible, such as the command processing code illustrated in Chapter 6.

The most common problem with comments in old code, and one of the key arguments
against over- commenting, is that comments tend to become inaccurate over time. When you
update code, be sure to update the comments as well. This is more work in code with more
comments, especially trivial comments. It is common for tiny details of a script to change; it is
rare for fundamental algorithms or designs to change. This suggests a good guideline in com-
menting; your comments should explain the code, not repeat it. Otherwise, you end up with

10436ch09final 213 10/23/08 10:29:26 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER214

comments that start out useless, and eventually become wrong. Imagine encountering the fol-
lowing line in a script you are debugging:

BLOCK=4096 # use one- kilobyte BLOCKSIZE

Is this a bug? If it is, is the bug that the comment is wrong or that the definition of BLOCK
is wrong? Is the name of the variable wrong? This comment creates more questions than it
answers. It is also, distressingly, not a particularly atypical comment. In this case, the best
guess is that the code originally read BLOCKSIZE=1024, and that the code has changed and the
comment hasn’t. If you are looking for a bug, especially a bug involving handling of block
sizes, it is quite possible that this is it. (This example is based on real code I saw, although it
was not in a shell script.)

degrade Gracefully
Programs that do the best they can, correctly, rather than failing dismally, are said to degrade
gracefully. It is quite reasonable to try to provide extra features when possible, but if those
features impact portability, it is often better to provide an alternative, even if it may be less
functional. For instance, some installation scripts that need root privileges try to use the sudo
utility to gain them. When the utility is installed, and when the user has access to it, this can be
quite convenient. However, if the sudo utility is missing, such a script may fail unconditionally,
even when run as root. That makes the script less useful to users who have root access but lack
the sudo utility. A better choice would be to try to use sudo only if it is installed. If the utility is
unavailable, check for permissions instead. If you need additional privileges, tell the user what
privileges you need, and exit gracefully without doing anything else; if you already have the
needed privileges, just run normally.

If there is some check you must make in a fairly frequent operation, make it into a shell
function. There is no reason to write your test for a given utility, or even just a conditional
operation, dozens of times. You might want to use the system’s install utility if it is available,
but fall back on manual copying. (A disclaimer: There are differences between traditional BSD
and System V install programs. You may not want to use either.) First, you would determine
the path to the system utility, if it’s in $PATH:

found_install=` IFS=':';
 for dir in $PATH; do
 test -x "$dir"/install && { echo "$dir"/install; exit 0; }
 done `

This mildly elaborate chunk of code checks each directory in $PATH for an executable
named install; if it finds one, it echoes the name and the subshell exits. (The exit is needed
in case of a system on which there is more than one such program in $PATH.) Given this, you
could write code like the following to install a program in $HOME/bin:

10436ch09final 214 10/23/08 10:29:26 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 215

if test -n "$found_install"; then
 "$found_install" -m 755 newscript "$HOME/bin"
else
 rm -f "$HOME/bin/newscript"
 cp newscript "$HOME/bin"
 chmod 755 "$HOME/bin/newscript"
fi

While this works fine for a single file, it quickly becomes awkward. The first step in cor-
recting this is to move it into a function:

func_install() {
 for file
 do
 if test -n "$found_install"; then
 "$found_install" -m 755 "$file" "$HOME/bin"
 else
 rm -f "$HOME/bin/$file"
 cp newscript "$HOME/bin"
 chmod 755 "$HOME/bin/$file"
 fi
 done
}

Now, calls to this function are much briefer, and easier to write, than the longer if- else
construct was. However, there is another improvement possible. In general, the value of
$found_install should never change. So why test it all the time?

if test -n "$found_install"; then
 func_install() {
 for file
 do
 "$found_install" -m 755 "$file" "$HOME/bin"
 done
 }
else
 func_install() {
 for file
 do
 rm -f "$HOME/bin/$file"
 cp newscript "$HOME/bin"
 chmod 755 "$HOME/bin/$file"
 done
 }
fi

10436ch09final 215 10/23/08 10:29:26 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER216

Now, the function definition depends on the results of the initial test, and each function
call omits the separate test. While in this case the behaviors are fairly similar (though not iden-
tical), this works even when the net result is a noticeable difference in provided functionality.

Of course, this assumes that all the install utilities are compatible; they are not, and this
is why many programs ship with an external install- sh script, which tries to provide a rea-
sonably stable set of options and semantics. The tricky part is that the conventional System
V install utility has completely different semantics for the -c option. The BSD semantics are
probably better; this is why people tend to specify it or provide wrappers (such as the portable
 install- sh distributed with many configure scripts).

Specify, and Test For, Requirements
Whenever possible, test for the preconditions your script requires rather than just failing
dismally. A script that needs root privileges should test for them first and give an informa-
tive error message if it doesn’t have them. Trying to run with a genuine requirement absent is
crazy. It is not just that your script may not work; it is that it may work partially. A few pages
full of “Permission denied” messages are bad enough, but the commands that don’t fail may
have surprising effects (see “When You Find Yourself in a Hole, Stop Digging” earlier in this
chapter).

As a general rule, once you have a list of requirements for your script (inputs, valid argu-
ments, privileges, programs you depend on), you should check for them all before starting to
do anything substantial. (This can impose a substantial performance cost; see the next section,
“Scripts That Write Scripts.”)

As you write the documentation describing your requirements, write tests for any that
you can figure out a way to test for. Be as cautious and thorough as you have time for; the fre-
quency with which surprising things go wrong is itself surprising.

Finally, if you come up with an elegant test for a requirement, and it implies a work-
around, feel free to remove the requirement and just write the script to be more portable in the
first place. It will save you time later.

Scripts That Write Scripts
Sometimes the best way to develop a portable script is to use another utility to create the final
script. There are two major ways to pursue this. One is to use a tool like m4sh to build a very
carefully tuned portable script while hiding most of the hard work from you. Another is to
write a script that creates as output a less portable script tuned for a given system.

10436ch09final 216 10/23/08 10:29:26 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER 217

m4Sh, aUToconf, and aUTomake

There are a lot of tasks for which m4sh might be a particularly good choice. The weaknesses of m4sh are that
it imposes additional syntax constraints and that the generated scripts can be a bit hard to read. On the other
hand, with careful use, it can produce exceptionally portable scripts, complete with fairly full- featured execu-
tion preambles.

The choice of whether to write a relatively simple script without these features or to use these features
is not one with an unambiguous and universal right answer. If you need to run on a very broad range of target
systems, tools like m4sh are probably quite valuable in keeping on top of a variety of systems with strange
and unpredictable limitations. If you have the luxury of assuming POSIX systems and shells, such tools may
be overkill. If you have to target extremely specialized systems (such as small embedded systems lacking
many common utilities), m4sh will not help you very much.

If you are interested in using m4sh, you should look at a recent autoconf release for the basic util-
ity. For additional insights, get a recent release of libtool to see how m4sh is used to build flexible and
powerful scripts. Of particular interest is that you can add your own portability shims; for instance, standard
autoconf does not test for the buggy echo implementations that strip backslashes, but libtool has code
to do this.

Building a Script for a Specific Target
If it is practical to ensure that a script is always recreated for each target system, you can run
another program (often a script) on each target that performs all the usual tests and builds
the script correctly for a particular target. The result is an output file that is not portable, but
is built in a way that allows it to target multiple systems. People who have worked in compiled
languages will find this oddly familiar. This can noticeably improve the runtime performance
of a script on a given system, but it does leave you with a problem: If you fix bugs on a given
system, you have to do extra work to propagate them to other systems. This is usually only use-
ful if performance is very important for a given script. A few milliseconds of startup time are
usually a nonissue.

The simplest way to do this is to run something similar to an execution preamble; how-
ever, instead of executing the variable definitions and function definitions, write them into
a file that becomes a header for a script. The remainder of the script code can be appended
to this preamble to create a working script. For instance, the following header might work on
a POSIX standard system with no special requirements:

#!/bin/sh

A system where the default shell is pre- POSIX might need a more elaborate header:

#!/bin/zsh
emulate sh
NULLCMD=:

10436ch09final 217 10/23/08 10:29:27 PM

CHAPTER 9 ■ BRINGING IT ALL TOGETHER218

In each case, the idea is to replace ten or 20 lines of execution preamble with the special
case code needed for a particular system. The “script file” appended to these would lack the
shebang line and be written with the assumption that the shell is always a standard POSIX
shell. The preceding headers could be generated by a simple script:

#!/bin/sh
if eval '! false' 2>/dev/null; then
 func_script() {
 for i
 do
 (echo "#!/bin/sh"; cat $i) > $i.out
 done
 }
else
 func_script() {
 for i
 do
 (echo "#!/bin/zsh"; echo "emulate sh"; echo "NULLCMD=:"; cat $i) > $i.out
 done
 }
fi
func_script "$@"

Given the names of input script files, this creates new files (with .out appended to their
names) with suitable execution preambles. There is plenty more you could usefully do in such
a script; this is a minimal example to illustrate the technique. (More complete examples may
be found in Chapter 7.)

Mixing with Other Languages
It is not necessary that a program used to create shell scripts be itself a shell script; the m4sh
language uses m4, and some people have done reasonably well using make to create shell
scripts. In particular, you should be comfortable with using both sed and awk, which are excel-
lent candidates for textual manipulation (such as rewriting or modifying shell scripts). It is also
useful to learn m4. Chapter 11 comes back to the question of how to mix shell code with other
languages.

There are very few targets for which Perl is not available, but there are a fair number on
which it is not installed out of the box (most notably, NetBSD). Although Perl is undoubtedly
a more powerful and convenient language than the Bourne shell for many tasks, I continue to
write many scripts primarily in shell.

What’s next?
Chapter 10 gets even farther away from the fiddly details and explores the question of what
makes a shell script work well in a broader environment: conventions your scripts should
follow, ways to be sure your script will stay useful on new systems and in new circumstances,
and more.

10436ch09final 218 10/23/08 10:29:27 PM

C H A P T E R 1 0

Shell Script Design

Many portability problems are made more approachable through good design. Good design
makes it easier to isolate dependencies and reduces the chance that a portability issue with
a tangentially related feature will prevent a script from performing its primary function. This
chapter introduces some of the general principles of shell script design. There are other books
that go into much more detail on shell script design and on program design in general. I focus
primarily on issues applicable to shell scripts and, in particular, to portable shell scripts.

This chapter is full of guidelines, some of which are not always rules. The important thing
is not to follow every guideline exactly in all cases; your goal should be to understand the pur-
pose of each guideline, as well as understand when to follow it and when not to. As with many
things, you have to know the rules before you can understand when to break them.

Because UNIX has largely accreted and evolved through the work of hundreds of people
at many different companies over a period of decades, there is not total consistency. The mere
fact that an existing utility does something a given way does not mean you should consider
it a good example. For instance, no one should ever emulate the command- line argument
parsing of dd; its param=value options are arcane, error- prone, and hard to remember. If
dd if=/dev/zero of=image bs=1m count=16 had been spelled dd -i /dev/zero -o image -b
1m -n 16, more people would be able to use it successfully without keeping the man page
open. Of course, a more modern dd might support -- blocksize 1m -- count 16, which is pretty
close, but then your code is no longer as portable as it used to be. (It’s also reasonable to
observe that redirection is probably better than the if=/of= arguments.)

This chapter uses an example of a hypothetical utility design—a small program called
pids, developed to provide a scriptable alternative to the ps command.

Do One Thing Well
Why does portable tar not compress its archives? Why is there no built- in sort functionality in
vi? In general, a program that does exactly one thing is much simpler to use than a program
that does many things, and it can be mixed with programs that do other things. The UNIX
convention that archive utilities do not worry about compression, and compression utilities
do not worry about file hierarchies, has resulted in typically better performance of both tasks.
Rob Pike's presentation “UNIX Style, or cat -v Considered Harmful” (USENIX Summer Con-
ference Proceedings, 1983) made this case rather more sternly, but quite well. (See also the
companion paper to the presentation, “Program Design in the UNIX Environment,” co- written
with Brian W. Kernighan: http://harmful.cat-v.org/cat- v/unix_prog_design.pdf.)

219

10436ch10final 219 10/23/08 10:42:43 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN220

This is not to say no program should ever have a bit of additional functionality. The ls
command does sort its output. This is not just for convenience, though; it is because some
of the sorting options sort the output according to information that ls does not display. For
instance, ls -t sorts files by modification time, but it does not display the modification time.
It makes sense for ls to pay attention to file modification times because they are part of the
information it extracts when doing long listings. Even when ls displays modification times,
the display format is not something that sort could easily use as a sorting key, while the time-
stamps ls obtains from the file system are integer values that can be sorted easily and quickly.

There are a number of utilities that allow you to kill processes by name; no two are the
same. These are, I think, a bad design. The correct design, which I have adopted for pids,
would be a program that lets you list processes by name, which can be combined easily with
the existing kill utility.

Separate Functionality
One of the great strengths of the shell is its use as glue code. Often, a script that has become
difficult to maintain or port would be better implemented as multiple programs, with a single
 top- level script combining the function of other programs. Just as a script using grep is much
clearer to read than a script that implements it inline using while loops, it is often clearer to
separate out some functionality and make it into a separate script. Describe your program
carefully and see whether it would make sense to describe it in terms of other scripts; if so, you
may be better off writing them separately. In some cases, shell functions can give you some
of the same organizational benefit. Often, though, the greatest benefits come from complete
separation.

When you separate a script into components, you make it easier to maintain the script.
Each component is simpler and better focused. A problem with one does not necessarily affect
the others. In general, this pays off substantially. Furthermore, the components are likely to
get reused in other scripts, and additional development on them will pay greater dividends.
The sort utility is much more powerful than the built- in sorting features many non- UNIX
tools have acquired because it is used everywhere. When every application developer has to
write a completely redundant sorting implementation, every application gets whatever mini-
mal sorting functionality is good enough to get it out the door. Shared functionality tends to be
a lot better. So if there’s a task you need to perform for your script, think about ways in which
you could use it again in other programs; if you can think of two cases where you’d use it, it is
probably worth separating out.

Often, an application can be implemented very nicely as a wrapper around a simple fil-
ter that performs some interesting task; write the filter, and you can experiment with ways to
make its functionality available. A spelling checker could be nothing more than a simple pro-
gram that identifies likely misspelled words, leaving it up to other programs to decide how to
use this functionality.

The pids utility does nothing but obtain and display the pids of processes.

Isolate Dependencies
Sometimes, there is no way to prevent a script from depending on something you simply can-
not do portably. However, if nearly every system provides a way to do it, and the problem is

10436ch10final 220 10/23/08 10:42:44 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 221

only that these ways are different, writing a generic utility to solve that specific problem makes
it easy to write an otherwise portable script relying on that utility. In some cases, this could
be implemented as a simple shell function in your main script, but if it is useful enough on its
own, it may be worth creating the separate program as well.

For instance, you could possibly write a program that reliably extracts the current pid of
a process by name, even though no one call to ps can portably give you that information. This
is what gave me the idea for the pids utility; while it is very hard to solve the complete problem
generally, it is easy to solve the important part on any given system. With this utility in place,
adding functionality on a new system should take only a few minutes.

Be Cooperative
There is a corollary to the guidance to do one thing well—make it easy for other programs
to use your script to do that one thing. Whatever your script does, try to write it so it will be
easy for other scripts to use as a component. Thinking about how other scripts might use
yours may give you key insights into what you ought to do. Try to stick with standard and
 well- understood formats; data that can be represented as lines of text generally should be
because many UNIX utilities work very well on lines of text. If you need to work with binary
data, be flexible about file names. If it makes sense to run your script on multiple files at
a time, allow it; don’t require repeated invocations. Be sure to give a meaningful exit status.

Be sure that incorrect or invalid command invocations yield an informative usage mes-
sage. This will help someone actually make use of your script, rather than abandoning it in
disgust because it doesn’t seem to do anything.

If your script produces output that another program could possibly take as input, make
sure that error messages are not set to standard output. Error messages being mistaken for real
program output can be a problem for other programs.

The -n (“not really”) option, known as --dry- run in some GNU software, displays output
describing what a program would do rather than doing it. For any program that could ever
damage or alter data, especially one whose behavior is not absolutely consistent and trivial,
this option is a very good idea. (It is understandable that rm lacks it because its behavior is so
simple. For more complicated programs, such as make, it is extremely useful to be able to ask
the following question: “So, hypothetically, if I ran this program with these options, just how
far up which creek would I end up, and where would the paddle be?”

The pids utility should produce simple output describing a mapping of process IDs to
process names. My initial plan is to have the default be to print both the pid and the process
name, in case it is called with multiple process names, and have an option to print only pids.
Output is one entry per line to make it easier for other programs to further filter or manipulate
output. Exit status is success if at least one matching program was found and failure otherwise.

Filters, File Manipulation, and Program Manipulation
In general, most scripts can be described as falling into one of these three categories. There are
powerful UNIX conventions for how programs in each category should be designed; adhering
to these conventions will make your script more useful to other users. Each of these types of
programs has unique traits that influence how it should be designed; this section introduces
some of the key design goals of each type.

10436ch10final 221 10/23/08 10:42:44 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN222

Designing a Filter
In nearly every case, a filter should work like cat; it should take an arbitrary selection of files
as inputs, or simply pass through standard input if no files are provided. Most filters treat
a selection of files as though they had been concatenated as a single input file, except when
diagnosing errors. (Whenever possible, a program should identify the specific input file and
line on which an error occurred.)

Some filters offer options for operating in place. This is often a wonderful feature, but it
should never be an implicit default. Users are expecting your program to produce its results on
standard output; overwriting files without an explicit request is almost always wrong. A com-
mon idiom is to recognize a -i option for in- place operations; some programs, such as sed or
perl, extend this to allow specification of a suffix to append to the original version of the file.
If you are offering only one of these choices, though, always write output to standard output
rather than operating in place. It is a trivial matter to wrap a standard filter on files in place;
it is somewhat harder to wrap an in- place program and create a usable filter. (See the sidebar
“Destructive and Reversible” for more thoughts on this.)

filTers in place

Of course, the correct solution is not filter < file > file. The file is truncated before the filter is even
started, and the filter then reads an empty file, processes no data, and writes its output back into the file.
There are two common idioms for this; first, you could run the filter into a new temporary file, then rename it
over the original:

filter < file > file.new
mv file.new file

The alternative is to first rename the file, then run the filter directed into the original file. For instance,
you might use this instead:

mv file file.orig
filter < file.orig > file
rm file.orig

If you do this, do not delete the original file unless the filter succeeded; even then, provide an option to
leave the original file around as a backup.

Given a program that operates in place, you can do the same thing backward to create a filter:

cp file file.new
in_place file.new
cat file.new
rm file.new

In both cases, the usual caveats about temporary files and security apply.

10436ch10final 222 10/23/08 10:42:45 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 223

In most cases, there is no reason for a filter to perform any sorting on its inputs or out-
puts. Emulate uniq, which simply specifies that input must be sorted. A filter is, by definition,
designed to work well in a pipeline; don’t feel bad about a usage pattern where people might
need to merge your script with others.

The exit status of a filter should normally be success if it did anything and failure other-
wise. For instance, grep succeeds when it matches at least one line and fails when it matches
no lines. In some cases, it may make more sense to report failure if any operation fails; for
instance, ls reports failure if any operation failed, even if it listed some files.

You might not think pids is a filter, but data sources are a special case of a filter; they just
prefer to go on the left end of a pipeline. You could even modify pids to take a list of names on
standard input, although I did not implement this.

Designing a File Manipulator
Commands that manipulate files but don’t take file names on the command line are annoying.
Taking command names on standard input can be a great feature for programs to offer, but it
should never be the only choice. If you use new line separators, there is no way to submit some
file names; if you use NUL characters, many programs cannot interact with you. Support it as
an option, but take command-line arguments, too.

Recursion is generally a good option but only sometimes a good default. Archive utili-
ties and the like may want to recurse into directories by default. Others should not. Do not
overthink your selection of files; unless the kinds of operations you describe are unique and
specific to your application, you are better off providing an interface making it easy for users
to feed your script arguments using find. If you want to provide a recursion option, use -r or
-R; if you want an option to prevent recursion, you might use -d (by analogy with ls) or a long
option with a name like --no- recurse.

If your utility performs tests on files, look closely at the behavior of grep -l; it has gener-
ally stood the test of time. The default behavior of showing only file contents when processing
a single file (or standard input), but showing file names and contents when processing mul-
tiple files, is usually correct. The -l option (list only file names) is well known and fairly useful.
Keep in mind the opportunity for optimization that this affords; once you find a successful
match, you can show the file name and skip on to the next file. You don’t have to finish reading
a large file to find more matches.

A file manipulator should report failure if any manipulation fails. If operations on each file
are logically distinct, try on every file even if some have failed. If operations on a given file are
logically sequential, though, stop after the first one that fails.

Designing a Program Manipulator
Program manipulation is a general description of the astounding variety of scripts most com-
monly written by system administrators; these are scripts that automate common tasks. Every
such script should support a -v option to display information about what it is doing. You will
kick yourself if your script doesn’t provide more verbose output; your script will misbehave,
and you will have to add this feature before you can even start debugging it. I often go a step
further and support a -x option, which does nothing more elaborate than set -x. The output
isn’t pretty or user- friendly, but it tells you what happened.

10436ch10final 223 10/23/08 10:42:45 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN224

Study other similar programs and try to keep a similar interface. The apachectl utility
offers an excellent example of how to make a single, reasonably well- contained utility that
handles a variety of closely related tasks. When possible, try to think through a whole process
and build a script that automates it. Include lots of error checking in automated tasks; one
of the key weaknesses such scripts often start with is not knowing when something has gone
wrong, which a user would have noticed right away when performing the task interactively.

Programs that manipulate other programs or perform complicated operations often use
an idiom of taking general options followed by a subcommand, which can then take additional
options or arguments. Examples include the git and cvs commands, which take a number
of verbs describing the intended operation—for instance, git pull or git push. Additional
options specified after the verb may differ from one verb to another. Options specified before
the verb have general meanings; in some cases (at least with cvs), the same option is valid both
before and after a given verb, but with very different meanings. This is annoying; don’t do it.

A verb- based interface like this is mostly useful when all of the verbs are closely related;
for instance, they all work with the same source code system. Some programs go the other
way, installing a large number of programs with simple names; for example, the nmh mail
client installed 39 separate programs on one of my machines. The disadvantage of separate
commands like this is the greatly increased risk of clashes, amplified by the risk that the
names chosen will be likely and usable ones, which other people are more likely to want to
use as well. It is easy to imagine other developers wanting to use names like scan, mark, or
refile. Given a choice, I would say I prefer the single command with many verbs. In fact,
this can be implemented as a wrapper script, which uses a private directory full of specific
commands; the goal is just to keep $PATH clean.

The exit status of a program manipulator should simply indicate whether or not it suc-
ceeded. If you try to start another program, and fail, report the failure and indicate it in your
exit status.

command-line Options and arguments
The choice of how to invoke a script is a significant factor in whether it will ever be any use
to you. In general, try to avoid relying on environment variables to control behavior; favor
 command- line options to set flags. Try to make sure that the most common behavior is the
default to keep command lines short. If you find that you always want to specify an option,
make it the default and provide the opposite choice. A script designed for interactive use might
originally be designed to operate quietly, with a -v flag to cause more verbose output; if users
consistently specify this flag, make it the default and provide a -q flag to suppress the output
instead.

Be aware of the convention of combining command- line options; -ab should be synony-
mous with -a -b. GNU sed accepts the option -i to operate in place (though this option is
not portable). The argument -i.bak instructs sed to keep the original file, with .bak appended
to its name. Having forgotten about that special case, I once shortened sed -i -e expr to

10436ch10final 224 10/23/08 10:42:45 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 225

sed -ie expr. This did not do what I meant; it saved the original file under the name filee.
(The default with no -e arguments is to treat the first argument as an expression, so the output
was otherwise correct.)

There are two key distinctions here. The first is between options that always take an
argument and options that optionally take an argument. The latter are more confusing. If an
option always takes an argument, it is usually reasonable to treat the rest of the word as being
an argument to that option. Asking friends who write shell scripts, I have come to the conclu-
sion that many script programmers do not consistently agree on what they expect to happen
when options that take arguments are combined into words. From a user interface standpoint,
the best thing may be to try to avoid the question. For instance, were I to design a -i option
for sed, I would probably have a separate option for the suffix. This way, the boolean option
has predictable and simple syntax, and the non- boolean option also has unambiguous syntax.
The boilerplate option- processing code presented in Chapter 6 implements semantics that are
unlikely to surprise most experienced users.

All programs should recognize -- as indicating the end of options. Programs which accept
file names should generally treat - as a synonym for standard input.

It may seem that the proliferation of options contradicts the advice to do one thing
well. It does not. Doing something well often implies doing it under a variety of different
circumstances and in a number of different ways. Allowing users to sort on arbitrary keys,
numerically, reversing some keys but not others, offers a great deal of flexibility but does not
change the fundamental purpose of the sort program. The e-mail reader option in GNU hello
is an intentionally awful example of completely unrelated functionality. The many UNIX pro-
grams that display or set a particular value (such as hostname or date) are questionable designs.
It is, however, almost certainly a design flaw that date does not use an option to indicate the
semantic shift from setting to displaying the date.

Try to avoid relying on long options. While they are easy to remember, they are bulky and
annoying to type. Common options should always have a single- character spelling, and it is
fine, even preferable, to have no long options at all.

When specifying sizes, be flexible about input. At the very least, you should recognize
KB/MB as size units. Defaults should use 1024- byte blocks as “KB,” even though they are
strictly considered KiB (see the sidebar “What’s a Mebibyte?”); the same goes for MB, GB,
and even TB.

10436ch10final 225 10/23/08 10:42:46 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN226

WhaT’s a MeBiBYTe?

For years, users have been posting on forums, writing to customer support departments, and otherwise com-
plaining that their hard drives are not as large as advertised. The reason is that computers like to do things
in powers of two (32, 64, 128, and so on), and 1024 is a much more natural number for a computer to work
with than 1000. As a result, a “kilobyte” of data is nearly always understood to mean 1,024 bytes of data.
Similarly, a megabyte is usually 1,048,576 bytes. However, a long time ago, drive manufacturers realized that
they could gain about 5% capacity instantly by using the standard metric prefixes, calling each 1,000,000
bytes a “megabyte.” (With gigabytes, the ratio is a bit over 7%.) Of course, this usage makes some sense; it
is quirky at best to have a prefix that always, consistently, across any unit of measure, means “one million”
except, when referring to data, it means “1.048576 million.”

The solution, of course, is to introduce new terms; kibibyte, mebibyte, and so on (“bi” being short for
“binary”). One KiB (kibibyte) is exactly 1,024 bytes. With this usage in place, it is more reasonable to use the
standard K prefix to mean 1,000 exactly.

Unfortunately, this just means that it is now even less clear to users what KB and MB mean. To add
to the confusion, many users (as well as many developers and many product packaging designers) are not
aware that B and b are different; B is bytes (in context, this means 8 bits), while b is bits. So 8Mb of data are
1MB of data, unless one of them was using the metric prefixes. . . .

If you are interpreting user- specified sizes, such as block sizes, default to bytes, ignore bits, and sup-
port both the K and Ki prefixes. If you support only the K prefix, use it for 1024; this is what users will mean,
for now. When reporting output, use the Ki and Mi prefixes so users get used to them and learn about them,
reducing future confusion.

Designing Options
The most common options should be easy-to- remember lowercase letters. There are a num-
ber of conventions in UNIX command- line arguments (see Table 10-1). In general, the most
common arguments should just be plain arguments, not command- line options. For instance,
the file arguments to most commands are just specified as any file names after the last option;
by contrast, a script file to run from is usually specified with a particular option (often -f).

If you have several closely related options, it may make more sense to implement them
as a single option that takes an argument to distinguish between cases. However, most of the
time an option with an argument is a string or file name.

The Table 10-1 introduces a few common options that users are likely to guess at or
remember easily. The list is not exhaustive. Some letters have multiple traditional uses, which
are listed separately. The GNU coding standards have a similar list of long option names that
have been used in GNU utilities.

10436ch10final 226 10/23/08 10:42:46 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 227

 Table 10-1. Common Options

Option Mnemonic Meaning

-- (none) End of options; following arguments are not options, even if they
have hyphens.

-0 zero Use NUL instead of new line as a record separator.

-1 one Process one record or item at a time (suppresses columnar output,
for instance).

-a all Display/process things that might otherwise be skipped over.

-a and Join two arguments (when arguments form an expression).

-A absolute Use absolute paths rather than relative paths (for instance, in an
archive program).

-b blank Ignore blank characters.

-c cat Force use of standard output; used by compress, gzip, and other
utilities that usually operate in place.

-c command Run a specific command (as in sh -c).

-c count Display counts of output instead of output.

-C columns Display output in columns.

-d debug Display debugging output; see also -x.

-e expression Argument is an expression to process; used in languages like sed or
Perl.

-f file Specify a file from which to read commands or configuration

-f force Go ahead (presumably without asking the user for confirmation),
even if there are problems; see also -i.

-f field Specify a field separator or specify fields; see also -t.

-h human Human-readable output; for instance, display sizes in MiB/GiB
(see the sidebar “What’s a Mebibyte?”) as appropriate.

-i in-place Operate in place (used with filters).

-i interactive Ask user about operations; see also -n/- y, or -f.

-i input Input file name or input mode.

-l list Display a list of names or matches, as in grep -l.

-l long Display things in a longer or more verbose format; see also -v.

-m max Maximum value or limit.

-m min Minimum value or limit.

-n number A number, such as number of lines to print or number of com-
mands to run.

-n no Assume negative answers to all questions, making an interactive
program non- interactive; see also -i/- y.

-n dry run Do not actually do anything; just indicate what the program would
do if it were doing something.

-o or Allow either of two arguments (when arguments form an
expression).

Continued

10436ch10final 227 10/23/08 10:42:48 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN228

 Table 10-1. Continued

Option Mnemonic Meaning

-o output Name of output file name (instead of standard output).

-r,-R recursive Process all files in directories and their subdirectories.

-r reverse Reverse order of sorted output.

-q quiet Suppress output; see also -s.

-s silent Suppress output; see also -q.

-s suffix Specify a file name suffix used by the script.

-t tab Specify a field separator; mnemonic is that some programs use
a tab character by default.

-u user As an option, display information about users; as an option with an
argument, name a user to restrict the scope of a display.

-x eXecution trace Display trace of execution; see also -d.

-x, -X eXclude Exclude some files or data from processing.

-x cross Do not cross file system boundaries while recursing (from find’s
historical but no longer portable -xdev primitive, now spelled as
the -x option).

-v verbose Display additional information or output, such as names of files as
they are processed.

-V version Display version information.

-y yes Assume positive answers to all questions, making an interactive
program non interactive; see also -i/- n.

If you can find a likely English word to use as a mnemonic to pick the letter to use for
a given option, do so. Users find options easier to learn with a mnemonic. Try to favor idiom-
atic choices whenever possible. It is often permissible to use the second letter of a word; for
instance, some tar implementations use -X to denote a list of files to eXclude.

If you have a pair of related options, it is often helpful to use the same letter for both,
using a capital letter for the less common option.

The pids utility takes several options. The -u option (user) restricts it to displaying only
processes owned by the named user; the -t option (tty) restricts it to displaying only processes
that have a given terminal device. The -p option (in this case, the mnemonic is “pid”) displays
only the pid, rather than both pid and process name. Finally, the -a option is an alternative to
giving program names on the command line and requests all processes.

Options and Inputs
In general, things that change the behavior of a program should be command- line options,
but some programs, most noticeably program manipulators, will have good reason to use or
refer to a configuration file. Generally, input files specified on the command line or as stan-
dard input should be data to process rather than configuration or setup.

10436ch10final 228 10/23/08 10:42:49 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 229

Options should determine how your script processes its inputs. Information about what
you will do, changes to algorithms, or changes to user interaction should be options. Actual
data to be processed should be inputs or specified as names on the command line. There are
a few conventional exceptions; the expr utility operates on its arguments, for instance.

A number of programming languages, such as sed, awk, Perl, and Ruby, take small pro-
grams on the command line rather than as input files, as a convenience.

The pids utility has no stream inputs, but it takes names of programs to look for on the
command line.

set reasonable limits
A shell script is not always a good place to try to expand the bounds of computer science or
win an argument about artificial intelligence. It is great for a program to try to do what the
user intends; it is bad for a program to be totally unpredictable. “Smart” interfaces are often
plagued by personal idiosyncrasies; they may seem wonderfully intuitive to the author and
utterly random to everyone else. Conventions and predictable behavior are generally more
useful than trying to guess what the user wants. In particular, be extremely careful with
destructive operations; a program that lists files might reasonably try to guess at which file the
user wanted, but a program that deletes them had better not.

DesTrucTive anD reversiBle

An action that can be undone is called a reversible operation. An action that destroys or overwrites data is
called a destructive operation. In general, you should be careful with operations that are destructive or irre-
versible, and be exceptionally careful with operations that are both. However, the UNIX convention is not to
put up barriers to operation. Do not prevent a user from deleting a file; just avoid deleting files casually or
broadly.

Note that not all destructive operations are irreversible, and not all irreversible operations are destruc-
tive. In- place operations are usually destructive, but some may be easily reversed; for instance, the patch
utility can nearly always reverse any patch it can apply, so it is usually safe to apply them in place without
worrying too much. The behavior is reversible because the patch set is separate from the files operated on.

Perhaps paradoxically, many data losses are caused by programs where destructive behaviors usually
warn the user. Experienced UNIX users are usually careful with the rm command. Some systems “helpfully”
alias it to rm -i, requiring confirmation of each file. This causes two problems. The first is that users may
become careless about running rm, assuming that the safety net is there. The other is that users may acquire
the habit of typing rm -f to override this behavior. This can override cases where the normal rm command
would have asked for confirmation, resulting in worse safety than the user would have had with neither -i
nor -f in the picture. Do not do this. If you ask a lot of questions to which the answer is always yes, the user
will be trained to always answer yes without reading. Ask questions only when there is real doubt.

10436ch10final 229 10/23/08 10:42:50 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN230

Define Your Functional Scope
The quick and easy nature of scripting often causes people to start writing a script without
a clear idea of exactly what the script will do. This often leads to problems. Figure out what you
are and are not trying to do early on; this will save you a lot of trouble later as you try to figure
out what your script is supposed to do. Defining your functional scope early on helps you
make sure your script is going to do one thing well, not several things poorly. If you really do
need to do several things, defining your scope helps you separate them out into multiple tasks
that you can handle separately.

Feel free to throw together a prototype while you think through your interface, but be sure
your work environment will give you the time you need to redevelop the script completely
once the prototype reveals your initial design mistakes. Otherwise, you will be stuck with
something unmaintainable. Never let anyone convince you that a prototype is a final product.
Rapid prototyping is only a strength if you do not get stuck with the resulting prototype as
a production product.

Be ready to limit your allowed inputs. Most programs should not try to magically do the
right thing with all possible inputs; rather, they should try to handle reasonable inputs and
expect callers to sanitize inputs as necessary. The netpbm utility suite does a good job of stan-
dardizing on an internal format, using conversion utilities to get data in and out; this provides
a model where most programs can ignore most of the hard work of dealing with formats and
stay focused on simple tasks.

The scope of the pids utility is not as obvious as you might think. What do we mean by the
“name” of a process? For instance, should I be able to distinguish between /usr/bin/perl and
/usr/local/bin/perl? My solution is to mostly leave this up to the user. The pids utility tries to
find processes with matching names but uses shell patterns, so the user can specify a pattern
that might match multiple names.

