

A	Dissection	of	Bitcoin
Paul	Huang

1.1.	Bitcoin	source	code

1.	Introduction
Bitcoin	is	the	first	digital	currency	in	human	history	that	does	not	require	a	central
clearing	authority.	The	technological	implication	of	this	invention	is	profound:	it
opens	the	possibility	of	building	a	completely	distributed	financial	system	where
no	centralized	authorities	are	needed	to	conduct	financial	transactions.	Some	even
venture	to	predict	that	such	a	system	will	eventually	lead	to	the	end	of	central
banking	and	the	cease	of	nation-states.

This	book	is	the	ultimate	answer	to	the	often	asked,	but	even-more-often
unsatisfactorily	answered	question:	HOW	DOES	BITCOIN	WORK?

Nowadays,	you	can	easily	find	many	answers	to	this	question	on	the	Web:	from
blogs	to	magazine	articles,	to	books,	to	video	lectures.	The	actual	contents	of	these
answers	vary	widely:	from	hand-waving	introductions	to	conceptual	accounts	of
the	ideas	behind	Bitcoin,	to	painstaking	illustrations	of	the	nitty-gritty	details	of
the	bits-and-bytes	layouts	of	the	Bitcoin	protocol.

After	spending	countless	hours	on	reading	many	of	these	answers,	somehow,	I
was	still	unsatisfied.	If	Bitcoin	is	a	black-box,	then	the	best	among	all	these
answers	provide	a	blueprint	of	this	black-box.	A	blueprint	conceptually	documents
an	engineering	design.	It	is	most	useful	for	those	who	already	understand	the
design,	since	it	summarizes	the	ideas	behind	the	design	and	the	important	inner
mechanisms	of	the	system.	For	novices	who	have	little	or	no	knowledge	about	the
design,	though	of	course	helpful,	it	adds	another	layer	of	abstraction	and	filters
out	important	implementation	details,	and	thus	hinders	a	thorough
understanding	of	the	system.

This	book	takes	a	different	approach.	Instead	of	presenting	you	yet	another
conceptual	account	of	Bitcoin,	I	will	dissect	the	Bitcoin	source	code:	I	will	open	the
black-box,	examine	all	its	parts,	and	show	you	how	to	put	them	back	together	to
build	a	complete	system.

Code	is	the	ultimate	expression	of	design.	It	reflects	the	behavior	of	a	software
system	as	it	is,	and	it	reveals	the	inner-workings	of	the	system	in	a	plain	and
straightforward	way.	The	Bitcoin	source	code	is	the	ultimate	answer	to	the
question	“how	Bitcoin	works”.	Indeed,	it	is	the	ultimate	answer	to	any	question
you	can	ever	possibly	ask	about	the	Bitcoin	system.

The	Bitcoin	source	code	is	freely	available	to	everyone	to	download	from	GitHub
(http://github.com).	After	Satoshi	Nakamoto	released	the	original	code	and
disappeared	from	the	public	eye	in	2010,	the	Bitcoin	Foundation	took	over	the
control	of	the	subsequent	developments.

http://github.com

1.2.	Who	should	read	this	book

1.3.	Prerequisite

This	books	covers	version	v0.1.5	ALPHA	of	the	Bitcoin	source	code.	It	is	one	of
the	original	versions	written	by	Satoshi	and	the	earliest	version	available	in
GitHub.	It	contains	about	16,000	lines	of	code	(after	removing	all	the	empty
lines),	and	thus	a	complete	coverage	of	the	whole	code	base	in	a	book	is	a
manageable	task.	The	later	versions	developed	by	the	Bitcoin	Foundation	did	not
change	the	original	architecture.	Understanding	this	original	version	will	give	you
a	solid	foundation	for	further	exploring	of	the	later	versions.	Indeed,	if	you
compare	this	version	with	the	later	ones,	you	will	find	that	all	the	important
classes	are	unchanged,	and	that	many	important	functions	are	kept	the	same
name.

Another	reason	to	cover	this	version	is	that	its	coding	style	is	classic:	dense	and
concise.	That	is	how	Satoshi	managed	to	implement	such	a	complicated	system	in
just	16,000	lines	of	code.	This	version	keeps	all	the	system	states	in	global
variables.	Once	you	get	familiar	with	these	variables	and	understand	what	they	do,
which,	of	course,	takes	some	time	and	efforts,	reading	the	code	becomes	a	fairly
enjoyable	endeavor.	You	will	not	suffer	from	the	typical	code-reading	fatigue
caused	by	a	programming	style	in	which	“everything	happens	somewhere	else”	(a
quote	from	Adele	Goldberg).	Everything	happens	right	there	in	the	place	where	it
supposes	to	happen,	cleanly	and	precisely.

This	book	is	intended	for	readers	who	want	to	acquire	a	thorough	knowledge	of
Bitcoin.	After	finishing	this	book,	you	will	not	only	appreciate	the	revolutionary
ideas	behind	Bitcoin,	but	also	acquire	in-depth	knowledge	of	the	design	principle
of	the	Bitcoin	software	system,	and	master	the	implementation	details	of	the
system.

This	book	is	also	beneficial	to	professionals	and	students	who	want	to	improve
their	C++	skills.	Reading	good	code	is	a	great	way	to	master	a	programming
language.	Of	course,	there	are	many	excellent	open-source	C++	projects	out	there
you	can	learn	from,	but	why	not	study	Satoshi’s	code	so	that	you	can	master	both
the	language	and	Bitcoin	at	the	same	time?

You	don’t	have	to	be	a	computer	genius	to	understand	this	book.	However,	you	do
need	to	have	some	basic	knowledge	of	the	C++	programming	Language	to
proceed.	Understanding	any	basic	C++	tutorial,	for	example,	the	“C++	Language
Tutorial”	at	http://www.cplusplus.com,	will	be	sufficient.

That	being	said,	this	is	not	a	light	book	to	read.	This	book	is	technical	in	nature.	It
covers	many	implement	details.	You	will	have	to	understand	one	detail	before

http://www.cplusplus.com

1.4.	Free	e-book	and	full	version

1.5.	How	this	book	is	organized

moving	on	to	the	next	one;	and	there	seem	to	be	endless	of	them.	The	best	way	to
read	this	book	is	to	be	patient	and	persistent,	take	on	one	detail	at	a	time.	After
working	out	enough	details,	you	will	reach	a	tipping	point	where	a	big	picture	will
emerge.	From	that	point	on,	everything	will	fall	into	its	own	place,	and	the	whole
structure	of	the	system	will	become	crystal	clear	to	you.

The	first	4	chapters	of	this	book	is	published	as	a	free	e-book	at	Amazon	and	Apple
iBooks	Store.	You	can	find	it	by	searching	“A	Dissection	of	Bitcoin”	at	one	of	these
on-line	stores.

The	full	version	consists	of	10	chapters.	It	can	be	purchased	at

https://ebook.ubiqlink.com/.

Before	laying	out	the	organization	of	this	book,	I’ll	have	to	first	give	a	ten-
thousand-feet	overview	on	what	a	Bitcoin	Application	(thus	abbreviated	as	BA
throughout	the	book)	compiled	from	the	source	code	does.	A	BA	needs	to	handle
four	major	tasks:

Construct	a	transaction.	The	primary	function	of	a	BA	is	to	send	bitcoins
to	someone.	To	do	so,	you	need	to	first	create	a	“transaction”,	which	is	just	a
fancier	word	for	a	record	that	records	who	paid	how	many	bitcoins	to	whom.
Let’s	say	you	want	to	pay	5	bitcoins	to	Bob.	What	you	need	to	do	is	to	first
start	a	BA	on	you	computer,	then	input	Bob’s	id	and	the	amount	you	want	to
send	to	him.	Click	a	button,	your	BA	will	create	a	transaction	for	you.

Communicate	with	other	BAs.	Next,	your	BA	will	broadcast	this	newly
created	transaction	to	all	other	BAs	that	are	currently	running	on	the
Internet.	The	reason	for	doing	that	is	to	inform	everyone	that	you	are	willing
to	pay	Bob	5	bitcoins.	To	achieve	that,	all	BAs	employ	a	peer-to-peer	protocol
to	communicate	with	each	other.	Peer-to-peer	simply	means	that	any	BA	can
initiate	a	communication	to	any	other	BA	directly;	no	intermediaries	are
needed.	Just	as	your	BA	can	send	your	transactions	to	any	other	BA,	any
other	BA	can	send	its	transactions	to	you	as	well.