Define Your Target Scope
From a portability standpoint, this is perhaps the most important step. Try very hard to avoid
narrowing your scope unreasonably. POSIX shells may be a reasonable target; bash is probably
not. If you are planning to narrow your target scope, be sure you have a good reason to do so.
(See the sidebar, “Requirements Done Wrong,” for an example of when not to.) For a famous
example, consider quilt, which is a selection of bash scripts relying heavily on GNU extensions
to a number of utilities. Is that a good choice? Given the number of people I know who have
spent days or weeks trying to get quilt working on other systems, I’d guess it isn’t. However,
quilt does its job well enough that people put up with the portability hassle. (The interesting
question, of course, is how hard it would have been to write it more portably? I can’t say.)

10436ch10final 230 10/23/08 10:42:50 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 231

requireMenTs DOne WrOng

I recently had occasion to try to run a script (the ldd utility distributed with the GNU C library) on an embed-
ded system. It failed; it turned out to have a firm dependency on bash. In fact, the functional extent of the
dependency on bash was a test for whether the pipefail option (specific to bash version 3) was available.
Removing the test allowed the script to function perfectly well in other shells. (It still displayed extra dollar
signs occasionally because the script relies on the localized string extension in bash, but it performed its
expected function correctly and reliably.)

Browsing around, I discovered that other users had discovered the same thing. One had submitted
a one- line patch to make the script work correctly both in bash and in other shells. The maintainer responded
with a derisive comment about how widely available bash is, and how everyone should just install it. While
this might make sense for desktop systems, it is a very bad strategy for a fundamental system component.
Some of the target systems involved are small enough that bash would be a very noticeable cost and could
deny users the space for real features they need.

It is one thing to depend on extra features, such as the array features that some shells offer. That may
be justifiable, although it is usually better not to go there. However, gratuitous incompatibilities are nearly
always a bad choice.

Don’t forget embedded systems. For all the differences between desktop UNIX systems,
the big gap is between full- featured conventional UNIX and the tiny stripped- down subsets
used in embedded systems. The environments used during bootstrapping or installation
of a system are also often extremely restrictive, although you usually don’t have to code for
them unless you are an OS vendor. Think carefully about embedded systems; you may find
the answer is that you do not want to support them or that your script makes no sense in an
embedded environment. Deciding to avoid embedded systems can be perfectly reasonable,
but think it through.

In some cases, context may imply requirements of your target systems. The installer for
a video card driver can make a few more assumptions about its target system than a network
configuration utility could. Commercial applications can often specify requirements for their
target systems, but don’t be too quick to rely on these requirements; changing market condi-
tions might change your target systems abruptly. Users may also surprise you; a number of
installers written for one UNIX system have been used on another in conjunction with emula-
tion support.

Finally, remember that the availability of a feature does not obligate you to depend on it.
Write more portably than you think you have to; it is much more likely for you to be unhappy
later because a script is not portable enough than because it is too portable.

In the case of pids, the underlying task is not exactly portable, but it is possible to do two
important things. The first is to handle the most common cases; the second is to make sure
that cases not handled are diagnosed immediately to the user.

10436ch10final 231 10/23/08 10:42:51 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN232

case study: pids
The pids utility is small and fairly simple. I wrote it using a Solaris system, running a single ps
command on a BSD system to guess at the right values for the BSD code case. It worked on the
BSD system without modification; for Linux, I had to add an entry to a table.

Here’s the first chunk of the program:

#!/bin/sh
func_usage () {
 echo >&2 "usage: pids [- u user] [- t tty] [- p] -a | progname [...]"
 exit 1
}
case `uname -sr` in
 SunOS*5*)
 sys=sysv;;
 Darwin*|*BSD*)
 sys=bsd;;
 Linux*)
 sys=bsd;;
 *)
 echo >&2 "Unknown system type: `uname -sr`"
 exit 1
 ;;
esac

The func_usage function serves as a catch- all for displaying diagnostics and exiting. There
are several points in the program where it might turn out that the invocation is incorrect; this
lets me write the message in only one place.

The next section is the guts of the “portability” (I use the term loosely) of this program. In
practice, the systems available to me generally honor either the traditional BSD options to ps
or the traditional System V options. (Interestingly, the Linux system I tried honors both; if you
change the Linux case to sys=sysv, the script works identically.) The uname command gives you
two key pieces of information: the system’s name and the version number. You need the ver-
sion number because modern Solaris is known as SunOS 5 and is fairly incompatible with the
previous release, which is known as SunOS 4. (In fact, SunOS 4 was discontinued around 2000,
but it does still exist in some environments.) It might be wiser to check by feature rather than
system type; in the case of ps, though, it is much easier to identify two common types rather
than trying to parse headers.

The decision I made to error out rather than guessing is based on a history of programs
guessing badly for me. I wanted the program to tell the user immediately what went wrong. It
is easy enough to guess at how to adapt to a new system, but the program can’t do it.

Next up, processing arguments (using getopts for brevity):

opt_a=false
opt_p=false
opt_u=
opt_t=

10436ch10final 232 10/23/08 10:42:51 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 233

while getopts 'apu:t' o
do
 case $o in
 a) opt_a=true;;
 p) opt_p=true;;
 u) opt_u=$OPTARG;;
 t) opt_t=$OPTARG;;
 \?) func_usage;;
 esac
done
shift `expr $OPTIND - 1`

require program name
$opt_a || test $# -ne 0 || func_usage
found_any=false

Again, nothing here is particularly surprising. This program does very little sanity check-
ing of its arguments, but it does require that either the -a option was given or at least one
program name was given. (Any arguments past the options are assumed to be program
names.) The found_any variable is used to determine the final exit status of the program.

The next section of code is the actual work of extracting data from the output of ps. It is
a fairly simple code fragment:

case $sys in
 bsd) ps auxww | awk '$2 != "PID" { print $1, $2, $7, $11 }' ;;
 sysv) ps -ef | awk '$2 != "PID" { print $1, $2, $6, $8 }' ;;
 *) echo >&2 "unknown system $sys."; exit 1 ;;
esac | while read uid pid tty cmd

I’ll get to the loop body in just a moment, but this part merits separate discussion. There
are two issues in trying to extract the data I want. The first is that BSD and System V variants
use different arguments to control the display of ps. The second is that the display formats are
different. In each case, an awk script is used to display four fields: the user ID, process ID, ter-
minal name, and command name. (Only the first word of the first word (the command name)
of the command line is given, not any arguments.)

The BSD arguments specify listing processes owned by (a)ll users (the default is only the
current user), in a format displaying (u)ser information, including processes with no control-
ling terminal (the x option, for which there is no mnemonic), on a (w)ide display. The w option
is specified twice. The default for Berkeley ps is to limit all lines to 80 characters; the w option
specifies a wide display (132) characters, and specifying it again removes the limit. This is
necessary because the name of the command could quite easily exceed the available width
otherwise, resulting in a truncated display. The missing hyphen is intentional; one convention
some systems have adopted is to use traditional Berkeley semantics when the hyphen before
the options is omitted, and System V semantics when the hyphen is provided.

The System V options are easier; it displays (e)very process (the equivalent of BSD’s ax
options), and gives a (f)ull listing. The full listing format implies arbitrarily long lines and pro-
vides the additional information (user and terminal) the script wants.

10436ch10final 233 10/23/08 10:42:51 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN234

The entire case statement is redirected into a while loop, using the read command to
extract data from lines. The read command divides input (performing word splitting) until it
reaches the last variable, at which point any remaining text is combined into that variable. In
this case, because I know that the fields (uid, pid, and terminal) are consistently free of space
characters, I do not have to worry about that splitting. It does the right thing.

The remaining code is the body of the while loop, which displays matching lines:

do
 if test -n "$opt_u" && test "$opt_u" != $uid; then
 continue
 fi
 if test -n "$opt_t" && test "$opt_t" != $tty; then
 continue
 fi
 if $opt_a; then
 found=true
 else
 found=false
 for prog
 do
 case $cmd in
 $prog|*/$prog) found=true; break;;
 esac
 done
 fi
 if $found; then
 found_any=true
 if $opt_p; then
 printf "%d\n" "$pid" || exit 0
 else
 printf "%d %s\n" "$pid" "$cmd" || exit 0
 fi
 fi
done
$found_any

The tests for $opt_u and $opt_t are straightforward. The next section of code determines
whether the program matches. If the -a option was specified, all programs are considered
to match. Otherwise, each remaining positional parameter is checked against the command
name. Specifying the full path would be annoying, so the script accepts any leading path in
front of the program name, or just the unqualified program name. Remember that shell pat-
terns are implicitly anchored; if $prog is perl, this will not match perl5, local_perl, or any
other such variant.

If a match was found, the script displays either the process ID alone (if the -p option was
given) or the process ID and the matching command name. It might be better to display $prog
than $cmd here; a caller who is checking which of several program names matched might be
surprised.

10436ch10final 234 10/23/08 10:42:52 PM

CHAPTER 10 ■ SHELL SCRIPT DESIGN 235

Finally, $found_any is expanded and executed. If no matches were ever found, $found_any
is false, and the script indicates failure to the caller. Otherwise, it indicates success. Be sure to
think about exit status when designing a script, as callers will expect it to be meaningful.

What’s next?
Chapter 11 takes a closer look at a few of the most common programs, other than the shell,
that shell programs have to interact with: make, which calls the shell for everything it does, and
sed and awk, which are used heavily by many larger shell scripts. Chapter 11 also discusses
some general issues of mixing code written in multiple languages.

10436ch10final 235 10/23/08 10:42:52 PM

10436ch10final 236 10/23/08 10:42:52 PM

C H A P T E R 1 1

Mixing and Matching

The shell is a powerful language, but it does not do everything. Some other languages are
heavily used by shell scripts to perform tasks that the shell itself is not very well suited for; sim-
ilarly, programs in some other languages use the shell to do some of their heavy lifting. This
chapter discusses a few of the issues you may encounter when using other languages from the
shell, or the shell from other languages.

This chapter starts with some general information about embedding code in one language
within code in another language. Following that are sections on embedding shell code in
specific other languages and on embedding code in other languages in shell code. These sec-
tions briefly discuss the reasons for which you would use each combination, but they do not
attempt to completely explain other languages.

Mixing Quoting Rules
The most fundamental problem of mixing shell and other code is that other languages typi-
cally have different quoting rules than the shell. For instance, both Perl and Ruby allow \' to
occur in single- quoted strings to include single quotes in them. This is useful because they
do not share the shell’s implicit concatenation of adjacent quoted strings, so the shell idiom
wouldn’t work, but it is often surprising to shell programmers. While very few large shell
scripts are typically embedded in either Perl or Ruby programs, both have convenient syntax
for embedding small scripts, including command substitution.

Nested quoting is complicated and easy to get wrong. Conflicting quoting rules are also
easy to get wrong. Nested quoting using different rules can be a real hassle, and no one gets
it right on the first try every time. It’s most effective to separate scripts out, and this tends to
produce other benefits, as you’ll be able to generalize and make more use of each component.
However, there are cases where a small embedded script is really too specialized, and not large
enough, to justify a separate executable.

 In general, your best bet with languages that do not require single quotes very often is
to use single quotes in the shell to pass code into other languages. Here documents are only
occasionally useful; many scripting languages read scripts from files, not standard input, and
the most common programs to write this way are filters, which need to be able to use standard
input for data anyway.

To get nested quoting correct, start by writing the embedded program correctly as a sepa-
rate file with correct quoting. Once you have done this, you can look at how to quote this string
in the outer scripting language. You may find it practical to bypass the first step with experi-
ence, but if something goes wrong, try a separate program first; it is a lot easier to debug.

237

10436ch11final 237 10/23/08 10:53:42 PM

CHAPTER 11 ■ MIX ING AND MATCHING238

As an example, the following awk script extracts information from C header files. Many
headers defining symbolic names for constants use the following convention to describe the
meanings of each constant:

#define NAME 23 /* Description of name */

For instance, somewhere under most implementations of <errno.h>, there is a file con-
taining lines like this:

#define ENOMEM 12 /* Cannot allocate memory */

This format lends itself well to extraction in a simple awk script:

/^#define/ && $2 == "ENOMEM" {
 for (i = 5; i < NF; ++i) {
 foo = foo " " $i;
 }
 printf("%- 22s%s\n", $2 " [" $3 "]:", foo);
 foo = ""
}

This script could be passed in as a single argument to the awk command (using single
quotes in a shell script) or saved as a file and invoked with awk -f file. This script combines
a number of awk’s features somewhat awkwardly to produce output such as this:

ENOMEM [12]: Cannot allocate memory

The output format is a bit elaborate and bears a little explanation; the output looks better
if the error name is left- aligned and the numbers are immediately next to it. First constructing
the string ENOMEM [12]:, then printing it left- adjusted in a field, provides an interface where the
descriptive text is also aligned, making it easier to read larger blocks of output (such as mul-
tiple lines in sequence).

This program can be easily wrapped in a simple shell script. Because the script uses only
double quotes, it can be wrapped using a single pair of single quotes, except for embedding
a value. Here’s a way you might do it:

for arg
do
 awk '/^#define/ && $2 == "'"$arg"'" {
 for (i = 5; i < NF; ++i) {
 foo = foo " " $i;
 }
 printf("%- 22s%s\n", $2 " [" $3 "]:", foo);
 foo = ""
 }' < /usr/include/sys/errno.h
done

This scriptlet (assuming that your system’s <errno.h> is structured like a BSD one, which it
may not be) prints similar output for each matched argument. The interesting part is the argu-
ment embedding; "'"$arg"'" is a simple case of handling nested quoting. This awk script is

10436ch11final 238 10/23/08 10:53:42 PM

CHAPTER 11 ■ MIX ING AND MATCHING 239

composed from three adjacent strings; the first single- quoted string ends with a double quote,
then there is a double- quoted string containing only $arg, and then the next single- quoted
string starts with a double quote. If $arg contains the string ENOMEM, this expands to "ENOMEM" in
the awk program. This is not necessarily the best way to pass data to awk. You might do better to
use awk’s -v option to assign variables:

for arg
do
 awk -v arg="$arg" '/^#define/ && $2 == arg {
 for (i = 5; i < NF; ++i) {
 foo = foo " " $i;
 }
 printf("%- 22s%s\n", $2 " [" $3 "]:", foo);
 foo = ""
 }' < /usr/include/sys/errno.h
done

When you have to embed multiple kinds of quotes, it gets trickier. Just remember that you
can always switch quoting styles to combine different rules. Be especially careful when trying
to get backslashes into embedded code; this is one of the big arguments for using single quotes
as much as possible.

For a more extreme example, m4’s quoting rules are totally different from the shell’s
(although arguably superior). By default, m4 quotes start with ` and end with '. Obviously,
this is vastly superior in terms of unambiguous nesting. Just as obviously, it is not a good
fit for shell code. To resolve this, m4sh uses the m4 language’s built- in (and thoroughly
 sanity- destroying) changequote primitive to change the quoting mechanism; in m4sh, quotes
are []. These were selected, not because they are uncommonly used, but because they are
almost always balanced. By contrast, an unmatched ending parenthesis is often seen in case
statements. This is the real reason the examples in this book have preferred test to [.

Embedding Shell Scripts in Code
Shell code can be embedded in other programs. Many UNIX programs have some limited
 shell- out functionality, allowing them to run single commands; these commands are almost
always passed to the shell. Quoting rules vary widely between languages; be sure you know
which quoting rules apply. Editors that allow you to run shell commands may have their own
special quoting and input rules; check the documentation.

By far the most common program in which shell code is included is make, and it deserves
a bit of discussion.

Shell and make
The shell is heavily used by most implementations of make because it is the canonical com-
mand interpreter and is used to execute commands. In general, each individual command
(a single line in a make rule) is run in a separate shell. However, you can join lines together
using backslashes at the end of each line, and it is possible to write many shell scripts on
a single line by using semicolons instead of new lines as line terminators. This section

10436ch11final 239 10/23/08 10:53:43 PM

CHAPTER 11 ■ MIX ING AND MATCHING240

discusses the use of shell commands embedded as make rules, but it does not try to explain
the rest of make; there are wonderful books and tutorials available on the topic, and it is
beyond the scope of this book.

uSE TabS

In the 20 years or so I have been using make, I have never gone a full year without at least one error caused
by using spaces rather than tabs as the indentation for the rules in a makefile. When you get a cryptic mes-
sage like “need an operator” or “missing separator,” it usually means you have forgotten to use tabs.

As with any language, make has its own quoting rules. Like the shell, make also substitutes
variables. These expansions occur before the command is passed to the shell; unfortunately,
they may also be confusingly similar to shell expressions. To pass a dollar sign to the shell,
use the make variable $$. To substitute a make variable, use parentheses around its name, as in
$(CFLAGS). This is confusingly similar to shell command substitution, but it is unrelated; think
of $(CFLAGS) as being the equivalent of a shell program’s ${CFLAGS}. The extra punctuation is
much less optional in make, however. You should use it always, not just when there are other
words nearby.

Anything that make passes to the shell is a single line. The behavior of comments in
a makefile is thus not what you would expect for the same text occurring in a shell script. For
instance, the following script is a two- line shell script:

echo hello # \
echo world

hello
world

The line continuation character is ignored because it is in a comment. However, if you
specified the same text as a rule in a makefile, it would behave differently:

$ cat test.mk
default:
 echo hello # \
 echo world
$ make -f test.mk
echo hello # echo world
hello

The rule is joined into a single line by make; the lines are joined, and the resulting rule is
echo hello # echo world. Although make recognizes lines starting with # as comments, it does
nothing special with a comment character in the middle of the line, so the whole line is passed
to the shell as is. The shell comment extends to the end of the whole command because the

10436ch11final 240 10/23/08 10:53:43 PM

CHAPTER 11 ■ MIX ING AND MATCHING 241

whole command is a single line; the second command is not executed. This is a common
mistake. There is a more subtle additional mistake; even if the comment character weren’t
there, the output would be hello echo world because there is no statement separator. To
write multi- line scripts as single commands in a makefile, you must use semicolons between
statements.

Be extremely careful about shell portability in make rules. There is no portable or safe way
to cause a different shell to be used, so you are generally stuck with whatever shell the make
program chooses. Users developing on some Linux systems sometimes produce make rules
that only work if /bin/sh is actually bash. Don’t do that.

Embedding shell code in make is not especially risky. Just remember that the code you
write in the makefile is subject to processing, substitution, and quoting in make before it is
passed to the shell. With that in mind, the shell gives make the flow control features (such as
iteration through loops) it has always lacked. When writing longer sections of code, remem-
ber that make determines success or failure the same way the shell does, and it usually aborts
whenever any build rule fails. If you write a build rule as an embedded shell script, be sure its
return code is correct. For example, the following build rule has a serious problem:

timestamps:
 (date; $(MAKE) build; date) > build.log 2>&1

This rule appears to run a build with timestamps before and after the build, storing the
output in a log file. In fact, it does this. However, the exit status of the shell command will
always be the exit status of the second date command, which is unlikely to fail. If the build
fails, make will not know about it or stop processing additional rules. To fix this, store the exit
status and provide it to the caller:

timestamps:
 (date; $(MAKE) build; x=$?; date; exit $x) > build.log 2>&1

This rule passes back the status of the significant command rather than the status of
another command. Another choice you might consider is to use && to join commands:

timestamps:
 (date && $(MAKE) build && date) > build.log 2>&1

This does preserve exit status, but it deprives you of the second timestamp if a build fails.

Shell and C
On UNIX- like systems, the system() library call usually passes its argument to the shell for
processing. On non- UNIX systems, the command processor may be a different shell or may
be absent entirely; relying on the UNIX shell makes C code less portable than it would be oth-
erwise. The C language has relatively simple quoting rules inside double quotes; you can pass
new lines (written \n), single quotes (no special treatment needed), and double quotes (writ-
ten \"). Line continuation in C, as in make, happens before data are passed to the shell, so do
not rely on it. If you really want to write a long multi- line script in C, the most idiomatic way is
to rely on C’s automatic string concatenation and use new lines:

10436ch11final 241 10/23/08 10:53:43 PM

CHAPTER 11 ■ MIX ING AND MATCHING242

system("if true; then\n"
 " echo hello\n"
 "fi");

This produces a string equivalent to "if true; then\n echo hello\nfi", but it is easier
to read. Some C compilers offer extensions to accept embedded new lines in strings; do not
rely on this. It is not portable, and it is also not especially useful.

This, of course, begs the question of whether it makes sense to embed non- trivial script
code in C at all. In general, it does not. If you want to run external commands from C, you
should normally restrict yourself to calling out to external programs using fork() and exec().
If you want to run a script, it is usually better to have an external script program rather than
trying to embed it.

Embedding Code in Shell Scripts
Code in other languages is usually embedded in shell scripts when the languages lend them-
selves well to being used as filters. Two of the most famous examples are sed and awk, which
are discussed in detail in the rest of this chapter.

Once you are comfortable with the shell’s quoting mechanisms, embedding programs in
your shell scripts is usually easy. Most of the time, single quotes will do everything you want,
except for shell variables substituted into the embedded program.

Embedding shell variables in programs can range from relatively simple to fairly difficult,
depending on the context in the embedded code. If you can be sure that the variable never has
a value that would require special quoting in the embedded language, it is pretty easy:

cmd -e 'code '"$var"' more code'

This embeds the shell variable $var between code and more code. It is not quoted in
the embedded code, though. If it needs quoting, you have to ensure that the shell variable’s
value is correctly quoted before embedding it. File names and user- supplied input can
require a great deal of work to sanitize correctly for embedded code. In some cases, it is bet-
ter to truncate or remove invalid inputs rather than try to preserve them through quoting.

Shell and sed
The sed utility provides a generalized editing facility that can be used as a filter (the -i option
for editing in place is not universal). It is most heavily used to perform simple substitutions
using regular expression patterns, but it is substantially more powerful than this. The sed util-
ity uses basic regular expressions—mostly. Some versions support additional features, such
as alternation (\|) or the \? and \+ extensions; others do not. Do not use these. In general, do
not escape anything with a backslash in sed unless it is a character that has special meaning
when escaped with a backslash or is the expression delimiter. A few versions of sed do not sup-
port using asterisks on subexpressions, only on single character atoms (including character
classes).

Mostly, sed is used for cases where you want to perform reasonably simple translations
of files—for instance, replacing special marker text with string values. Like many utilities, sed
is built around the assumptions of a shell script. Given no other instructions, it reads from

10436ch11final 242 10/23/08 10:53:44 PM

CHAPTER 11 ■ MIX ING AND MATCHING 243

standard input and writes to standard output. By default, it performs any instructions given
to it, then prints each line.

One of the major uses of sed is to work around shells that lack the POSIX parameter
substitution operators, such as ${var#pattern}. (You can also usually do this with expr.) For
instance, one idiomatic usage would be to grab a directory name from a pathname:

$ dir=`printf "%s" "$path" | sed -e 's,.*/,,'`

While this usage is idiomatic, it is probably better to use expr for simple cases like this. If
all you want to do is display part of a string, use expr.

While the s// command in sed is usually illustrated with slashes, it is portable to use other
characters instead. When working with path names, it is even preferable. Commas are a com-
mon choice. Exclamation points are popular, too, but cause problems in shells (csh, very old
bash), which use ! for history expansion. In general, sed commands that use delimiters let you
pick a delimiter.

Even a small sed command can do very useful things. You have previously seen the com-
mon convention of prefixing strings with X to prevent them from being taken as options. This
leads to a handy idiom:

Xsed="sed -e 's,^X,,'"
func_echo () {
 echo X"$@" | $Xsed
}

Even if the first argument is -n, this function can display it reliably. Unfortunately, this is
not enough to work around the versions of echo that strip backslashes. You might wonder why
this example doesn’t just use expr, as previously suggested. The reason is that sed can take
multiple -e arguments, and this provides a useful idiom:

echo X"$var" | $Xsed -e s/foo/bar/

This replaces foo with bar in the contents of $var, even if $var happens to start with
a hyphen. Since piping small strings into sed is a fairly common task (and to be fair, there
are many substitutions expr cannot make), and many versions of echo are obnoxious, this is
a great way to magically hide the problem. On modern systems (or even moderately old ones,
as long as they’re not stripped- down embedded systems), printf may be better. Still, it’s
a good idiom to know. You never know when you’ll suddenly need it.

sed scripts do not need quoting beyond backslashes, and those only in limited circum-
stances, such as when a regular expression contains the delimiter character used for the
command. When writing a sed command with multiple separate commands, you have several
options. You can use multiple -e arguments or separate commands with semicolons, but if
you want to write a longer script, it is often better to write a single script using embedded new
lines. It is usually easier to read multiple commands on multiple lines than squished together
on one. Long single- quoted strings are your best friend here. Use the standard concatenation
trick to embed variable substitutions in sed scripts; the following trivial example shows how
you might emulate grep using sed:

sed -n -e '/'"$regex"'/p'

10436ch11final 243 10/23/08 10:53:44 PM

CHAPTER 11 ■ MIX ING AND MATCHING244

This prints every line matching $regex, unless it contains forward slashes. The sed com-
mand ends up being /regex/p, which prints lines matching regex. The -n option prevents sed
from printing every line automatically, so only lines explicitly printed are displayed. A com-
mon mistake is to omit the -n:

sed -e '/'"$regex"'/p'

This command prints every input line and prints lines matching $regex twice.
Solving the delimiter problem is a bit tricky. In general, you want to escape delimiter char-

acters with backslashes, but the backslash itself is special to sed. Luckily, this is easier than it
sounds:

pat=`printf "%s\n" "$pat" | sed -e 's,/,\\/,g'`

This causes the variable $pat to have every slash replaced with a backslash followed by
a slash. If you then expand $pat in a sed script, the backslashes protect the forward slashes and
cause them not to be interpreted as delimiters. It is important to use single quotes to quote the
sed script; otherwise, you need twice as many backslashes because each pair of backslashes
becomes a single backslash in the argument passed to sed, which then simply protects the fol-
lowing character and disappears. Be sure to sanitize variables you plan to embed in sed scripts;
otherwise, you may get unpleasant surprises.

■Caution You will also see this idiom using echo, but some versions of echo strip backslashes. If you try
to use this to escape backslashes, or if your string happens to contain backslashes for any other reason, it
may not work portably with echo. You can find examples of how to work around this in libtool. Some of
them have a lot of backslashes.

Longer sed scripts can do truly amazing things. This makes a good time to review the
configure script code, which replaces $LINENO with the line number of a script:

sed '=' <$as_myself |
 sed '
 N
 s,$,- ,
 : loop
 s,^\(['$as_cr_digits']*\)\(.*\)[$]LINENO\([^'$as_cr_alnum'_]\),\1\2\1\3,
 t loop
 s,- $,,
 s,^['$as_cr_digits']*\n,,
 ' >$as_me.lineno

The first script prints the line number of each line, then prints the line. So the output at
the top of the script might be this:

10436ch11final 244 10/23/08 10:53:45 PM

CHAPTER 11 ■ MIX ING AND MATCHING 245

1
#!/bin/sh
2
Guess values for system- dependent variables and create Makefiles.

The body of the script is impressive, impressive enough, in fact, that the script gives credit
to the inventors (plural):

(Raja R Harinath suggested sed '=', and Paul Eggert wrote the
second 'sed' script. Blame Lee E. McMahon for sed's syntax. :-)

To understand what this script does, first have a look at what it comes out to when the
autoconf $as_cr values have been filled in. I’ve used character ranges for expressiveness;
the actual variables are completely spelled out.

N
s,$,-,
: loop
s,^\([0-9]*\)\(.*\)[$]LINENO\([^0-9A-Za-z_]\),\1\2\1\3,
t loop
s,-$,,
s,^[0-9]*\n,,

For each line, sed begins by merging it with the next line (the N command). A hyphen is
appended to the line. This is a trick reminiscent of the case ,$list, in trick introduced in
Chapter 2; the purpose is to ensure that $LINENO never occurs at the end of the line, so you can
always check the following character to see whether it could be part of an identifier.

Next, there is a small loop. The : command in sed introduces a label, which can be
branched to later. (Yes, sed has flow control.) Each iteration of the loop performs a replace-
ment. It replaces the text $LINENO (the dollar sign is in a character class, so it matches a literal
dollar sign rather than the end of the string) with an initial string of digits. This idiom is
extremely important to understand; it forms the basis of all sorts of things you can do with
regular expressions that you cannot do without them.

 The key is the use of grouped matches and the ability to refer back to them. (Since the
reference back is not part of the matching regular expression, this is not technically a backref-
erence; the same technique is available even in extended regular expression implementations
lacking backreference support.)

When this substitute pattern is reached, a typical input buffer might be this:

124
echo "configure: $LINENO: I am an example code fragment."

 Table 11-1 shows how this line matches the regular expression.

10436ch11final 245 10/23/08 10:53:45 PM

CHAPTER 11 ■ MIX ING AND MATCHING246

 Table 11‑1. Matching a Complicated Regular Expression

Pattern Text

^\([0-9]*\) 124

\(.*\) <newline>echo "configure:<space>

[$]LINENO $LINENO

\([^A-Za-z0-9_]\) :

The rest of the line is not matched; the regular expression matches only up through the
colon after $LINENO. Because there is a successful match, this is replaced. The first chunk
(containing the line number) is replaced by \1; since it was this text that formed \1, nothing
changes. The second part is replaced by \2; again, nothing changes. After \2, the script inserts
\1 again. Finally, \3 is replaced by itself. Because $LINENO was not in any group, it is not kept;
instead, it is replaced by \1. So, $LINENO is replaced by 124, and nothing else happens.

This idiom is important because it means that you can do a replacement operation where
you match on surrounding context that you do not wish to replace or modify; you can use
groups around the material you need to match on, and then use \N references to replace those
groups with their original text.

After the replacement, there is a branch; the t command branches back to the label if
any substitutions have been made. (This is necessary because the regular expression in ques-
tion can’t be repeated with the /g modifier.) Once all instances of $LINENO on a line have been
replaced, the t does not branch, and the script continues.

The last two commands remove the trailing hyphen from the line and remove the line
number from the beginning of the buffer. The N command joined the lines, preserving the
trailing new line; the last command replaces any initial string of digits followed by a new line,
leaving the original line (before the = script) with only the $LINENO changes.

You may be surprised to find that, to an experienced sed user, this is fairly obvious. It’s
a powerful language and worth learning.

Shell and awk
The awk language (named after its creators, Aho, Weinberger, and Kernighan) fills a number
of roles in shell scripts. While it is overkill for many simple substitution or pattern- matching
operations, it offers a great deal of flexibility in performing more elaborate computations and
generating interesting reports. In general, an awk script consists of a series of conditions and
associated actions; a condition determines which actions to perform, and actions do things
like calculating and printing values. Unlike sed, awk uses extended regular expressions. This
section introduces the basic features of awk and the many variants of awk you are likely to
encounter.

Why Use awk?
There are several key features awk provides that make it useful in shell scripts. The first, and
most obvious, is associative arrays (also called hashes). In awk, a variable can be an array in
which the indices are arbitrary strings rather than just numbers. This is an exceedingly flexible

10436ch11final 246 10/23/08 10:53:46 PM

CHAPTER 11 ■ MIX ING AND MATCHING 247

data type, allowing for the creation of lookup tables with keys, such as file names or other arbi-
trary strings. In many cases, it is desirable to accumulate data as you process input, and then
do something with the accumulated data only after all the input has been processed. Finally,
awk’s implicit splitting of input into fields and flexible operations on fields make it easy to
express a lot of common operations without a lot of additional setup work.

While sed scripts tend to be short and terse, often only a single short line, many awk scripts
run across multiple lines. Resist the temptation to cram a whole complicated awk script onto
a single line; go ahead and write a longer script over multiple lines.

In awk, strings should be quoted (using double quotes). An unquoted word is interpreted
as a variable, not a literal string. There is no shell- like distinction between assignment and
substitution; variable names are always given as plain words. Operators and literal numbers
need no quoting or special markers.

While processing each line, awk automatically splits it into fields; usually these are the
words of a line, delimited by whitespace, but you can specify a different delimiter. Fields are
numbered starting at 1, with field 0 referring to the whole line. To get the value of a field, you
use a dollar sign: $0 is the whole line, $1 is the first field, and so on. The built- in variable NF
holds the number of fields on the current line; you can refer to the last field as $NF. In general,
any variable can be used this way. This can be a bit of a shock for shell programmers, who
expect $var to be the value of var.

Like the shell, awk treats uninitialized variables as empty. However, awk can perform both
numeric and string operations; in a numeric context, an uninitialized variable is treated as
a zero. Strings of digits and numbers are mostly interchangeable; if you try to add a number to
a string of digits, the string is converted to a number and added. The transparent conversion
between strings and numbers, and the implicit initialization of fields, make awk a very friendly
language for writing reports. Associative arrays in particular are a wonderful feature. Many of
the behaviors you see in awk are also common in Perl scripts.

Basic Concepts
The central concept of awk is the rule, also called a pattern- action statement. A rule is a con-
dition (called the pattern) and a block of code (called the action). Conditions are just awk
expressions, typically referring to the fields of the current line. The expression /regex/ implic-
itly matches the extended regular expression regex against $0. If the expression is true for
a given input line, the block is executed for that line. An empty expression is always true. An
empty action is interpreted as print, which implicitly prints $0. The following fragment of awk
code prints the last word of each line of input containing the text hello:

/hello/ {
 print $NF
}

You can also perform matches on a particular field (the ~ operator is the explicit regex
match operator).

$1 ~ /hello/ {
 print "goodbye, " $2
}

10436ch11final 247 10/23/08 10:53:46 PM

CHAPTER 11 ■ MIX ING AND MATCHING248

The special conditions BEGIN and END define rules that are executed once only; BEGIN rules
before any input is read, and END rules after all input has been read. If you want to change the
special variables RS and FS (record separator and field separator), you must use a BEGIN rule.
Older code sometimes uses a BEGIN rule to insert shell variables into awk variables:

awk 'BEGIN { x='"$x"' } ...'

In “new awk” (1986 or so and later), you can use the -v option instead:

awk -v x="$x" '...'

Typically, END rules are used to provide summaries or reports after processing and inter-
preting a data file. The following example reads the output of an ls -l command:

/\.h$/ { h += $5 }
/\.c$/ { c += $5 }
END { print "C source: ", c; print "Headers: ", h }

Saved as a file named codesize, this could be used from the command line:

$ ls -l | awk -f codesize
C source: 98093
Headers: 14001

The lack of initialization and setup code is one of the reasons awk is popular.
If you provide two expressions separated by commas for a rule, the rule is considered to

match every line between one where the first expression matches and one where the second
expression matches. The lines matching the first and second expressions are included, as
shown in the following example (using the implicit print $0 action):

$ awk '/a/,/b/' << EOF
> 1
> a
> 2
> b
> 3
> EOF
a
2
b

Expressions can use variables defined by the user, not just the predefined variables and
the fields from the current line. Of particular interest to shell programmers, because the shell
has no native equivalent, are awk’s arrays. An array in awk is a collection of values indexed by
strings. You can use just about any expression as the index for an array. Members that did not
exist, like variables that did not exist, are treated as zero or empty. The following script prints
a list of the first words of its input line, with the count of occurrences of each word:

10436ch11final 248 10/23/08 10:53:46 PM

CHAPTER 11 ■ MIX ING AND MATCHING 249

$ awk '{ count[$1]++ }
> END { for (val in count) print val ": " count[val]; }' <<EOF
> example
> test
> example
> script
> awk
> program
> EOF
program: 1
script: 1
awk: 1
example: 2
test: 1

The order of output is not deterministic in this case; arrays are not stored in any particular
order in awk. You can, of course, use sort on your output. You can also do your own sorting of
output, although this is a bit more complicated (there is no built- in sort function).