Mine	a	block.	After	receiving	enough	numbers	of	transactions,	a	BA	will
pack	them	together	to	form	a	block,	and	then	start	“mining”	it.	Mining	is
process	of	hashing	the	block	data	into	a	certain	format.	The	format	is
specified	in	such	a	way	that	it	takes	considerable	amount	of	computational
power	to	find	a	hash	compatible	with	that	format.	Once	such	a	hash	is	found,
i.e.,	a	block	is	mined,	that	block	will	be	broadcast	to	all	BAs.

https://ebook.ubiqlink.com/

1.6.	Compile	the	source	code

Maintain	the	blockchain.	After	receiving	a	new	block,	each	BA	will	first
verify	that	all	the	transactions	in	the	received	block	are	valid,	and	then	check
that	the	block	hash	is	indeed	compatible	with	the	specified	format.	After	that,
this	new	block	will	be	appended	to	the	blocks	mined	previously:	one	after
another	to	form	a	blockchain.	Once	included	in	the	blockchain,	a	block	is
sealed	and	can	not	be	changed	anymore.	Each	BA	has	its	own	blockchain.
They	communicate	via	the	Bitcoin	peer-to-peer	protocol	to	reach	a	consensus
on	which	blockchain	is	the	final	ground-truth.	And	every	BA	then	adjusts	its
own	blockchain	to	converge	to	the	ground-truth.

This	book	is	organized	along	with	the	four	major	tasks	listed	above.

Chapters	Transaction	I	covers	the	first	task:	“construct	a	transaction”.	This
chapter	focuses	on	how	to	create	a	transaction	in	the	computer’s	main
memory.

Chapter	Serialization	provides	necessary	details	to	understand	Chapter
Transaction	I.	This	chapter	explains	how	to	serialize	classes	to	disk	and
network.

Chapter	Script	describes	how	to	parse	and	execute	Bitcoin	scripts	embedded
in	every	transaction.

Chapter	Block	covers	all	the	data	structures	related	to	block	and	blockchain.

Chapter	Database	covers	the	Bitcoin	database.

Chapter	Transaction	II	continues	the	coverage	of	the	first	task.	This	chapter
shows	how	to	save	the	newly	created	transaction	to	the	database.

Chapters	Network	covers	the	second	task:	“communicate	with	other	BAs”.
This	chapter	examines	the	Bitcoin	peer-to-peer	protocol	in	details.

Chapter	Blockchain	covers	the	forth	task:	“maintain	the	blockchain”.

Chapter	Mining	covers	the	third	task:	“mine	a	block”.

This	section	provides	a	detailed	guide	on	how	to	compile	the	Bitcoin	source	code.
It	is	always	a	good	practice	to	compile	the	code	before	analyzing	it.

Bitcoin	version	“v0.1.15	ALPHA”	compiles	only	on	Windows.	It	does	not	work	on
Linux	or	MacOS.	So	you	need	a	Windows	machine	to	proceed.	Please	follow	the
steps	listed	below	closely,	it	will	save	you	a	lot	of	time	to	fight	through	compilation
errors.

The	MinGW	tool-chain	is	used	to	compile	the	code.	So	the	first	thing	to	do	is	to
install	MinGW	from	http://www.mingw.org/.	Download	and	run	an	installer

http://www.mingw.org/

called	“mingw-get-setup.exe”.	It	will	subsequently	download	and	start	a
program	called	“MinGW	Installation	Manager”,	which	will	ask	you	to	select
MinGW	packages	to	install.

Select	“Basic	Setup”	on	the	left	panel,	then	check	packages	“mingw32-
base”,	“mingwin32-gcc-g++”	(the	g++	compiler),	and	“msys-base”	(a
unix-like	command-line	shell)	on	the	right	panel.

Select	“All	Packages”	→	“MSYS”	→	“MinGW	Developer	Toolkit”	on	the
left	panel,	then	select	“msys-perl”	package	on	the	right	panel.	The	Perl
package	is	needed	later	to	compile	the	openssl	library.

Click	menu	“Installation”	→	“Apply	Changes”	to	install	the	selected
packages.

MinGW	is	installed	into	the	default	directory	“C:\MinWG”.	After	the
installation,	add	“C:\MinGW\bin”	into	the	“Path”	environment	variable	of
Windows	so	that	all	commands	in	“C:\MinGW\bin”	can	be	invoked	from	the
command-line.

Install	Git	from	https://git-scm.com/.

Run	the	Git	program	you	just	installed.	This	will	bring	up	a	command-line
shell.	In	that	shell,	make	a	new	directory	“bc”	under	whatever	directory	you
like.	Get	into	directory	“bc”,	issue	a	“git	clone”	command	to	download	the
Bitcoin	source	code.	This	will	create	a	sub-directory	“bitcoin”	under	“bc”.
Here	are	the	commands	you	should	issue	in	the	Git	command-line	shell.

				1:	mkdir	bc

				2:	cd	bc

				3:	git	clone	https://github.com/bitcoin/bitcoin.git

Now	check	out	the	earliest	Bitcoin	version	available	in	the	downloaded	Git
repository.

				1:	git	checkout	4405b78d6059e536c36974088a8ed4d9f0f29898

There	should	be	a	file	named	“readme.txt”	in	directory	“bc/bitcoin”.	Open
that	file.	The	first	line	should	be	“BitCoin	v0.1.5	ALPHA”.	This	is	the	version
number	of	the	source	code	this	book	covers.

Download	wxWidgets-2.8.12	(wxWidgets	version	2.8.12)	from
https://www.wxwidgets.org/.
Unzip	the	source	files	to	directory	“bc/wxWidgets-2.8.12”.	Bring	up	the
MinGW	command-line	shell	by	invoking	a	batch	file	at
“C:\MinGW\msys\1.0\msys.bat”.	Issue	the	following	commands	in	the
MinGW	command-line	shell	to	compile	the	wxWidgets	library.

				1:	cd	bc/wxWidgets-2.8.12

				2:	./configure	--with-msw	--enable-debug	--enable-debug_gdb	--

https://git-scm.com/
https://www.wxwidgets.org/

disable-shared

				3:	make

Download	openssl-1.0.2d	(openssl	version	1.0.2d)	from
https://www.openssl.org/.
Unzip	the	source	files	to	directory	“bc/openssl-1.0.2d”.	In	the	MinGW
command-line	shell,	go	to	directory	“bc/openssl-1.0.2d”	and	issue	the
following	command	to	compile	the	openssl	library.

				1:	cd	bc/openssl-1.0.2d

				2:	./config

				3:	make

Download	db-4.8.30.NC	(Berkeley	DB	version	4.8.30)	from
http://www.oracle.com/.
Unzip	the	source	files	to	directory	“bc/db-4.8.30.NC”.	In	the	MinGW
command-line	shell,	go	to	directory	“bc/db-4.8.30.NC/build_unix”	and	issue
the	following	command	to	compile	the	BerkeleyDB	library.

				1:	cd	bc/db-4.8.30.NC/build_unix

				2:	../dist/configure	--enable-mingw	--enable-cxx

				3:	make

Download	boost_1_35_0	(boost	version	1.35.0)	from
http://www.boost.org/.
Unzip	the	source	files	to	directory	“bc/boost_1_35_0”.

Go	to	directory	“bc/bitcoin”,	modify	the	make	file	“makefile”	to	reflect	the
locations	of	the	headers	and	compiled	libraries	needed	to	build	Bitcoin.	Three
variables	in	“makefile”	need	to	be	changed,	they	are	INCLUDEPATHS,
LIBPATHS,	and	LIBS.	The	modified	variables	are	shown	below.	Copy	and
paste	the	changes	to	“makefile”.	Don’t	touch	the	rest	of	the	file.

				1:	INCLUDEPATHS=-I"../boost_1_35_0"	\

				2:														-I"../db-4.8.30.NC/build_unix"	\

				3:														-I"../openssl-1.0.2d/include"	\

				4:														-I"../wxWidgets-2.8.12/lib/wx/include/msw-ansi-

release-2.8"	\

				5:														-I"../wxWidgets-2.8.12/include"

				6:	LIBPATHS=-L"../db-4.8.30.NC/build_unix"	\

				7:										-L"../openssl-1.0.2d"	\

				8:										-L"../wxWidgets-2.8.12/lib"

				9:	LIBS=	\

			10:		-l	db_cxx	\

			11:		-l	crypto	\

			12:		-l	wx_msw$(D)_richtext-2.8	\

			13:		-l	wx_msw$(D)_html-2.8	\

			14:		-l	wx_msw$(D)_core-2.8	\

			15:		-l	wx_base$(D)-2.8	\

			16:		-l	wxtiff$(D)-2.8	\

			17:		-l	wxjpeg$(D)-2.8	\

			18:		-l	wxpng$(D)-2.8	\

https://www.openssl.org/
http://www.oracle.com/
http://www.boost.org/

			19:		-l	wxzlib$(D)-2.8	\

			20:		-l	wxregex$(D)-2.8	\

			21:		-l	wxexpat$(D)-2.8	\

			22:		-l	kernel32	-l	user32	-l	gdi32	-l	comdlg32	-l	winspool	-l	winmm	-

l	shell32	\

			23:		-l	comctl32	-l	ole32	-l	oleaut32	-l	uuid	-l	rpcrt4	-l	advapi32	-l	

ws2_32

Issue	a	“make”	command	in	directory	“bc/bitcoin”	in	the	MinGW	command-
line	shell.	You	will	get	an	executable	name	“bitcoin.exe”	in	directory
“bc/bitcoin”.

2.1.	Bitcoin	address

2.	Transaction	I
This	chapter	covers	the	first	of	the	four	major	tasks	laid	out	in	Chapter
Introduction:	“construct	a	transaction”.	To	send	bitcoins	to	someone,	you	need	to
know	the	recipient’s	Bitcoin	address.	This	chapter	first	examines	how	to	generate
such	an	address.	Then	it	analyzes	the	code	that	constructs	a	new	transaction.

In	Chapter	Introduction,	a	BA	was	compiled	from	the	Bitcoin	source	code.	Now
start	that	BA,	select	menu	“Options”	→	“Change	Your	Address”,	then	click	the
“New	Address”	button,	a	dilog-box	will	pop	up.	This	dialog-box	is	opened	by
function	CYourAddressDialog::OnButtonNew()	in	ui.cpp.	Here	is	the
source	code	of	this	function.

				1:	void	CYourAddressDialog::OnButtonNew(wxCommandEvent&	event)

				2:	{

				3:					//	Ask	name

				4:					CGetTextFromUserDialog	dialog(this,	"New	Bitcoin	Address",	

"Label",	"");

				5:					if	(!dialog.ShowModal())

				6:									return;

				7:					string	strName	=	dialog.GetValue();

				8:					//	Generate	new	key

				9:					string	strAddress	=	PubKeyToAddress(GenerateNewKey());

			10:					SetAddressBookName(strAddress,	strName);

			11:					//	Add	to	list	and	select	it

			12:					int	nIndex	=	InsertLine(m_listCtrl,	strName,	strAddress);

			13:					SetSelection(m_listCtrl,	nIndex);

			14:					m_listCtrl->SetFocus();

			15:	}

The	work-flow	of	this	function	is	as	follows:

Show	a	dialog-box	to	accept	a	user-inputed	string,	and	then	put	the	string
into	local	variable	strName	(lines	5-7)

Call	GenerateNewKey()	in	main.cpp	to	generate	a	new	public-private	key
pair,	and	then	calls	PubKeyToAddress()	in	base58.h	to	generate	a	string
representation	strAddress	of	the	newly	generated	public	key	(line	9)

Add	strName	and	strAddress	as	a	pair	to	m_llistCtrl,	which	contains
all	the	Bitcoin	addresses	you	own,	and	will	be	shown	on	the	GUI	(line	12).

Let’s	take	a	look	at	GenerateNewKey().	Here	is	the	source	code	of	this	function.

				1:	bool	AddKey(const	CKey&	key)

				2:	{

				3:					CRITICAL_BLOCK(cs_mapKeys)

				4:					{

				5:									mapKeys[key.GetPubKey()]	=	key.GetPrivKey();

				6:									mapPubKeys[Hash160(key.GetPubKey())]	=	key.GetPubKey();

				7:					}

				8:					return	CWalletDB().WriteKey(key.GetPubKey(),	

key.GetPrivKey());

				9:	}

			10:	vector<unsigned	char>	GenerateNewKey()

			11:	{

			12:					CKey	key;

			13:					key.MakeNewKey();

			14:					if	(!AddKey(key))

			15:									throw	runtime_error("GenerateNewKey()	:	AddKey	failed\n");

			16:					return	key.GetPubKey();

			17:	}

This	function	takes	the	following	steps	to	generate	a	new	public-private	key	pair.

Generate	a	new	object	of	type	CKey	(line	13).

Call	addKey()	to	save	the	newly	generated	key	to	1)	global	map	mapKeys
(line	5),	2)	global	map	mapPubKeys	(line	6),	and	3)	wallet	database
wallet.dat	(line	8),	which	will	be	covered	in	Chapter	Database.

mapKeys	maps	the	public	key	to	the	corresponding	private	key	(line	5).

mapPubKeys	maps	the	hash	of	the	public	key	to	the	public	key	itself	(line
6).

Return	the	public	key	(line	16).

The	returned	public	key	from	GenerateNewKey()	is	a	vector	of	unsigned
chars	of	size	65.	It	has	the	following	format:

(0x04	|	PubKeyX(32	bits)	|	PubKeyY(32	bits)).

The	prefix	byte	is	used	to	distinguish	between	several	encodings,	with	0x04
denoting	uncompressed	PubKeyX	and	PubKeyY.	This	is	a	standard	way	of
encoding	the	public	key,	managed	by	the	openssl	library.	Bitcoin	treats	the
returned	public	key	as	it	is.

Important Macro	CRITICAL_BLOCK	at	line	3	acquires	a	lock	to
access	global	variables	mapKeys	and	mapPubKeys.	A	BA
maintains	multiple	threads.	To	avoid	corrupting	a	global
variable	that	is	shared	among	multiple	threads,	any	thread
must	acquire	a	lock	first	before	making	any	changes	to	the
global	variable.	A	lock	is	defined	for	each	global	variable.
For	example,	lock	cs_mapKeys	is	defined	for	mapKeys
and	mapPubKeys.	Line	3-7	represents	a	general	pattern	to
write	to	a	global	variable	in	the	Bitcoin	source	code.	You

2.2.	CTransaction	in	main.h

will	see	this	pattern	frequently	throughout	the	book.

Now	go	back	to	function	CYourAddressDialog::OnButtonNew().	After
getting	the	returned	public	key	from	GenerateNewKey(),
CYourAddressDialog::OnButtonNew()	calls	PubKeyToAddress()	in
base58.h	and	passes	the	return	public	key	as	the	input.	Here	is	the	source	code
of	PubKeyToAddress().

				1:	inline	string	Hash160ToAddress(uint160	hash160)

				2:	{

				3:					//	add	1-byte	version	number	to	the	front

				4:					vector<unsigned	char>	vch(1,	ADDRESSVERSION);

				5:					vch.insert(vch.end(),	UBEGIN(hash160),	UEND(hash160));

				6:					return	EncodeBase58Check(vch);

				7:	}

				8:	inline	string	PubKeyToAddress(const	vector<unsigned	char>&	

vchPubKey)

				9:	{

			10:					return	Hash160ToAddress(Hash160(vchPubKey));

			11:	}

This	function	passes	the	65	bits	public	key	to	Hash160()	in	util.h	(line	10),
which	returns	the	hash	of	the	public	key.	It	then	passes	the	returned	hash	to
Hash160ToAddress()	in	base58.h	to	get	a	string	representation	of	the	hash
(line	10).	The	final	string	is	a	Bitcoin	address,	which	looks	like	a	long	string	of
random	letters	and	numbers.	To	give	an	example,
171zNQDkKGpbvbLHHyJD4Csg393er4xnT6	is	a	Bitcoin	address.

Summary
The	procedure	of	generating	a	Bitcoin	address	is	as	follows:	1)	generate	a	public-
private	key	pair,	2)	hash	the	public	key,	3)	encode	the	hash	into	a	string,	and	the
final	string	is	a	Bitcoin	address.