 In addition to the basic operators, awk has functions. A function takes an argument list
(which may be empty for some functions) and returns a value. For instance, the tolower()
function returns its argument converted to lowercase:

$ echo "WHAT CAPS LOCK KEY?" | awk '{ print tolower($0) }'
what caps lock key?

Functions can be used anywhere in an expression; the following awk script prints only
input containing lowercase letters:

$0 != toupper($0)

Since the rule has no specified action, the implicit print is used. Note that the input is not
modified by the function call; normal values passed to functions are passed by value (meaning
that the function can change the copy passed to it, but not the original object). This is different
for arrays.

Furthermore, in addition to the built- in functions awk provides, you can define your own
functions. A user- defined function looks a little like a rule:

function greet(who) {
 print "Hello, " who
}

The parameters a function is declared with are local variables, assigned from any param-
eters passed to it when the function is called. Functions are declared at the top level of the awk
program, not inside rules. Functions in awk may be recursive; each function gets its own local
copy of the parameters.

10436ch11final 249 10/23/08 10:53:47 PM

CHAPTER 11 ■ MIX ING AND MATCHING250

Variants
The original awk language was quite popular, but it had some limitations. A newer version,
called nawk, was developed starting around 1985, and was the basis of the 1988 book The Awk
Programming Language (by Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger; Addi-
son Wesley). Since then, the GNU project has contributed another version (gawk), and Mike
Brennan introduced another version called mawk. In practice, nearly every system in use today
provides something roughly compatible with nawk, although some variants provide many
more features. There is also a small awk implementation available in busybox; it seems to be
 nawk- compatible. The most substantial upgrade of “new awk” is user- defined functions and is
essentially universally available now. However, a few systems provide a “traditional” awk, usu-
ally the same systems that provide a “traditional” shell.

If you are doing a great deal of awk programming, it makes sense to search around for the
best available awk implementation. In fact, even if a program is otherwise pure awk, it may be
better to embed it in a shell script that can do some initial command- line argument parsing
and pick a good awk interpreter. The following snippet looks for a good version of awk, prefer-
ring the faster and more powerful interpreters:

if test -z "$AWK"; then
 for variant in mawk gawk nawk awk
 do
 save_IFS=$IFS
 IFS=:
 for dir in $PATH
 do
 IFS=$save_IFS
 if test -x "$dir/$variant"; then
 AWK="$dir/$variant"
 break
 fi
 done
 IFS=$save_IFS
 test -n "$AWK" && break
 done
fi

As always, trust the user; a user is unlikely to specify $AWK without good reason. Combin-
ing this with command- line parsing, whether using getopts or something like the boilerplate
introduced in Chapter 6, allows you to write powerful and fairly portable awk scripts that
handle arguments much more gracefully than traditional awk. Note that there are two points
at which this script restores $IFS. The line at the top of the inner loop ensures that follow-
ing commands will execute with $IFS restored; the line after the loop ensures that $IFS gets
restored even if $PATH is empty and the loop never executes. In this particular case, neither of
these boundary conditions is likely to come up, but it is good to develop careful habits.

10436ch11final 250 10/23/08 10:53:47 PM

CHAPTER 11 ■ MIX ING AND MATCHING 251

Portability Concerns
Essentially every system since the late 80s has provided some variant of “new awk.” This sec-
tion covers the key portability notes among the new awk variants (including gawk and mawk).
Special thanks are due to the autoconf portability notes, which caught a number of quirks
I had never run into.

Do not put spaces in front of the parentheses in a function declaration; this is not por-
table. Function declarations in awk do need the function keyword, unlike shell functions:

function foo() { print "Please give your function a more creative name." }

The order of operations when iterating over an array is not deterministic; do not assume
it is any order (not “order of insertion” or “sorted,” for instance). It is not even guaranteed that
the order is the same on successive iterations! A single for (var in array) will hit every mem-
ber of the array, but there is no guarantee at all about order.

The last semicolon in a block is probably optional. Some people use them based on vague
recollections that there was an awk implementation somewhere that required them. (Shell {}
blocks definitely require a trailing semicolon or new line; awk may not.) I have omitted them
because I cannot find an awk implementation that needs them.

If an awk script is not supposed to process any lines of input, run it with /dev/null (or any
empty file) as input; some implementations may try to read input even when the POSIX spec
says they shouldn’t.

At least one awk mishandles anchors in alternating expressions, such as /^foo|bar/. If you
have to use such expressions, put them inside a group—for instance, /^(foo|.*bar)/.

Several implementations reset NF and the field variables before executing an END block;
if you need to refer to their last values, save them in regular user- defined variables.

Features you can use portably across new awk implementations include user- defined
functions: the ?: operator, the getline function, the exponentiation operator (^), and a num-
ber of string and math functions. Variable assignment using -v is universal in new awk, but not
found in traditional awk. If you are using autoconf, AC_PROG_AWK can find a working new awk on
every known system.

Only single- dimensional arrays are available in traditional awk. In fact, even in modern
awk, what is really available is not multidimensional arrays, but a convenient syntactic short-
hand for constructing array keys:

a[x,y,z] = 3

This syntax allows you to store data structures much like multidimensional arrays, but
you cannot easily extract “every array member in column 1.”

Embedding awk in Shell Scripts
There are two good pieces of advice to consider about embedding small awk scripts in your
shell scripts. The first is that you should always think about whether what you want to do can
be done better using tr, expr, cut, paste, or one of the other similar small and specialized tools
UNIX provides. Many tasks can be performed more efficiently by sort and uniq -c than they
can by an awk script building a table of values and printing them out. There is no need to use
awk to display fields of output when cut can do the same thing.

10436ch11final 251 10/23/08 10:53:48 PM

CHAPTER 11 ■ MIX ING AND MATCHING252

The second piece of advice is that maybe you should use tiny little awk scripts for a lot of
things like this anyway. It is true that a script often runs faster using smaller and more special-
ized utilities. However, it is often easier to write the correct code using awk, and this may be
more important when you are in a hurry. For instance, if you want the process IDs of every
process matching a pattern, it is easy to write:

$ ps ax | awk '/pattern/ { print $1 }'

However, there’s no reason you couldn’t do this just as well with grep and cut:

$ ps ax | grep -e 'pattern' | cut -f 1

Well, there’s one. This doesn’t work. By default, cut expects delimiters to be tabs, and ps
doesn’t normally use tabs, so the whole line is a single field. No problem! Just use spaces:

$ ps ax | grep -e 'pattern' | cut -f 1 -d ' '

Oops. Turns out this works only when the pid extends to the left of the display; the default
 right- aligned output puts spaces in front of shorter pids (on my system, those with 1–4 digit
numbers), and cut treats those as fields.

What this means to you: For a script where performance matters, it is probably worth
figuring out the right way to do something with other tools. Often they will be much faster.
However, in the fairly common case where you’re just writing something to get a result right
now, it is worth being comfortable enough with awk to emit one- line scripts quickly and easily.

Slightly longer scripts can generally be embedded using single quotes, but if your script
gets to be a screenful or full of text, it is worth considering making it a separate file and using
awk -f file. If you need to pass variables into the awk script, use the -v option. Even if you are
embedding the script, it may be easier to follow it if you use the -v option to pass in variables
instead of messing around with quotes.

utilities and Languages
Is sed a utility or a language? Really, it is both. One of the sources of the flexibility of many
UNIX utilities is that they have substantial expressive power, and indeed, often implement
complete (if simplistic) languages. There are programming languages whose expression pars-
ers are not as flexible as those used by find or test. The downside of this is that, to program
the shell effectively, you have to have at least basic familiarity with a handful of smaller lan-
guages that are used for particular purposes.

10436ch11final 252 10/23/08 10:53:48 PM

CHAPTER 11 ■ MIX ING AND MATCHING 253

Having iT boTH WayS: aPPLESCRiPT

AppleScript is hardly portable, but it offers an excellent example of the interesting case of a language that
is both easy to embed in shell scripts and easy to embed shell scripts in. Shell scripts on an OS X system
can run chunks of AppleScript code using the osascript command; AppleScripts can spawn shell scripts
using the do shell script language command. Because many Mac OS applications can be controlled
from AppleScript, but many common UNIX shell tasks are very difficult from AppleScript, this substantially
enhances the functional range of both languages. If you use a Mac, you should make a point of learning both
languages.

Because do shell script uses the shell (always /bin/sh, which is bash on current systems) to
parse commands, shell commands run from AppleScript are subject to the full range of command parsing,
substitutions, and so on. Quoting AppleScript variables for the shell can be done using the quoted form of
command. Note that it can be a bit disconcerting to switch back and forth between AppleScript's astounding
verbosity and the shell's surprising terseness.

You can also pass a script in on standard input to the osascript utility, either by default (if there are
no file name arguments and no -e options) or by explicitly naming - as the script file. This allows the use of
here documents in the shell to contain nicely indented and expressive AppleScript scripts.

AppleScript is fairly similar to the HyperTalk language used in HyperCard, and thus somewhat similar to
Runtime Revolution, a third- party scripting language targeting Mac, Windows, and Linux systems. In Runtime
Revolution, you can use shell command substitution using the syntax put the shell of (command)
into variable.

In the end, the shell is just another utility. It is an extremely powerful one with a complex
(sometimes regrettably so) command language, which uses other utilities, and even other
programming languages, as its building blocks. You can develop new utilities using existing
utilities and new programs relying on these new utilities. For many tasks, the shell’s perfor-
mance weaknesses have long since ceased to be a significant weakness on modern systems;
many shell scripts operate many times faster than their human users can type.

Used carefully, with a bit of attention to detail and planning, the shell allows for extremely
rapid development of programs with unusually high portability across a broad range of
systems.

What’s next?
The appendices. By kind permission of The Open Group, this book includes the specification
for the POSIX shell; while some of the features described are not perfectly portable (yet. . .), the
POSIX shell spec offers a clear description of many core shell features.

Beyond that, what’s next is up to you. I recommend making a point of reading existing
shell scripts; you may find a number of interesting idioms in distributions like shtool (a col-
lection of small but very useful and highly portable shell scripts). When looking at programs
you’ve never used, check to see whether they might be shell scripts; of the 404 commands in
/usr/bin on one of my home systems, 32 are shell scripts. Reading a script you’ve never seen
before can be informative.

10436ch11final 253 10/23/08 10:53:48 PM

CHAPTER 11 ■ MIX ING AND MATCHING254

If you want to master the shell, read lots of scripts and write lots of scripts. Don’t settle for
merely being able to guess what a script does; understand it. Find out what other programs it
uses, and find out what they do. Automate aggressively. Feel free to write something that just
automates part of a task; it’s a great way to get started. You may be surprised at how easy it
is to fill in the rest. About halfway through writing this book, I decided to automate “just the
easy part” of a task which usually took me about three or four hours. Six hours later, I had it all
automated.

Test your code on multiple systems and with multiple shells. You will learn a lot by doing
this, and it will save you a lot of trouble when you unexpectedly have to target a new machine.
I say when, rather than if, because personal experience has taught me that it is so.

10436ch11final 254 10/23/08 10:53:49 PM

A p p e n d i x A

The Shell Command Language

The POSIX shell language spec is full of things you probably never knew about the shell.
Unfortunately, many of them are not true of historic shells; if they were, this would have been
a very short book.

There are a number of features formally specified by POSIX, which this book has
described as unportable; not every shell complies with POSIX. You may be more disturbed
to discover that there are a number of features that this book has described as portable, but
which POSIX does not specify. The most noticeable example is the #! script header. Don’t
worry—while such features may not be portable to every POSIX machine, they are quite con-
sistently available on anything that looks like, or even smells a little like, UNIX.

In general, where the POSIX specification has terminology, I’ve deferred to their choice.
The one noticeable gap is the term expansion. I use the term substitution to refer to the
replacement of variable expressions with variable values. The POSIX specification calls it
expansion (except for commands, which they say are substituted). There is no semantic differ-
ence; I just like the term substitution better.

nNote All external documents referenced in this appendix are available at www.opengroup.org.

2. Shell Command Language
This chapter contains the definition of the Shell Command Language.

2.1 Shell Introduction
The shell is a command language interpreter. This chapter describes the syntax of that com-
mand language as it is used by the sh utility and the system() and popen() functions defined in
the System Interfaces volume of IEEE Std 1003.1- 2001.

The shell operates according to the following general overview of operations. The specific
details are included in the cited sections of this chapter.

255

10436appAfinal 255 10/23/08 10:02:32 PM

http://www.opengroup.org

Appendix A n THe SHeLL COMMAnd LAnGUAGe256256

 1. The shell reads its input from a file (see sh), from the -c option or from the system() and
popen() functions defined in the System Interfaces volume of IEEE Std 1003.1- 2001. If
the first line of a file of shell commands starts with the characters “#!”, the results are
unspecified.

 2. The shell breaks the input into tokens: words and operators; see Token Recognition.

 3. The shell parses the input into simple commands (see Simple Commands) and com-
pound commands (see Compound Commands).

 4. The shell performs various expansions (separately) on different parts of each com-
mand, resulting in a list of pathnames and fields to be treated as a command and
arguments; see Word Expansions.

 5. The shell performs redirection (see Redirection) and removes redirection operators
and their operands from the parameter list.

 6. The shell executes a function (see Function Definition Command), built- in (see Spe-
cial Built- In Utilities), executable file, or script, giving the names of the arguments as
positional parameters numbered 1 to n, and the name of the command (or in the case
of a function within a script, the name of the script) as the positional parameter num-
bered 0 (see Command Search and Execution).

 7. The shell optionally waits for the command to complete and collects the exit status (see
Exit Status for Commands).

2.2 Quoting
Quoting is used to remove the special meaning of certain characters or words to the
shell. Quoting can be used to preserve the literal meaning of the special characters in
the next paragraph, prevent reserved words from being recognized as such, and prevent
parameter expansion and command substitution within here- document processing (see
 Here- Document).

The application shall quote the following characters if they are to represent themselves:

| & ; < > () $ ` \ " ' <space> <tab> <newline>

and the following may need to be quoted under certain circumstances. That is, these char-
acters may be special depending on conditions described elsewhere in this volume of IEEE Std
 1003.1- 2001:

* ? [# ˜ = %

The various quoting mechanisms are the escape character, single- quotes, and
 double- quotes. The here- document represents another form of quoting; see Here- Document.

2.2.1 escape Character (Backslash)
A backslash that is not quoted shall preserve the literal value of the following character, with
the exception of a <newline>. If a <newline> follows the backslash, the shell shall interpret
this as line continuation. The backslash and <newline>s shall be removed before splitting the

10436appAfinal 256 10/23/08 10:02:32 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 257257

input into tokens. Since the escaped <newline> is removed entirely from the input and is not
replaced by any white space, it cannot serve as a token separator.

2.2.2 Single- Quotes
Enclosing characters in single- quotes ('') shall preserve the literal value of each character
within the single- quotes. A single- quote cannot occur within single- quotes.

2.2.3 double- Quotes
Enclosing characters in double- quotes ("") shall preserve the literal value of all characters
within the double- quotes, with the exception of the characters dollar sign, backquote, and
backslash, as follows:

$

The dollar sign shall retain its special meaning introducing parameter expansion (see
Parameter Expansion), a form of command substitution (see Command Substitution),
and arithmetic expansion (see Arithmetic Expansion).

The input characters within the quoted string that are also enclosed between “$(” and the
matching ‘)’ shall not be affected by the double- quotes, but rather shall define that com-
mand whose output replaces the “$(...)” when the word is expanded. The tokenizing
rules in Token Recognition, not including the alias substitutions in Alias Substitution,
shall be applied recursively to find the matching ‘)’.

Within the string of characters from an enclosed “${” to the matching ‘}’, an even number
of unescaped double- quotes or single- quotes, if any, shall occur. A preceding backslash
character shall be used to escape a literal ‘{’ or ‘}’. The rule in Parameter Expansion shall
be used to determine the matching ‘}’.

`

The backquote shall retain its special meaning introducing the other form of command
substitution (see Command Substitution). The portion of the quoted string from the
initial backquote and the characters up to the next backquote that is not preceded by
a backslash, having escape characters removed, defines that command whose output
replaces “`...`” when the word is expanded. Either of the following cases produces unde-
fined results:

	 •	 A		single-	quoted	or		double-	quoted	string	that	begins,	but	does	not	end,	within	the	
“`...`” sequence

	 •	 A	“`...`” sequence that begins, but does not end, within the same double- quoted
string

\

The backslash shall retain its special meaning as an escape character (see Escape Charac-
ter (Backslash)) only when followed by one of the following characters when considered
special:

$ ` " \ <newline>

10436appAfinal 257 10/23/08 10:02:33 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe258

The application shall ensure that a double- quote is preceded by a backslash to be
included within double- quotes. The parameter ‘@’ has special meaning inside double- quotes
and is described in Special Parameters.

2.3 Token Recognition
The shell shall read its input in terms of lines from a file, from a terminal in the case of an
interactive shell, or from a string in the case of sh -c or system(). The input lines can be of
unlimited length. These lines shall be parsed using two major modes: ordinary token recogni-
tion and processing of here- documents.

When an io_here token has been recognized by the grammar (see Shell Grammar), one or
more of the subsequent lines immediately following the next NEWLINE token form the body
of one or more here- documents and shall be parsed according to the rules of Here- Document.

When it is not processing an io_here, the shell shall break its input into tokens by apply-
ing the first applicable rule below to the next character in its input. The token shall be from the
current position in the input until a token is delimited according to one of the rules below; the
characters forming the token are exactly those in the input, including any quoting characters.
If it is indicated that a token is delimited, and no characters have been included in a token,
processing shall continue until an actual token is delimited.

 1. If the end of input is recognized, the current token shall be delimited. If there is no cur-
rent token, the end-of- input indicator shall be returned as the token.

 2. If the previous character was used as part of an operator and the current character is
not quoted and can be used with the current characters to form an operator, it shall be
used as part of that (operator) token.

 3. If the previous character was used as part of an operator and the current character can-
not be used with the current characters to form an operator, the operator containing
the previous character shall be delimited.

 4. If the current character is backslash, single- quote, or double- quote (‘\’, '", or ')' and
it is not quoted, it shall affect quoting for subsequent characters up to the end of the
quoted text. The rules for quoting are as described in Quoting. During token recogni-
tion no substitutions shall be actually performed, and the result token shall contain
exactly the characters that appear in the input (except for <newline> joining), unmodi-
fied, including any embedded or enclosing quotes or substitution operators, between
the quote mark and the end of the quoted text. The token shall not be delimited by the
end of the quoted field.

 5. If the current character is an unquoted ‘$’ or ‘`’, the shell shall identify the start of
any candidates for parameter expansion (Parameter Expansion), command substitu-
tion (Command Substitution), or arithmetic expansion (Arithmetic Expansion) from
their introductory unquoted character sequences: ‘$’ or “${”, “$(” or ‘`’, and “$((”,
respectively. The shell shall read sufficient input to determine the end of the unit to
be expanded (as explained in the cited sections). While processing the characters, if
instances of expansions or quoting are found nested within the substitution, the shell
shall recursively process them in the manner specified for the construct that is found.

10436appAfinal 258 10/23/08 10:02:33 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 259

The characters found from the beginning of the substitution to its end, allowing for any
recursion necessary to recognize embedded constructs, shall be included unmodified
in the result token, including any embedded or enclosing substitution operators or
quotes. The token shall not be delimited by the end of the substitution.

 6. If the current character is not quoted and can be used as the first character of a new
operator, the current token (if any) shall be delimited. The current character shall be
used as the beginning of the next (operator) token.

 7. If the current character is an unquoted <newline>, the current token shall be delimited.

 8. If the current character is an unquoted <blank>, any token containing the previous
character is delimited and the current character shall be discarded.

 9. If the previous character was part of a word, the current character shall be appended to
that word.

 10. If the current character is a ‘#’, it and all subsequent characters up to, but excluding,
the next <newline> shall be discarded as a comment. The <newline> that ends the line
is not considered part of the comment.

 11. The current character is used as the start of a new word.

Once a token is delimited, it is categorized as required by the grammar in Shell Grammar.

2.3.1 Alias Substitution
The processing of aliases shall be supported on all XSI- conformant systems or if the system
supports the User Portability Utilities option (and the rest of this section is not further marked
for these options).

After a token has been delimited, but before applying the grammatical rules in Shell
Grammar, a resulting word that is identified to be the command name word of a simple com-
mand shall be examined to determine whether it is an unquoted, valid alias name. However,
reserved words in correct grammatical context shall not be candidates for alias substitution.
A valid alias name (see the Base Definitions volume of IEEE Std 1003.1- 2001, Section 3.10, Alias
Name) shall be one that has been defined by the alias utility and not subsequently undefined
using unalias. Implementations also may provide predefined valid aliases that are in effect
when the shell is invoked. To prevent infinite loops in recursive aliasing, if the shell is not cur-
rently processing an alias of the same name, the word shall be replaced by the value of the
alias; otherwise, it shall not be replaced.

If the value of the alias replacing the word ends in a <blank>, the shell shall check the next
command word for alias substitution; this process shall continue until a word is found that is
not a valid alias or an alias value does not end in a <blank>.

When used as specified by this volume of IEEE Std 1003.1- 2001, alias definitions shall
not be inherited by separate invocations of the shell or by the utility execution environments
invoked by the shell; see Shell Execution Environment.

10436appAfinal 259 10/23/08 10:02:33 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe260

2.4 Reserved Words
Reserved words are words that have special meaning to the shell; see Shell Commands. The
following words shall be recognized as reserved words:

! do esac in
{ done fi then
} elif for until
case else if while

This recognition shall only occur when none of the characters is quoted and when the
word is used as:

	 •	 The	first	word	of	a	command

	 •	 The	first	word	following	one	of	the	reserved	words	other	than	case, for, or in

	 •	 The	third	word	in	a	case command (only in is valid in this case)

	 •	 The	third	word	in	a	for command (only in and do are valid in this case)

See the grammar in Shell Grammar.
The following words may be recognized as reserved words on some implementations

(when none of the characters are quoted), causing unspecified results:

[[

]]

function

select

Words that are the concatenation of a name and a colon (‘:’) are reserved; their use pro-
duces unspecified results.

2.5 Parameters and Variables
A parameter can be denoted by a name, a number, or one of the special characters listed in
Special Parameters. A variable is a parameter denoted by a name.

A parameter is set if it has an assigned value (null is a valid value). Once a variable is set, it
can only be unset by using the unset special built- in command.

2.5.1 positional parameters
A positional parameter is a parameter denoted by the decimal value represented by one or
more digits, other than the single digit 0. The digits denoting the positional parameters shall
always be interpreted as a decimal value, even if there is a leading zero. When a positional
parameter with more than one digit is specified, the application shall enclose the digits in
braces (see Parameter Expansion). Positional parameters are initially assigned when the shell
is invoked (see sh), temporarily replaced when a shell function is invoked (see Function Defi-
nition Command), and can be reassigned with the set special built- in command.

10436appAfinal 260 10/23/08 10:02:33 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 261

2.5.2 Special parameters
Listed below are the special parameters and the values to which they shall expand. Only the
values of the special parameters are listed; see Word Expansions for a detailed summary of all
the stages involved in expanding words.

@

Expands to the positional parameters, starting from one. When the expansion occurs
within double- quotes, and where field splitting (see Field Splitting) is performed, each
positional parameter shall expand as a separate field, with the provision that the expan-
sion of the first parameter shall still be joined with the beginning part of the original word
(assuming that the expanded parameter was embedded within a word), and the expan-
sion of the last parameter shall still be joined with the last part of the original word. If
there are no positional parameters, the expansion of ‘@’ shall generate zero fields, even
when ‘@’ is double- quoted.

*

Expands to the positional parameters, starting from one. When the expansion occurs
within a double- quoted string (see Double- Quotes), it shall expand to a single field with
the value of each parameter separated by the first character of the IFS variable, or by
a <space> if IFS is unset. If IFS is set to a null string, this is not equivalent to unsetting it; its
first character does not exist, so the parameter values are concatenated.

#

Expands to the decimal number of positional parameters. The command name (param-
eter 0) shall not be counted in the number given by ‘#’ because it is a special parameter,
not a positional parameter.

?

Expands to the decimal exit status of the most recent pipeline (see Pipelines).

-

(Hyphen.) Expands to the current option flags (the single- letter option names concat-
enated into a string) as specified on invocation, by the set special built- in command, or
implicitly by the shell.

$

Expands to the decimal process ID of the invoked shell. In a subshell (see Shell Execution
Environment), ‘$’ shall expand to the same value as that of the current shell.

!

Expands to the decimal process ID of the most recent background command (see Lists)
executed from the current shell. (For example, background commands executed from
subshells do not affect the value of “$!” in the current shell environment.) For a pipeline,
the process ID is that of the last command in the pipeline.

10436appAfinal 261 10/23/08 10:02:34 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe262

0

(Zero.) Expands to the name of the shell or shell script. See sh for a detailed description of
how this name is derived.

See the description of the IFS variable in Shell Variables.

2.5.3 Shell Variables
Variables shall be initialized from the environment (as defined by the Base Definitions volume
of IEEE Std 1003.1- 2001, Chapter 8, Environment Variables and the exec function in the System
Interfaces volume of IEEE Std 1003.1- 2001) and can be given new values with variable assign-
ment commands. If a variable is initialized from the environment, it shall be marked for export
immediately; see the export special built- in. New variables can be defined and initialized with
variable assignments, with the read or getopts utilities, with the name parameter in a for loop,
with the ${ name= word} expansion, or with other mechanisms provided as implementation
extensions.

The following variables shall affect the execution of the shell:

ENV

The processing of the ENV shell variable shall be supported on all XSI- conformant sys-
tems or if the system supports the User Portability Utilities option.

This variable, when and only when an interactive shell is invoked, shall be subjected to
parameter expansion (see Parameter Expansion) by the shell and the resulting value shall
be used as a pathname of a file containing shell commands to execute in the current envi-
ronment. The file need not be executable. If the expanded value of ENV is not an absolute
pathname, the results are unspecified. ENV shall be ignored if the user’s real and effective
user IDs or real and effective group IDs are different.

HOME

The pathname of the user’s home directory. The contents of HOME are used in tilde
expansion (see Tilde Expansion).

IFS

(Input Field Separators.) A string treated as a list of characters that is used for field
splitting and to split lines into fields with the read command. If IFS is not set, the shell
shall behave as if the value of IFS is <space>, <tab>, and <newline>; see Field Splitting.
Implementations may ignore the value of IFS in the environment at the time the shell is
invoked, treating IFS as if it were not set.

LANG

Provide a default value for the internationalization variables that are unset or null. (See
the Base Definitions volume of IEEE Std 1003.1- 2001, Section 8.2, Internationalization
Variables for the precedence of internationalization variables used to determine the val-
ues of locale categories.)

10436appAfinal 262 10/23/08 10:02:34 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 263

LC_ALL

The value of this variable overrides the LC_* variables and LANG, as described in the Base
Definitions volume of IEEE Std 1003.1- 2001, Chapter 8, Environment Variables.

LC_COLLATE

Determine the behavior of range expressions, equivalence classes, and multi- character
collating elements within pattern matching.

LC_CTYPE

Determine the interpretation of sequences of bytes of text data as characters (for example,
 single- byte as opposed to multi- byte characters), which characters are defined as letters
(character class alpha) and <blank>s (character class blank), and the behavior of charac-
ter classes within pattern matching. Changing the value of LC_CTYPE after the shell has
started shall not affect the lexical processing of shell commands in the current shell execu-
tion environment or its subshells. Invoking a shell script or performing exec sh subjects
the new shell to the changes in LC_CTYPE .

LC_MESSAGES

Determine the language in which messages should be written.

LINENO

Set by the shell to a decimal number representing the current sequential line number
(numbered starting with 1) within a script or function before it executes each command. If
the user unsets or resets LINENO, the variable may lose its special meaning for the life of
the shell. If the shell is not currently executing a script or function, the value of LINENO is
unspecified. This volume of IEEE Std 1003.1- 2001 specifies the effects of the variable only
for systems supporting the User Portability Utilities option.

NLSPATH

Determine the location of message catalogs for the processing of LC_MESSAGES.

PATH

A string formatted as described in the Base Definitions volume of IEEE Std 1003.1- 2001,
Chapter 8, Environment Variables, used to effect command interpretation; see Command
Search and Execution.

PPID

Set by the shell to the decimal process ID of the process that invoked this shell. In a sub-
shell (see Shell Execution Environment), PPID shall be set to the same value as that of the
parent of the current shell. For example, echo $ PPID and (echo $ PPID) would produce
the same value. This volume of IEEE Std 1003.1- 2001 specifies the effects of the variable
only for systems supporting the User Portability Utilities option.

10436appAfinal 263 10/23/08 10:02:34 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe264

PS1

Each time an interactive shell is ready to read a command, the value of this variable shall
be subjected to parameter expansion and written to standard error. The default value
shall be “$ ”. For users who have specific additional implementation- defined privileges,
the default may be another, implementation- defined value. The shell shall replace each
instance of the character ‘!’ in PS1 with the history file number of the next command to be
typed. Escaping the ‘!’ with another ‘!’ (that is, “!!”) shall place the literal character ‘!’ in
the prompt. This volume of IEEE Std 1003.1- 2001 specifies the effects of the variable only
for systems supporting the User Portability Utilities option.

PS2

Each time the user enters a <newline> prior to completing a command line in an interac-
tive shell, the value of this variable shall be subjected to parameter expansion and written
to standard error. The default value is “> ”. This volume of IEEE Std 1003.1- 2001 specifies
the effects of the variable only for systems supporting the User Portability Utilities option.

PS4

When an execution trace (set -x) is being performed in an interactive shell, before each
line in the execution trace, the value of this variable shall be subjected to parameter
expansion and written to standard error. The default value is “+ ”. This volume of IEEE
Std 1003.1- 2001 specifies the effects of the variable only for systems supporting the User
Portability Utilities option.

PWD

Set by the shell to be an absolute pathname of the current working directory, containing
no components of type symbolic link, no components that are dot, and no components
that are dot- dot when the shell is initialized. If an application sets or unsets the value of
PWD, the behaviors of the cd and pwd utilities are unspecified.

2.6 Word Expansions
This section describes the various expansions that are performed on words. Not all expansions
are performed on every word, as explained in the following sections.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions,
and quote removals that occur within a single word expand to a single field. It is only field
splitting or pathname expansion that can create multiple fields from a single word. The single
exception to this rule is the expansion of the special parameter ‘@’ within double- quotes, as
described in Special Parameters.

The order of word expansion shall be as follows:

 1. Tilde expansion (see Tilde Expansion), parameter expansion (see Parameter Expan-
sion), command substitution (see Command Substitution), and arithmetic expansion
(see Arithmetic Expansion) shall be performed, beginning to end. See item 5 in Token
Recognition.

 2. Field splitting (see Field Splitting) shall be performed on the portions of the fields gen-
erated by step 1, unless IFS is null.

10436appAfinal 264 10/23/08 10:02:35 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 265

 3. Pathname expansion (see Pathname Expansion) shall be performed, unless set -f is in
effect.

 4. Quote removal (see Quote Removal) shall always be performed last.

The expansions described in this section shall occur in the same shell environment as that
in which the command is executed.

If the complete expansion appropriate for a word results in an empty field, that empty
field shall be deleted from the list of fields that form the completely expanded command,
unless the original word contained single- quote or double- quote characters.

The ‘$’ character is used to introduce parameter expansion, command substitution, or
arithmetic evaluation. If an unquoted ‘$’ is followed by a character that is either not numeric,
the name of one of the special parameters (see Special Parameters), a valid first character of
a variable name, a left curly brace (‘{’) or a left parenthesis, the result is unspecified.

2.6.1 Tilde expansion
A “tilde- prefix” consists of an unquoted tilde character at the beginning of a word, followed
by all of the characters preceding the first unquoted slash in the word, or all the characters
in the word if there is no slash. In an assignment (see the Base Definitions volume of IEEE
Std 1003.1- 2001, Section 4.21, Variable Assignment), multiple tilde- prefixes can be used: at
the beginning of the word (that is, following the equal sign of the assignment), following any
unquoted colon, or both. A tilde- prefix in an assignment is terminated by the first unquoted
colon or slash. If none of the characters in the tilde- prefix are quoted, the characters in the
 tilde- prefix following the tilde are treated as a possible login name from the user database.
A portable login name cannot contain characters outside the set given in the description of
the LOGNAME environment variable in the Base Definitions volume of IEEE Std 1003.1- 2001,
Section 8.3, Other Environment Variables. If the login name is null (that is, the tilde- prefix con-
tains only the tilde), the tilde- prefix is replaced by the value of the variable HOME. If HOME is
unset, the results are unspecified. Otherwise, the tilde- prefix shall be replaced by a pathname
of the initial working directory associated with the login name obtained using the getpwnam()
function as defined in the System Interfaces volume of IEEE Std 1003.1- 2001. If the system
does not recognize the login name, the results are undefined.

2.6.2 parameter expansion
The format for parameter expansion is as follows:

${expression}

where expression consists of all characters until the matching ‘}’. Any ‘}’ escaped by
a backslash or within a quoted string, and characters in embedded arithmetic expansions,
command substitutions, and variable expansions, shall not be examined in determining the
matching ‘}’.

The simplest form for parameter expansion is:

${parameter}

The value, if any, of parameter shall be substituted.

10436appAfinal 265 10/23/08 10:02:35 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe266

The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is followed by a character
that could be interpreted as part of the name. The matching closing brace shall be determined
by counting brace levels, skipping over enclosed quoted strings, and command substitutions.

If the parameter name or symbol is not enclosed in braces, the expansion shall use the
longest valid name (see the Base Definitions volume of IEEE Std 1003.1- 2001, Section 3.230,
Name), whether or not the symbol represented by that name exists.

If a parameter expansion occurs inside double- quotes:

	 •	 Pathname	expansion	shall	not	be	performed	on	the	results	of	the	expansion.

	 •	 Field	splitting	shall	not	be	performed	on	the	results	of	the	expansion,	with	the	excep-
tion of ‘@’ ; see Special Parameters.

In addition, a parameter expansion can be modified by using one of the following formats.
In each case that a value of word is needed (based on the state of parameter, as described
below), word shall be subjected to tilde expansion, parameter expansion, command substi-
tution, and arithmetic expansion. If word is not needed, it shall not be expanded. The '}'
character that delimits the following parameter expansion modifications shall be determined
as described previously in this section and in Double- Quotes. (For example, ${ foo-bar}xyz}
would result in the expansion of foo followed by the string xyz} if foo is set, else the string
“barxyz}”).

${parameter:-word}

Use Default Values. If parameter is unset or null, the expansion of word shall be substi-
tuted; otherwise, the value of parameter shall be substituted.

${parameter:=word}

Assign Default Values. If parameter is unset or null, the expansion of word shall be
assigned to parameter. In all cases, the final value of parameter shall be substituted. Only
variables, not positional parameters or special parameters, can be assigned in this way.

${parameter:?[word]}

Indicate Error if Null or Unset. If parameter is unset or null, the expansion of word (or
a message indicating it is unset if word is omitted) shall be written to standard error and
the shell exits with a non- zero exit status. Otherwise, the value of parameter shall be sub-
stituted. An interactive shell need not exit.

${parameter:+word}

Use Alternative Value. If parameter is unset or null, null shall be substituted; otherwise,
the expansion of word shall be substituted.

In the parameter expansions shown previously, use of the colon in the format shall result
in a test for a parameter that is unset or null; omission of the colon shall result in a test for
a parameter that is only unset. The following table summarizes the effect of the colon:

10436appAfinal 266 10/23/08 10:02:35 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 267

 parameter parameter parameter

 Set and Not Null Set But Null Unset

${parameter:-word} substitute parameter substitute word substitute word

${parameter-word} substitute parameter substitute null substitute word

${parameter:=word} substitute parameter assign word assign word

${parameter=word} substitute parameter substitute null assign word

${parameter:?word} substitute parameter error, exit error, exit

${parameter?word} substitute parameter substitute null error, exit

${parameter:+word} substitute word substitute null substitute null

${parameter+word} substitute word substitute word substitute null

In all cases shown with “substitute”, the expression is replaced with the value shown.
In all cases shown with “assign”, parameter is assigned that value, which also replaces the
expression.

${#parameter}

String Length. The length in characters of the value of parameter shall be substituted. If
parameter is ‘*’ or ‘@’, the result of the expansion is unspecified.

The following four varieties of parameter expansion provide for substring process-
ing. In each case, pattern matching notation (see Pattern Matching Notation), rather than
regular expression notation, shall be used to evaluate the patterns. If parameter is ‘*’ or ‘@’,
the result of the expansion is unspecified. Enclosing the full parameter expansion string in
 double- quotes shall not cause the following four varieties of pattern characters to be quoted,
whereas quoting characters within the braces shall have this effect.

${parameter%word}

Remove Smallest Suffix Pattern. The word shall be expanded to produce a pattern. The
parameter expansion shall then result in parameter, with the smallest portion of the suffix
matched by the pattern deleted.

${parameter%%word}

Remove Largest Suffix Pattern. The word shall be expanded to produce a pattern. The
parameter expansion shall then result in parameter, with the largest portion of the suffix
matched by the pattern deleted.

${parameter#word}

Remove Smallest Prefix Pattern. The word shall be expanded to produce a pattern. The
parameter expansion shall then result in parameter, with the smallest portion of the prefix
matched by the pattern deleted.

${parameter##word}

Remove Largest Prefix Pattern. The word shall be expanded to produce a pattern. The
parameter expansion shall then result in parameter, with the largest portion of the prefix
matched by the pattern deleted.

10436appAfinal 267 10/23/08 10:02:36 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe268

The following sections are informative.

ExampLES

${parameter:-word}
In this example, ls is executed only if x is null or unset. (The $(ls) command substitution

notation is explained in Command Substitution.)

${x:-$(ls)}

${parameter:=word}

unset X
echo ${X:=abc}
abc

${parameter:?word}

unset posix
echo ${posix:?}
sh:posix:parameternullornotset

${parameter:+word}

set a b c
echo ${3:+posix}
posix

${#parameter}

HOME=/usr/posix
echo ${#HOME}
10

${parameter%word}

x=file.c
echo ${x%.c}.o
file.o

${parameter%%word}

x=posix/src/std
echo ${x%%/*}
posix

${parameter#word}

x=$HOME/src/cmd
echo ${x#$HOME}
/src/cmd

${parameter##word}

10436appAfinal 268 10/23/08 10:02:36 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 269

x=/one/two/three
echo ${x##*/}
three

The double- quoting of patterns is different depending on where the double- quotes are
placed:

"${x#*}"

The asterisk is a pattern character.

${x#"*"}

The literal asterisk is quoted and not special.
End of informative text.

2.6.3 Command Substitution
Command substitution allows the output of a command to be substituted in place of the
command name itself. Command substitution shall occur when the command is enclosed as
follows:

$(command)

or (backquoted version):

`command`

The shell shall expand the command substitution by executing command in a subshell
environment (see Shell Execution Environment) and replacing the command substitution
(the text of command plus the enclosing “$()” or backquotes) with the standard output of
the command, removing sequences of one or more <newline>s at the end of the substitution.
Embedded <newline>s before the end of the output shall not be removed; however, they may
be treated as field delimiters and eliminated during field splitting, depending on the value of
IFS and quoting that is in effect.

Within the backquoted style of command substitution, backslash shall retain its literal
meaning, except when followed by: ‘$’, ‘`’, or ‘\’ (dollar sign, backquote, backslash). The
search for the matching backquote shall be satisfied by the first backquote found without
a preceding backslash; during this search, if a non- escaped backquote is encountered within
a shell comment, a here- document, an embedded command substitution of the $(command)
form, or a quoted string, undefined results occur. A single- quoted or double- quoted string that
begins, but does not end, within the “`...`” sequence produces undefined results.

With the $(command) form, all characters following the open parenthesis to the matching
closing parenthesis constitute the command. Any valid shell script can be used for command,
except a script consisting solely of redirections which produces unspecified results.

The results of command substitution shall not be processed for further tilde expansion,
parameter expansion, command substitution, or arithmetic expansion. If a command sub-
stitution occurs inside double- quotes, field splitting and pathname expansion shall not be
performed on the results of the substitution.

Command substitution can be nested. To specify nesting within the backquoted version,
the application shall precede the inner backquotes with backslashes, for example:

10436appAfinal 269 10/23/08 10:02:36 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe270

\`command\`

If the command substitution consists of a single subshell, such as:

$((command))

a conforming application shall separate the “$(” and ‘(’ into two tokens (that is, separate
them with white space). This is required to avoid any ambiguities with arithmetic expansion.

2.6.4 Arithmetic expansion
Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and sub-
stituting its value. The format for arithmetic expansion shall be as follows:

$((expression))

The expression shall be treated as if it were in double- quotes, except that a double- quote
inside the expression is not treated specially. The shell shall expand all tokens in the expres-
sion for parameter expansion, command substitution, and quote removal.

Next, the shell shall treat this as an arithmetic expression and substitute the value of the
expression. The arithmetic expression shall be processed according to the rules given in Arith-
metic Precision and Operations, with the following exceptions:

	 •	 Only	signed	long	integer	arithmetic	is	required.

	 •	 Only	the		decimal-	constant,		octal-	constant,	and		hexadecimal-	constant	constants	speci-
fied in the ISO C standard, Section 6.4.4.1 are required to be recognized as constants.

	 •	 The	sizeof() operator and the prefix and postfix “++” and “-- ” operators are not
required.

	 •	 Selection,	iteration,	and	jump	statements	are	not	supported.

All changes to variables in an arithmetic expression shall be in effect after the arithmetic
expansion, as in the parameter expansion “${x=value}”.

If the shell variable x contains a value that forms a valid integer constant, then the arith-
metic expansions “$((x))” and “$(($x))” shall return the same value.

As an extension, the shell may recognize arithmetic expressions beyond those listed. The
shell may use a signed integer type with a rank larger than the rank of signed long. The shell
may use a real- floating type instead of signed long as long as it does not affect the results in
cases where there is no overflow. If the expression is invalid, the expansion fails and the shell
shall write a message to standard error indicating the failure.

The following sections are informative.

ExampLES

A simple example using arithmetic expansion:

repeat a command 100 times
x=100
while [$x -gt 0]
do

10436appAfinal 270 10/23/08 10:02:36 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 271

 command x=$(($x- 1))
done

End of informative text.

2.6.5 Field Splitting
After parameter expansion (Parameter Expansion), command substitution (Command Sub-
stitution), and arithmetic expansion (Arithmetic Expansion), the shell shall scan the results of
expansions and substitutions that did not occur in double- quotes for field splitting and mul-
tiple fields can result.

The shell shall treat each character of the IFS as a delimiter and use the delimiters to split
the results of parameter expansion and command substitution into fields.

 1. If the value of IFS is a <space>, <tab>, and <newline>, or if it is unset, any sequence of
<space>s, <tab>s, or <newline>s at the beginning or end of the input shall be ignored
and any sequence of those characters within the input shall delimit a field. For exam-
ple, the input:

<newline><space><tab>foo<tab><tab>bar<space>

 yields two fields, foo and bar.

 2. If the value of IFS is null, no field splitting shall be performed.

 3. Otherwise, the following rules shall be applied in sequence. The term “IFS white space”
is used to mean any sequence (zero or more instances) of white space characters
that are in the IFS value (for example, if IFS contains <space>/ <comma>/ <tab>, any
sequence of <space>s and <tab>s is considered IFS white space).

 a. IFS white space shall be ignored at the beginning and end of the input.

 b. Each occurrence in the input of an IFS character that is not IFS white space, along
with any adjacent IFS white space, shall delimit a field, as described previously.

 c. Non-zero-length IFS white space shall delimit a field.

2.6.6 pathname expansion
After field splitting, if set -f is not in effect, each field in the resulting command line shall be
expanded using the algorithm described in Pattern Matching Notation, qualified by the rules
in Patterns Used for Filename Expansion.

2.6.7 Quote Removal
The quote characters: ‘\’, '", and '' (backslash, single- quote, double- quote) that were present
in the original word shall be removed unless they have themselves been quoted.

2.7 Redirection
Redirection is used to open and close files for the current shell execution environment (see
Shell Execution Environment) or for any command. Redirection operators can be used

10436appAfinal 271 10/23/08 10:02:37 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe272

with numbers representing file descriptors (see the Base Definitions volume of IEEE Std
 1003.1- 2001, Section 3.165, File Descriptor) as described below.

The overall format used for redirection is:

[n]redir-op word

The number n is an optional decimal number designating the file descriptor number; the
application shall ensure it is delimited from any preceding text and immediately precede the
redirection operator redir- op. If n is quoted, the number shall not be recognized as part of the
redirection expression. For example:

echo \2>a

writes the character 2 into file a. If any part of redir- op is quoted, no redirection expres-
sion is recognized. For example:

echo 2\>a

writes the characters 2>a to standard output. The optional number, redirection operator,
and word shall not appear in the arguments provided to the command to be executed (if any).

Open files are represented by decimal numbers starting with zero. The largest possible
value is implementation- defined; however, all implementations shall support at least 0 to 9,
inclusive, for use by the application. These numbers are called “file descriptors”. The values
0, 1, and 2 have special meaning and conventional uses and are implied by certain redirec-
tion operations; they are referred to as standard input, standard output, and standard error,
respectively. Programs usually take their input from standard input, and write output on stan-
dard output. Error messages are usually written on standard error. The redirection operators
can be preceded by one or more digits (with no intervening <blank>s allowed) to designate the
file descriptor number.

If the redirection operator is “<<” or “<<- ”, the word that follows the redirection opera-
tor shall be subjected to quote removal; it is unspecified whether any of the other expansions
occur. For the other redirection operators, the word that follows the redirection operator
shall be subjected to tilde expansion, parameter expansion, command substitution, arithme-
tic expansion, and quote removal. Pathname expansion shall not be performed on the word
by a non- interactive shell; an interactive shell may perform it, but shall do so only when the
expansion would result in one word.

If more than one redirection operator is specified with a command, the order of evalua-
tion is from beginning to end.

A failure to open or create a file shall cause a redirection to fail.

2.7.1 Redirecting input
Input redirection shall cause the file whose name results from the expansion of word to be
opened for reading on the designated file descriptor, or standard input if the file descriptor is
not specified.

The general format for redirecting input is:

[n]<word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard input (file descriptor 0).

10436appAfinal 272 10/23/08 10:02:37 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 273

2.7.2 Redirecting Output
The two general formats for redirecting output are:

[n]>word
[n]>|word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection shall refer to standard output (file descriptor 1).

Output redirection using the ‘>’ format shall fail if the noclobber option is set (see the
description of set -C) and the file named by the expansion of word exists and is a regular file.
Otherwise, redirection using the ‘>’ or “>|” formats shall cause the file whose name results
from the expansion of word to be created and opened for output on the designated file
descriptor, or standard output if none is specified. If the file does not exist, it shall be created;
otherwise, it shall be truncated to be an empty file after being opened.

2.7.3 Appending Redirected Output
Appended output redirection shall cause the file whose name results from the expansion of
word to be opened for output on the designated file descriptor. The file is opened as if the
open() function as defined in the System Interfaces volume of IEEE Std 1003.1- 2001 was called
with the O_APPEND flag. If the file does not exist, it shall be created.

The general format for appending redirected output is as follows:

[n]>>word

where the optional n represents the file descriptor number. If the number is omitted, the
redirection refers to standard output (file descriptor 1).

2.7.4 Here- document
The redirection operators “<<” and “<<- ” both allow redirection of lines contained in a shell
input file, known as a “here- document”, to the input of a command.

The here- document shall be treated as a single word that begins after the next <newline>
and continues until there is a line containing only the delimiter and a <newline>, with no
<blank>s in between. Then the next here- document starts, if there is one. The format is as
follows:

[n]<<word
 here- document
delimiter

where the optional n represents the file descriptor number. If the number is omitted, the
 here- document refers to standard input (file descriptor 0).

If any character in word is quoted, the delimiter shall be formed by performing quote
removal on word, and the here- document lines shall not be expanded. Otherwise, the delim-
iter shall be the word itself.

If no characters in word are quoted, all lines of the here- document shall be expanded
for parameter expansion, command substitution, and arithmetic expansion. In this case, the
backslash in the input behaves as the backslash inside double- quotes (see Double- Quotes).

10436appAfinal 273 10/23/08 10:02:37 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe274

However, the double- quote character (‘"’) shall not be treated specially within
a here- document, except when the double- quote appears within “$()”, “``”, or “${}”.

If the redirection symbol is “<<- ”, all leading <tab>s shall be stripped from input lines and
the line containing the trailing delimiter. If more than one “<<” or “<<- ” operator is specified
on a line, the here- document associated with the first operator shall be supplied first by the
application and shall be read first by the shell.

The following sections are informative.

ExampLES

An example of a here- document follows:

cat <<eof1; cat <<eof2
Hi,
eof1
Helene.
eof2

End of informative text.

2.7.5 duplicating an input File descriptor
The redirection operator:

[n]<&word

shall duplicate one input file descriptor from another, or shall close one. If word evaluates
to one or more digits, the file descriptor denoted by n, or standard input if n is not specified,
shall be made to be a copy of the file descriptor denoted by word; if the digits in word do not
represent a file descriptor already open for input, a redirection error shall result; see Conse-
quences of Shell Errors. If word evaluates to ‘- ’, file descriptor n, or standard input if n is not
specified, shall be closed. Attempts to close a file descriptor that is not open shall not consti-
tute an error. If word evaluates to something else, the behavior is unspecified.

2.7.6 duplicating an Output File descriptor
The redirection operator:

[n]>&word

shall duplicate one output file descriptor from another, or shall close one. If word evalu-
ates to one or more digits, the file descriptor denoted by n, or standard output if n is not
specified, shall be made to be a copy of the file descriptor denoted by word; if the digits in
word do not represent a file descriptor already open for output, a redirection error shall result;
see Consequences of Shell Errors. If word evaluates to ‘- ’, file descriptor n, or standard output
if n is not specified, is closed. Attempts to close a file descriptor that is not open shall not con-
stitute an error. If word evaluates to something else, the behavior is unspecified.

10436appAfinal 274 10/23/08 10:02:38 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 275

2.7.7 Open File descriptors for Reading and Writing
The redirection operator:

[n]<>word

shall cause the file whose name is the expansion of word to be opened for both reading
and writing on the file descriptor denoted by n, or standard input if n is not specified. If the file
does not exist, it shall be created.

2.8 Exit Status and Errors

2.8.1 Consequences of Shell errors
For a non- interactive shell, an error condition encountered by a special built- in (see Special
 Built- In Utilities) or other type of utility shall cause the shell to write a diagnostic message to
standard error and exit as shown in the following table:

Error Special Built- In Other Utilities

Shell language syntax error Shall exit Shall exit

Utility syntax error (option or operand error) Shall exit Shall not exit

Redirection error Shall exit Shall not exit

Variable assignment error Shall exit Shall not exit

Expansion error Shall exit Shall exit

Command not found N/A May exit

Dot script not found Shall exit N/A

An expansion error is one that occurs when the shell expansions defined in Word
Expansions are carried out (for example, “${x!y}”, because ‘!’ is not a valid operator); an
implementation may treat these as syntax errors if it is able to detect them during tokeniza-
tion, rather than during expansion.

If any of the errors shown as “shall exit” or “(may) exit” occur in a subshell, the subshell
shall (respectively may) exit with a non- zero status, but the script containing the subshell shall
not exit because of the error.

In all of the cases shown in the table, an interactive shell shall write a diagnostic message
to standard error without exiting.

2.8.2 exit Status for Commands
Each command has an exit status that can influence the behavior of other shell commands.
The exit status of commands that are not utilities is documented in this section. The exit status
of the standard utilities is documented in their respective sections.

If a command is not found, the exit status shall be 127. If the command name is found, but
it is not an executable utility, the exit status shall be 126. Applications that invoke utilities with-
out using the shell should use these exit status values to report similar errors.

10436appAfinal 275 10/23/08 10:02:38 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe276

If a command fails during word expansion or redirection, its exit status shall be greater
than zero.

Internally, for purposes of deciding whether a command exits with a non- zero exit status,
the shell shall recognize the entire status value retrieved for the command by the equivalent of
the wait() function WEXITSTATUS macro (as defined in the System Interfaces volume of IEEE
Std 1003.1- 2001). When reporting the exit status with the special parameter ‘?’, the shell shall
report the full eight bits of exit status available. The exit status of a command that terminated
because it received a signal shall be reported as greater than 128.

2.9 Shell Commands
This section describes the basic structure of shell commands. The following command
descriptions each describe a format of the command that is only used to aid the reader in
recognizing the command type, and does not formally represent the syntax. Each description
discusses the semantics of the command; for a formal definition of the command language,
consult Shell Grammar.

A command is one of the following:

	 •	 Simple	command	(see	Simple	Commands)

	 •	 Pipeline	(see	Pipelines)

	 •	 List		compound-	list	(see	Lists)

	 •	 Compound	command	(see	Compound	Commands)

	 •	 Function	definition	(see	Function	Definition	Command)

Unless otherwise stated, the exit status of a command shall be that of the last simple
command executed by the command. There shall be no limit on the size of any shell com-
mand other than that imposed by the underlying system (memory constraints, {ARG_MAX},
and so on).

2.9.1 Simple Commands
A “simple command” is a sequence of optional variable assignments and redirections, in any
sequence, optionally followed by words and redirections, terminated by a control operator.

When a given simple command is required to be executed (that is, when any conditional
construct such as an AND- OR list or a case statement has not bypassed the simple command),
the following expansions, assignments, and redirections shall all be performed from the begin-
ning of the command text to the end:

 1. The words that are recognized as variable assignments or redirections according to
Shell Grammar Rules are saved for processing in steps 3 and 4.

 2. The words that are not variable assignments or redirections shall be expanded. If any
fields remain following their expansion, the first field shall be considered the command
name and remaining fields are the arguments for the command.

10436appAfinal 276 10/23/08 10:02:38 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 277

 3. Redirections shall be performed as described in Redirection.

 4. Each variable assignment shall be expanded for tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal prior to assigning the
value.

In the preceding list, the order of steps 3 and 4 may be reversed for the processing of spe-
cial built- in utilities; see Special Built- In Utilities.

If no command name results, variable assignments shall affect the current execution
environment. Otherwise, the variable assignments shall be exported for the execution envi-
ronment of the command and shall not affect the current execution environment (except for
special built- ins). If any of the variable assignments attempt to assign a value to a read- only
variable, a variable assignment error shall occur. See Consequences of Shell Errors for the con-
sequences of these errors.

If there is no command name, any redirections shall be performed in a subshell environ-
ment; it is unspecified whether this subshell environment is the same one as that used for
a command substitution within the command. (To affect the current execution environment,
see the exec() special built- in.) If any of the redirections performed in the current shell execu-
tion environment fail, the command shall immediately fail with an exit status greater than
zero, and the shell shall write an error message indicating the failure. See Consequences of
Shell Errors for the consequences of these failures on interactive and non- interactive shells.

If there is a command name, execution shall continue as described in Command Search
and Execution. If there is no command name, but the command contained a command sub-
stitution, the command shall complete with the exit status of the last command substitution
performed. Otherwise, the command shall complete with a zero exit status.

Command Search and Execution

If a simple command results in a command name and an optional list of arguments, the fol-
lowing actions shall be performed:

 1. If the command name does not contain any slashes, the first successful step in the fol-
lowing sequence shall occur:

 a. If the command name matches the name of a special built- in utility, that special
 built- in utility shall be invoked.

 b. If the command name matches the name of a function known to this shell, the
function shall be invoked as described in Function Definition Command. If the
implementation has provided a standard utility in the form of a function, it shall
not be recognized at this point. It shall be invoked in conjunction with the path
search in step 1d.

 c. If the command name matches the name of a utility listed in the following table,
that utility shall be invoked.

10436appAfinal 277 10/23/08 10:02:39 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe278

Alias false jobs read wait
bg fc kill true
 cd fg newgrp umask
command getopts pwd unalias

 d. Otherwise, the command shall be searched for using the PATH environment
variable as described in the Base Definitions volume of IEEE Std 1003.1- 2001,
Chapter 8, Environment Variables:

i. If the search is successful:

a. If the system has implemented the utility as a regular built- in or as a shell
function, it shall be invoked at this point in the path search.

b. Otherwise, the shell executes the utility in a separate utility environment
(see Shell Execution Environment) with actions equivalent to calling the
execve() function as defined in the System Interfaces volume of IEEE Std
 1003.1- 2001 with the path argument set to the pathname resulting from the
search, arg0 set to the command name, and the remaining arguments set
to the operands, if any.

. If the execve() function fails due to an error equivalent to the [ENOEXEC]
error defined in the System Interfaces volume of IEEE Std 1003.1- 2001,
the shell shall execute a command equivalent to having a shell invoked
with the pathname resulting from the search as its first operand, with any
remaining arguments passed to the new shell, except that the value of “$0”
in the new shell may be set to the command name. If the executable file is
not a text file, the shell may bypass this command execution. In this case, it
shall write an error message, and shall return an exit status of 126.

ii. Once a utility has been searched for and found (either as a result of this specific
search or as part of an unspecified shell start- up activity), an implementation
may remember its location and need not search for the utility again unless the
PATH variable has been the subject of an assignment. If the remembered loca-
tion fails for a subsequent invocation, the shell shall repeat the search to find
the new location for the utility, if any.

iii. If the search is unsuccessful, the command shall fail with an exit status of 127
and the shell shall write an error message.

 2. If the command name contains at least one slash, the shell shall execute the utility in
a separate utility environment with actions equivalent to calling the execve() function
defined in the System Interfaces volume of IEEE Std 1003.1- 2001 with the path and
arg0 arguments set to the command name, and the remaining arguments set to the
operands, if any.

...... If the execve() function fails due to an error equivalent to the [ENOEXEC] error, the
shell shall execute a command equivalent to having a shell invoked with the command
name as its first operand, with any remaining arguments passed to the new shell. If the
executable file is not a text file, the shell may bypass this command execution. In this
case, it shall write an error message and shall return an exit status of 126.

10436appAfinal 278 10/23/08 10:02:39 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 279

2.9.2 pipelines
A pipeline is a sequence of one or more commands separated by the control operator ‘|’. The
standard output of all but the last command shall be connected to the standard input of the
next command.

The format for a pipeline is:

[!] command1 [| command2 ...]

The standard output of command1 shall be connected to the standard input of
command2. The standard input, standard output, or both of a command shall be considered
to be assigned by the pipeline before any redirection specified by redirection operators that
are part of the command (see Redirection).

If the pipeline is not in the background (see Asynchronous Lists), the shell shall wait for
the last command specified in the pipeline to complete, and may also wait for all commands
to complete.

Exit Status

If the reserved word ! does not precede the pipeline, the exit status shall be the exit status of
the last command specified in the pipeline. Otherwise, the exit status shall be the logical NOT
of the exit status of the last command. That is, if the last command returns zero, the exit status
shall be 1; if the last command returns greater than zero, the exit status shall be zero.

2.9.3 Lists
An AND- OR list is a sequence of one or more pipelines separated by the operators “&&” and
“||”.

A list is a sequence of one or more AND- OR lists separated by the operators ‘;’ and ‘&’ and
optionally terminated by ‘;’, ‘&’, or <newline>.

The operators “&&” and “||” shall have equal precedence and shall be evaluated with
left associativity. For example, both of the following commands write solely bar to standard
output:

false && echo foo || echo bar
true || echo foo && echo bar

A ‘;’ or <newline> terminator shall cause the preceding AND- OR list to be executed
sequentially; an ‘&’ shall cause asynchronous execution of the preceding AND- OR list.

The term “compound- list” is derived from the grammar in Shell Grammar; it is equivalent
to a sequence of lists, separated by <newline>s, that can be preceded or followed by an arbi-
trary number of <newline>s.

10436appAfinal 279 10/23/08 10:02:39 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe280

The following sections are informative.

ExampLES

The following is an example that illustrates <newline>s in compound- lists:

while
 # a couple of <newline>s

 # a list
 date && who || ls; cat file
 # a couple of <newline>s

 # another list
 wc file > output & true

do
 # 2 lists
 ls
 cat file
done

End of informative text.

Asynchronous Lists

If a command is terminated by the control operator ampersand (‘&’), the shell shall execute
the command asynchronously in a subshell. This means that the shell shall not wait for the
command to finish before executing the next command.

The format for running a command in the background is:

command1 & [command2 & ...]

The standard input for an asynchronous list, before any explicit redirections are per-
formed, shall be considered to be assigned to a file that has the same properties as /dev/null.
If it is an interactive shell, this need not happen. In all cases, explicit redirection of standard
input shall override this activity.

When an element of an asynchronous list (the portion of the list ended by an ampersand,
such as command1, above) is started by the shell, the process ID of the last command in the
asynchronous list element shall become known in the current shell execution environment;
see Shell Execution Environment. This process ID shall remain known until:

 1. The command terminates and the application waits for the process ID.

 2. Another asynchronous list invoked before “$!” (corresponding to the previous asyn-
chronous list) is expanded in the current execution environment.

10436appAfinal 280 10/23/08 10:02:40 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 281

The implementation need not retain more than the {CHILD_MAX} most recent entries in
its list of known process IDs in the current shell execution environment.

Exit Status

The exit status of an asynchronous list shall be zero.

Sequential Lists

Commands that are separated by a semicolon (‘;’) shall be executed sequentially.
The format for executing commands sequentially shall be:

command1 [; command2] ...

Each command shall be expanded and executed in the order specified.

Exit Status

The exit status of a sequential list shall be the exit status of the last command in the list.

AND Lists

The control operator “&&” denotes an AND list. The format shall be:

command1 [&& command2] ...

First command1 shall be executed. If its exit status is zero, command2 shall be executed,
and so on, until a command has a non- zero exit status or there are no more commands left to
execute. The commands are expanded only if they are executed.

Exit Status

The exit status of an AND list shall be the exit status of the last command that is executed in
the list.

OR Lists

The control operator “||” denotes an OR List. The format shall be:

command1 [|| command2] ...

First, command1 shall be executed. If its exit status is non- zero, command2 shall be exe-
cuted, and so on, until a command has a zero exit status or there are no more commands left
to execute.

Exit Status

The exit status of an OR list shall be the exit status of the last command that is executed in the
list.

2.9.4 Compound Commands
The shell has several programming constructs that are “compound commands”, which pro-
vide control flow for commands. Each of these compound commands has a reserved word or

10436appAfinal 281 10/23/08 10:02:40 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe282

control operator at the beginning, and a corresponding terminator reserved word or operator
at the end. In addition, each can be followed by redirections on the same line as the termina-
tor. Each redirection shall apply to all the commands within the compound command that do
not explicitly override that redirection.

Grouping Commands

The format for grouping commands is as follows:

(compound-list)

Execute compound- list in a subshell environment; see Shell Execution Environment. Vari-
able assignments and built- in commands that affect the environment shall not remain in
effect after the list finishes.

{ compound- list;}

Execute compound- list in the current process environment. The semicolon shown here is
an example of a control operator delimiting the } reserved word. Other delimiters are pos-
sible, as shown in Shell Grammar; a <newline> is frequently used.

Exit Status

The exit status of a grouping command shall be the exit status of compound- list.

The for Loop

The for loop shall execute a sequence of commands for each member in a list of items. The
for loop requires that the reserved words do and done be used to delimit the sequence of
commands.

The format for the for loop is as follows:

for name [in [word ...]]do
 compound- list

done

First, the list of words following in shall be expanded to generate a list of items. Then, the
variable name shall be set to each item, in turn, and the compound- list executed each time. If
no items result from the expansion, the compound- list shall not be executed. Omitting:

in word ...

shall be equivalent to:

in "$@"

Exit Status

The exit status of a for command shall be the exit status of the last command that executes. If
there are no items, the exit status shall be zero.

10436appAfinal 282 10/23/08 10:02:40 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 283

Case Conditional Construct

The conditional construct case shall execute the compound- list corresponding to the first one
of several patterns (see Pattern Matching Notation) that is matched by the string resulting
from the tilde expansion, parameter expansion, command substitution, arithmetic expansion,
and quote removal of the given word. The reserved word in shall denote the beginning of the
patterns to be matched. Multiple patterns with the same compound- list shall be delimited by
the ‘|’ symbol. The control operator ‘)’ terminates a list of patterns corresponding to a given
action. The compound- list for each list of patterns, with the possible exception of the last, shall
be terminated with “;;”. The case construct terminates with the reserved word esac (case
reversed).

The format for the case construct is as follows:

case word in
 [(]pattern1) compound- list;;
 [[(]pattern[| pattern] ...) compound- list;;] ...
 [[(]pattern[| pattern] ...) compound- list]

esac

The “;;” is optional for the last compound- list.
In order from the beginning to the end of the case statement, each pattern that labels

a compound- list shall be subjected to tilde expansion, parameter expansion, command substi-
tution, and arithmetic expansion, and the result of these expansions shall be compared against
the expansion of word, according to the rules described in Pattern Matching Notation (which
also describes the effect of quoting parts of the pattern). After the first match, no more pat-
terns shall be expanded, and the compound- list shall be executed. The order of expansion and
comparison of multiple patterns that label a compound- list statement is unspecified.

Exit Status

The exit status of case shall be zero if no patterns are matched. Otherwise, the exit status shall
be the exit status of the last command executed in the compound- list.

The if Conditional Construct

The if command shall execute a compound- list and use its exit status to determine whether to
execute another compound- list.

The format for the if construct is as follows:

if compound- listthen
 compound- list[elif compound- listthen
 compound- list] ...
[else
 compound- list]

fi

10436appAfinal 283 10/23/08 10:02:41 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe284

The if compound- list shall be executed; if its exit status is zero, the then compound- list
shall be executed and the command shall complete. Otherwise, each elif compound- list shall
be executed, in turn, and if its exit status is zero, the then compound- list shall be executed and
the command shall complete. Otherwise, the else compound- list shall be executed.

Exit Status

The exit status of the if command shall be the exit status of the then or else compound- list that
was executed, or zero, if none was executed.

The while Loop

The while loop shall continuously execute one compound- list as long as another
 compound- list has a zero exit status.

The format of the while loop is as follows:

while compound-list- 1do
 compound-list- 2

done

The compound-list- 1 shall be executed, and if it has a non- zero exit status, the while com-
mand shall complete. Otherwise, the compound-list- 2 shall be executed, and the process shall
repeat.

Exit Status

The exit status of the while loop shall be the exit status of the last compound-list- 2 executed, or
zero if none was executed.

The until Loop

The until loop shall continuously execute one compound- list as long as another compound- list
has a non- zero exit status.

The format of the until loop is as follows:

until compound-list- 1do
 compound-list- 2

done

The compound-list- 1 shall be executed, and if it has a zero exit status, the until command
completes. Otherwise, the compound-list- 2 shall be executed, and the process repeats.

Exit Status

The exit status of the until loop shall be the exit status of the last compound-list- 2 executed, or
zero if none was executed.

10436appAfinal 284 10/23/08 10:02:41 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 285

2.9.5 Function definition Command
A function is a user- defined name that is used as a simple command to call a compound
command with new positional parameters. A function is defined with a “function definition
command”.

The format of a function definition command is as follows:

fname() compound-command[io- redirect ...]

The function is named fname; the application shall ensure that it is a name (see the Base
Definitions volume of IEEE Std 1003.1- 2001, Section 3.230, Name). An implementation may
allow other characters in a function name as an extension. The implementation shall maintain
separate name spaces for functions and variables.

The argument compound- command represents a compound command, as described in
Compound Commands.

When the function is declared, none of the expansions in Word Expansions shall be per-
formed on the text in compound- command or io- redirect; all expansions shall be performed as
normal each time the function is called. Similarly, the optional io- redirect redirections and any
variable assignments within compound- command shall be performed during the execution of
the function itself, not the function definition. See Consequences of Shell Errors for the conse-
quences of failures of these operations on interactive and non- interactive shells.

When a function is executed, it shall have the syntax- error and variable- assignment prop-
erties described for special built- in utilities in the enumerated list at the beginning of Special
 Built- In Utilities.

The compound- command shall be executed whenever the function name is specified as
the name of a simple command (see Command Search and Execution). The operands to the
command temporarily shall become the positional parameters during the execution of the
 compound- command; the special parameter ‘#’ also shall be changed to reflect the number
of operands. The special parameter 0 shall be unchanged. When the function completes, the
values of the positional parameters and the special parameter ‘#’ shall be restored to the val-
ues they had before the function was executed. If the special built- in return is executed in the
 compound- command, the function completes and execution shall resume with the next com-
mand after the function call.

Exit Status

The exit status of a function definition shall be zero if the function was declared successfully;
otherwise, it shall be greater than zero. The exit status of a function invocation shall be the exit
status of the last command executed by the function.

2.10 Shell Grammar
The following grammar defines the Shell Command Language. This formal syntax shall take
precedence over the preceding text syntax description.

2.10.1 Shell Grammar Lexical Conventions
The input language to the shell must be first recognized at the character level. The resulting
tokens shall be classified by their immediate context according to the following rules (applied

10436appAfinal 285 10/23/08 10:02:41 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe286

in order). These rules shall be used to determine what a “token” is that is subject to parsing at
the token level. The rules for token recognition in Token Recognition shall apply.

 1. A <newline> shall be returned as the token identifier NEWLINE.

 2. If the token is an operator, the token identifier for that operator shall result.

 3. If the string consists solely of digits and the delimiter character is one of ‘<’ or ‘>’, the
token identifier IO_NUMBER shall be returned.

 4. Otherwise, the token identifier TOKEN results.

Further distinction on TOKEN is context- dependent. It may be that the same TOKEN
yields WORD, a NAME, an ASSIGNMENT, or one of the reserved words below, dependent
upon the context. Some of the productions in the grammar below are annotated with a rule
number from the following list. When a TOKEN is seen where one of those annotated produc-
tions could be used to reduce the symbol, the applicable rule shall be applied to convert the
token identifier type of the TOKEN to a token identifier acceptable at that point in the gram-
mar. The reduction shall then proceed based upon the token identifier type yielded by the rule
applied. When more than one rule applies, the highest numbered rule shall apply (which in
turn may refer to another rule). (Note that except in rule 7, the presence of an ‘=’ in the token
has no effect.)

The WORD tokens shall have the word expansion rules applied to them immediately
before the associated command is executed, not at the time the command is parsed.

2.10.2 Shell Grammar Rules
 1. [Command Name]

 When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, the token WORD shall be returned. Also, if the parser is in any
state where only a reserved word could be the next correct token, proceed as above.

nNote Because at this point quote marks are retained in the token, quoted strings cannot be recognized
as reserved words. This rule also implies that reserved words are not recognized except in certain positions
in the input, such as after a <newline> or semicolon; the grammar presumes that if the reserved word is
intended, it is properly delimited by the user, and does not attempt to reflect that requirement directly. Also
note that line joining is done before tokenization, as described in Escape Character (Backslash), so escaped
<newline>s are already removed at this point.

 Rule 1 is not directly referenced in the grammar, but is referred to by other rules, or
applies globally.

 2. [Redirection to or from filename]

 The expansions specified in Redirection shall occur. As specified there, exactly one
field can result (or the result is unspecified), and there are additional requirements on
pathname expansion.

10436appAfinal 286 10/23/08 10:02:42 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 287

 3. [Redirection from here- document]

 Quote removal shall be applied to the word to determine the delimiter that is used to
find the end of the here- document that begins after the next <newline>.