CTransaction	represents	a	Bitcoin	transaction	that	transfers	a	certain	amount
of	coins	from	one	user	to	another.	It	is	the	one	of	the	critical	data	structures	of
Bitcoin.	The	first	task	“construct	a	transaction”	we	are	about	to	explore	revolves
around	this	class.

				1:	class	COutPoint

				2:	{

				3:	public:

				4:					uint256	hash;

				5:					unsigned	int	n;

				6:					//......

				7:	};

				8:	class	CTxIn

				9:	{

			10:	public:

			11:					COutPoint	prevout;

			12:					CScript	scriptSig;

			13:					unsigned	int	nSequence;

			14:					//......

			15:	};

			16:	class	CTxOut

			17:	{

			18:	public:

			19:					int64	nValue;

			20:					CScript	scriptPubKey;

			21:					//......

			22:	};

			23:	class	CTransaction

			24:	{

			25:	public:

			26:					int	nVersion;

			27:					vector<CTxIn>	vin;

			28:					vector<CTxOut>	vout;

			29:					int	nLockTime;

			30:					//......

			31:	};

A	CTransaction	contains	an	input	vin,	and	an	output	vout.	Both	are	vectors.
Each	input	slot	of	vector	vin	is	of	type	CTxIn;	and	each	output	slot	of	vector
vout	is	of	type	CTxOut.

Each	input	slot	(of	type	CTxIn)	of	a	transaction	Tx	contains	a	COutPoint	object
prevout,	which	refers	to	an	output	slot	of	a	source-transaction	of	Tx.	A
source-transaction	of	Tx	is	a	transaction	from	which	Tx	gets	the	coins	it	is	about
to	spend.	A	transaction	Tx	can	have	an	arbitrary	number	of	source-transactions.

Any	transaction	is	uniquely	identified	by	its	hash	code,	a	256-bit	data	structure
uint256.	To	refer	to	a	specific	output	slot	of	a	specific	source-transaction
TxSource	of	a	transaction	Tx,	two	pieces	of	information	are	needed:	1)	the	hash
code	of	TxSource,	and	2)	the	index	n	that	points	to	a	specific	output	slot	of
TxSource.	These	two	pieces	of	information	are	held	in	class	COutPoint.	And	the
specific	output	slot	a	COutPoint	object	refers	to	is	TxSource.vout[n].	If	this
output	slot	of	TxSource	is	referred	by	the	i-th	input	slot	of	tx	(i.e.,
tx.vin[i].prevout),	we	say	that	the	i-th	input	of	tx	spends	the	n-th
output	of	TxSource.

COutPoint	holds	a	hash	code	of	type	uint256,	which	is	the	hash	of	the	source-
transaction.	We	cover	this	class	next.

2.2.1.	uint256	and	uint160	in	uint.h

An	uint256	holds	a	256-bit	hash	code.	It	contains	an	unsigned	int	array	of
length	256/32=8	to	hold	the	hash	code.	Another	similar	data	structure	uint160,
defined	in	the	same	header	file,	holds	a	160-bit	hash	code.	It	has	an	unsigned

int	array	of	length	160/32=5	to	hold	the	hash	code.	These	two	classes	share	the
same	base	class	base_uint.

				1:	template<unsigned	int	BITS>

				2:	class	base_uint

				3:	{

				4:	protected:

				5:					enum	{	WIDTH=BITS/32	};

				6:					unsigned	int	pn[WIDTH];

				7:					//......

				8:					unsigned	int	GetSerializeSize(int	nType=0,	int	

nVersion=VERSION)	const

				9:					{

			10:									return	sizeof(pn);

			11:					}

			12:					template<typename	Stream>

			13:					void	Serialize(Stream&	s,	int	nType=0,	int	nVersion=VERSION)	

const

			14:					{

			15:									s.write((char*)pn,	sizeof(pn));

			16:					}

			17:					template<typename	Stream>

			18:					void	Unserialize(Stream&	s,	int	nType=0,	int	nVersion=VERSION)

			19:					{

			20:									s.read((char*)pn,	sizeof(pn));

			21:					}

			22:					//......

			23:	}

			24:	typedef	base_uint<	160	>	base_uint160;

			25:	typedef	base_uint<	256	>	base_uint256;

			26:	class	uint160	:	public	base_uint160

			27:	{

			28:					//......

			29:	};

			30:	class	uint256	:	public	base_uint256

			31:	{

			32:					//......

			33:	};

base_uint	overloads	many	operators.	These	operator	overload	functions	are	not
shown	in	here.	They	all	work	on	the	inner	data	storage	array	pn	to	implement
their	functions.

One	thing	worth	mentioning	is	that	the	three	serialization	member	functions	of
base_uint	(GetSerializeSize(),	Serialize(),	and	Unserialize())
follow	the	same	naming	convention	described	in	Chapter	Serialization.	So	class
base_uint	and	its	derived	classes	can	be	integrated	into	the	serialization/de-
serialization	chain	explained	in	Chapter	Serialization.

Many	classes	in	Bitcoin	need	to	be	serialized	to	a	byte	stream	to	be	hashed,
stored	on	disk,	or	sent	to	peer	BA’s	via	the	Internet.	These	classes	follow	a
clever	scheme	to	implement	their	serialization/de-serialization	functions.	This
scheme	is	elaborated	in	Chapter	Serialization.	It	is	an	independent	topic	that

2.3.	Send	bitcoins

can	be	treated	separately.	If	you	wish	to	understand	this	scheme	before
proceeding	further,	you	can	now	go	to	read	Chapter	Serialization	and	then
come	back.	Or	you	can	keep	moving	forward	with	a	simple	understanding	that
serialization	writes	an	instance	of	a	class	to	a	byte	stream,	and	de-serialization
reads	the	byte	stream	to	re-construct	the	instance.

Now	start	the	BA,	click	the	“Send	Coins”	button	in	the	tool-bar	(the	first	button	in
the	tool-bar	with	a	green	arrow),	the	following	dialog-box	will	show	up.

Figure	1.	“Send	Coins”	dialog
This	dialog-box	is	implemented	in	class	CSendDialog	in	ui.h,	which	is	derived
from	class	CSendDialogBase	in	uibase.h.	The	latter	contains	the	following	2
text	input	controls	(there	are	other	controls,	but	these	2	carry	information
required	to	construct	a	transaction):

				1:	wxTextCtrl*	m_textCtrlAddress;

				2:	wxTextCtrl*	m_textCtrlAmount;

The	first	control	takes	the	Bitcoin	address	of	a	recipient	as	input.	The	second	one
takes	the	amount	of	coins	to	be	sent	as	input.	All	you	need	are	these	two	pieces	of
information	to	construct	a	transaction.

Click	the	“Send”	button	in	the	above	dialog.	Function
CSendDialog::OnButtonSend()	in	ui.cpp	will	be	called.

2.4.	CSendDialog::OnButtonSend()	in	ui.cpp
Here	is	the	source	code	of	this	function.

				1:	void	CSendDialog::OnButtonSend(wxCommandEvent&	event)

				2:	{

				3:					CWalletTx	wtx;

				4:					string	strAddress	=	(string)m_textCtrlAddress->GetValue();

				5:					//	Parse	amount

				6:					int64	nValue	=	0;

				7:					if	(!ParseMoney(m_textCtrlAmount->GetValue(),	nValue)	||	

nValue	<=	0)

				8:					{

				9:									wxMessageBox("Error	in	amount		",	"Send	Coins");

			10:									return;

			11:					}

			12:					if	(nValue	>	GetBalance())

			13:					{

			14:									wxMessageBox("Amount	exceeds	your	balance		",	"Send	

Coins");

			15:									return;

			16:					}

			17:					if	(nValue	+	nTransactionFee	>	GetBalance())

			18:					{

			19:									wxMessageBox(string("Total	exceeds	your	balance	when	the	

")	+	FormatMoney(nTransactionFee)	+	"	transaction	fee	is	included		",	

"Send	Coins");

			20:									return;

			21:					}

			22:					//	Parse	bitcoin	address

			23:					uint160	hash160;

			24:					bool	fBitcoinAddress	=	AddressToHash160(strAddress,	hash160);

			25:					if	(fBitcoinAddress)

			26:					{

			27:									//	Send	to	bitcoin	address

			28:									CScript	scriptPubKey;

			29:									scriptPubKey	<<	OP_DUP	<<	OP_HASH160	<<	hash160	<<	

OP_EQUALVERIFY	<<	OP_CHECKSIG;