 4. [Case statement termination]

 When the TOKEN is exactly the reserved word esac, the token identifier for esac shall
result. Otherwise, the token WORD shall be returned.

 5. [NAME in for]

 When the TOKEN meets the requirements for a name (see the Base Definitions volume
of IEEE Std 1003.1- 2001, Section 3.230, Name), the token identifier NAME shall result.
Otherwise, the token WORD shall be returned.

 6. [Third word of for and case]

 a. [case only]

 When the TOKEN is exactly the reserved word in, the token identifier for in shall
result. Otherwise, the token WORD shall be returned.

 b. [for only]

 When the TOKEN is exactly the reserved word in or do, the token identifier for in or
do shall result, respectively. Otherwise, the token WORD shall be returned.

 7. (For a. and b.: As indicated in the grammar, a linebreak precedes the tokens in and
do. If <newline>s are present at the indicated location, it is the token after them that is
treated in this fashion.)

 8. [Assignment preceding command name]

 a. [When the first word]

 If the TOKEN does not contain the character ‘=’, rule 1 is applied. Otherwise, 7b
shall be applied.

 b. [Not the first word]

 If the TOKEN contains the equal sign character:

	 	 •	 	If	it	begins	with	‘=’, the token WORD shall be returned.

	 	 •	 	If	all	the	characters	preceding	‘=’ form a valid name (see the Base Definitions
volume of IEEE Std 1003.1- 2001, Section 3.230, Name), the token ASSIGNMENT_
WORD shall be returned. (Quoted characters cannot participate in forming
a valid name.)

	 	 •	 	Otherwise,	it	is	unspecified	whether	it	is	ASSIGNMENT_WORD or WORD that is
returned.

 Assignment to the NAME shall occur as specified in Simple Commands.

10436appAfinal 287 10/23/08 10:02:42 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe288

 9. [NAME in function]

 When the TOKEN is exactly a reserved word, the token identifier for that reserved word
shall result. Otherwise, when the TOKEN meets the requirements for a name, the token
identifier NAME shall result. Otherwise, rule 7 applies.

 10. [Body of function]

 Word expansion and assignment shall never occur, even when required by the rules
above, when this rule is being parsed. Each TOKEN that might either be expanded or
have assignment applied to it shall instead be returned as a single WORD consisting
only of characters that are exactly the token described in Token Recognition.

/* -- -
 The grammar symbols
 -- - */

%token WORD
%token ASSIGNMENT_WORD
%token NAME
%token NEWLINE
%token IO_NUMBER

/* The following are the operators mentioned above. */

%token AND_IF OR_IF DSEMI
/* '&&' '||' ';;' */

%token DLESS DGREAT LESSAND GREATAND LESSGREAT DLESSDASH
/* '<<' '>>' '<&' '>&' '<>' '<<- ' */

%token CLOBBER
/* '>|' */

/* The following are the reserved words. */

%token If Then Else Elif Fi Do Done
/* 'if' 'then' 'else' 'elif' 'fi' 'do' 'done' */

%token Case Esac While Until For
/* 'case' 'esac' 'while' 'until' 'for' */

10436appAfinal 288 10/23/08 10:02:42 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 289

/* These are reserved words, not operator tokens, and are
 recognized when reserved words are recognized. */

%token Lbrace Rbrace Bang
/* '{' '}' '!' */

%token In
/* 'in' */

/* -- -
 The Grammar
 -- - */

%start complete_command
%%
complete_command : list separator
 | list
 ;
list : list separator_op and_or
 | and_or
 ;
and_or : pipeline
 | and_or AND_IF linebreak pipeline
 | and_or OR_IF linebreak pipeline
 ;
pipeline : pipe_sequence
 | Bang pipe_sequence
 ;
pipe_sequence : command
 | pipe_sequence '|' linebreak command
 ;
command : simple_command
 | compound_command
 | compound_command redirect_list
 | function_definition
 ;
compound_command : brace_group
 | subshell
 | for_clause
 | case_clause
 | if_clause
 | while_clause
 | until_clause
 ;

10436appAfinal 289 10/23/08 10:02:43 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe290

subshell : '(' compound_list ')'
 ;
compound_list : term
 | newline_list term
 | term separator
 | newline_list term separator
 ;
term : term separator and_or
 | and_or
 ;
for_clause : For name linebreak do_group
 | For name linebreak in sequential_sep do_group
 | For name linebreak in wordlist sequential_sep do_group
 ;
name : NAME /* Apply rule 5 */
 ;
in : In /* Apply rule 6 */
 ;
wordlist : wordlist WORD
 | WORD
 ;
case_clause : Case WORD linebreak in linebreak case_list Esac
 | Case WORD linebreak in linebreak case_list_ns Esac
 | Case WORD linebreak in linebreak Esac
 ;
case_list_ns : case_list case_item_ns
 | case_item_ns
 ;
case_list : case_list case_item
 | case_item
 ;
case_item_ns : pattern ')' linebreak
 | pattern ')' compound_list linebreak
 | '(' pattern ')' linebreak
 | '(' pattern ')' compound_list linebreak
 ;
case_item : pattern ')' linebreak DSEMI linebreak
 | pattern ')' compound_list DSEMI linebreak
 | '(' pattern ')' linebreak DSEMI linebreak
 | '(' pattern ')' compound_list DSEMI linebreak
 ;
pattern : WORD /* Apply rule 4 */
 | pattern '|' WORD /* Do not apply rule 4 */
 ;
if_clause : If compound_list Then compound_list else_part Fi
 | If compound_list Then compound_list Fi
 ;

10436appAfinal 290 10/23/08 10:02:43 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 291

else_part : Elif compound_list Then else_part
 | Else compound_list
 ;
while_clause : While compound_list do_group
 ;
until_clause : Until compound_list do_group
 ;
function_definition : fname '(' ')' linebreak function_body
 ;
function_body : compound_command /* Apply rule 9 */
 | compound_command redirect_list /* Apply rule 9 */
 ;
fname : NAME /* Apply rule 8 */
 ;
brace_group : Lbrace compound_list Rbrace
 ;
do_group : Do compound_list Done /* Apply rule 6 */
 ;
simple_command : cmd_prefix cmd_word cmd_suffix
 | cmd_prefix cmd_word
 | cmd_prefix
 | cmd_name cmd_suffix
 | cmd_name
 ;
cmd_name : WORD /* Apply rule 7a */
 ;
cmd_word : WORD /* Apply rule 7b */
 ;
cmd_prefix : io_redirect
 | cmd_prefix io_redirect
 | ASSIGNMENT_WORD
 | cmd_prefix ASSIGNMENT_WORD
 ;
cmd_suffix : io_redirect
 | cmd_suffix io_redirect
 | WORD
 | cmd_suffix WORD
 ;
redirect_list : io_redirect
 | redirect_list io_redirect
 ;
io_redirect : io_file
 | IO_NUMBER io_file
 | io_here
 | IO_NUMBER io_here
 ;

10436appAfinal 291 10/23/08 10:02:43 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe292

io_file : '<' filename
 | LESSAND filename
 | '>' filename
 | GREATAND filename
 | DGREAT filename
 | LESSGREAT filename
 | CLOBBER filename
 ;
filename : WORD /* Apply rule 2 */
 ;
io_here : DLESS here_end
 | DLESSDASH here_end
 ;
here_end : WORD /* Apply rule 3 */
 ;
newline_list : NEWLINE
 | newline_list NEWLINE
 ;
linebreak : newline_list
 | /* empty */
 ;
separator_op : '&'
 | ';'
 ;
separator : separator_op linebreak
 | newline_list
 ;
sequential_sep : ';' linebreak
 | newline_list
 ;

2.11 Signals and Error Handling
When a command is in an asynchronous list, the shell shall prevent SIGQUIT and SIGINT
signals from the keyboard from interrupting the command. Otherwise, signals shall have the
values inherited by the shell from its parent (see also the trap special built- in).

When a signal for which a trap has been set is received while the shell is waiting for the
completion of a utility executing a foreground command, the trap associated with that signal
shall not be executed until after the foreground command has completed. When the shell is
waiting, by means of the wait utility, for asynchronous commands to complete, the reception
of a signal for which a trap has been set shall cause the wait utility to return immediately with
an exit status >128, immediately after which the trap associated with that signal shall be taken.

If multiple signals are pending for the shell for which there are associated trap actions, the
order of execution of trap actions is unspecified.

10436appAfinal 292 10/23/08 10:02:43 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 293

2.12 Shell Execution Environment
A shell execution environment consists of the following:

	 •	 Open	files	inherited	upon	invocation	of	the	shell,	plus	open	files	controlled	by	exec

	 •	 Working	directory	as	set	by	cd

	 •	 File	creation	mask	set	by	umask

	 •	 Current	traps	set	by	trap

	 •	 Shell	parameters	that	are	set	by	variable	assignment	(see	the	set special built- in) or
from the System Interfaces volume of IEEE Std 1003.1- 2001 environment inherited by
the shell when it begins (see the export special built- in)

	 •	 Shell	functions;	see	Function	Definition	Command

	 •	 Options	turned	on	at	invocation	or	by	set

	 •	 Process	IDs	of	the	last	commands	in	asynchronous	lists	known	to	this	shell	environ-
ment; see Asynchronous Lists

	 •	 Shell	aliases;	see	Alias	Substitution

Utilities other than the special built- ins (see Special Built- In Utilities) shall be invoked in
a separate environment that consists of the following. The initial value of these objects shall be
the same as that for the parent shell, except as noted below.

	 •	 Open	files	inherited	on	invocation	of	the	shell,	open	files	controlled	by	the	exec spe-
cial built- in plus any modifications, and additions specified by any redirections to the
utility

	 •	 Current	working	directory

	 •	 File	creation	mask

	 •	 If	the	utility	is	a	shell	script,	traps	caught	by	the	shell	shall	be	set	to	the	default	values	
and traps ignored by the shell shall be set to be ignored by the utility; if the utility is not
a shell script, the trap actions (default or ignore) shall be mapped into the appropriate
signal handling actions for the utility

	 •	 Variables	with	the	export attribute, along with those explicitly exported for the duration
of the command, shall be passed to the utility environment variables

The environment of the shell process shall not be changed by the utility unless explicitly
specified by the utility description (for example, cd and umask).

A subshell environment shall be created as a duplicate of the shell environment, except
that signal traps set by that shell environment shall be set to the default values. Changes made
to the subshell environment shall not affect the shell environment. Command substitution,
commands that are grouped with parentheses, and asynchronous lists shall be executed
in a subshell environment. Additionally, each command of a multi- command pipeline is in
a subshell environment; as an extension, however, any or all commands in a pipeline may be
executed in the current environment. All other commands shall be executed in the current
shell environment.

10436appAfinal 293 10/23/08 10:02:44 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe294

2.13 Pattern Matching Notation
The pattern matching notation described in this section is used to specify patterns for match-
ing strings in the shell. Historically, pattern matching notation is related to, but slightly
different from, the regular expression notation described in the Base Definitions volume of
IEEE Std 1003.1- 2001, Chapter 9, Regular Expressions. For this reason, the description of the
rules for this pattern matching notation are based on the description of regular expression
notation, modified to include backslash escape processing.

2.13.1 patterns Matching a Single Character
The following patterns matching a single character shall match a single character: ordinary
characters, special pattern characters, and pattern bracket expressions. The pattern bracket
expression also shall match a single collating element. A backslash character shall escape the
following character. The escaping backslash shall be discarded.

An ordinary character is a pattern that shall match itself. It can be any character in the
supported character set except for NUL, those special shell characters in Quoting that require
quoting, and the following three special pattern characters. Matching shall be based on the bit
pattern used for encoding the character, not on the graphic representation of the character.
If any character (ordinary, shell special, or pattern special) is quoted, that pattern shall match
the character itself. The shell special characters always require quoting.

When unquoted and outside a bracket expression, the following three characters shall
have special meaning in the specification of patterns:

? - A question- mark is a pattern that shall match any character.

* - An asterisk is a pattern that shall match multiple characters, as described in Patterns
Matching Multiple Characters.

[- The open bracket shall introduce a pattern bracket expression.

The description of basic regular expression bracket expressions in the Base Definitions
volume of IEEE Std 1003.1- 2001, Section 9.3.5, RE Bracket Expression shall also apply to the
pattern bracket expression, except that the exclamation mark character (‘!’) shall replace
the circumflex character (‘^’) in its role in a “non- matching list” in the regular expression
notation. A bracket expression starting with an unquoted circumflex character produces
unspecified results.

When pattern matching is used where shell quote removal is not performed (such as in
the argument to the find - name primary when find is being called using one of the exec func-
tions as defined in the System Interfaces volume of IEEE Std 1003.1- 2001, or in the pattern
argument to the fnmatch() function), special characters can be escaped to remove their special
meaning by preceding them with a backslash character. This escaping backslash is discarded.
The sequence “\\” represents one literal backslash. All of the requirements and effects of quot-
ing on ordinary, shell special, and special pattern characters shall apply to escaping in this
context.

10436appAfinal 294 10/23/08 10:02:44 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe 295

2.13.2 patterns Matching Multiple Characters
The following rules are used to construct patterns matching multiple characters from patterns
matching a single character:

 1. The asterisk (‘*’) is a pattern that shall match any string, including the null string.

 2. The concatenation of patterns matching a single character is a valid pattern that shall
match the concatenation of the single characters or collating elements matched by
each of the concatenated patterns.

 3. The concatenation of one or more patterns matching a single character with one or
more asterisks is a valid pattern. In such patterns, each asterisk shall match a string of
zero or more characters, matching the greatest possible number of characters that still
allows the remainder of the pattern to match the string.

2.13.3 patterns Used for Filename expansion
The rules described so far in Patterns Matching a Single Character and Patterns Matching
Multiple Characters are qualified by the following rules that apply when pattern matching
notation is used for filename expansion:

 1. The slash character in a pathname shall be explicitly matched by using one or more
slashes in the pattern; it shall neither be matched by the asterisk or question- mark
special characters nor by a bracket expression. Slashes in the pattern shall be identi-
fied before bracket expressions; thus, a slash cannot be included in a pattern bracket
expression used for filename expansion. If a slash character is found following an unes-
caped open square bracket character before a corresponding closing square bracket
is found, the open bracket shall be treated as an ordinary character. For example, the
pattern “a[b/c]d” does not match such pathnames as abd or a/d. It only matches
a pathname of literally a[b/c]d.

 2. If a filename begins with a period (‘.’), the period shall be explicitly matched by using
a period as the first character of the pattern or immediately following a slash character.
The leading period shall not be matched by:

	 •	 The	asterisk	or		question-	mark special characters

	 •	 A	bracket	expression containing a non- matching list, such as “[!a]”, a range
expression, such as “[%- 0]”, or a character class expression, such as “[[:punct:]]”

 It is unspecified whether an explicit period in a bracket expression matching list, such
as “[.abc]”, can match a leading period in a filename.

 3. Specified patterns shall be matched against existing filenames and pathnames, as
appropriate. Each component that contains a pattern character shall require read per-
mission in the directory containing that component. Any component, except the last,
that does not contain a pattern character shall require search permission. For example,
given the pattern:

/foo/bar/x*/bam

10436appAfinal 295 10/23/08 10:02:44 PM

Appendix A n THe SHeLL COMMAnd LAnGUAGe296

 search permission is needed for directories / and foo, search and read permissions are
needed for directory bar, and search permission is needed for each x* directory. If the
pattern matches any existing filenames or pathnames, the pattern shall be replaced
with those filenames and pathnames, sorted according to the collating sequence in
effect in the current locale. If the pattern contains an invalid bracket expression or
does not match any existing filenames or pathnames, the pattern string shall be left
unchanged.

2.14 Special Built- In Utilities
The following “special built- in” utilities shall be supported in the shell command language.
The output of each command, if any, shall be written to standard output, subject to the normal
redirection and piping possible with all commands.

The term “built- in” implies that the shell can execute the utility directly and does not need
to search for it. An implementation may choose to make any utility a built- in; however, the
special built- in utilities described here differ from regular built- in utilities in two respects:

 1. A syntax error in a special built- in utility may cause a shell executing that utility to
abort, while a syntax error in a regular built- in utility shall not cause a shell executing
that utility to abort. (See Consequences of Shell Errors for the consequences of errors
on interactive and non- interactive shells.) If a special built- in utility encountering
a syntax error does not abort the shell, its exit value shall be non- zero.

 2. Variable assignments specified with special built- in utilities remain in effect after the
 built- in completes; this shall not be the case with a regular built- in or other utility.

The special built- in utilities in this section need not be provided in a manner acces-
sible via the exec family of functions defined in the System Interfaces volume of IEEE Std
 1003.1- 2001.

Some of the special built- ins are described as conforming to the Base Definitions volume
of IEEE Std 1003.1- 2001, Section 12.2, Utility Syntax Guidelines. For those that are not, the
requirement in Utility Description Defaults that “-- ” be recognized as a first argument to be
discarded does not apply and a conforming application shall not use that argument.

The Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition

Copyright © 2001- 2004 The IEEE and The Open Group, All Rights reserved.
UNIX ® is a registered Trademark of The Open Group.

POSIX ® is a registered Trademark of The IEEE.

10436appAfinal 296 10/23/08 10:02:45 PM

A p p e n d i x B

The sh Utility

The description of the sh utility includes a number of features not found in some traditional
shells, but it gives a good summary of basic usage. Much of this specifies interactive features
(which are not universal among shells), but the basic invocation material is a handy reference.

nNote All external documents referenced in this appendix are available at www.opengroup.org.

Name
sh - shell, the standard command language interpreter

Synopsis
sh [-abCefhimnuvx][- o option][+abCefhimnuvx][+o option]
 [command_file [argument...]]

sh -c[-abCefhimnuvx][- o option][+abCefhimnuvx][+o option]command_string
 [command_name [argument...]]

sh -s[-abCefhimnuvx][- o option][+abCefhimnuvx][+o option][argument]

Description
The sh utility is a command language interpreter that shall execute commands read from
a command line string, the standard input, or a specified file. The application shall ensure
that the commands to be executed are expressed in the language described in Shell Command
Language.

Pathname expansion shall not fail due to the size of a file.
Shell input and output redirections have an implementation- defined offset maximum

that is established in the open file description.

297

10436appBfinal 297 10/23/08 10:05:29 PM

http://www.opengroup.org

Appendix B n THe SH UTiL iTY298

Options
The sh utility shall conform to the Base Definitions volume of IEEE Std 1003.1- 2001, Sec-
tion 12.2, Utility Syntax Guidelines, with an extension for support of a leading plus sign (‘+’)
as noted below.

The -a, -b, -C, -e, -f, -m, -n, -o option, -u, -v, and -x options are described as part of the
set utility in Special Built- In Utilities. The option letters derived from the set special built- in
shall also be accepted with a leading plus sign (‘+’) instead of a leading hyphen (meaning the
reverse case of the option as described in this volume of IEEE Std 1003.1- 2001).

The following additional options shall be supported:

-c

Read commands from the command_string operand. Set the value of special parameter
0 (see Special Parameters) from the value of the command_name operand and the posi-
tional parameters ($1, $2, and so on) in sequence from the remaining argument operands.
No commands shall be read from the standard input.

-i

Specify that the shell is interactive; see below. An implementation may treat specifying the
-i option as an error if the real user ID of the calling process does not equal the effective
user ID or if the real group ID does not equal the effective group ID.

-s

Read commands from the standard input.

If there are no operands and the -c option is not specified, the -s option shall be assumed.
If the -i option is present, or if there are no operands and the shell’s standard input and

standard error are attached to a terminal, the shell is considered to be interactive.

Operands
The following operands shall be supported:

-

A single hyphen shall be treated as the first operand and then ignored. If both ‘- ’ and “-- ”
are given as arguments, or if other operands precede the single hyphen, the results are
undefined.

argument

The positional parameters ($1, $2, and so on) shall be set to arguments, if any.

command_file

The pathname of a file containing commands. If the pathname contains one or more slash
characters, the implementation attempts to read that file; the file need not be executable.
If the pathname does not contain a slash character:

10436appBfinal 298 10/23/08 10:05:29 PM

Appendix B n THe SH UTiL iTY 299

	 •	 The	implementation	shall	attempt	to	read	that	file	from	the	current	working	direc-
tory; the file need not be executable.

	 •	 If	the	file	is	not	in	the	current	working	directory,	the	implementation	may	perform	
a search for an executable file using the value of PATH , as described in Command
Search and Execution.

Special parameter 0 (see Special Parameters) shall be set to the value of command_file. If
sh is called using a synopsis form that omits command_file, special parameter 0 shall be
set to the value of the first argument passed to sh from its parent (for example, argv[0] for
a C program), which is normally a pathname used to execute the sh utility.

command_name

A string assigned to special parameter 0 when executing the commands in command_
string. If command_name is not specified, special parameter 0 shall be set to the value
of the first argument passed to sh from its parent (for example, argv[0] for a C program),
which is normally a pathname used to execute the sh utility.

command_string

A string that shall be interpreted by the shell as one or more commands, as if the string
were the argument to the system() function defined in the System Interfaces volume of
IEEE Std 1003.1- 2001. If the command_string operand is an empty string, sh shall exit with
a zero exit status.

Stdin
The standard input shall be used only if one of the following is true:

	 •	 The	-s option is specified.

	 •	 The	-c option is not specified and no operands are specified.

	 •	 The	script	executes	one	or	more	commands	that	require	input	from	standard	input	
(such as a read command that does not redirect its input).

See the INPUT FILES section.
When	the	shell	is	using	standard	input	and	it	invokes	a	command	that	also	uses	stan-

dard input, the shell shall ensure that the standard input file pointer points directly after the
command it has read when the command begins execution. It shall not read ahead in such
a	manner	that	any	characters	intended	to	be	read	by	the	invoked	command	are	consumed	by	
the shell (whether interpreted by the shell or not) or that characters that are not read by the
invoked	command	are	not	seen	by	the	shell.	When	the	command	expecting	to	read	standard	
input is started asynchronously by an interactive shell, it is unspecified whether characters are
read by the command or interpreted by the shell.

If the standard input to sh	is	a	FIFO	or	terminal	device	and	is	set	to		non-	blocking	reads,	
then sh	shall	enable	blocking	reads	on	standard	input.	This shall remain in effect when the
command completes.

10436appBfinal 299 10/23/08 10:05:29 PM

Appendix B n THe SH UTiL iTY300

Input Files
The input file shall be a text file, except that line lengths shall be unlimited. If the input file
is	empty	or	consists	solely	of	blank	lines	or	comments,	or	both,	sh shall exit with a zero exit
status.

Environment Variables
The following environment variables shall affect the execution of sh:

ENV

This	variable,	when	and	only	when	an	interactive	shell	is	invoked,	shall	be	subjected	to	
parameter expansion (see Parameter Expansion) by the shell, and the resulting value shall
be used as a pathname of a file containing shell commands to execute in the current envi-
ronment. The file need not be executable. If the expanded value of ENV is not an absolute
pathname, the results are unspecified. ENV shall be ignored if the real and effective user
IDs or real and effective group IDs of the process are different.

FCEDIT

This variable, when expanded by the shell, shall determine the default value for the -e
editor option’s editor option- argument. If FCEDIT is null or unset, ed shall be used as the
editor. This volume of IEEE Std 1003.1- 2001 specifies the effects of this variable only for
systems supporting the User Portability Utilities option.

HISTFILE

Determine a pathname naming a command history file. If the HISTFILE variable is not set,
the shell may attempt to access or create a file .sh_history in the directory referred to by
the HOME environment variable. If the shell cannot obtain both read and write access to,
or create, the history file, it shall use an unspecified mechanism that allows the history to
operate properly. (References to history “file” in this section shall be understood to mean
this unspecified mechanism in such cases.) An implementation may choose to access this
variable only when initializing the history file; this initialization shall occur when fc or sh
first attempt to retrieve entries from, or add entries to, the file, as the result of commands
issued by the user, the file named by the ENV variable, or implementation- defined system
 start- up files. Implementations may choose to disable the history list mechanism for users
with appropriate privileges who do not set HISTFILE ; the specific circumstances under
which this occurs are implementation- defined. If more than one instance of the shell is
using the same history file, it is unspecified how updates to the history file from those
shells interact. As entries are deleted from the history file, they shall be deleted oldest first.
It is unspecified when history file entries are physically removed from the history file. This
volume of IEEE Std 1003.1- 2001 specifies the effects of this variable only for systems sup-
porting the User Portability Utilities option.

10436appBfinal 300 10/23/08 10:05:30 PM

Appendix B n THe SH UTiL iTY 301

HISTSIZE

Determine a decimal number representing the limit to the number of previous commands
that are accessible. If this variable is unset, an unspecified default greater than or equal
to 128 shall be used. The maximum number of commands in the history list is unspeci-
fied, but shall be at least 128. An implementation may choose to access this variable only
when initializing the history file, as described under HISTFILE . Therefore, it is unspecified
whether changes made to HISTSIZE after the history file has been initialized are effective.

HOME

Determine the pathname of the user’s home directory. The contents of HOME are used
in tilde expansion as described in Tilde Expansion. This volume of IEEE Std 1003.1- 2001
specifies the effects of this variable only for systems supporting the User Portability Utili-
ties option.

IFS

(Input Field Separators.) A string treated as a list of characters that shall be used for field
splitting and to split lines into words with the read command. See Field Splitting. If IFS is
not set, the shell shall behave as if the value of IFS were <space>, <tab>, and <newline>.
Implementations may ignore the value of IFS in the environment at the time sh	is	invoked,	
treating IFS as if it were not set.

LANG

Provide a default value for the internationalization variables that are unset or null. (See
the Base Definitions volume of IEEE Std 1003.1- 2001, Section 8.2, Internationalization
Variables for the precedence of internationalization variables used to determine the val-
ues of locale categories.)

LC_ALL

If set to a non- empty string value, override the values of all the other internationalization
variables.

LC_COLLATE

Determine the behavior of range expressions, equivalence classes, and multi- character
collating elements within pattern matching.

LC_CTYPE

Determine the locale for the interpretation of sequences of bytes of text data as characters
(for example, single- byte as opposed to multi- byte characters in arguments and input
files), which characters are defined as letters (character class alpha), and the behavior of
character classes within pattern matching.

LC_MESSAGES

Determine the locale that should be used to affect the format and contents of diagnostic
messages written to standard error.

10436appBfinal 301 10/23/08 10:05:30 PM

Appendix B n THe SH UTiL iTY302

MAIL

Determine a pathname of the user’s mailbox file for purposes of incoming mail notifica-
tion. If this variable is set, the shell shall inform the user if the file named by the variable
is created or if its modification time has changed. Informing the user shall be accom-
plished by writing a string of unspecified format to standard error prior to the writing of
the	next	primary	prompt	string.	Such	check	shall	be	performed	only	after	the	completion	
of the interval defined by the MAILCHECK	variable	after	the	last	such	check.	The	user	
shall be informed only if MAIL is set and MAILPATH is not set. This volume of IEEE Std
 1003.1- 2001 specifies the effects of this variable only for systems supporting the User Por-
tability Utilities option.

MAILCHECK

Establish a decimal integer value that specifies how often (in seconds) the shell shall
check	for	the	arrival	of	mail	in	the	files	specified	by	the	MAILPATH or MAIL variables. The
default	value	shall	be	600	seconds.	If	set	to	zero,	the	shell	shall	check	before	issuing	each	
primary prompt. This volume of IEEE Std 1003.1- 2001 specifies the effects of this variable
only for systems supporting the User Portability Utilities option.

MAILPATH

Provide a list of pathnames and optional messages separated by colons. If this variable is
set, the shell shall inform the user if any of the files named by the variable are created or if
any of their modification times change. (See the preceding entry for MAIL for descriptions
of mail arrival and user informing.) Each pathname can be followed by ‘%’ and a string that
shall	be	subjected	to	parameter	expansion	and	written	to	standard	error	when	the	modifi-
cation time changes. If a ‘%’	character	in	the	pathname	is	preceded	by	a	backslash,	it	shall	
be treated as a literal ‘%’ in the pathname. The default message is unspecified.

The MAILPATH	environment	variable	takes	precedence	over	the	MAIL variable. This
volume of IEEE Std 1003.1- 2001 specifies the effects of this variable only for systems sup-
porting the User Portability Utilities option.

NLSPATH

Determine the location of message catalogs for the processing of LC_MESSAGES.

PATH

Establish a string formatted as described in the Base Definitions volume of IEEE Std
 1003.1- 2001, Chapter 8, Environment Variables, used to effect command interpretation;
see Command Search and Execution.

PWD

This	variable	shall	represent	an	absolute	pathname	of	the	current	working	directory.	
Assignments to this variable may be ignored unless the value is an absolute pathname of
the	current	working	directory	and	there	are	no	filename components of dot or dot- dot.

10436appBfinal 302 10/23/08 10:05:30 PM

Appendix B n THe SH UTiL iTY 303

Asynchronous Events
Default.

Stdout
See the STDERR section.

Stderr
Except as otherwise	stated	(by	the	descriptions	of	any	invoked	utilities	or	in	interactive	mode),	
standard error shall be used only for diagnostic messages.

Output Files
None.

Extended Description
See Shell Command Language. The following additional capabilities are supported on systems
supporting the User Portability Utilities option.

Command History List
When the sh utility is being used interactively, it shall maintain a list of commands previously
entered from the terminal in the file named by the HISTFILE environment variable. The type,
size, and internal format of this file are unspecified. Multiple sh processes can share access to
the file for a user, if file access permissions allow this; see the description of the HISTFILE envi-
ronment variable.

Command Line Editing
When sh is being used interactively from a terminal, the current command and the com-
mand history (see fc) can be edited using vi- mode command line editing. This mode uses
commands, described below, similar to a subset of those described in the vi utility. Implemen-
tations may offer other command line editing modes corresponding to other editing utilities.

The command set -o vi shall enable vi- mode editing and place sh into vi insert mode (see
Command Line Editing (vi- mode)). This command also shall disable any other editing mode
that the implementation may provide. The command set +o vi disables vi- mode editing.

Certain		block-	mode	terminals	may	be	unable	to	support	shell	command	line	editing.	If	
a terminal is unable to provide either edit mode, it need not be possible to set -o vi when using
the shell on this terminal.

In the following sections, the characters erase, interrupt, kill, and end-of- file are those set
by the stty utility.

10436appBfinal 303 10/23/08 10:05:30 PM

Appendix B n THe SH UTiL iTY304

Command Line Editing (vi- mode)
In vi editing mode, there shall be a distinguished line, the edit line. All the editing operations
which modify a line affect the edit line. The edit line is always the newest line in the command
history buffer.

With vi- mode enabled, sh can be switched between insert mode and command mode.
When in insert mode, an entered character shall be inserted into the command line,

except as noted in vi Line Editing Insert Mode. Upon entering sh and after termination of the
previous command, sh shall be in insert mode.

Typing an escape character shall switch sh into command mode (see vi Line Editing
Command	Mode).	In	command	mode,	an	entered	character	shall	either	invoke	a	defined	
operation, be used as part of a multi- character operation, or be treated as an error. A charac-
ter that is not recognized as part of an editing command shall terminate any specific editing
command and shall alert the terminal. Typing the interrupt character in command mode shall
cause sh to terminate command line editing on the current command line, reissue the prompt
on the next line of the terminal, and reset the command history (see fc) so that the most
recently executed command is the previous command (that is, the command that was being
edited when it was interrupted is not reentered into the history).

In the following sections, the phrase “move the cursor to the beginning of the word” shall
mean “move the cursor to the first character of the current word” and the phrase “move the
cursor to the end of the word” shall mean “move the cursor to the last character of the cur-
rent word”. The phrase “beginning of the command line” indicates the point between the end
of the prompt string issued by the shell (or the beginning of the terminal line, if there is no
prompt string) and the first character of the command text.

vi Line Editing Insert Mode
While in insert mode, any character typed shall be inserted in the current command line,
unless it is from the following set.

<newline>

Execute the current command line. If the current command line is not empty, this line
shall be entered into the command history (see fc).

erase

Delete the character previous to the current cursor position and move the current cur-
sor	position	back	one	character.	In	insert	mode,	characters	shall	be	erased	from	both	the	
screen	and	the	buffer	when	backspacing.

interrupt

Terminate command line editing with the same effects as described for interrupting com-
mand mode; see Command Line Editing (vi- mode).

kill

Clear all the characters from the input line.

<control>-V

Insert the next character input, even if the character is otherwise a special insert mode
character.

10436appBfinal 304 10/23/08 10:05:31 PM

Appendix B n THe SH UTiL iTY 305

<control>-W

Delete the characters from the one preceding the cursor to the preceding word bound-
ary. The word boundary in this case is the closer to the cursor of either the beginning of
the line or a character that is in neither the blank nor punct character classification of the
current locale.

end-of-file

Interpreted as the end of input in sh. This interpretation shall occur only at the beginning
of an input line. If end-of- file is entered other than at the beginning of the line, the results
are unspecified.

<ESC>

Place sh into command mode.

vi Line Editing Command Mode
In command mode for the command line editing feature, decimal digits not beginning with 0
that precede a command letter shall be remembered. Some commands use these decimal dig-
its as a count number that affects the operation.

The term motion command represents one of the commands:

<space> 0 b F l W ^ $; E f T w | , B e h t

If the current line is not the edit line, any command that modifies the current line shall
cause the content of the current line to replace the content of the edit line, and the current line
shall become the edit line. This replacement cannot be undone (see the u and U commands
below). The modification requested shall then be performed to the edit line. When the current
line is the edit line, the modification shall be done directly to the edit line.

Any command that is preceded by count	shall	take	a	count	(the	numeric	value	of	any	pre-
ceding decimal digits). Unless otherwise noted, this count shall cause the specified operation
to repeat by the number of times specified by the count. Also unless otherwise noted, a count
that is out of range is considered an error condition and shall alert the terminal, but neither
the cursor position, nor the command line, shall change.

The terms word and bigword are used as defined in the vi description. The term save buf-
fer corresponds to the term unnamed buffer in vi.

The following commands shall be recognized in command mode:

<newline>

Execute the current command line. If the current command line is not empty, this line
shall be entered into the command history (see fc).

<control>-L

Redraw the current command line. Position the cursor at the same location on the
redrawn line.

#

Insert the character ‘#’ at the beginning of the current command line and treat the result-
ing edit line as a comment. This line shall be entered into the command history; see fc.

10436appBfinal 305 10/23/08 10:05:31 PM

Appendix B n THe SH UTiL iTY306

=

Display the possible shell word expansions (see Word Expansions) of the bigword at the
current command line position.

nNote This does not modify the content of the current line, and therefore does not cause the current line to
become the edit line.

These expansions shall be displayed on subsequent terminal lines. If the bigword contains
none of the characters ‘?’, ‘*’, or ‘[’,	an	asterisk	(‘*’) shall be implicitly assumed at the
end. If any directories are matched, these expansions shall have a ‘/’ character appended.
After the expansion, the line shall be redrawn, the cursor repositioned at the current cur-
sor position, and sh shall be placed in command mode.

\

Perform pathname expansion (see Pathname Expansion) on the current bigword, up to
the largest set of characters that can be matched uniquely. If the bigword contains none
of the characters ‘?’, ‘*’, or ‘[’,	an	asterisk	(‘*’) shall be implicitly assumed at the end.
This maximal expansion then shall replace the original bigword in the command line, and
the cursor shall be placed after this expansion. If the resulting bigword completely and
uniquely matches a directory, a ‘/’ character shall be inserted directly after the bigword.
If some other file is completely matched, a single <space> shall be inserted after the big-
word. After this operation, sh shall be placed in insert mode.