			30:									if	(!SendMoney(scriptPubKey,	nValue,	wtx))

			31:													return;

			32:									wxMessageBox("Payment	sent		",	"Sending…");

			33:					}

			34:					else

			35:					{

			36:									//	Parse	IP	address

			37:									CAddress	addr(strAddress.c_str());

			38:									if	(addr.ip	==	0)

			39:									{

			40:													wxMessageBox("Invalid	address		",	"Send	Coins");

			41:													return;

			42:									}

			43:									//	Message

			44:									wtx.mapValue["to"]	=	strAddress;

			45:									wtx.mapValue["from"]	=	m_textCtrlFrom->GetValue();

2.5.	SendMoney()	in	main.cpp

			46:									wtx.mapValue["message"]	=	m_textCtrlMessage->GetValue();

			47:									//	Send	to	IP	address

			48:									CSendingDialog*	pdialog	=	new	CSendingDialog(this,	addr,	

nValue,	wtx);

			49:									if	(!pdialog->ShowModal())

			50:													return;

			51:					}

			52:					if	(!mapAddressBook.count(strAddress))

			53:									SetAddressBookName(strAddress,	"");

			54:					EndModal(true);

			55:	}

Here	is	the	work-flow	of	this	function:

Get	the	recipient’s	address	and	put	it	into	strAddress	(line	4).

Get	the	amount	to	be	sent	and	put	it	into	nValue	(line	7).

Check	the	balance	to	make	sure	that	the	amount	of	coins	you	own	is	greater
than	nValue	plus	nTransactionFee	(line	17).

Parse	the	recipient’s	address	to	hash160	(line	24).	If	it	is	a	hash	address,
then	fBitcoinAddress	will	be	true	(line	25).	If	it	is	true,	do	the	following:

Insert	into	object	scriptPubKey	(of	type	CScript)	the	following	script
code	OP_DUP	OP_HASH160	hash160	OP_EQUALVERIFY
OP_CHECKSIG	(line	29).	The	recipient’s	address	hash160	is	included	in
this	script.	To	emphasize	hash160	is	the	recipient’s	address,	it	will	be
referred	as	<recipient_address_hash160>	from	now	on.	So	the
above	script	code	becomes	OP_DUP	OP_HASH160
<recipient_address_hash160>	OP_EQUALVERIFY
OP_CHECKSIG.

Call	SendMoney(scriptPubKey,	nValue,	wtx)	(line	30).

If	recipient’s	address	is	not	a	hash	address	(line	34),	check	if	it	is	an	IPv4
address	(line	38).	If	it	is,	new	a	CSendingDialog	class	(line	48).	You	can
safely	ignore	all	the	code	after	line	34.	No	one	sends	bitcoins	to	an	IP	address
anymore.	It	is	unsafe.	All	the	code	related	to	sending	bitcoins	to	an	IP	has
been	removed	from	the	later	versions.

Now	let’s	examine	SendMoney().

Here	is	the	source	code	of	this	function.

				1:	bool	SendMoney(CScript	scriptPubKey,	int64	nValue,	CWalletTx&	

wtxNew)

				2:	{

				3:					CRITICAL_BLOCK(cs_main)

				4:					{

				5:									int64	nFeeRequired;

				6:									if	(!CreateTransaction(scriptPubKey,	nValue,	wtxNew,	

nFeeRequired))

				7:									{

				8:													string	strError;

				9:													if	(nValue	+	nFeeRequired	>	GetBalance())

			10:																	strError	=	strprintf("Error:	This	is	an	oversized	

transaction	that	requires	a	transaction	fee	of	%s		",	

FormatMoney(nFeeRequired).c_str());

			11:													else

			12:																	strError	=	"Error:	Transaction	creation	failed		";

			13:													wxMessageBox(strError,	"Sending…");

			14:													return	error("SendMoney()	:	%s\n",	strError.c_str());

			15:									}

			16:									if	(!CommitTransactionSpent(wtxNew))

			17:									{

			18:													wxMessageBox("Error	finalizing	transaction		",	

"Sending…");

			19:													return	error("SendMoney()	:	Error	finalizing	

transaction");

			20:									}

			21:									printf("SendMoney:	%s\n",	

wtxNew.GetHash().ToString().substr(0,6).c_str());

			22:									//	Broadcast

			23:									if	(!wtxNew.AcceptTransaction())

			24:									{

			25:													//	This	must	not	fail.	The	transaction	has	already	

been	signed	and	recorded.

			26:													throw	runtime_error("SendMoney()	:	

wtxNew.AcceptTransaction()	failed\n");

			27:													wxMessageBox("Error:	Transaction	not	valid		",	

"Sending…");

			28:													return	error("SendMoney()	:	Error:	Transaction	not	

valid");

			29:									}

			30:									wtxNew.RelayWalletTransaction();

			31:					}

			32:					MainFrameRepaint();

			33:					return	true;

			34:	}

When	this	function	is	called,	its	3	parameters	take	the	following	values:

scriptPubKey	contains	script	code	OP_DUP	OP_HASH160
<recipient_address_hash160>	OP_EQUALVERIFY	OP_CHECKSIG.

nValue	is	the	amount	to	send.	Note	that	transaction	fee	nTransactionFee
is	not	included.	nTransactionFee	is	a	global	variable	defined	in
main.cpp.

wtxNew	is	wtx,	a	local	variable	of	type	CWalletTx	declared	in	caller
CSendDialog::OnButtonSend().	Variable	wtx	is	an	empty	transaction
waiting	to	be	filled.	Its	type	CMerkleTx	is	derived	from	class	CTransaction

2.6.	CreateTransaction()	in	main.cpp

with	some	additional	fields	that	you	don’t	need	to	worry	about	at	this
moment.	At	for	now,	just	treat	wtxNew	as	if	it	is	of	type	CTransaction.

What	this	function	does	is	straightforward:

First	creates	a	transaction	(CreateTransaction(scriptPubKey,
nValue,	wtxNew,	nFeeRequired)	at	line	6).

Then	tries	to	commit	the	transaction	into	the	database
(CommitTransactionSpent(wtxNew)	at	line	16).

If	the	transaction	is	accepted	(wtxNew.AcceptTransaction()	at	line	23),
sends	the	transaction	to	other	peers
(wtxNew.RelayWalletTransaction()	at	line	30).

All	these	4	functions	work	on	wtxNew.	The	first	function
CreateTransaction()	is	covered	in	this	chapter.	The	other	three	will	be
covered	in	Chapter	Transaction	II.

Here	is	the	source	code	of	CreateTransaction().

				1:	bool	CreateTransaction(CScript	scriptPubKey,	int64	nValue,	

CWalletTx&	wtxNew,	int64&	nFeeRequiredRet)

				2:	{

				3:					nFeeRequiredRet	=	0;

				4:					CRITICAL_BLOCK(cs_main)

				5:					{

				6:									//	txdb	must	be	opened	before	the	mapWallet	lock

				7:									CTxDB	txdb("r");

				8:									CRITICAL_BLOCK(cs_mapWallet)

				9:									{

			10:													int64	nFee	=	nTransactionFee;

			11:													loop

			12:													{

			13:																	wtxNew.vin.clear();

			14:																	wtxNew.vout.clear();

			15:																	if	(nValue	<	0)

			16:																					return	false;

			17:																	int64	nValueOut	=	nValue;

			18:																	nValue	+=	nFee;

			19:																	//	Choose	coins	to	use

			20:																	set<CWalletTx*>	setCoins;

			21:																	if	(!SelectCoins(nValue,	setCoins))	//

			22:																					return	false;

			23:																	int64	nValueIn	=	0;

			24:																	foreach(CWalletTx*	pcoin,	setCoins)

			25:																					nValueIn	+=	pcoin->GetCredit();

			26:																	//	Fill	vout[0]	to	the	payee,	recipient	of	the	

bitcoin

			27:																	wtxNew.vout.push_back(CTxOut(nValueOut,	

scriptPubKey));

			28:																	//	Fill	vout[1]	back	to	self	with	any	change

			29:																	if	(nValueIn	>	nValue)

			30:																	{

			31:																					///	todo:	for	privacy,	should	randomize	the	

order	of	outputs,

			32:																					//								would	also	have	to	use	a	new	key	for	

the	change.

			33:																					//	Use	the	same	key	as	one	of	the	coins

			34:																					vector<unsigned	char>	vchPubKey;

			35:																					CTransaction&	txFirst	=	*(*setCoins.begin());

			36:																					foreach(const	CTxOut&	txout,	txFirst.vout)

			37:																									if	(txout.IsMine())

			38:																													if	(ExtractPubKey(txout.scriptPubKey,	

true,	vchPubKey))

			39:																																	break;

			40:																					if	(vchPubKey.empty())

			41:																									return	false;

			42:																					//	Fill	vout[1]	to	ourself

			43:																					CScript	scriptPubKey;

			44:																					scriptPubKey	<<	vchPubKey	<<	OP_CHECKSIG;

			45:																					wtxNew.vout.push_back(CTxOut(nValueIn	-	

nValue,	scriptPubKey));

			46:																	}

			47:																	//	Fill	vin

			48:																	foreach(CWalletTx*	pcoin,	setCoins)

			49:																					for	(int	nOut	=	0;	nOut	<	pcoin->vout.size();	

nOut++)

			50:																									if	(pcoin->vout[nOut].IsMine())

			51:																													wtxNew.vin.push_back(CTxIn(pcoin-

>GetHash(),	nOut));

			52:																	//	Sign

			53:																	int	nIn	=	0;

			54:																	foreach(CWalletTx*	pcoin,	setCoins)

			55:																					for	(int	nOut	=	0;	nOut	<	pcoin->vout.size();	

nOut++)

			56:																									if	(pcoin->vout[nOut].IsMine())

			57:																													SignSignature(*pcoin,	wtxNew,	nIn++);

			58:																	//	Check	that	enough	fee	is	included

			59:																	if	(nFee	<	wtxNew.GetMinFee(true))

			60:																	{

			61:																					nFee	=	nFeeRequiredRet	=	

wtxNew.GetMinFee(true);

			62:																					continue;

			63:																	}

			64:																	//	Fill	vtxPrev	by	copying	from	previous	

transactions	vtxPrev

			65:																	wtxNew.AddSupportingTransactions(txdb);

			66:																	wtxNew.fTimeReceivedIsTxTime	=	true;

			67:																	break;

			68:													}

			69:									}

			70:					}

			71:					return	true;

			72:	}

When	this	function	is	called,	its	4	parameters	take	the	follow	values:

scriptPubKey	contains	script	code	OP_DUP	OP_HASH160
<recipient_address_hash160>	OP_EQUALVERIFY	OP_CHECKSIG.

nValue	is	the	amount	to	transfer,	transaction	fee	nTransactionFee	is	not
included.

wtxNew	is	an	empty	transaction	instance.

nFeeRequiredRet	is	an	output	that	will	carry	the	actual	transaction	fee
after	this	function	returns.

Here	is	the	work-flow	of	this	function:

Define	a	local	variable	nValueOut	=	nValue	that	holds	the	amount	of
coins	to	send	out	(line	17).	Add	transaction	fee	nFee	to	nValue	so	that	now
nValue	includes	the	transaction	fee	(line	18).

Call	SelectCoins(nValue,	setCoins)	at	line	21	to	get	a	bunch	of	coins
and	put	them	into	setCoins.	Add	up	the	values	of	these	coins	and	then	put
the	total	amount	into	nValueIn	(line	25).	setCoins	contains	transactions
that	pay	to	your	Bitcoin	addresses	(i.e.,	they	are	your	coins).	These
transactions	will	become	the	source-transactions	of	wtxNew.

Call	wtxNew.vout.push_back(CTxOut(nValueOut,
scriptPubKey))	at	line	27	to	add	an	output	entry	to	wtxNew.	This	entry
pays	to	Bitcoin	address	<recipient_address_hash160>	(contained	in
scriptPubKey)	the	amount	of	nValueOut.

If	there	is	any	changes	left	(nValueIn	>	nValue	at	line	29),	add	another
output	entry	to	wtxNew	to	pay	the	leftover	to	yourself.	A	few	steps	are	taken
to	achieve	this:

Get	the	first	transaction	txFirst	in	setCoin,	go	through	each	slot	in
vector	txFirst.vout	and	check	if	it	is	yours	(line	37).	If	yes,	extract	the
public	key	from	this	slot	and	put	the	extracted	key	to	a	local	variable
vchPubKey.

Put	vchPubKey	into	the	following	script	code:	vchPubKey
OP_CHECKSIG,	and	use	this	script	code	to	add	a	payment	output	to
wtxNew	to	pay	to	yourself	(line	45).

Because	setCoin	contains	transactions	paid	to	you,	so	each	transaction
must	have	at	least	one	payee	address	that	belongs	to	you.	So	searching
the	first	transaction	txFirst	should	find	such	an	address.

At	this	point,	the	output	vector	vout	of	wtxNew	has	been	setup.	It	is	time	to
setup	the	input	vector	vin.	Remember	that	each	slot	of	vin	refers	to	a

source-transaction,	and	wtxNew‘s	source-transactions	are	all	in	setCoins.
For	each	source-transaction	pcoin	in	setCoins,	go	through	its	output
entries	pcoin→vout[nOut]	one	by	one.	If	the	nOut-th	entry	is	yours
(meaning	that	wtxNew	gets	coins	from	this	entry),	add	an	input	entry	to
wtxNew.vin	(wtxNew.vin.push_back(CTxIn(pcoin→GetHash(),
nOut))	at	line	51).	This	input	entry	points	to	the	nOut-th	output	entry	of
pcoin.	This	connects	an	input	slot	of	wtxNew.vin	to	the	nOut-th	output
slot	of	pcoin.

For	each	transaction	pcoin	in	setCoins,	go	through	its	output	entries
pcoin→vout[nOut]	one	by	one.	If	it	is	yours,	call
SignSignature(*pcoin,	wtxNew,	nIn++)	(line	57)	to	sign	the	nIn-
th	input	entry	of	wtxNew.	Note	that	nIn	tracks	the	input	entry	index	of
wtxNew.

If	the	transaction	fee	nFee	is	less	than	wtxNew.GetMinFee(true),	set
nFee	equal	to	the	latter,	discard	all	the	data	filled	into	wtxNew	(lines	13-14)
and	start	all	over	again.	In	the	first	iteration	of	the	big	loop	starting	at	line	11,
nFee	is	a	local	copy	of	global	variable	nTransactionFee	=	0.

You	may	wonder	why	all	this	hassle	of	re-filling	wtxNew.	The	source	code	of
GetMinFee()	gives	out	the	answer:	the	minimum	transaction	fee	of	a
transaction	depends	on	the	size	of	the	transaction.	The	size	of	wtxNew	is	only
known	after	it	is	fully	constructed.	If	the	calculated	minimum	transaction	fee
returned	by	wtxNew.GetMinFee(true)	is	greater	than	the	assumed
transaction	fee	nFee	when	wtxNew	was	constructed,	there	is	no	other	way	to
go	but	to	discard	the	current	wtxNew	and	re-construct	it.

So	there	is	a	catch-22	situation:	to	construct	a	new	transaction,	you	must
know	the	transaction	fee;	but	the	transaction	fee	can	only	be	determined	after
you	have	a	fully	constructed	transaction.	To	break	this	cycle,	a	local	variable
nFee	is	used	to	hold	an	“estimated”	transaction	fee;	and	a	new	transaction	is
constructed	based	on	the	estimate.	After	the	construction,	the	real	transaction
fee	is	calculated	and	compared	with	the	estimate.	If	the	estimate	is	less	than
the	real,	changed	the	estimate	to	the	calculated	transaction	fee	and	start	all
over.

Here	is	the	source	code	of	GetMinFee().

				1:	class	CTransaction

				2:	{

				3:					//......

				4:					int64	GetMinFee(bool	fDiscount=false)	const

				5:					{

				6:									//	Base	fee	is	1	cent	per	kilobyte

				7:									unsigned	int	nBytes	=	::GetSerializeSize(*this,	

SER_NETWORK);

				8:									int64	nMinFee	=	(1	+	(int64)nBytes	/	1000)	*	CENT;

				9:									//	First	100	transactions	in	a	block	are	free

			10:									if	(fDiscount	&&	nBytes	<	10000)

			11:													nMinFee	=	0;

			12:									//	To	limit	dust	spam,	require	a	0.01	fee	if	any	output	is	

less	than	0.01

			13:									if	(nMinFee	<	CENT)

			14:													foreach(const	CTxOut&	txout,	vout)

			15:																	if	(txout.nValue	<	CENT)

			16:																					nMinFee	=	CENT;

			17:									return	nMinFee;

			18:					}

			19:					//......