*

Perform pathname expansion on the current bigword and insert all expansions into the
command to replace the current bigword, with each expansion separated by a single
<space>. If at the end of the line, the current cursor position shall be moved to the first
column position following the expansions and sh shall be placed in insert mode. Other-
wise, the current cursor position shall be the last column position of the first character
after the expansions and sh shall be placed in insert mode. If the current bigword contains
none of the characters ‘?’, ‘*’, or ‘[’,	before	the	operation,	an	asterisk	shall	be	implicitly	
assumed at the end.

@letter

Insert the value of the alias named _letter. The symbol letter represents a single alpha-
betic character from the portable character set; implementations may support additional
characters as an extension. If the alias _letter contains other editing commands, these
commands shall be performed as part of the insertion. If no alias _letter is enabled, this
command shall have no effect.

[count]˜

Convert, if the current character is a lowercase letter, to the equivalent uppercase letter
and vice versa, as prescribed by the current locale. The current cursor position then shall
be advanced by one character. If the cursor was positioned on the last character of the
line, the case conversion shall occur, but the cursor shall not advance. If the ‘˜’ command

10436appBfinal 306 10/23/08 10:05:31 PM

Appendix B n THe SH UTiL iTY 307

is preceded by a count, that number of characters shall be converted, and the cursor shall
be advanced to the character position after the last character converted. If the count is
larger than the number of characters after the cursor, this shall not be considered an error;
the cursor shall advance to the last character on the line.

[count].

Repeat the most recent non- motion command, even if it was executed on an earlier com-
mand line. If the previous command was preceded by a count, and no count is given on
the ‘.’ command, the count from the previous command shall be included as part of the
repeated command. If the ‘.’ command is preceded by a count, this shall override any
count argument to the previous command. The count specified in the ‘.’ command shall
become the count for subsequent ‘.’ commands issued without a count.

[number]v

Invoke	the	vi editor to edit the current command line in a temporary file. When the editor
exits, the commands in the temporary file shall be executed and placed in the command
history. If a number is included, it specifies the command number in the command his-
tory to be edited, rather than the current command line.

[count]l (ell)

[count]<space>

Move the current cursor position to the next character position. If the cursor was posi-
tioned on the last character of the line, the terminal shall be alerted and the cursor shall
not be advanced. If the count is larger than the number of characters after the cursor, this
shall not be considered an error; the cursor shall advance to the last character on the line.

[count]h

Move the current cursor position to the countth (default 1) previous character position.
If the cursor was positioned on the first character of the line, the terminal shall be alerted
and the cursor shall not be moved. If the count is larger than the number of characters
before the cursor, this shall not be considered an error; the cursor shall move to the first
character on the line.

[count]w

Move to the start of the next word. If the cursor was positioned on the last character of
the line, the terminal shall be alerted and the cursor shall not be advanced. If the count is
larger than the number of words after the cursor, this shall not be considered an error; the
cursor shall advance to the last character on the line.

[count]W

Move to the start of the next bigword. If the cursor was positioned on the last character of
the line, the terminal shall be alerted and the cursor shall not be advanced. If the count is
larger than the number of bigwords after the cursor, this shall not be considered an error;
the cursor shall advance to the last character on the line.

10436appBfinal 307 10/23/08 10:05:32 PM

Appendix B n THe SH UTiL iTY308

[count]e

Move to the end of the current word. If at the end of a word, move to the end of the next
word. If the cursor was positioned on the last character of the line, the terminal shall be
alerted and the cursor shall not be advanced. If the count is larger than the number of
words after the cursor, this shall not be considered an error; the cursor shall advance to
the last character on the line.

[count]E

Move to the end of the current bigword. If at the end of a bigword, move to the end of the
next bigword. If the cursor was positioned on the last character of the line, the terminal
shall be alerted and the cursor shall not be advanced. If the count is larger than the num-
ber of bigwords after the cursor, this shall not be considered an error; the cursor shall
advance to the last character on the line.

[count]b

Move to the beginning of the current word. If at the beginning of a word, move to the
beginning of the previous word. If the cursor was positioned on the first character of the
line, the terminal shall be alerted and the cursor shall not be moved. If the count is larger
than the number of words preceding the cursor, this shall not be considered an error; the
cursor shall return to the first character on the line.

[count]B

Move to the beginning of the current bigword. If at the beginning of a bigword, move to
the beginning of the previous bigword. If the cursor was positioned on the first character
of the line, the terminal shall be alerted and the cursor shall not be moved. If the count is
larger than the number of bigwords preceding the cursor, this shall not be considered an
error; the cursor shall return to the first character on the line.

^

Move the current cursor position to the first character on the input line that is not
a	<blank>.

$

Move to the last character position on the current command line.

0

(Zero.) Move to the first character position on the current command line.

[count]|

Move to the countth character position on the current command line. If no number is
specified, move to the first position. The first character position shall be numbered 1. If
the count is larger than the number of characters on the line, this shall not be considered
an error; the cursor shall be placed on the last character on the line.

10436appBfinal 308 10/23/08 10:05:32 PM

Appendix B n THe SH UTiL iTY 309

[count]fc

Move to the first occurrence of the character ‘c’ that occurs after the current cursor posi-
tion. If the cursor was positioned on the last character of the line, the terminal shall be
alerted and the cursor shall not be advanced. If the character ‘c’ does not occur in the line
after the current cursor position, the terminal shall be alerted and the cursor shall not be
moved.

[count]Fc

Move to the first occurrence of the character ‘c’ that occurs before the current cursor posi-
tion. If the cursor was positioned on the first character of the line, the terminal shall be
alerted and the cursor shall not be moved. If the character ‘c’ does not occur in the line
before the current cursor position, the terminal shall be alerted and the cursor shall not be
moved.

[count]tc

Move to the character before the first occurrence of the character ‘c’ that occurs after the
current cursor position. If the cursor was positioned on the last character of the line, the
terminal shall be alerted and the cursor shall not be advanced. If the character ‘c’ does not
occur in the line after the current cursor position, the terminal shall be alerted and the
cursor shall not be moved.

[count]Tc

Move to the character after the first occurrence of the character ‘c’ that occurs before the
current cursor position. If the cursor was positioned on the first character of the line, the
terminal shall be alerted and the cursor shall not be moved. If the character ‘c’ does not
occur in the line before the current cursor position, the terminal shall be alerted and the
cursor shall not be moved.

[count];

Repeat the most recent f, F, t, or T command. Any number argument on that previous
command shall be ignored. Errors are those described for the repeated command.

[count],

Repeat the most recent f, F, t, or T command. Any number argument on that previous
command shall be ignored. However, reverse the direction of that command.

a

Enter insert mode after the current cursor position. Characters that are entered shall be
inserted before the next character.

A

Enter insert mode after the end of the current command line.

i

Enter insert mode at the current cursor position. Characters that are entered shall be
inserted before the current character.

10436appBfinal 309 10/23/08 10:05:33 PM

Appendix B n THe SH UTiL iTY310

I

Enter insert mode at the beginning of the current command line.

R

Enter insert mode, replacing characters from the command line beginning at the current
cursor position.

[count]cmotion

Delete the characters between the current cursor position and the cursor position that
would result from the specified motion command. Then enter insert mode before the first
character following any deleted characters. If count is specified, it shall be applied to the
motion command. A count shall be ignored for the following motion commands:

0 ^ $ c

If the motion command is the character ‘c’, the current command line shall be cleared
and insert mode shall be entered. If the motion command would move the current cur-
sor position toward the beginning of the command line, the character under the current
cursor position shall not be deleted. If the motion command would move the current cur-
sor position toward the end of the command line, the character under the current cursor
position shall be deleted. If the count is larger than the number of characters between the
current cursor position and the end of the command line toward which the motion com-
mand would move the cursor, this shall not be considered an error; all of the remaining
characters in the aforementioned range shall be deleted and insert mode shall be entered.
If the motion command is invalid, the terminal shall be alerted, the cursor shall not be
moved, and no text shall be deleted.

C

Delete from the current character to the end of the line and enter insert mode at the new
 end-of- line.

S

Clear the entire edit line and enter insert mode.

[count]rc

Replace the current character with the character ‘c’. With a number count, replace the
current and the following count- 1 characters. After this command, the current cursor
position shall be on the last character that was changed. If the count is larger than the
number of characters after the cursor, this shall not be considered an error; all of the
remaining characters shall be changed.

[count]_

Append a <space> after the current character position and then append the last bigword
in the previous input line after the <space>. Then enter insert mode after the last charac-
ter	just	appended.	With	a	number	count, append the countth bigword in the previous line.

10436appBfinal 310 10/23/08 10:05:33 PM

Appendix B n THe SH UTiL iTY 311

[count]x

Delete the character at the current cursor position and place the deleted characters in the
save buffer. If the cursor was positioned on the last character of the line, the character
shall be deleted and the cursor position shall be moved to the previous character (the new
last character). If the count is larger than the number of characters after the cursor, this
shall not be considered an error; all the characters from the cursor to the end of the line
shall be deleted.

[count]X

Delete the character before the current cursor position and place the deleted characters
in the save buffer. The character under the current cursor position shall not change. If the
cursor was positioned on the first character of the line, the terminal shall be alerted, and
the X command shall have no effect. If the line contained a single character, the X com-
mand shall have no effect. If the line contained no characters, the terminal shall be alerted
and the cursor shall not be moved. If the count is larger than the number of characters
before the cursor, this shall not be considered an error; all the characters from before the
cursor to the beginning of the line shall be deleted.

[count]dmotion

Delete the characters between the current cursor position and the character position that
would result from the motion command. A number count repeats the motion command
count times. If the motion command would move toward the beginning of the command
line, the character under the current cursor position shall not be deleted. If the motion
command is d, the entire current command line shall be cleared. If the count is larger than
the number of characters between the current cursor position and the end of the com-
mand line toward which the motion command would move the cursor, this shall not be
considered an error; all of the remaining characters in the aforementioned range shall be
deleted. The deleted characters shall be placed in the save buffer.

D

Delete all characters from the current cursor position to the end of the line. The deleted
characters shall be placed in the save buffer.

[count]ymotion

Yank	(that	is,	copy)	the	characters	from	the	current	cursor	position	to	the	position	result-
ing from the motion command into the save buffer. A number count shall be applied to
the motion command. If the motion command would move toward the beginning of the
command line, the character under the current cursor position shall not be included in
the	set	of	yanked	characters.	If	the	motion	command	is	y, the entire current command
line	shall	be	yanked	into	the	save	buffer.	The	current	cursor	position	shall	be	unchanged.	
If the count is larger than the number of characters between the current cursor position
and the end of the command line toward which the motion command would move the
cursor, this shall not be considered an error; all of the remaining characters in the afore-
mentioned	range	shall	be	yanked.

10436appBfinal 311 10/23/08 10:05:33 PM

Appendix B n THe SH UTiL iTY312

Y

Yank	the	characters	from	the	current	cursor	position	to	the	end	of	the	line	into	the	save	
buffer. The current character position shall be unchanged.

[count]p

Put a copy of the current contents of the save buffer after the current cursor position. The
current cursor position shall be advanced to the last character put from the save buffer.
A count shall indicate how many copies of the save buffer shall be put.

[count]P

Put a copy of the current contents of the save buffer before the current cursor position.
The current cursor position shall be moved to the last character put from the save buffer.
A count shall indicate how many copies of the save buffer shall be put.

u

Undo the last command that changed the edit line. This operation shall not undo the copy
of any command line to the edit line.

U

Undo all changes made to the edit line. This operation shall not undo the copy of any
command line to the edit line.

[count]k

[count]-

Set the current command line to be the countth previous command line in the shell com-
mand history. If count is not specified, it shall default to 1. The cursor shall be positioned
on the first character of the new command. If a k or - command would retreat past the
maximum number of commands in effect for this shell (affected by the HISTSIZE environ-
ment variable), the terminal shall be alerted, and the command shall have no effect.

[count]j

[count]+

Set the current command line to be the countth next command line in the shell command
history. If count is not specified, it shall default to 1. The cursor shall be positioned on the
first character of the new command. If a j or + command advances past the edit line, the
current command line shall be restored to the edit line and the terminal shall be alerted.

[number]G

Set the current command line to be the oldest command line stored in the shell com-
mand history. With a number number, set the current command line to be the command
line number in the history. If command line number does not exist, the terminal shall be
alerted and the command line shall not be changed.

10436appBfinal 312 10/23/08 10:05:34 PM

Appendix B n THe SH UTiL iTY 313

/pattern<newline>

Move	backwards	through	the	command	history,	searching	for	the	specified	pattern,	
beginning with the previous command line. Patterns use the pattern matching notation
described in Pattern Matching Notation, except that the ‘^’ character shall have special
meaning when it appears as the first character of pattern. In this case, the ‘^’ is discarded
and the characters after the ‘^’ shall be matched only at the beginning of a line. Com-
mands in the command history shall be treated as strings, not as filenames. If the pattern
is not found, the current command line shall be unchanged and the terminal is alerted.
If it is found in a previous line, the current command line shall be set to that line and the
cursor shall be set to the first character of the new command line.

If pattern is empty, the last non- empty pattern provided to / or ? shall be used. If there is
no previous non- empty pattern, the terminal shall be alerted and the current command
line shall remain unchanged.

?pattern<newline>

Move forwards through the command history, searching for the specified pattern, begin-
ning with the next command line. Patterns use the pattern matching notation described
in Pattern Matching Notation, except that the ‘^’ character shall have special meaning
when it appears as the first character of pattern. In this case, the ‘^’ is discarded and the
characters after the ‘^’ shall be matched only at the beginning of a line. Commands in the
command history shall be treated as strings, not as filenames. If the pattern is not found,
the current command line shall be unchanged and the terminal alerted. If it is found in
a following line, the current command line shall be set to that line and the cursor shall be
set to the fist character of the new command line.

If pattern is empty, the last non- empty pattern provided to / or ? shall be used. If there is
no previous non- empty pattern, the terminal shall be alerted and the current command
line shall remain unchanged.

n

Repeat the most recent / or ? command. If there is no previous / or ?, the terminal shall be
alerted and the current command line shall remain unchanged.

N

Repeat the most recent / or ? command, reversing the direction of the search. If there
is no previous / or ?, the terminal shall be alerted and the current command line shall
remain unchanged.

10436appBfinal 313 10/23/08 10:05:34 PM

Appendix B n THe SH UTiL iTY314

Exit Status
The following exit values shall be returned:

0

The	script	to	be	executed	consisted	solely	of	zero	or	more	blank	lines	or	comments,	or	
both.

1-125

A non- interactive shell detected a syntax, redirection, or variable assignment error.

127

A specified command_file could not be found by a non- interactive shell.

Otherwise,	the	shell	shall	return	the	exit	status	of	the	last	command	it	invoked	or	
attempted	to	invoke	(see	also the exit utility in Special Built- In Utilities).

Consequences Of Errors
See Consequences of Shell Errors.

The following sections are informative.

Application Usage
Standard input and standard error are the files that determine whether a shell is interactive
when -i is not specified. For example:

sh > file

and:

sh 2> file

create interactive and non- interactive shells, respectively. Although both accept terminal
input, the results of error conditions are different, as described in Consequences of Shell Errors; in
the second example a redirection error encountered by a special built- in utility aborts the shell.

A conforming application must protect its first operand, if it starts with a plus sign, by pre-
ceding it with the “—” argument that denotes the end of the options.

Applications should note that the standard PATH to the shell cannot be assumed to
be either /bin/sh or /usr/bin/sh, and should be determined by interrogation of the PATH
returned by getconf PATH, ensuring that the returned pathname is an absolute pathname and
not a shell built- in.

For example, to determine the location of the standard sh utility:

command -v sh

On some implementations this might return:

/usr/xpg4/bin/sh

10436appBfinal 314 10/23/08 10:05:34 PM

Appendix B n THe SH UTiL iTY 315

Furthermore, on systems that support executable scripts (the “#!” construct), it is recom-
mended that applications using executable scripts install them using getconf -v to determine
the shell pathname and update the “#!” script appropriately as it is being installed (for exam-
ple, with sed). For example:

#
Installation time script to install correct POSIX shell pathname
#
Get list of paths to check
#
Sifs=$IFS
IFS=:
set $(getconf PATH)
IFS=$Sifs
#
Check each path for 'sh'
#
for i in $@
do
 if [-f ${i}/sh];
 then
 Pshell=${i}/sh
 fi
done
#
This is the list of scripts to update. They should be of the
form '${name}.source' and will be transformed to '${name}'.
Each script should begin:
#
!INSTALLSHELLPATH -p
#
scripts="a b c"
#
Transform each script
#
for i in ${scripts}
do
 sed -e "s|INSTALLSHELLPATH|${Pshell}|" < ${i}.source > ${i}
done

Examples

 1. Execute a shell command from a string:

sh -c "cat myfile"

 2. Execute a shell script from a file in the current directory:

sh my_shell_cmds

10436appBfinal 315 10/23/08 10:05:35 PM

Appendix B n THe SH UTiL iTY316

Rationale
The sh utility and the set special built- in utility share a common set of options.

The KornShell ignores the contents of IFS upon entry to the script. A conforming applica-
tion cannot rely on importing IFS.	One	justification	for	this,	beyond	security	considerations,	
is to assist possible future shell compilers. Allowing IFS to be imported from the environment
prevents many optimizations that might otherwise be performed via dataflow analysis of the
script itself.

The	text	in	the	STDIN	section	about		non-	blocking	reads	concerns	an	instance	of	sh that
has	been	invoked,	probably	by	a		C-	language	program,	with	standard	input	that	has	been	
opened using the O_NONBLOCK flag; see open() in the System Interfaces volume of IEEE Std
 1003.1- 2001. If the shell did not reset this flag, it would immediately terminate because no
input data would be available yet and that would be considered the same as end-of- file.

The options associated with a restricted shell (command name rsh and the -r option) were
excluded because the standard developers considered that the implied level of security could
not be achieved and they did not want to raise false expectations.

On	systems	that	support		set-user-	ID	scripts,	a	historical	trapdoor	has	been	to	link	a	script	
to the name -i. When it is called by a sequence such as:

sh -

or by:

#! usr/bin/sh -

the historical systems have assumed that no option letters follow. Thus, this volume of
IEEE	Std		1003.1-	2001	allows	the	single	hyphen	to	mark	the	end	of	the	options,	in	addition	to	
the use of the regular “-- ” argument, because it was considered that the older practice was so
pervasive.	An	alternative	approach	is	taken	by	the	KornShell,	where	real	and	effective	user/
group IDs must match for an interactive shell; this behavior is specifically allowed by this vol-
ume of IEEE Std 1003.1- 2001.

nNote There are other problems with set-user- ID scripts that the two approaches described here do not
resolve.

The initialization process for the history file can be dependent on the system start- up files,
in that they may contain commands that effectively preempt the user’s settings of HISTFILE
and HISTSIZE . For example, function definition commands are recorded in the history file,
unless the set -o nolog option is set. If the system administrator includes function definitions
in some system start- up file called before the ENV file, the history file is initialized before the
user gets a chance to influence its characteristics. In some historical shells, the history file is
initialized	just	after	the	ENV file has been processed. Therefore, it is implementation- defined
whether changes made to HISTFILE after the history file has been initialized are effective.

10436appBfinal 316 10/23/08 10:05:35 PM

Appendix B n THe SH UTiL iTY 317

The default messages for the various MAIL -related messages are unspecified because they
vary across implementations. Typical messages are:

"you have mail\n"

or:

"you have new mail\n"

It is important that the descriptions of command line editing refer to the same shell as
that in IEEE Std 1003.1- 2001 so that interactive users can also be application programmers
without having to deal with programmatic differences in their two environments. It is also
essential that the utility name sh be specified because this explicit utility name is too firmly
rooted in historical practice of application programs for it to change.

Consideration was given to mandating a diagnostic message when attempting to set
 vi- mode on terminals that do not support command line editing. However, it is not historical
practice for the shell to be cognizant of all terminal types and thus be able to detect inappro-
priate terminals in all cases. Implementations are encouraged to supply diagnostics in this
case	whenever	possible,	rather	than	leaving	the	user	in	a	state	where	editing	commands	work	
incorrectly.

In early proposals, the KornShell- derived emacs mode of command line editing was
included, even though the emacs editor itself was not. The community of emacs proponents
was adamant that the full emacs editor not be standardized because they were concerned that
an attempt to standardize this very powerful environment would encourage vendors to ship
strictly	conforming	versions	lacking	the	extensibility	required	by	the	community.	The	author	
of the original emacs program also expressed his desire to omit the program. Furthermore,
there were a number of historical systems that did not include emacs, or included it without
supporting it, but there were very few that did not include and support vi. The shell emacs
command line editing mode was finally omitted because it became apparent that the Korn-
Shell version and the editor being distributed with the GNU system had diverged in some
respects. The author of emacs requested that the POSIX emacs mode either be deleted or have
a significant number of unspecified conditions. Although the KornShell author agreed to
consider changes to bring the shell into alignment, the standard developers decided to defer
specification at that time. At the time, it was assumed that convergence on an acceptable defi-
nition would occur for a subsequent draft, but that has not happened, and there appears to be
no impetus to do so. In any case, implementations are free to offer additional command line
editing modes based on the exact models of editors their users are most comfortable with.

Early proposals had the following list entry in vi Line Editing Insert Mode :

\

If followed by the erase or kill character, that character shall be inserted into the input
line.	Otherwise,	the	backslash	itself	shall	be	inserted	into	the	input	line.

However, this is not actually a feature of sh command line editing insert mode, but one of
some historical terminal line drivers. Some conforming implementations continue to do this
when the stty iexten flag is set.

10436appBfinal 317 10/23/08 10:05:35 PM

Appendix B n THe SH UTiL iTY318

Future Directions
None.

See Also
Shell Command Language, cd, echo, exit(), fc, pwd, read(), set, stty, test, umask(), vi, the System
Interfaces volume of IEEE Std 1003.1- 2001, dup(), exec, exit(), fork(), open(), pipe(), signal(),
system(), ulimit(), umask(), wait()

Change History
First released in Issue 2.

Issue 5
The FUTURE DIRECTIONS section is added.

Text is added to the DESCRIPTION for the Large File Summit proposal.

Issue 6
The Open Group	Corrigendum	U029/2	is	applied,	correcting	the	second	SYNOPSIS.

The	Open	Group	Corrigendum	U027/3	is	applied,	correcting	a	typographical	error.
The following new requirements on POSIX implementations derive from alignment with

the Single UNIX Specification:

	 •	The	option	letters	derived	from	the	set special built- in are also accepted with a lead-
ing plus sign (‘+’).

	 •	Large	file	extensions	are	added:

	 •	 Pathname	expansion	does	not	fail	due	to	the	size	of	a	file.

	 •	 Shell	input	and	output	redirections	have	an		implementation-	defined	offset	maxi-
mum that is established in the open file description.

In the ENVIRONMENT VARIABLES section, the text “user’s home directory” is updated to
“directory referred to by the HOME environment variable”.

Descriptions for the ENV and PWD environment variables are included to align with the
IEEE P1003.2b draft standard.

The normative text is reworded to avoid use of the term “must” for application
requirements.

The Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition

Copyright © 2001- 2004 The IEEE and The Open Group, All Rights reserved.
UNIX	®	is	a	registered	Trademark	of	The	Open	Group.

POSIX	®	is	a	registered	Trademark	of	The	IEEE.

10436appBfinal 318 10/23/08 10:05:36 PM

A p p e n d i x C

Regular expressions

The POSIX specification defines two kinds of regular expressions: basic regular expressions,
such as those used by historic sed and grep, and extended regular expressions, used by awk
(and egrep). There are other kinds, but these two form the basis of what you need to know.
While some documentation describes basic regular expressions as “obsolete,” they are still
in widespread use. (However, if you are developing software, please use extended regular
expressions.)

This appendix is also significant because the shell pattern matching function (see Appen-
dix A for the complete shell specification) is defined in terms of section 9.3.5, “RE Bracket
Expression.”

nNote All external documents referenced in this appendix are available at www.opengroup.org.

9. Regular Expressions
Regular Expressions (REs) provide a mechanism to select specific strings from a set of charac-
ter strings.

Regular expressions are a context- independent syntax that can represent a wide vari-
ety of character sets and character set orderings, where these character sets are interpreted
according to the current locale. While many regular expressions can be interpreted differently
depending on the current locale, many features, such as character class expressions, provide
for contextual invariance across locales.

The Basic Regular Expression (BRE) notation and construction rules in Basic Regu-
lar Expressions shall apply to most utilities supporting regular expressions. Some utilities,
instead, support the Extended Regular Expressions (ERE) described in Extended Regular
Expressions; any exceptions for both cases are noted in the descriptions of the specific utili-
ties using regular expressions. Both BREs and EREs are supported by the Regular Expression
Matching interface in the System Interfaces volume of IEEE Std 1003.1- 2001 under regcomp(),
regexec(), and related functions.

319

10436appCfinal 319 10/23/08 10:09:55 PM

http://www.opengroup.org

Appendix C n ReGULAR expReSSiOnS320

9.1 Regular Expression Definitions
For the purposes of this section, the following definitions shall apply:

entire regular expression
The concatenated set of one or more BREs or EREs that make up the pattern specified for
string selection.

matched
A sequence of zero or more characters shall be said to be matched by a BRE or ERE when the
characters in the sequence correspond to a sequence of characters defined by the pattern.

Matching shall be based on the bit pattern used for encoding the character, not on the
graphic representation of the character. This means that if a character set contains two or
more encodings for a graphic symbol, or if the strings searched contain text encoded in more
than one codeset, no attempt is made to search for any other representation of the encoded
symbol. If that is required, the user can specify equivalence classes containing all variations of
the desired graphic symbol.

The search for a matching sequence starts at the beginning of a string and stops when
the first sequence matching the expression is found, where “first” is defined to mean “begins
earliest in the string”. If the pattern permits a variable number of matching characters and
thus there is more than one such sequence starting at that point, the longest such sequence
is matched. For example, the BRE “bb*” matches the second to fourth characters of the string
“abbbc”, and the ERE “(wee|week)(knights|night)” matches all ten characters of the string
“weeknights”.

Consistent with the whole match being the longest of the leftmost matches, each sub-
pattern, from left to right, shall match the longest possible string. For this purpose, a null
string shall be considered to be longer than no match at all. For example, matching the BRE
“\(.*\).*” against “abcdef”, the subexpression “(\1)” is “abcdef”, and matching the BRE
“\(a*\)*” against “bc”, the subexpression “(\1)” is the null string.

When a multi- character collating element in a bracket expression (see RE Bracket Expres-
sion) is involved, the longest sequence shall be measured in characters consumed from the
string to be matched; that is, the collating element counts not as one element, but as the num-
ber of characters it matches.

BRe (eRe) matching a single character
A BRE or ERE that shall match either a single character or a single collating element.

Only a BRE or ERE of this type that includes a bracket expression (see RE Bracket Expres-
sion) can match a collating element.

BRe (eRe) matching multiple characters
A BRE or ERE that shall match a concatenation of single characters or collating elements.

Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE
(ERE) special characters.

10436appCfinal 320 10/23/08 10:09:56 PM

Appendix C n ReGULAR expReSSiOnS 321

invalid
This section uses the term “invalid” for certain constructs or conditions. Invalid REs shall
cause the utility or function using the RE to generate an error condition. When invalid is not
used, violations of the specified syntax or semantics for REs produce undefined results: this
may entail an error, enabling an extended syntax for that RE, or using the construct in error as
literal characters to be matched. For example, the BRE construct “\{1,2,3\}” does not comply
with the grammar. A conforming application cannot rely on it producing an error nor match-
ing the literal characters “\{1,2,3\}”.

9.2 Regular Expression General Requirements
The requirements in this section shall apply to both basic and extended regular expressions.

The use of regular expressions is generally associated with text processing. REs (BREs and
EREs) operate on text strings; that is, zero or more characters followed by an end-of- string
delimiter (typically NUL). Some utilities employing regular expressions limit the processing to
lines; that is, zero or more characters followed by a <newline>. In the regular expression pro-
cessing described in IEEE Std 1003.1- 2001, the <newline> is regarded as an ordinary character
and both a period and a non- matching list can match one. The Shell and Utilities volume of
IEEE Std 1003.1- 2001 specifies within the individual descriptions of those standard utilities
employing regular expressions whether they permit matching of <newline>s; if not stated oth-
erwise, the use of literal <newline>s or any escape sequence equivalent produces undefined
results. Those utilities (like grep) that do not allow <newline>s to match are responsible for
eliminating any <newline> from strings before matching against the RE. The regcomp() func-
tion in the System Interfaces volume of IEEE Std 1003.1- 2001, however, can provide support
for such processing without violating the rules of this section.

The interfaces specified in IEEE Std 1003.1- 2001 do not permit the inclusion of a NUL
character in an RE or in the string to be matched. If during the operation of a standard utility
a NUL is included in the text designated to be matched, that NUL may designate the end of the
text string for the purposes of matching.

When a standard utility or function that uses regular expressions specifies that pattern
matching shall be performed without regard to the case (uppercase or lowercase) of either
data or patterns, then when each character in the string is matched against the pattern, not
only the character, but also its case counterpart (if any), shall be matched. This definition of
 case- insensitive processing is intended to allow matching of multi- character collating ele-
ments as well as characters, as each character in the string is matched using both its cases. For
example, in a locale where “Ch” is a multi- character collating element and where a matching
list expression matches such elements, the RE “[[.Ch.]]” when matched against the string
“char” is in reality matched against “ch”, “Ch”, “cH”, and “CH”.

The implementation shall support any regular expression that does not exceed 256 bytes
in length.

10436appCfinal 321 10/23/08 10:09:56 PM

Appendix C n ReGULAR expReSSiOnS322

9.3 Basic Regular Expressions

9.3.1 BRes Matching a Single Character or Collating element
A BRE ordinary character, a special character preceded by a backslash, or a period shall match
a single character. A bracket expression shall match a single character or a single collating
element.

9.3.2 BRe Ordinary Characters
An ordinary character is a BRE that matches itself: any character in the supported character
set, except for the BRE special characters listed in BRE Special Characters.

The interpretation of an ordinary character preceded by a backslash (‘\’) is undefined,
except for:

	 •	 The	characters	‘)’, ‘(’, ‘{’, and ‘}’

	 •	 The	digits	1	to	9	inclusive	(see	BREs	Matching	Multiple	Characters)

	 •	 A	character	inside	a	bracket	expression

9.3.3 BRe Special Characters
A BRE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a backslash, such a character is a BRE that matches the special character
itself. The BRE special characters and the contexts in which they have their special meaning
are as follows:

.[\

The period, left- bracket, and backslash shall be special except when used in a bracket
expression (see RE Bracket Expression). An expression containing a ‘[’ that is not pre-
ceded by a backslash and is not part of a bracket expression produces undefined results.

*

The asterisk shall be special except when used:

	 •	 In	a	bracket	expression

	 •	 As	the	first	character	of	an	entire	BRE	(after	an	initial	‘^’, if any)

	 •	 As	the	first	character	of	a	subexpression	(after	an	initial	‘^’, if any); see BREs Match-
ing Multiple Characters

^

The circumflex shall be special when used as:

	 •	 An	anchor	(see	BRE	Expression	Anchoring)

	 •	 The	first	character	of	a	bracket	expression	(see	RE	Bracket	Expression)

$

The dollar sign shall be special when used as an anchor.

10436appCfinal 322 10/23/08 10:09:56 PM

Appendix C n ReGULAR expReSSiOnS 323

9.3.4 periods in BRes
A period (‘.’), when used outside a bracket expression, is a BRE that shall match any character
in the supported character set except NUL.

9.3.5 Re Bracket expression
A bracket expression (an expression enclosed in square brackets, “[]”) is an RE that shall
match a single collating element contained in the non- empty set of collating elements repre-
sented by the bracket expression.

The following rules and definitions apply to bracket expressions:

 1. A bracket expression is either a matching list expression or a non- matching list expres-
sion. It consists of one or more expressions: collating elements, collating symbols,
equivalence classes, character classes, or range expressions. The right- bracket (‘]’)
shall lose its special meaning and represent itself in a bracket expression if it occurs
first in the list (after an initial circumflex (‘^’), if any). Otherwise, it shall terminate
the bracket expression, unless it appears in a collating symbol (such as “[.].]”) or is
the ending right- bracket for a collating symbol, equivalence class, or character class.
The special characters ‘.’, ‘*’, ‘[’, and ‘\’ (period, asterisk, left- bracket, and backslash,
respectively) shall lose their special meaning within a bracket expression.

 The character sequences “[.”, “[=”, and “[:” (left- bracket followed by a period,
 equals- sign, or colon) shall be special inside a bracket expression and are used to
delimit collating symbols, equivalence class expressions, and character class expres-
sions. These symbols shall be followed by a valid expression and the matching
terminating sequence “.]”, “=]”, or “:]”, as described in the following items.

 2. A matching list expression specifies a list that shall match any single- character collat-
ing element in any of the expressions represented in the list. The first character in the
list shall not be the circumflex; for example, “[abc]” is an RE that matches any of the
characters ‘a’, ‘b’, or ‘c’. It is unspecified whether a matching list expression matches
a multi- character collating element that is matched by one of the expressions.

 3. A non- matching list expression begins with a circumflex (‘^’), and specifies a list that
shall match any single- character collating element except for the expressions rep-
resented in the list after the leading circumflex. For example, “[^abc]” is an RE that
matches any character except the characters ‘a’, ‘b’, or ‘c’. It is unspecified whether
a non- matching list expression matches a multi- character collating element that is not
matched by any of the expressions. The circumflex shall have this special meaning only
when it occurs first in the list, immediately following the left- bracket.

 4. A collating symbol is a collating element enclosed within bracket- period (“[.” and
“.]”) delimiters. Collating elements are defined as described in Collation Order. Con-
forming applications shall represent multi- character collating elements as collating
symbols when it is necessary to distinguish them from a list of the individual characters
that make up the multi- character collating element. For example, if the string “ch” is
a collating element defined using the line:

collating-element <ch- digraph> from "<c><h>"

10436appCfinal 323 10/23/08 10:09:57 PM

Appendix C n ReGULAR expReSSiOnS324

 in the locale definition, the expression “[[.ch.]]” shall be treated as an RE contain-
ing the collating symbol ‘ch’, while “[ch]” shall be treated as an RE matching ‘c’ or ‘h’.
Collating symbols are recognized only inside bracket expressions. If the string is not
a collating element in the current locale, the expression is invalid.

 5. An equivalence class expression shall represent the set of collating elements belong-
ing to an equivalence class, as described in Collation Order. Only primary equivalence
classes shall be recognized. The class shall be expressed by enclosing any one of the
collating elements in the equivalence class within bracket- equal (“[=” and “=]”)
delimiters. For example, if ‘a’, ‘à’, and ‘â’ belong to the same equivalence class, then
“[[=a=]b]”, “[[=à=]b]”, and “[[=â=]b]” are each equivalent to “[aàâb]”. If the collating
element does not belong to an equivalence class, the equivalence class expression shall
be treated as a collating symbol.

 6. A character class expression shall represent the union of two sets:

 a. The set of single- character collating elements whose characters belong to the char-
acter class, as defined in the LC_CTYPE category in the current locale.

 b. An unspecified set of multi- character collating elements.

 All character classes specified in the current locale shall be recognized. A character
class expression is expressed as a character class name enclosed within bracket- colon
(“[:” and “:]”) delimiters.

 The following character class expressions shall be supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

 In addition, character class expressions of the form:

[:name:]

 are recognized in those locales where the name keyword has been given a charclass
definition in the LC_CTYPE category.

 7. In the POSIX locale, a range expression represents the set of collating elements that fall
between two elements in the collation sequence, inclusive. In other locales, a range
expression has unspecified behavior: strictly conforming applications shall not rely
on whether the range expression is valid, or on the set of collating elements matched.
A range expression shall be expressed as the starting point and the ending point sepa-
rated by a hyphen (‘- ’).