			20:	}

If	the	calculated	transaction	fee	is	greater	than	the	estimate,	break	the	big
loop	starting	at	line	11	and	the	whole	function	returns	(line	67).	Before	doing
that,	the	following	two	actions	are	taken:

Call	wtxNew.AddSupportingTransactions(txdb)	(line	65).	This
function	will	be	covered	in	Chapter	Transaction	II.

Set	wtxNew.fTimeReceivedIsTxTime	=	true	(line	66).

Let’s	now	examine	how	to	sign	the	newly	minted	transaction	wtxNew	by	calling
SignSignature().

2.6.1.	SignSignature()	in	script.cpp

Here	is	the	source	code	of	SignSignature().

				1:	bool	SignSignature(const	CTransaction&	txFrom,	CTransaction&	txTo,	

unsigned	int	nIn,	int	nHashType,	CScript	scriptPrereq)

				2:	{

				3:					assert(nIn	<	txTo.vin.size());

				4:					CTxIn&	txin	=	txTo.vin[nIn];

				5:					assert(txin.prevout.n	<	txFrom.vout.size());

				6:					const	CTxOut&	txout	=	txFrom.vout[txin.prevout.n];

				7:					//	Leave	out	the	signature	from	the	hash,	since	a	signature	

can't	sign	itself.

				8:					//	The	checksig	op	will	also	drop	the	signatures	from	its	

hash.

				9:					uint256	hash	=	SignatureHash(scriptPrereq	+	

txout.scriptPubKey,	txTo,	nIn,	nHashType);

			10:					if	(!Solver(txout.scriptPubKey,	hash,	nHashType,	

txin.scriptSig))

			11:									return	false;

			12:					txin.scriptSig	=	scriptPrereq	+	txin.scriptSig;

			13:					//	Test	solution

			14:					if	(scriptPrereq.empty())

			15:									if	(!EvalScript(txin.scriptSig	+	CScript(OP_CODESEPARATOR)	

+	txout.scriptPubKey,	txTo,	nIn))

			16:													return	false;

			17:					return	true;

			18:	}

First	notice	that	this	function	have	5	parameters	while	in
CreateTransaction()	it	is	called	with	3.	This	is	because	in	script.h,	the
default	values	of	the	last	2	parameters	are	provided.

				1:	bool	SignSignature(const	CTransaction&	txFrom,	CTransaction&	txTo,	

unsigned	int	nIn,	int	nHashType=SIGHASH_ALL,	CScript	

scriptPrereq=CScript());

Here	are	the	3	arguments	passed	in	by	the	caller	CreateTransaction().

txFrom	is	*pcoin.	It	is	one	of	the	coins	held	by	setCoins	in
CreatTransaction().	It	is	a	source-transaction.	One	of	its	output	slots
contains	the	coins	the	new	transaction	is	about	to	spend.

txTo	is	wtxNew	in	CreatTransaction().	It	is	the	new	transaction	that	is
about	to	spend	coins	in	source-transaction	txFrom.	This	new	transaction
needs	to	be	signed.

nIn	is	an	index	pointing	to	an	input	slot	of	txTo.	This	input	slot	contains	a
reference	to	an	output	slot	of	txFrom.	To	be	more	precise,	txin	=
txTo.vin[nIn]	(line	4)	is	the	input	slot	of	txTo;	and	txout	=
txFrom.vout[txin.prevout.n]	(line	6)	is	the	output	slot	of	txFrom	that
txin	refers	to.

Here	is	what	SignSignature()	does:

Calls	SignatureHash()	to	generate	a	hash	of	txTo.

Calls	function	Solver()	to	sign	the	hash	generated.

Calls	EvalScript()	to	evaluate	a	piece	of	script	to	make	sure	the	signature
is	correctly.

Let’s	examine	these	3	functions.

2.6.2.	SignatureHash()	in	script.cpp

Here	is	the	source	code	of	SignatureHash().

				1:	uint256	SignatureHash(CScript	scriptCode,	const	CTransaction&	

txTo,	unsigned	int	nIn,	int	nHashType)

				2:	{

				3:					if	(nIn	>=	txTo.vin.size())

				4:					{

				5:									printf("ERROR:	SignatureHash()	:	nIn=%d	out	of	range\n",	

nIn);

				6:									return	1;

				7:					}

				8:					CTransaction	txTmp(txTo);

				9:					//	In	case	concatenating	two	scripts	ends	up	with	two	

codeseparators,

			10:					//	or	an	extra	one	at	the	end,	this	prevents	all	those	

possible	incompatibilities.

			11:					scriptCode.FindAndDelete(CScript(OP_CODESEPARATOR));

			12:					//	Blank	out	other	inputs'	signatures

			13:					for	(int	i	=	0;	i	<	txTmp.vin.size();	i++)

			14:									txTmp.vin[i].scriptSig	=	CScript();

			15:					txTmp.vin[nIn].scriptSig	=	scriptCode;

			16:					//	Blank	out	some	of	the	outputs

			17:					if	((nHashType	&	0x1f)	==	SIGHASH_NONE)

			18:					{

			19:									//	Wildcard	payee

			20:									txTmp.vout.clear();

			21:									//	Let	the	others	update	at	will

			22:									for	(int	i	=	0;	i	<	txTmp.vin.size();	i++)

			23:													if	(i	!=	nIn)

			24:																	txTmp.vin[i].nSequence	=	0;

			25:					}

			26:					else	if	((nHashType	&	0x1f)	==	SIGHASH_SINGLE)

			27:					{

			28:									//	Only	lockin	the	txout	payee	at	same	index	as	txin

			29:									unsigned	int	nOut	=	nIn;

			30:									if	(nOut	>=	txTmp.vout.size())

			31:									{

			32:													printf("ERROR:	SignatureHash()	:	nOut=%d	out	of	

range\n",	nOut);

			33:													return	1;

			34:									}

			35:									txTmp.vout.resize(nOut+1);

			36:									for	(int	i	=	0;	i	<	nOut;	i++)

			37:													txTmp.vout[i].SetNull();

			38:									//	Let	the	others	update	at	will

			39:									for	(int	i	=	0;	i	<	txTmp.vin.size();	i++)

			40:													if	(i	!=	nIn)

			41:																	txTmp.vin[i].nSequence	=	0;

			42:					}

			43:					//	Blank	out	other	inputs	completely,	not	recommended	for	open	

transactions

			44:					if	(nHashType	&	SIGHASH_ANYONECANPAY)

			45:					{

			46:									txTmp.vin[0]	=	txTmp.vin[nIn];

			47:									txTmp.vin.resize(1);

			48:					}

			49:					//	Serialize	and	hash

			50:					CDataStream	ss(SER_GETHASH);

			51:					ss.reserve(10000);

			52:					ss	<<	txTmp	<<	nHashType;

			53:					return	Hash(ss.begin(),	ss.end());

			54:	}

Here	are	the	values	the	input	parameters	of	this	function	take:

txTo	is	the	transaction	to	be	signed.	It	is	wtxNew	in
CreateTransaction().	Its	nIn-th	input	slot,	i.e.,	txTo.vin[nIn],	is	the
target	this	function	is	about	to	work	on.

scriptCode	is	scriptPrereq	+	txout.scriptPubKey,	where	txout

is	the	output	slot	of	source-transaction	txFrom	defined	in
SignSignature().	Since	scriptPrereq	is	empty	(see	the	default	value	of
the	5-th	parameter	of	SignSignature()),	scriptCode	essentially	is	the
script	in	the	output	slot	of	source-transaction	txFrom	that	is
referred	by	the	nIn-th	input	slot	of	txTo.	There	are	two	types	of	scripts
that	txout.scriptPubKey	may	contain:

Script	A:	OP_DUP	OP_HASH160	<your_address_hash160>
OP_EQUALVERIFY	OP_CHECKSIG.
This	script	sends	coins	to	you	from	source-transaction	txFrom,
where	<your_address_hash160>	is	your	Bitcoin	address.