 In the following, all examples assume the POSIX locale.

 The starting range point and the ending range point shall be a collating element or
collating symbol. An equivalence class expression used as a starting or ending point of
a range expression produces unspecified results. An equivalence class can be used por-
tably within a bracket expression, but only outside the range. If the represented set of
collating elements is empty, it is unspecified whether the expression matches nothing,
or is treated as invalid.

10436appCfinal 324 10/23/08 10:09:57 PM

Appendix C n ReGULAR expReSSiOnS 325

 The interpretation of range expressions where the ending range point is also the
starting range point of a subsequent range expression (for example, “[a-m- o]”) is
undefined.

 The hyphen character shall be treated as itself if it occurs first (after an initial ‘^’, if any)
or last in the list, or as an ending range point in a range expression. As examples, the
expressions “[- ac]” and “[ac-]” are equivalent and match any of the characters ‘a’, ‘c’,
or ‘- ’ ; “[^- ac]” and “[^ac-]” are equivalent and match any characters except ‘a’, ‘c’, or
 ‘- ’ ; the expression “[%--]” matches any of the characters between ‘%’ and ‘- ’ inclusive;
the expression “[-- @]” matches any of the characters between ‘- ’ and ‘@’ inclusive; and
the expression “[a-- @]” is either invalid or equivalent to ‘@’, because the letter ‘a’ fol-
lows the symbol ‘- ’ in the POSIX locale. To use a hyphen as the starting range point, it
shall either come first in the bracket expression or be specified as a collating symbol;
for example, “[][.-.]- 0]”, which matches either a right bracket or any character or col-
lating element that collates between hyphen and 0, inclusive.

 If a bracket expression specifies both ‘- ’ and ‘]’, the ‘]’ shall be placed first (after the
‘^’, if any) and the ‘- ’ last within the bracket expression.

9.3.6 BRes Matching Multiple Characters
The following rules can be used to construct BREs matching multiple characters from BREs
matching a single character:

 1. The concatenation of BREs shall match the concatenation of the strings matched by
each component of the BRE.

 2. A subexpression can be defined within a BRE by enclosing it between the character
pairs “\(” and “\)”. Such a subexpression shall match whatever it would have matched
without the “\(” and “\)”, except that anchoring within subexpressions is optional
behavior; see BRE Expression Anchoring. Subexpressions can be arbitrarily nested.

 3. The back- reference expression ‘\n’ shall match the same (possibly empty) string of
characters as was matched by a subexpression enclosed between “\(” and “\)” pre-
ceding the ‘\n’. The character ‘n’ shall be a digit from 1 through 9, specifying the nth
subexpression (the one that begins with the nth “\(” from the beginning of the pattern
and ends with the corresponding paired “\)”). The expression is invalid if less than
n subexpressions precede the ‘\n’. For example, the expression “\(.*\)\1$” matches
a line consisting of two adjacent appearances of the same string, and the expression
“\(a\)*\1” fails to match ‘a’. When the referenced subexpression matched more than
one string, the back- referenced expression shall refer to the last matched string. If the
subexpression referenced by the back- reference matches more than one string because
of an asterisk (‘*’) or an interval expression (see item (5)), the back- reference shall
match the last (rightmost) of these strings.

 4. When a BRE matching a single character, a subexpression, or a back- reference is fol-
lowed by the special character asterisk (‘*’), together with that asterisk it shall match
what zero or more consecutive occurrences of the BRE would match. For example,
“[ab]*” and “[ab][ab]” are equivalent when matching the string “ab”.

10436appCfinal 325 10/23/08 10:09:58 PM

Appendix C n ReGULAR expReSSiOnS326

 5. When a BRE matching a single character, a subexpression, or a back- reference is fol-
lowed by an interval expression of the format “\{m\}”, “\{m,\}”, or “\{m,n\}”, together
with that interval expression it shall match what repeated consecutive occurrences
of the BRE would match. The values of m and n are decimal integers in the range
0 <= m<= n<= {RE_DUP_MAX}, where m specifies the exact or minimum number of
occurrences and n specifies the maximum number of occurrences. The expression
“\{m\}” shall match exactly m occurrences of the preceding BRE, “\{m,\}” shall match
at least m occurrences, and “\{m,n\}” shall match any number of occurrences between
m and n, inclusive.

 For example, in the string “abababccccccd” the BRE “c\{3\}” is matched by characters
seven to nine, the BRE “\(ab\)\{4,\}” is not matched at all, and the BRE “c\{1,3\}d” is
matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols (‘*’ and intervals) produces unde-
fined results.

A subexpression repeated by an asterisk (‘*’) or an interval expression shall not match
a null expression unless this is the only match for the repetition or it is necessary to satisfy the
exact or minimum number of occurrences for the interval expression.

9.3.7 BRe precedence
The order of precedence shall be as shown in the following table:

BRE Precedence (from high to low)

Collation-related bracket symbols [==] [::] [..]

Escaped characters \<special character>

Bracket expression []

Subexpressions/back-references \(\) \n

Single-character-BRE duplication * \{m,n\}

Concatenation

Anchoring ^ $

9.3.8 BRe expression Anchoring
A BRE can be limited to matching strings that begin or end a line; this is called “anchoring”.
The circumflex and dollar sign special characters shall be considered BRE anchors in the fol-
lowing contexts:

10436appCfinal 326 10/23/08 10:09:58 PM

Appendix C n ReGULAR expReSSiOnS 327

 1. A circumflex (‘^’) shall be an anchor when used as the first character of an entire BRE.
The implementation may treat the circumflex as an anchor when used as the first
character of a subexpression. The circumflex shall anchor the expression (or optionally
subexpression) to the beginning of a string; only sequences starting at the first charac-
ter of a string shall be matched by the BRE. For example, the BRE “^ab” matches “ab”
in the string “abcdef”, but fails to match in the string “cdefab”. The BRE “\(^ab\)” may
match the former string. A portable BRE shall escape a leading circumflex in a subex-
pression to match a literal circumflex.

 2. A dollar sign (‘$’) shall be an anchor when used as the last character of an entire BRE.
The implementation may treat a dollar sign as an anchor when used as the last char-
acter of a subexpression. The dollar sign shall anchor the expression (or optionally
subexpression) to the end of the string being matched; the dollar sign can be said to
match the end-of- string following the last character.

 3. A BRE anchored by both ‘^’ and ‘$’ shall match only an entire string. For example, the
BRE “^abcdef$” matches strings consisting only of “abcdef”.

9.4 Extended Regular Expressions
The extended regular expression (ERE) notation and construction rules shall apply to utilities
defined as using extended regular expressions; any exceptions to the following rules are noted
in the descriptions of the specific utilities using EREs.

9.4.1 eRes Matching a Single Character or Collating element
An ERE ordinary character, a special character preceded by a backslash, or a period shall
match a single character. A bracket expression shall match a single character or a single col-
lating element. An ERE matching a single character enclosed in parentheses shall match the
same as the ERE without parentheses would have matched.

9.4.2 eRe Ordinary Characters
An ordinary character is an ERE that matches itself. An ordinary character is any character in
the supported character set, except for the ERE special characters listed in ERE Special Charac-
ters. The interpretation of an ordinary character preceded by a backslash (‘\’) is undefined.

9.4.3 eRe Special Characters
An ERE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a backslash, such a character shall be an ERE that matches the special char-
acter itself. The extended regular expression special characters and the contexts in which they
shall have their special meaning are as follows:

10436appCfinal 327 10/23/08 10:09:59 PM

Appendix C n ReGULAR expReSSiOnS328

.[\(

The period, left- bracket, backslash, and left- parenthesis shall be special except when
used in a bracket expression (see RE Bracket Expression). Outside a bracket expression,
a left- parenthesis immediately followed by a right- parenthesis produces undefined
results.

)

The right- parenthesis shall be special when matched with a preceding left- parenthesis,
both outside a bracket expression.

*+?{

The asterisk, plus- sign, question- mark, and left- brace shall be special except when used in
a bracket expression (see RE Bracket Expression). Any of the following uses produce unde-
fined results:

	 •	 If	these	characters	appear	first	in	an	ERE,	or	immediately	following	a		vertical-	line,	
circumflex, or left- parenthesis

	 •	 If	a		left-	brace	is	not	part	of	a	valid	interval	expression	(see	EREs	Matching	Multiple	
Characters)

|

The vertical- line is special except when used in a bracket expression (see RE Bracket
Expression). A vertical- line appearing first or last in an ERE, or immediately following
a vertical- line or a left- parenthesis, or immediately preceding a right- parenthesis, pro-
duces undefined results.

^

The circumflex shall be special when used as:

	 •	 An	anchor	(see	ERE	Expression	Anchoring)

	 •	 The	first	character	of	a	bracket	expression	(see	RE	Bracket	Expression)

$

The dollar sign shall be special when used as an anchor.

9.4.4 periods in eRes
A period (‘.’), when used outside a bracket expression, is an ERE that shall match any charac-
ter in the supported character set except NUL.

9.4.5 eRe Bracket expression
The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see RE
Bracket Expression.

9.4.6 eRes Matching Multiple Characters
The following rules shall be used to construct EREs matching multiple characters from EREs
matching a single character:

10436appCfinal 328 10/23/08 10:09:59 PM

Appendix C n ReGULAR expReSSiOnS 329

 1. A concatenation of EREs shall match the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in paren-
theses shall match whatever the concatenation without the parentheses matches. For
example, both the ERE “cd” and the ERE “(cd)” are matched by the third and fourth
character of the string “abcdefabcdef”.

 2. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character plus- sign (‘+’), together with that plus- sign it shall
match what one or more consecutive occurrences of the ERE would match. For
example, the ERE “b+(bc)” matches the fourth to seventh characters in the string
“acabbbcde”. And, “[ab]+” and “[ab][ab]*” are equivalent.

 3. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character asterisk (‘*’), together with that asterisk it shall match
what zero or more consecutive occurrences of the ERE would match. For example,
the ERE “b*c” matches the first character in the string “cabbbcde”, and the ERE “b*cd”
matches the third to seventh characters in the string “cabbbcdebbbbbbcdbc”. And,
“[ab]*” and “[ab][ab]” are equivalent when matching the string “ab”.

 4. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by the special character question- mark (‘?’), together with that question- mark
it shall match what zero or one consecutive occurrences of the ERE would match. For
example, the ERE “b?c” matches the second character in the string “acabbbcde”.

 5. When an ERE matching a single character or an ERE enclosed in parentheses is fol-
lowed by an interval expression of the format “{m}”, “{m,}”, or “{m,n}”, together
with that interval expression it shall match what repeated consecutive occurrences
of the ERE would match. The values of m and n are decimal integers in the range
0 <= m<= n<= {RE_DUP_MAX}, where m specifies the exact or minimum number of
occurrences and n specifies the maximum number of occurrences. The expression
“{m}” matches exactly m occurrences of the preceding ERE, “{m,}” matches at least
m occurrences, and “{m,n}” matches any number of occurrences between m and n,
inclusive.

 For example, in the string “abababccccccd” the ERE “c{3}” is matched by characters
seven to nine and the ERE “(ab){2,}” is matched by characters one to six.

The behavior of multiple adjacent duplication symbols (‘+’, ‘*’, ‘?’, and intervals) pro-
duces undefined results.

An ERE matching a single character repeated by an ‘*’, ‘?’, or an interval expression shall
not match a null expression unless this is the only match for the repetition or it is necessary to
satisfy the exact or minimum number of occurrences for the interval expression.

9.4.7 eRe Alternation
Two EREs separated by the special character vertical- line (‘|’) shall match a string that is
matched by either. For example, the ERE “a((bc)|d)” matches the string “abc” and the string
“ad”. Single characters, or expressions matching single characters, separated by the vertical
bar and enclosed in parentheses, shall be treated as an ERE matching a single character.

10436appCfinal 329 10/23/08 10:10:00 PM

Appendix C n ReGULAR expReSSiOnS330

9.4.8 eRe precedence
The order of precedence shall be as shown in the following table:

ERE Precedence (from high to low)

Collation-related bracket symbols [==] [::] [..]

Escaped characters \<special character>

Bracket expression []

Grouping ()

Single-character-ERE duplication * + ? {m,n}

Concatenation

Anchoring ^ $

Alternation |

For example, the ERE “abba|cde” matches either the string “abba” or the string “cde”
(rather than the string “abbade” or “abbcde”, because concatenation has a higher order of pre-
cedence than alternation).

9.4.9 eRe expression Anchoring
An ERE can be limited to matching strings that begin or end a line; this is called “anchoring”.
The circumflex and dollar sign special characters shall be considered ERE anchors when used
anywhere outside a bracket expression. This shall have the following effects:

 1. A circumflex (‘^’) outside a bracket expression shall anchor the expression or subex-
pression it begins to the beginning of a string; such an expression or subexpression
can match only a sequence starting at the first character of a string. For example, the
EREs “^ab” and “(^ab)” match “ab” in the string “abcdef”, but fail to match in the string
“cdefab”, and the ERE “a^b” is valid, but can never match because the ‘a’ prevents the
expression “^b” from matching starting at the first character.

 2. A dollar sign (‘$’) outside a bracket expression shall anchor the expression or subex-
pression it ends to the end of a string; such an expression or subexpression can match
only a sequence ending at the last character of a string. For example, the EREs “ef$”
and “(ef$)” match “ef” in the string “abcdef”, but fail to match in the string “cdefab”,
and the ERE “e$f” is valid, but can never match because the ‘f’ prevents the expression
“e$” from matching ending at the last character.

9.5 Regular Expression Grammar
Grammars describing the syntax of both basic and extended regular expressions are presented
in this section. The grammar takes precedence over the text. See the Shell and Utilities volume
of IEEE Std 1003.1- 2001, Section 1.10, Grammar Conventions.

10436appCfinal 330 10/23/08 10:10:00 PM

Appendix C n ReGULAR expReSSiOnS 331

9.5.1 BRe/eRe Grammar Lexical Conventions
The lexical conventions for regular expressions are as described in this section.

Except as noted, the longest possible token or delimiter beginning at a given point is
recognized.

The following tokens are processed (in addition to those string constants shown in the
grammar):

COLL_ELEM_SINGLE

Any single- character collating element, unless it is a META_CHAR.

COLL_ELEM_MULTI

Any multi- character collating element.

BACKREF

Applicable only to basic regular expressions. The character string consisting of ‘\’ followed
by a single- digit numeral, ‘1’ to ‘9’.

DUP_COUNT

Represents a numeric constant. It shall be an integer in the range 0 <= DUP_COUNT <=
{RE_DUP_MAX}. This token is only recognized when the context of the grammar requires
it. At all other times, digits not preceded by ‘\’ are treated as ORD_CHAR.

META_CHAR

One of the characters:

^

When found first in a bracket expression

-

When found anywhere but first (after an initial ‘^’, if any) or last in a bracket expression, or
as the ending range point in a range expression

]

When found anywhere but first (after an initial ‘^’, if any) in a bracket expression

L_ANCHOR

Applicable only to basic regular expressions. The character ‘^’ when it appears as the first
character of a basic regular expression and when not QUOTED_CHAR. The ‘^’ may be rec-
ognized as an anchor elsewhere; see BRE Expression Anchoring.

ORD_CHAR

A character, other than one of the special characters in SPEC_CHAR.

QUOTED_CHAR

In a BRE, one of the character sequences:

\^ \. * \[\$ \\

10436appCfinal 331 10/23/08 10:10:01 PM

Appendix C n ReGULAR expReSSiOnS332

In an ERE, one of the character sequences:

\^ \. \[\$ \(\) \|
* \+ \? \{ \\

R_ANCHOR

(Applicable only to basic regular expressions.) The character ‘$’ when it appears as the last
character of a basic regular expression and when not QUOTED_CHAR. The ‘$’ may be rec-
ognized as an anchor elsewhere; see BRE Expression Anchoring.

SPEC_CHAR

For basic regular expressions, one of the following special characters:

.

Anywhere outside bracket expressions

\

Anywhere outside bracket expressions

[

Anywhere outside bracket expressions

^

When used as an anchor (see BRE Expression Anchoring) or when first in a bracket
expression

$

When used as an anchor

*

Anywhere except first in an entire RE, anywhere in a bracket expression, directly following
“\(”, directly following an anchoring ‘^’

For extended regular expressions, shall be one of the following special characters found
anywhere outside bracket expressions:

^ . [$ () |
* + ? { \

(The close- parenthesis shall be considered special in this context only if matched with
a preceding open- parenthesis.)

9.5.2 Re and Bracket expression Grammar
This section presents the grammar for basic regular expressions, including the bracket expres-
sion grammar that is common to both BREs and EREs.

10436appCfinal 332 10/23/08 10:10:01 PM

Appendix C n ReGULAR expReSSiOnS 333

%token ORD_CHAR QUOTED_CHAR DUP_COUNT

%token BACKREF L_ANCHOR R_ANCHOR

%token Back_open_paren Back_close_paren
/* '\(' '\)' */

%token Back_open_brace Back_close_brace
/* '\{' '\}' */

/* The following tokens are for the Bracket Expression
 grammar common to both REs and EREs. */

%token COLL_ELEM_SINGLE COLL_ELEM_MULTI META_CHAR

%token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close
/* '[=' '=]' '[.' '.]' '[:' ':]' */

%token class_name
/* class_name is a keyword to the LC_CTYPE locale category */
/* (representing a character class) in the current locale */
/* and is only recognized between [: and :] */

%start basic_reg_exp
%%

/* --- -
 Basic Regular Expression
 --- -
*/

10436appCfinal 333 10/23/08 10:10:01 PM

Appendix C n ReGULAR expReSSiOnS334

basic_reg_exp : RE_expression
 | L_ANCHOR
 | R_ANCHOR
 | L_ANCHOR R_ANCHOR
 | L_ANCHOR RE_expression
 | RE_expression R_ANCHOR
 | L_ANCHOR RE_expression R_ANCHOR
 ;
RE_expression : simple_RE
 | RE_expression simple_RE
 ;
simple_RE : nondupl_RE
 | nondupl_RE RE_dupl_symbol
 ;
nondupl_RE : one_char_or_coll_elem_RE
 | Back_open_paren RE_expression Back_close_paren
 | BACKREF
 ;
one_char_or_coll_elem_RE : ORD_CHAR
 | QUOTED_CHAR
 | '.'
 | bracket_expression
 ;
RE_dupl_symbol : '*'
 | Back_open_brace DUP_COUNT Back_close_brace
 | Back_open_brace DUP_COUNT ',' Back_close_brace
 | Back_open_brace DUP_COUNT ',' DUP_COUNT Back_close_brace
 ;

/* --- -
 Bracket Expression
 -- -
*/
bracket_expression : '[' matching_list ']'
 | '[' nonmatching_list ']'
 ;
matching_list : bracket_list
 ;
nonmatching_list : '^' bracket_list
 ;
bracket_list : follow_list
 | follow_list '- '
 ;

10436appCfinal 334 10/23/08 10:10:01 PM

Appendix C n ReGULAR expReSSiOnS 335

follow_list : expression_term
 | follow_list expression_term
 ;
expression_term : single_expression
 | range_expression
 ;
single_expression : end_range
 | character_class
 | equivalence_class
 ;
range_expression : start_range end_range
 | start_range '- '
 ;
start_range : end_range '- '
 ;
end_range : COLL_ELEM_SINGLE
 | collating_symbol
 ;
collating_symbol : Open_dot COLL_ELEM_SINGLE Dot_close
 | Open_dot COLL_ELEM_MULTI Dot_close
 | Open_dot META_CHAR Dot_close
 ;
equivalence_class : Open_equal COLL_ELEM_SINGLE Equal_close
 | Open_equal COLL_ELEM_MULTI Equal_close
 ;
character_class : Open_colon class_name Colon_close
 ;

The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside “\(” and “\)”
(which implies that ‘^’ and ‘$’ are ordinary characters). This reflects the semantic limits on the
application, as noted in BRE Expression Anchoring. Implementations are permitted to extend
the language to interpret ‘^’ and ‘$’ as anchors in these locations, and as such, conforming
applications cannot use unescaped ‘^’ and ‘$’ in positions inside “\(” and “\)” that might be
interpreted as anchors.

9.5.3 eRe Grammar
This section presents the grammar for extended regular expressions, excluding the bracket
expression grammar.

10436appCfinal 335 10/23/08 10:10:02 PM

Appendix C n ReGULAR expReSSiOnS336

nNote The bracket expression grammar and the associated %token lines are identical between BREs and
EREs. It has been omitted from the ERE section to avoid unnecessary editorial duplication.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT
%start extended_reg_exp
%%

/* --- -
 Extended Regular Expression
 --- -
*/
extended_reg_exp : ERE_branch
 | extended_reg_exp '|' ERE_branch
 ;
ERE_branch : ERE_expression
 | ERE_branch ERE_expression
 ;
ERE_expression : one_char_or_coll_elem_ERE
 | '^'
 | '$'
 | '(' extended_reg_exp ')'
 | ERE_expression ERE_dupl_symbol
 ;
one_char_or_coll_elem_ERE : ORD_CHAR
 | QUOTED_CHAR
 | '.'
 | bracket_expression
 ;
ERE_dupl_symbol : '*'
 | '+'
 | '?'
 | '{' DUP_COUNT '}'
 | '{' DUP_COUNT ',' '}'
 | '{' DUP_COUNT ',' DUP_COUNT '}'
 ;

The ERE grammar does not permit several constructs that previous sections specify as
having undefined results:

10436appCfinal 336 10/23/08 10:10:02 PM

Appendix C n ReGULAR expReSSiOnS 337

	 •	 ORD_CHAR preceded by ‘\’

	 •	 One	or	more	ERE_dupl_symbols appearing first in an ERE, or immediately following ‘|’,
‘^’, or ‘(’

	 •	 ‘{’ not part of a valid ERE_dupl_symbol

	 •	 ‘|’ appearing first or last in an ERE, or immediately following ‘|’ or ‘(’, or immediately
preceding ‘)’

Implementations are permitted to extend the language to allow these. Conforming appli-
cations cannot use such constructs.

The Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition

Copyright © 2001- 2004 The IEEE and The Open Group, All Rights reserved.
UNIX ® is a registered Trademark of The Open Group.

POSIX ® is a registered Trademark of The IEEE.

10436appCfinal 337 10/23/08 10:10:02 PM

10436appCfinal 338 10/23/08 10:10:02 PM

Special Characters
(sharps), 2, 259–261, 269–270, 280–285, 305
#! script header, 118, 255–256, 315
$ (dollar signs), 14, 81, 91, 265, 308, 322,

327–328, 330, 332–335
$() syntax, 40, 95–96, 146–147, 152, 165
$? shell parameter, 45
$- shell parameter, 119
$! shell parameter, 132
$# shell parameter, 76, 82
$$ shell parameter, 82, 89, 95, 132, 208, 240
$* shell parameter, 80, 82
$@ shell parameter, 82, 84, 121
% characters, 18, 20
%c format specifier, 20
& (ampersands), 61, 73, 135, 152, 256,

279–280, 288–292
&& operator, 47, 75, 279–281, 288
* (asterisks), 22–23, 32–35, 153, 295, 306, 322,

328, 332
(*/)# operator, 153
**/ operator, 153
@ (at signs), 20
[] (square brackets), 24, 295, 320, 322–325,

328
^ (carets), 24, 294, 322–323, 325–328, 330–

332, 334–337
{ } (braces), 30, 148–149, 328
| (pipes), 2, 51, 57, 152, 279, 328–329
|| operator, 47, 279–281, 288
} character, 266
~ (tilde) expansion, 85, 265
+ (plus signs), 13, 35, 36, 153, 298
+(pattern-list) pattern, 153
\< anchor, 36
<&p operator, 155
<< operator, 272
<<< operator, 154
= (equals signs), 25, 306
\> anchor, 36
0 ^ $ c command, 310
-0 option, 200, 227
$0 parameter, 82
[!0-9] class, 24
[!0-9] pattern, 39
[0-9]* pattern, 39
\1 backreference, 33

-1 option, 227
$1 parameter, 80–82
${10} parameter, 82
' (apostrophes), 11
` (back quotes), 15
\ (backslashes), 77–78, 256–257, 294, 306, 322,

327–328, 332
: (colons), 2, 25, 44
" (double quotes), 17, 18, 77, 79, 257–258, 261
! (exclamation marks), 12, 24, 45, 164–165,

294
/ (forward slashes), 78, 150
- (hyphens), 24, 325, 331
. (periods), 25, 28, 32, 108–109, 111, 323, 328,

332
? (question marks), 23, 32, 35–36, 153, 276,

295
; (semicolons), 14, 73, 281
' (single quotes), 11, 17, 79, 257
$2 parameter, 82

Numerics
8-bit support, 166

A
{a,b} expression, 148
a < b operator, 46
a <= b operator, 46
a != b operator, 46
a = b operator, 46
a > b operator, 46
a >= b operator, 46
A command, 309
a command, 309
a operator, 47
-A option, 227
-a option, 227–228, 233–234
$a variable, 140–142
a_0 variable, 103
a_1 variable, 103–104
a|b expression, 35
(a|b){2} expression, 35
a|b{2} expression, 35
(a)|(b)c expression, 35
(a|b)c expression, 35
${a} expression, 140
\ (\ (ab\) *c\)*, \1 expression, 34
ab command, 224

Index

339

10436idxfinal 339 10/23/08 10:46:42 PM

nINDEX340

absolute path, 28
AC_PROG_AWK function, 251
AC_PROG_LIBTOOL macro, 202
action command, 131
add_result variable, 102
$alarmpid variable, 136
alias command, 128
alias substitution, 154, 259
alias utility, 259
all_files variable, 96
$all_files variable, 96
Almquist shell, 7, 158–159
alpha class, 263
alternation, ERE, 329
alternation operator, 34
ampersands (&), 61, 73, 135, 152, 256,

279–280, 288–292
anchoring, 32
and operator, 75
$answer variable, 52
apachectl utility, 224
apostrophes ('), 11
appending redirected output, 273
ar archiver, 187, 197
archive utilities, 185–187
$arg variable, 77–79, 238–239
arg0 arguments, 278
argument operands, 298
arguments, 13, 117–118, 224–229, 298
arithmetic expansion, 270, 271
arithmetic substitution, 151–152
arrays, 155–156
$as_cr_alnum variable, 171
$as_cr_digits variable, 171
$as_me.lineno variable, 171
ASCII NUL byte, 87
ash command, 139, 145, 151–152, 157–162,

174
ASSIGNMENT statement, 286–288, 291
$assoc variable, 115
associative arrays, 114
asterisks (*), 22–23, 32–35, 153, 295, 306, 322,

328, 332
asynchronous events, 303
at signs (@), 20
atoms, 32, 34
autoconf $as_cr values, 245
autoconf command, 5, 145–147, 167, 170–

171, 194, 201, 245, 251
autoconf manual, 175, 188–189
automake tool, 194
awk -f file script, 238, 252
awk language, 1, 36, 156, 158, 184, 189, 197,

229, 233, 235, 238–239, 242, 246–252,
319

B
-b option, 227
b* pattern, 26, 37
b*na pattern, 26
back quotes (`), 15
background tasks, 132–133
background_task command, 110
BACKREF token, 331, 333–334
back-reference expression, 325
backreferences, 33–34
backslashes (\), 77–78, 256–257, 294, 306, 322,

327–328, 332
bar command, 243
basename utility, 37, 189
bash command, 108, 120, 123, 128, 132, 139,

143, 145–146, 148–149, 151–163,
166–167, 169–170, 174, 179, 182, 193,
230–231

$BASH_ENV variable, 128
.bash_login file, 128
.bash_profile file, 128
$BASH_SUBSHELL variable, 139
$BASH_VERSION variable, 159–161, 169–170
bashdb debugger, 143
basic regexes, 31
basic regular expressions (BREs), 319,

322–327
BEGIN statement, 248
bin directory, 28
/bin directory, 119
/bin/echo command, 78, 183
/bin/sh command, 95, 118, 145–146, 158,

160, 164, 314
/bin/sh file, 178, 198
#!/bin/sh shell header, 118
/bin/test command, 99
bin/unsort file, 28
blank class, 259, 263
<blank> element, 259
block command, 99
BLOCK command, 214
block sizes, 188
blocksize 1m --count 16 program, 219
$BLOCKSIZE variable, 188, 203, 211
BLOCKSIZE=1024 command, 214
Bourne shell, 1, 3, 7–8
Bourne-again shell, 7, 159–160
braces ({ }), 30, 148–149, 328
bracket ([]) expression, 24, 295, 320, 322–325,

328
break command, 53–54, 55, 106
BREs (basic regular expressions), 319,

322–327
bugs, 147
build/1.2 / prerelease/*.log file, 86
built-in tests, 156–157

10436idxfinal 340 10/23/08 10:46:43 PM

nINDEX 341

built-in utilities, 296
busybox command, 158, 178–179, 201
bx option, 128
bzip2 program, 4

C
c command, 94
C command, 310
C language, 241–242
-c option, 227
-C option, 227
C shell, 9
\c suffix, 169
(c|h)at expression, 35
c|hat expression, 35
carets (^), 24, 322–323, 325–328, 330–332,

334–337
case statement, 21–22, 37, 39, 47, 50–51,

53, 67, 70, 74, 85, 95, 97, 120, 138,
142–143, 239, 260, 276, 283

cat command, 65, 181, 189, 219, 222, 227
cd command, 97–98, 207
CFLAGS variable, 83, 84
$(CFLAGS) variable, 240
changequote command, 239
character classes, 24–25, 324
character sequences, 323
charclass definition, 324
$childpid shell variable, 135–137
chmod utility, 190
Christiansen, Tom, 9
circumflex ('^'), 294, 322, 327–328, 330
class expression, 324
cleanliness, 10
cloned file descriptors, 61
$cmd command, 120, 234
cmp utility, 190
code

embedding in shell scripts
awk, 246–252
overview, 242
sed, 242–246

embedding shell scripts in
C, 241–242
make rule, 239–241
overview, 239

code command, 237, 239, 241–242, 244–245,
247–248, 252–253

codesize command, 248
collating element, 323
colons (:), 2, 25, 44
column command, 189
combinations, shell, 113–115
command command, 95
command expansion, 95
$(command) form, 95, 269

command history list, 303
Command Line Editing, 303
command line editing (vi-mode), 120,

303–313
command lists

explicit lists, 76–77
overview, 73–75
short circuits, 75

command search and execution, 277–278
command separators, 75
command substitution, 15, 69, 80, 95–97,

112–113, 139, 269–271
command utility, 119
command -v sh utility, 119
command variable, 52–53
command_file value, 299
command_name command, 297–299
command_string command, 297–299
command-line options

designing, 226–228
inputs and, 228–229
overview, 226

commands
compound, 281–282
simple, 276–278

comments, 212–214
compatibility notes

Almquist shell, 159
Bourne-again shell, 159–160
Debian Almquist shell, 160
Korn shell, 162
public domain Korn shell, 163
Solaris /usr/xpg4/bin/sh, 163
SVR2 Bourne shell, 164
SVR4 Bourne shell, 165
Z shell, 166

components, 27
compound commands

case conditional construct, 283
grouping commands, 282
if conditional construct, 283–284
for loop, 282
overview, 281–282
until loop, 284
while loop, 284

compound statement, 76
(compound-list) format, 282
compress program, 4
concatenation, 325, 329
conditional execution

case statement, 50–51
if-then-else statement, 47–50
overview, 47

configure command, 145, 147, 167, 170–171
configure scripts, 3, 8, 147, 167, 170
configure.in scripts, 202

10436idxfinal 341 10/23/08 10:46:43 PM

nINDEX342

configure.lineno command, 171
context, 90
continue statement, 53–54, 106
control structures

conditional execution, 47–51
iteration, 52–55
overview, 43–44
true and false exit statuses, 44–47
when to use, 55

<control>-L command, 305
<control>-V command, 304
<control>-W command, 305
count variable, 103
$count variable, 104
[count], command, 309
[count]. command, 307
[count]; command, 309
[count]- command, 312
[count]_ command, 310
[count]| command, 308
[count]∼ command, 306
[count]+ command, 312
[count]<space> command, 307
[count]b command, 308
[count]B command, 308
[count]cmotion command, 310
[count]dmotion command, 311
[count]E command, 308
[count]e command, 308
[count]fc command, 309
[count]Fc command, 309
[count]h command, 307
[count]j command, 312
[count]k command, 312
[count]P command, 312
[count]p command, 312
[count]rc command, 310
[count]tc command, 309
[count]Tc command, 309
[count]W command, 307
[count]w command, 307
[count]x command, 311
[count]X command, 311
[count]ymotion command, 311
cp command, 112, 185, 190
cpio utility, 185–187, 190
csh command, 86, 148–149, 159, 167
cut utility, 190, 251–252
cvs command, 224
Cygwin environment, 5

D
D command, 311
d format, 18
-d option, 227
date commands, 62, 241

date utility, 190
Debian Almquist shell, 8, 160–161
DEBUG trap, 143
debugging tools, 142–143
defense in depth, 205
degrading gracefully, 214–216
$delay argument, 134–135
dependencies

avoiding unnecessary, 180–183
shell script design, 220–221

>/dev>/null file, 190
/dev/fd directory, 155
/dev/fd/N directory, 157
/dev/null directory, 49–56, 135, 280
>/dev/null file, 62
die function, 206
diff utility, 190, 208
directory separator, 87
dirname utility, 37, 191
ditroff utility, 191
do keyword, 54, 253
documentation, 212–214
dollar signs ($), 14, 81, 91, 265, 308, 322,

327–328, 330, 332–335
dos2unix utility, 191, 200
dot (.) command, 108–109
dot files, 28
double quotes ("), 17, 18, 77, 79, 257–258, 261
dry-run option, 221
DUP_COUNT token, 331, 333–334, 336
duped file descriptors, 61, 274

E
-e option, 227
$e variable, 140
"${e:-"$a"}" expression, 140
"${e:-$a}" expression, 140
"${e:-\$a}" expression, 140
"${e:-'$a'}" expression, 140
${e:-'$a'} expression, 140
${e:-$a} expression, 140
'${e:-'$a'}' expression, 140
"${e:-*}" expression, 140
"${e:-"*"}" expression, 140
${e} expression, 140
echo \"$command\" command, 143
echo $PATH file, 69
echo * command, 29
echo command, 12–18, 55–56, 77–78, 93–94,

107, 119, 122, 126–134, 138–142, 148–
159, 161–164, 168–172, 176, 179–180,
183–184, 191, 194–196, 201–203, 206,
240–246, 249

echo hello | read greeting command, 162–163
echo hello, world command, 15
echo hello, world! command, 70

10436idxfinal 342 10/23/08 10:46:43 PM

nINDEX 343

echo utility, 183–184, 191
echo yes command, 93
egrep utility, 34, 36, 191
ELF (Executable and Linking Format) header,

117
elif statement, 40, 48, 284
else clause, 48, 284
emacs command line, 36, 161, 317
empty string, 14
emulate ksh command, 167
emulate sh command, 167, 170
END statement, 248–249, 251
end-of-file command, 303, 305
ENOMEM [12] : string, 238
ENOMEM string, 238–239
entire regular expression, 320
env command, 90, 93–94, 99, 119
$ENV variable, 128, 211
ENV variable, 300, 316, 318
environment

manipulating, 91–92
overview, 90–91
temporary changes, 92–94

environment variables, 90, 211, 300–302
equals sign (=), 25, 306
erase command, 304, 317
EREs (extended regular expressions), 34–35,

319, 327–330
<errno.h> element, 238
error file, 58, 71
errors

exit status and, 275–276
handling, 205–208

<ESC> command, 305
escape character, 77, 256–257
escape sequences, 18
/etc/alternatives/sh directory, 160
/etc/passwd.master directory, 186–187
eval command, 94, 99, 103–104, 106, 108–109,

111, 115, 123–124, 131–132, 138, 143
example_a directory, 211
example_b directory, 211
/example.txt file, 151
exception handling, 210–211
exclamation marks (!), 12, 24, 45, 164–165,

294
exec() system call, 90, 242
exec 2>&- command, 62
exec 3>&2 command, 154
exec 3>/tmp/log.txt string, 106
exec command, 61–64, 90, 101, 135
exec function, 262, 294, 296
Executable and Linking Format (ELF) header,

117

execution
debugging tools, 142–143
jobs and tasks

background tasks, 132–133
overview, 129
signaling, 130–132
wait command, 133–137

overview, 117, 129
runtime behavior, 137–142

execution preambles
emulating features, 172–174
overview, 167
picking shells, 169–170
self-modifying code, 170–172
setting options and variables, 168–169

execve() function, 278
exit command, 100, 171
exit status

asynchronous lists and, 281
case conditional construct, 283
errors and, 275–276
function definition command, 285
grouping commands, 282
AND lists and, 281
for loop, 282
OR lists and, 281
pipelines, 279
sequential lists and, 281
sh utility, 314
until loop, 284
while loop, 284

expansion. See substitution
expansion errors, 275
expansion options, 6
expect utility, 192
explicit lists, 76–77
explicit subshells, 97–98
export attribute, 293
export command, 91
export FOO command, 91
expr command, 32, 36, 37, 41, 50, 95–96, 112,

151–152, 156, 172, 179, 192
$(expr expression) command, 151
[[expr]] syntax, 154
expression anchoring

BREs, 326–327
EREs, 330

$((expression)) command, 151
expression command, 157
[[expression]] syntax, 157
extended regexes, 31
extended regular expressions (EREs), 34–35,

319, 327–330
extensions, 29, 154–157
external shells, 94–95, 109–111

10436idxfinal 343 10/23/08 10:46:44 PM

nINDEX344

F
f flag, 86
f format, 18
f option, 176, 193–195
-f option, 227
f option, 282
false command, 44, 73–74, 76
false exit status, 44–47
fc compiler, 180
FCEDIT variable, 300
fgrep utility, 36, 192
field splitting, 69, 80–81, 271
file descriptors, 57–61, 275
file globbing, 21
file manipulators, 4, 223
>|file redirection operator, 154
$file variable, 115, 151
filename expansion, 22, 295–296
filename variable, 95
$files variable, 123
filter < file > file file, 222
filters, 223
find $HOME -name command, 96
find | cpio idiom, 186
find command, 27, 40, 68, 96, 114, 153, 192,

237, 244, 246, 251–252
fname function, 285, 291
fnmatch() function, 294
foo command, 238–239, 243, 251
!(foo) pattern, 153
foo string, 191
$FOO variable, 85
FOO variable, 91
$FOO variable, 139, 159
!(foo) pattern, 153
foobar string, 153
footer file, 64
for command, 260, 269, 282
for dir in $PATH idiom, 92
for loop, 52, 54–55, 60, 67, 81, 122, 262, 282
foreach loop, 54
fork() method, 89, 94, 242
format string, 18–19
forward slashes (/), 78, 150
found_any variable, 233
$found_any variable, 234–235
$found_install function, 215
func_ prefix, 100
func_add function, 101
func_array a 1 hello function, 105
func_array prefix, 105
$func_array_a_1 variable, 105
$func_array_v variable, 105
func_echo_n function, 169
func_log function, 101
func_mktempdir function, 209

$func_select_a_N variables, 173
$func_select_args variable, 173
func_usage function, 232
function arguments, 166
function definition command, 285
function keyword, 168
function name() ... function, 168
$function_result shell variable, 100
function_result variable, 101
functional scope, 230

G
G option, 153
g suffix, 37
gawk command, 250–251
getconf utility, 119
getopt utility, 124–126
getopts command, 112, 123, 125–127, 158,

164–166, 262, 278
getpwnam() function, 265
*.gif pattern, 30
git command, 224
git pull command, 224
git push command, 224
glibc command, 193
glob characters, 30, 86–87
globbing, 21–22, 29, 69, 86–87, 152–153
GNU software, 177–178
good|bad expression, 35
[gp][ni][gf] pattern, 30
grammar, shell

lexical conventions, 285–286
overview, 285
rules, 286–292

greedy, 26
$greeting command, 162–163
grep command, 6, 21, 32, 36, 40, 49, 56, 57,

62, 66–67, 177, 192, 220, 223, 227, 243,
252, 319, 321

grep -l utility, 223
grouping commands, 282
gzip program, 4

H
-h option, 227
h[aeu]llo class, 24
hashes, 114
head command, 189
header file, 64
hello,<newline>world quoted string, 71
hello command, 12
hello echo world command, 241
hello pattern, 23
hello* pattern, 23
hello2 file, 71
helloworld variable, 82

10436idxfinal 344 10/23/08 10:46:44 PM

nINDEX 345

here documents, 64, 66, 273–274
hidden files, 28
HISTFILE variable, 300, 303
HISTSIZE variable, 301
h?llo pattern, 23
h!llo pattern, 24
Hoare, C.A.R., 10
$HOME variable, 85, 96
HOME variable, 262, 265, 268, 300, 318
$HOME/bin file, 214
hXllo pattern, 24
hyphens (-), 24, 325, 331
hzllo pattern, 24

I
i command, 309
I command, 310
i option, 195
-i option, 227
i.bak argument, 224
identifiers, 80
if conditional construct, 283–284
if loop, 207
if statement, 40, 47, 52–53, 59–60, 73–74, 106
if-else construct, 215
$IFS variable, 81, 92, 94, 106, 121–123,

137–141, 156, 168–169, 250
IFS variable, 261–262, 301
if-then-else statement, 47–50
if-then-fi statement, 73
implicit subshells, 97–98
in list variable, 54
info utility, 192–193
input, redirecting, 272
input files, 300
install utility, 4, 214, 216
install.sh script, 202
install-sh script, 216
interactive sessions, 128–129
interactive shell usage, 11–12, 298
interpolation, 14
interprocess communication, 130–132
interprocess communication (IPC), 130
interrupt command, 304
invalid regular expressions, 321
invocation

interactive sessions, 128–129
options, 119–120
overview, 117
positional parameters, 120–128
UNIX, 117–119

io_here token, 258
IPC (interprocess communication), 130
irb interface, 10
isclass() function, 25
iteration, 52–55

J
job control, 133
jobs

background tasks, 132–133
overview, 129
signaling, 130–132
wait command, 133–137

K
keywords, 12, 70, 72–73
kibibyte (KiB), 226
kill -0 pid command, 133
kill command, 131, 133–135, 303–304, 317
kill -TERM command, 135–136
killall utility, 193
Korn shell, 1, 8, 161–162, 316
ksh command, 119, 146, 148–149, 152, 154–

159, 161–163, 167, 174, 183–184, 203
KSH_ARRAYS option, 155
KSH_GLOB option, 153
$KSH_VERSION variable, 161–162
ksh86 subshell, 162
ksh88 subshell, 161–163, 166
ksh93 command, 139, 146, 149, 151, 153–156,

161–162, 179

L
-l option, 227
L_ANCHOR token, 331, 333–335
LANG variable, 301
languages, 252–253
launchd script, 5
LC_ALL variable, 301
LC_COLLATE variable, 301
LC_CTYPE variable, 301
LC_MESSAGES variable, 301
ldd utility, 193
length operator, 152
lexical conventions, 285–286
libtool command, 105, 209, 217, 244
$LINENO variable, 170–171, 244–246
list variable, 54
lists, 73, 280–281
ln utility, 193
log file, 60–61
$logfd variable, 106
$logfile variable, 72
logical operators, 75
LOGNAME environment variable, 265
long options, 177
loops, 66–68
lp/lpr utility, 193–194
ls command, 2, 40, 62, 97, 220, 223
$(ls) command substitution, 268
lzma program, 4

10436idxfinal 345 10/23/08 10:46:44 PM

nINDEX346

M
m mode option, 209
-m option, 227
m4 utility, 156, 194, 239
m4sh utility, 64, 156, 167, 216–218
MAIL variable, 302
MAILCHECK variable, 302
MAILPATH variable, 302
make command, 5, 6, 92, 177, 194, 218, 220–

221, 223–224, 231, 235, 237, 239–241,
243, 246–247, 253

makeinfo utility, 194
man pages, 175
manipulating

data, 3–4
environment, 91–92
files, 4–5
programs, 5

matched regular expressions
defined, 320
matching multiple characters, 320,

325–326, 328–329
matching single character or collating ele-

ment, 320, 322, 327
matching list expression, 323
mawk command, 250–251
maximal munch rule, 71
md5 program, 114
$md5 variable, 114
md5sum program, 114
mebibyte (MiB), 226
META_CHAR token, 331
metacharacters, 12, 14, 23
metadata, 185
MiB (mebibyte), 226
mkdir command, 194–195, 207, 209–211
mkdirhier shell code, 195
mkinstalldirs shell code, 195
mktemp utility, 195
motion command, 305
multi-character collating element, 320
mv utility, 195–196
myroot directory, 187
myroot<newline>/etc/passwd.master file,

187

N
n command, 184, 313
N command, 313
n flag, 169
-n option, 227
N positional parameters, 121
>&N- redirection operator, 154
\n sequence, 19
name() ... function, 168
name parameter, 262

*.name pattern, 28
NAME statement, 286–288, 290–291
$name text, 17
${name= word} expansion, 262
$names variable, 207
nawk command, 250
netpbm utility, 230
NEWLINE token, 258
<newline> element, 256, 264, 280, 304–305,

321
NLSPATH variable, 302
noclobber option, 273
noninteractive shell usage, 11–12
non-matching list expression, 323
nroff utility, 196
null string, 82
[number]G command, 312
[number]v command, 307

O
.o files, 31
o format, 18
-o option, 227–228
O_APPEND flag, 273
O_NONBLOCK flag, 316
omissions, 158
open() function, 273
operands, 298–299
$opt_t variable, 234
$opt_u variable, 234
$OPTARG variable, 126
/opt/gnu/bin directory, 108
$OPTIND variable, 112, 126
--option, 227
options -- non-options utility, 125
$opts variable, 123
or operator, 34, 47, 75
ORD_CHAR token, 331
ordinary characters

BREs, 322
EREs, 327

osascript utility, 253
output, redirecting, 273
output files, 58, 303

P
p option, 190–194, 210, 228–234
padding, 19
param=value options, 219
parameter expansion, 80, 149–151, 265–269,

271
parameter substitution, 65, 80–85, 139,

140–141
${parameter##pattern} expression, 149
${parameter#pattern} expression, 149
${parameter%%pattern} expression, 149

10436idxfinal 346 10/23/08 10:46:45 PM

nINDEX 347

${parameter%pattern} expression, 149
${#parameter} expression, 149
${parameter:+word} parameter, 83
${parameter:=word} parameter, 83
parameters, 13, 69, 80, 117, 258, 260–262, 265
parameters command, 120–122, 124–125, 135
${parameter:?word}, 83
${parameter:-word} parameter, 82, 83
parenthesis (), 328
parsing

command lists, 73–77
overview, 70
tokens, 70–72
words and keywords, 72–73

$pat variable, 244
path argument, 277–278
PATH variable, 92
$PATH variable, 92–94, 106–108, 119, 168–

169, 179–181, 185, 211–214, 224
PATH variable, 278, 302, 314
pathname expansion, 27–31, 80, 271
pattern argument, 294
pattern file, 22
pattern lists, 153
pattern matching, 21, 294–296
pattern string, 36
pattern variable, 21
$pattern variable, 22
/pattern<newline> command, 313
?pattern<newline> command, 313
pattern-action statement, 247
*(pattern-list) pattern, 153
?(pattern-list) pattern, 153
!(pattern-list) pattern, 153
patterns

basics, 22–23
character classes, 24–25
overview, 21–22
pathname expansion, 27–31
replacing with regular expressions, 39–40
using, 26–27

pax utility, 112, 185–187, 196
pcre library, 38
pdksh command, 102, 139, 146, 149, 151–155,

161–163, 184
performance issues, 6
periods (.), 25, 28, 32, 111, 323, 328
perl utility, 180, 196, 222, 230, 234
[pg][ni][gf] pattern, 30
*.[pg][ni][gf] pattern, 30
pids program, 219–221, 223, 228–235
pipelines, 57, 279
pipes (|), 2, 51, 57, 152, 279, 328–329
pkill utility, 196
plug-in architecture, 6
plus signs (+), 13, 35–36, 153, 298

*.png pattern, 30
popen() functions, 255–256
portability

alias substitution, 154
arithmetic substitution, 151–152
brace expansion, 148–149
bugs, 147
execution preambles, 167–174
extensions, 154–157
issues with, 147
omissions, 158
overview, 8–9, 145–146
parameter expansion features, 149–151
shells, 158–167
standardization, 146–147

positional parameters, 80, 120–128, 260
POSIX shell, 1, 7, 25, 118, 159–167, 178, 182,

324
$POSIXLY_CORRECT variable, 160–163, 178
pounds (#), 2, 259–261, 269–270, 280–285, 305
$ PPID variable, 263
precedence

BREs, 326
EREs, 330

precision, 19
print built-in command, 184
print0 option, 192
printargs file, 76
printf command, 12, 18–20, 55, 105, 115, 158,

173, 179, 183–184, 189, 191, 196–197,
203, 243–244

processes, 89
.profile file, 128
$prog variable, 234
program manipulators, 223–224
programs, manipulating, 5
program(section) usage, 2
prompts, 11
ps command, 89, 90, 197, 219, 221, 232–233
public domain Korn shell, 8, 162–163
put the shell of (command) into variable

syntax, 253
PWD variable, 302, 318
python utility, 197

Q
q command, 49, 224
-q option, 228
question marks (?), 23, 32, 35–36, 153, 276,

295
quilt command, 183, 230
quote removal, 271
quoted strings, 11, 17, 77, 139–141
QUOTED_CHAR token, 331
quoting, 15–18, 77–80, 237–239, 256–258

10436idxfinal 347 10/23/08 10:46:45 PM

nINDEX348

R
R command, 310
-R option, 190, 223-228
-r option, 223–228
R_ANCHOR token, 332
$RANDOM parameter, 209
ranlib utility, 168, 197
RANLIB variable, 168
$ranlib variable, 168
rc command, 9
$_rc_subr_loaded variable, 111
rc.local script, 92
read command, 14, 52, 234, 258, 262, 278,

299, 301
README file, 29
redirection

exec command, 61–64
file descriptors, 57–61
here documents, 66, 273–274
of input, 272, 274
loops, 66–68
open file descriptors, 275
of output, 273–274
overview, 56–57, 271–272
syntax features, 154–155

redirection errors, 275
redirection operator, 274
regcomp() method, 319, 321
regex command, 244, 247
$regex variable, 243–244
regexec() method, 319
regexp() method, 31
regular expressions (REs or regexes)

backreferences, 33–34
basic, 32–33, 322–327
definitions, 320–321
extended, 34–35, 327–330
extensions, 36
general requirements for, 321
grammar, 330–337
overview, 21, 31, 319
pitfalls of, 40–41
replacements, 36–37
replacing patterns with, 39–40
using, 37–39

relative path, 28
repetition operator, 32
replacement strings, 36–37
$REPLY variable, 172–173
REs. See regular expressions
reserved words, 260
restricted shell, 316
return command, 100, 129
reversible operation, 229
right-parenthesis, 328
rm command, 197, 229

rm file command, 2
robustness

comments, 212–214
documentation, 212–214
error handling, 205–208
exception handling, 210–211
overview, 205
startup files and environment variables,

211
temporary directories, 209–210
temporary files, 208–210

rpm utility, 197
rpm2cpio utility, 197–198
rs utility, 189, 198
runtime behavior, 139–141

S
s// command, 243
S command, 310
-s option, 228
save buffer, 305
scripts

building for specific target, 217–218
mixing with other languages, 218
overview, 216–217

seconds command, 190
sed command, 1, 21, 36–37, 112, 151, 156,

158, 170–171, 180, 184, 189, 198, 222,
224–225, 227, 229, 235, 242–247, 252,
319

select command, 157, 161, 172–174
select loop, 157
semicolons (;), 14, 73, 281
sentinels, 64
set -- args command, 165
set -- command, 165
set command, 81, 90, 94, 99, 119–121, 125,

155–156
set -e command, 207
set -o nolog option, 316
set -o posix command, 160, 163, 167
set -o vi command, 303
set -x command, 13
setopt shwordsplit command, 166
sh -c command, 109
sh emulation mode, 23
sh hello command, 12
sh utility

application usage, 314–315
asynchronous events, 303
change history, 318
description, 297
environment variables, 300–302
exit status, 314
extended description, 303–313
input files, 300

10436idxfinal 348 10/23/08 10:46:45 PM

nINDEX 349

name, 297
operands, 298–299
options, 298
overview, 297
rationale, 316–317
Stderr, 303
Stdin, 299
synopsis, 297

shebang notation, 12, 118–119
shell builtins, 99, 179–180
shell command, 20
Shell Command Language

built-in utilities, 296
exit status and errors, 275–276
overview, 255
pattern matching notation, 294–296
positional parameters, 260
quoting, 256–258
redirection, 271–275
reserved words, 260
shell commands, 276–285
shell execution environment, 293
shell grammar, 285–292
shell variables, 262–264
signals and error handling, 292
special parameters, 261–262
token recognition, 258–259
word expansions, 264–271

shell errors, 16, 275
shell execution environment, 293
shell functions, 99–102
shell parameters, 120
shell scripts

Bourne shell family, 7–8
cleanliness, 10
command-line options, 224–229
compatibility, 221
control structures, 43–55
dependencies, 220–221
embedding code in, 242–252
embedding in code, 239–242
expansion options, 6
file manipulators, 223
filters, 223
interactive and noninteractive usage,

11–12
languages not included in book, 9–10
manipulating

data, 3–4
files, 4–5
programs, 5

overview, 2, 43, 69–70, 219–220
parsing, 70–77
performance issues, 6
pids utility case study, 232–235
portability, 8–9

printf command, 18–20
program manipulators, 223–224
quoting, 15–18, 77–80
reasons to use, 6–7
redirection

exec command, 61–64
file descriptors, 57–61
here documents, 66
loops, 66–68
overview, 56–57

separate functionality, 220
setting limits, 229–231
simple commands, 12–14
substitution and expansion, 80–87
variables, 14–15

$SHELL variable, 158, 198
shell variables, 262–264
shellgrep pattern files script, 66
shells

Almquist, 158–159
Bourne-again, 159–160
Debian Almquist, 160–161
Korn, 161–162
overview, 158
public domain Korn, 162–163
Solaris /usr/xpg4/bin/sh, 163
SVR2 Bourne, 164
SVR4 Bourne, 164–165
traditional, 165
Z, 166–167

shift command, 82, 112, 120–121, 195
short circuits, 75
show_errs variable, 58
${.sh.version} variable, 161–162
SIGINT statement, 292
SIGKILL command, 208, 210
signaling, 130–132, 292
signed long rank, 270
SIGQUIT statement, 292
simple commands, 276–278
single character, 294
single quotes ('), 11, 17, 79, 257
sizeof() operator, 270
sl file, 108
sleep 5; kill $$ command, 135
sleep command, 62
$sleeppid variable, 135–136
Solaris /usr/xpg4/bin/sh shell, 163
sort utility, 198, 220, 225
source command, 108
sourcing, 108
space character, 77, 87
s/pattern/replacement/ operator, 36
SPEC_CHAR token, 332

10436idxfinal 349 10/23/08 10:46:46 PM

nINDEX350

special characters
BREs, 322
EREs, 327–328

special parameters, 261–262
sprintf command, 197
square brackets ([]), 24, 295, 320, 322,

322–325, 328
ssh-agent command, 107, 129
standard errors, 272
standardization, 146–147, 178
startup files, 211
stat utility, 199
statement terminator, 76
streams, 56
strftime() method, 190
string variable, 21
$string variable, 22, 55
strings, defined, 21
strncpy() method, 188
stty iexten flag, 317
stty utility, 303
subexpressions, 32, 325–326
subshells, 89, 94–98, 111–112, 134, 139, 152,

275
substitution, 14, 80–87, 255
sudo utility, 214
SVID (System V Interface Definition), 176,

178
SVR2 Bourne shell, 164
SVR4 Bourne shell, 164–165
syntax errors, 16
system() function, 90, 241, 255–256, 258
System V Interface Definition (SVID), 176,

178

T
-t option, 228
tar utility, 5, 112, 153, 185–188, 196, 199, 219,

228
target scope, 230–231
tasks

background tasks, 132–133
overview, 129
signaling, 130–132
wait command, 133–137

temporary directories, 209–210
temporary files, 208–210
test command, 45, 47, 74, 99, 147, 154, 157,

179, 239–240, 249–250, 252
test -s command, 59
then compound-list, 284
then statement, 48
threads, 90
tilde (~) expansion, 85, 265
$timeout variable, 135–137
/tmp directory, 132–133

TMPDIR command, 59–60
/tmp/log file, 100
/tmp/log.txt file, 64
TOKEN statement, 286–288
tokens, 69, 258–259
tolower() function, 249
Torvalds, Linus, 1
touch utility, 199
tr utility, 112
traditional shell, 165
trap action signals command, 131
trap command, 131–132, 134–136, 208, 210
troff utility, 199
true command, 44, 74
true exit status, 44–47
tset utility, 106
tsort utility, 199
*.[Tt][Xx][Tt] pattern, 30
typeset -A command, 156

U
u command, 312
U command, 312
-u option, 228
ucb directory, 184
UDS (Uniform Draft Standard), 178
umask command, 209
unalias utility, 259, 278
uname command, 165, 232
Uniform Draft Standard (UDS), 178
uniq utility, 223
UNIX, 2, 117–119
unix2dos utility, 200
unnamed buffer, 305
unquoted strings, 139–140
unset command, 91–92, 149, 165–167, 260
unsort utility, 28
until command, 284
until loop, 52–53, 284
unzip utility, 200
/usr/*bin/*stat file, 28
/usr/bin directory, 28, 108, 253
/usr/bin/sh command, 314
/usr/include/sys/errno.h file, 212
/usr/local/bin directory, 92, 108, 119
/usr/sbin file, 28
/usr/xpg4/bin/sh shell, 178
utilities, 252–253
utility portability

avoiding unnecessary dependencies,
180–183

common problems
archive utilities, 185–187
awk, 189
basename, 189
block sizes, 188

10436idxfinal 350 10/23/08 10:46:46 PM

nINDEX 351

cat, 189
chmod, 190
cmp, 190
cp, 190
cpio, 190
cut, 190
date, 190
diff, 190
dirname, 191
ditroff, 191
dos2unix, 191
echo, 183–184, 191
egrep, 191
expect, 192
expr, 192
fgrep, 192
find, 192
grep, 192
groff, 192
info, 192–193
killall, 193
ldd, 193
ln, 193
lp/lpr, 193–194
m4, 194
make, 194
makeinfo, 194
mkdir, 194–195
mktemp, 195
multiple versions, 184–185
mv, 195–196
nroff, 196
overview, 183
pax, 196
perl, 196
pkill, 196
printf, 196–197
ps, 197
python, 197
ranlib, 197
rm, 197
rpm2cpio, 197–198
rs, 198
sed, 198
sh, 198
sort, 198
stat, 199
tar, 199
touch, 199
troff, 199
tsort, 199
unix2dos, 200
unzip, 200
xargs, 200
zip, 200

overview, 175
variations, 175–180
when unavailable, 200–203

utility syntax errors, 275

V
-v option, 223–228, 239
-V option, 228
value variable, 101
value=$a_0 string, 104
$var variable, 80, 85, 242–243, 247
${var#pattern} variable, 243
${var%%*/} constructs, 189
variable assignment errors, 275
variable expansion, 14
variable interpolation, 80

variable substitution, 14
variables

environment and, 90–94
overview, 14–15
shell, 262–264

verbose variable, 75
$version variable, 86
vertical bars (|), 2, 51, 57, 279, 328–329
vi regex, 36
vi-mode, 120, 303–313

W
w option, 196
wait() function, 276
wait command, 133–137
wait utility, 292
wc command, 57
WEXITSTATUS macro, 276
what command, 161
while func_select command, 172
while loop, 52–53, 66–67, 73, 97, 113, 122, 124,

132, 181, 207, 220, 234, 284
while read var loop, 200
while statement, 73
wildcards, 23, 31
wish interface, 10
word expansions

arithmetic expansion, 270
command substitution, 269–270
field splitting, 271
overview, 264
parameter expansion, 265–269
pathname expansion, 271
quote removal, 271
tilde expansion, 265

word splitting, 13, 71, 80
WORD statement, 286–288, 290–292
word variable, 50
words, 13, 72–73

10436idxfinal 351 10/23/08 10:46:46 PM

nINDEX352

X
\{x, \} operator, 33
{x,} operator, 35
\{x,x\} operator, 33
\{x,y\} operator, 33
{x,y} operator, 35
x argument, 18, 119
-x option, 223–228
-X option, 228
$X variable, 93
\{x\} operator, 33
{x} operator, 35
xargs utility, 200
X/Open Portability Guides, 178

Y
Y command, 312
-y option, 227

Z
Z shell, 8, 166–167
zero padding, 19
zip utility, 200
zsh command, 28, 100, 134, 139–140,

147–149, 152–153, 155–158, 161,
165–167, 170

$ZSH_VERSION shell parameter, 166

10436idxfinal 352 10/23/08 10:46:46 PM

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction to Shell Scripting
	About This Book
	Conventions
	What Shell Scripting Is
	Manipulating Data
	Manipulating Files
	Manipulating programs

	What Shell Scripting Isn’t
	performance Issues
	expansion Options

	Why Shell?
	The Bourne Shell Family
	Why Portable?
	Why Not?
	Beyond Portability: Cleanliness and Good Living
	What’s in This Book

	Introducing the Shell
	Interactive and Noninteractive Usage
	Simple Commands
	Introducing Variables
	Introducing Quoting
	The printf Command

	What’s Next?

	Patterns and Regular Expressions
	Shell Patterns
	Pattern-Matching Basics
	Character Classes
	Using Shell Patterns

	Pathname Expansion
	Differences from Shell Patterns
	Using Globs

	regular Expressions
	Basic Regular Expressions
	Backreferences
	Extended Regular Expressions
	Common Extensions
	Replacements
	Using Regular Expressions
	Replacing Patterns with Regular Expressions
	Common Pitfalls of Regular Expressions

	What’s next?

	Basic Shell Scripting
	Introducing Control Structures
	What Is Truth?
	Introducing Conditional Execution
	Introducing the if-thenelse Statement
	Introducing the case Statement

	Introducing Iteration
	the while Loop
	Introducing break and continue
	Introducing for loops

	Thinking About Control Structures

	Introducing redirection
	Understanding File Descriptors
	Redirection Using exec
	Introducing Here Documents
	Redirection and Loops

	what’s next?

	Core Shell Features explained
	Parsing
	Tokens
	Words and Keywords
	Command Lists
	Short Circuits
	explicit Lists

	Shell Quoting
	Escaping Characters with a Backslash
	Escaping Characters with Single Quotes
	Escaping Characters with Double Quotes
	Quoting Examples

	Substitution and expansion
	Substitution and Field Splitting
	Understanding Parameter Substitution
	Tilde Expansion
	Globbing

	What’s next?

	Shells Within Shells
	Understanding Processes
	Variables and the Environment
	Manipulating the Environment
	Temporary Changes

	Exploring Subshells
	Subshells and External Shells
	Command Substitution
	Implicit and Explicit Subshells

	Modifying the State of the Shell
	Shell Builtins
	Shell Functions
	The eval Command
	The dot (.) Command

	Using Shells Within Shells
	When to Use an External Shell
	When to Use eval or dot (.)
	When to Use Subshells
	When to Use Command Substitution
	Combinations

	What’s next?

	Invocation and execution
	Shell Invocation
	How UNIX Runs Scripts
	Shell Options
	Using Positional Parameters
	the set Command
	removing positional parameters

	Manipulating Parameters for Fun and Profit
	handling Options and arguments
	Older Shells: Now What?

	Shell Startup and Interactive Sessions

	execution
	More on Jobs and Tasks
	Signals and Interprocess Communication
	Understanding Background tasks
	Making effective Use of wait

	Understanding Runtime Behavior
	Command Substitution, Subshells, and parameter Substitution
	Quoted and Unquoted Strings
	Quoting in parameter Substitution
	a Few Brainteasers

	Debugging Tools

	What’s next?

	Shell Language Portability
	More on Portability
	Standardization
	Bugs
	Portability Issues: Welcome to the Club

	Common Extensions and Omissions
	Other Kinds of Expansion and Substitution
	Brace Expansion
	Additional Parameter Expansion Features
	Arithmetic Substitution
	Globbing Extensions
	Alias Substitution

	Syntax Extensions
	Redirections
	Arrays
	Built-In Tests
	The select Loop

	Common Omissions

	Common Shells and Their Features
	Almquist Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Bourne-Again Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Debian Almquist Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Korn Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Public Domain Korn Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Solaris /usr/xpg4/bin/sh
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	SVR2 Bourne Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	SVR4 Bourne Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Traditional Shell
	Z Shell
	How to Identify
	Version Information
	Major Compatibility Notes
	Getting POSIX Behavior

	Execution Preambles
	Setting Options and Variables
	Picking a Better Shell
	Self-Modifying Code
	Emulating Features

	What’s next?

	Utility Portability
	Common Variations
	Days of Yore: System V and BSD
	GNU Arrives
	Standardization
	busybox
	Shell Builtins

	Avoiding Unnecessary Dependencies
	Relying on Extensions Considered Harmful
	Test with More Than One Shell on More Than One System
	Document Your Assumptions

	Common Utility Issues
	Public Enemy #1: echo
	Multiple Different Versions
	Archive Utilities
	Block Sizes
	Other Common Problems
	awk
	basename
	cat
	chmod
	cmp
	cp
	cpio
	cut
	date
	diff
	dirname
	ditroff
	dos2unix
	echo
	egrep
	expect
	expr
	fgrep
	find
	grep
	groff
	info
	killall
	ldd
	ln
	lp/lpr
	m4
	make
	makeinfo
	mkdir
	mktemp
	mv
	nroff
	pax
	perl
	pkill
	printf
	ps
	python
	ranlib
	rm
	rpm2cpio
	rs
	sed
	sh
	sort
	stat
	tar
	touch
	troff
	tsort
	unix2dos
	unzip
	xargs
	zip

	what to Do when something Is Unavailable
	Roll Your Own
	Add a Missing Utility
	Use Something Else
	Demand a Real System
	A Few Examples

	what’s next?

	Bringing It All Together
	Robustness
	Handling Failure
	Handling Is Not Always Correction
	If You Can’t, Don’t
	When You Find Yourself in a Hole, Stop Digging

	Temporary Files and Cleanup
	Creating Temporary Files
	Creating Temporary Directories
	Removing Temporary Files

	Handling Interrupts
	Startup Files and Environment Variables
	Documentation and Comments
	What to Document
	What to Comment

	degrade Gracefully
	Specify, and Test For, Requirements

	Scripts That Write Scripts
	Building a Script for a Specific Target
	Mixing with Other Languages

	What’s next?

	Shell Script Design
	Do One Thing Well
	Separate Functionality
	Isolate Dependencies
	Be Cooperative
	Filters, File Manipulation, and Program Manipulation
	Designing a Filter
	Designing a File Manipulator
	Designing a Program Manipulator

	command-line Options and arguments
	Designing Options
	Options and Inputs

	set reasonable limits
	Define Your Functional Scope
	Define Your Target Scope

	case study: pids
	What’s next?

	Mixing and Matching
	Mixing Quoting Rules
	Embedding Shell Scripts in Code
	Shell and make
	Shell and C

	Embedding Code in Shell Scripts
	Shell and sed
	Shell and awk
	Why Use awk?
	Basic Concepts
	Variants
	Portability Concerns
	Embedding awk in Shell Scripts

	utilities and Languages
	What’s next?

	The Shell Command Language
	2. Shell Command Language
	2.1 Shell Introduction
	2.2 Quoting
	2.2.1 escape Character (Backslash)
	2.2.2 SingleQuotes
	2.2.3 d ouble-Quotes

	2.3 Token Recognition
	2.3.1 Alias Substitution

	2.4 Reserved Words
	2.5 Parameters and Variables
	2.5.1 positional parameters
	2.5.2 Special parameters
	2.5.3 Shell Variables

	2.6 Word Expansions
	2.6.1 Tilde expansion
	2.6.2 parameter expansion
	2.6.3 Command Substitution
	2.6.4 Arithmetic expansion
	2.6.5 Field Splitting
	2.6.6 pathname expansion
	2.6.7 Quote Removal

	2.7 Redirection
	2.7.1 Redirecting input
	2.7.2 Redirecting Output
	2.7.3 Appending Redirected Output
	2.7.4 Hered ocument
	2.7.5 duplicating an input File descriptor
	2.7.6 duplicating an Output File descriptor
	2.7.7 Open File descriptors for Reading and Writing

	2.8 Exit Status and Errors
	2.8.1 Consequences of Shell errors
	2.8.2 exit Status for Commands

	2.9 Shell Commands
	2.9.1 Simple Commands
	2.9.2 pipelines
	2.9.3 Lists
	2.9.4 Compound Commands
	2.9.5 Function definition Command

	2.10 Shell Grammar
	2.10.1 Shell Grammar Lexical Conventions
	2.10.2 Shell Grammar Rules

	2.11 Signals and Error Handling
	2.12 Shell Execution Environment
	2.13 Pattern Matching Notation
	2.13.1 patterns Matching a Single Character
	2.13.2 patterns Matching Multiple Characters
	2.13.3 patterns Used for Filename expansion

	2.14 Special BuiltIn Utilities

	The sh Utility
	Name
	Synopsis
	Description
	Options
	Operands
	Stdin
	Input Files
	Environment Variables
	Asynchronous Events
	Stdout
	Stderr
	Output Files
	Extended Description
	Command History List
	Command Line Editing
	Command Line Editing (vimode)
	vi Line Editing Insert Mode
	vi Line Editing Command Mode

	Exit Status
	Consequences Of Errors
	Application Usage
	Rationale
	Future Directions
	See Also
	Change History
	Issue 5
	Issue 6

	Regular expressions
	9. Regular Expressions
	9.1 Regular Expression Definitions
	entire regular expression
	matched
	BRe (eRe) matching a single character
	BRe (eRe) matching multiple characters
	invalid

	9.2 Regular Expression General Requirements
	9.3 Basic Regular Expressions
	9.3.1 BRes Matching a Single Character or Collating element
	9.3.2 BRe Ordinary Characters
	9.3.3 BRe Special Characters
	9.3.4 periods in BRes
	9.3.5 Re Bracket expression
	9.3.6 BRes Matching Multiple Characters
	9.3.7 BRe precedence
	9.3.8 BRe expression Anchoring

	9.4 Extended Regular Expressions
	9.4.1 eRes Matching a Single Character or Collating element
	9.4.2 eRe Ordinary Characters
	9.4.3 eRe Special Characters
	9.4.4 periods in eRes
	9.4.5 eRe Bracket expression
	9.4.6 eRes Matching Multiple Characters
	9.4.7 eRe Alternation
	9.4.8 eRe precedence
	9.4.9 eRe expression Anchoring

	9.5 Regular Expression Grammar
	9.5.1 BRe/eRe Grammar Lexical Conventions
	9.5.2 Re and Bracket expression Grammar
	9.5.3 eRe Grammar

	Index