Script	B:	<your_public_key>	OP_CHECKSIG.
This	script	sends	the	leftover	to	the	creator	of	source-
transaction	txFrom.	Since	the	new	transaction	txTo/wtxNew	you
created	is	about	to	spend	coins	from	txFrom,	you	must	be	the	creator	of
txFrom	as	well.	That	is	to	say,	you’re	spending	coins	sent	to	you	by
yourself	when	you	created	toForm.	Therefore,	since
<your_public_key>	is	a	public	key	of	the	creator	of	txFrom,	it	is	also
a	public	key	of	you.

Let’s	pause	for	a	moment	and	think	about	Scripts	A	and	B.	You	may	be	wondering
where	they	come	from.	Well,	they	come	from	the	code	we	just	covered.
Specifically,	Script	A	comes	from	line	29	of	CSendDialog::OnButtonSend(),
and	Script	B	from	line	44	of	CreateTransaction().

When	someone	created	transaction	txFrom,	function
CSendDialog::OnButtonSend()	was	called.	It	inserted	Script	A	at	line	29
to	an	output	slot	of	txFrom.	Since	this	output	slot	paid	bitcoins	to	you,
<recipient_address_hash160>,	the	recipient’s	Bitcoin	address
embedded	in	the	script,	was	<your_address_hash160>.

If	txFrom	was	created	by	yourself,	then	Script	B	was	inserted	into	one	of	the
output	slots	of	txFrom	in	CreateTransaction().	In	this	case,	the	public
key	vchPubKey	collected	at	line	44	of	CreateTransaction()	was	a	public
key	belonged	to	you.

With	a	good	understanding	of	the	inputs,	let’s	go	ahead	and	examine	what
SignatureHash()	does.

SignatureHash()	first	copies	txTo	to	txTmp,	then	it	blanks	out	the
scriptSig	field	of	each	input	slot	of	txTmp.vin,	except	for	slot
txTmp.vin[nIn],	whose	scriptSig	field	is	set	to	scriptCode	(lines	14	and
15).

Next,	this	function	checks	the	value	of	nHashType.	The	caller	passes	in	value
nHashType	=	SIGHASH_ALL,	which	is	an	enum	value	defined	as

				1:	enum

				2:	{

				3:					SIGHASH_ALL	=	1,

				4:					SIGHASH_NONE	=	2,

				5:					SIGHASH_SINGLE	=	3,

				6:					SIGHASH_ANYONECANPAY	=	0x80,

				7:	};

Since	nHashType	=	SIGHASH_ALL,	none	of	the	if-else	conditions	holds	and	the
execution	directly	goes	to	the	last	4	lines	of	codes.

In	the	last	4	lines,	txTmp	and	nHashType	are	serialized	to	a	CDataStream
object,	which	holds	data	in	a	vector	of	characters	(see	Chapter	Serrialization).	The
returned	hash	code	is	generated	by	applying	Hash()	on	the	serialized	data.

A	transaction	has	many	input	slots.	SignatureHash()	targets	a	single	input
slot.	It	does	the	following	to	generate	a	hash:

Blanks	out	all	the	input	slots	except	the	targeted	one.

Copies	the	script	from	the	source-transaction’s	output	slot	that	is	referred	by
the	targeted	input	slot	into	the	targeted	input	slot.

Generates	a	hash	based	on	the	modified	transaction.

Important Modified	transaction:	It	is	important	to	remember	that
the	hash	is	generated	based	on	a	modified	transaction:	the
scriptSig	field	of	the	nIn-th	input	slot	of	the	new
transaction	is	filled	with	its	source-transaction’s	output
script	scriptPubKey,	and	all	other	input	slots	are
empty.	The	same	modification	must	be	done	latter	to
verify	the	transaction	later.

Hash()	in	util.h

Here	is	the	source	code	of	Hash()	that	is	called	to	generate	the	hash.

				1:	template<typename	T1>

				2:	inline	uint256	Hash(const	T1	pbegin,	const	T1	pend)

				3:	{

				4:					uint256	hash1;

				5:					SHA256((unsigned	char*)&pbegin[0],	(pend	-	pbegin)	*	

sizeof(pbegin[0]),	(unsigned	char*)&hash1);

				6:					uint256	hash2;

				7:					SHA256((unsigned	char*)&hash1,	sizeof(hash1),	(unsigned	

char*)&hash2);

				8:					return	hash2;

				9:	}

This	function	applies	SHA256()	twice	on	the	input	data	and	returns	the	result.
SHA256()	is	declared	in	openssl/sha.h	with	signature	unsigned	char
*SHA256(const	unsigned	char	*d,	size_t	n,unsigned	char	*md).

2.6.3.	Solver()	in	script.cpp

Solver()	is	called	in	SignSignature()	right	after	SignatureHash().	It	is
the	function	that	actually	generates	the	signature	based	on	the	hash	returned	by
SignatureHash().

				1:	bool	Solver(const	CScript&	scriptPubKey,	uint256	hash,	int	

nHashType,	CScript&	scriptSigRet)

				2:	{

				3:					scriptSigRet.clear();

				4:					vector<pair<opcodetype,	valtype>	>	vSolution;

				5:					if	(!Solver(scriptPubKey,	vSolution))

				6:									return	false;

				7:					//	Compile	solution

				8:					CRITICAL_BLOCK(cs_mapKeys)

				9:					{

			10:									foreach(PAIRTYPE(opcodetype,	valtype)&	item,	vSolution)

			11:									{

			12:													if	(item.first	==	OP_PUBKEY)

			13:													{

			14:																	//	Sign

			15:																	const	valtype&	vchPubKey	=	item.second;

			16:																	if	(!mapKeys.count(vchPubKey))

			17:																					return	false;

			18:																	if	(hash	!=	0)

			19:																	{

			20:																					vector<unsigned	char>	vchSig;

			21:																					if	(!CKey::Sign(mapKeys[vchPubKey],	hash,	

vchSig))

			22:																									return	false;

			23:																					vchSig.push_back((unsigned	char)nHashType);

			24:																					scriptSigRet	<<	vchSig;

			25:																	}

			26:													}

			27:													else	if	(item.first	==	OP_PUBKEYHASH)

			28:													{

			29:																	//	Sign	and	give	pubkey

			30:																	map<uint160,	valtype>::iterator	mi	=	

mapPubKeys.find(uint160(item.second));

			31:																	if	(mi	==	mapPubKeys.end())

			32:																					return	false;

			33:																	const	vector<unsigned	char>&	vchPubKey	=	

(*mi).second;

			34:																	if	(!mapKeys.count(vchPubKey))

			35:																					return	false;

			36:																	if	(hash	!=	0)

			37:																	{

			38:																					vector<unsigned	char>	vchSig;

			39:																					if	(!CKey::Sign(mapKeys[vchPubKey],	hash,	

vchSig))

			40:																									return	false;

			41:																					vchSig.push_back((unsigned	char)nHashType);

			42:																					scriptSigRet	<<	vchSig	<<	vchPubKey;

			43:																	}

			44:													}

			45:									}

			46:					}

			47:					return	true;

			48:	}

Here	are	the	values	its	4	parameters	take:

The	caller	function	SignSignature()	at	line	10	passes	in
txOut.scriptPubKey,	the	output	script	from	source-transaction	txFrom,
as	the	input	value	of	the	first	parameter	scriptPubKey.	Remember	it
contains	either	Script	A	or	B.

The	second	parameter	hash	is	the	hash	generated	by	SignatureHash().

The	third	parameter	nHashType	is	SIGHASH_ALL.

The	forth	parameter	is	the	return	value	of	this	function,	which	is
txin.scriptSig	at	line	12	in	caller	SignSignature().	Remember	txin
is	the	nIn-th	input	slot	of	the	newly	minted	transaction	wtxNew	(referred	as
txTo	in	caller	SignSignature()),	therefore,	the	the	scriptSig	field	of
the	nIn-th	input	slot	of	wtxNew	will	hold	the	return	signature	after
calling	this	function.

This	function	first	calls	another	Solver()	function	with	2	arguments.	We	have	to
examine	it	first.

2.6.4.	Solver()	in	script.cpp	with	2	parameters

Here	is	the	source	code	of	Solver()	with	2	parameters.

				1:	bool	Solver(const	CScript&	scriptPubKey,	vector<pair<opcodetype,	

valtype>	>&	vSolutionRet)

				2:	{

				3:					//	Templates

				4:					static	vector<CScript>	vTemplates;

				5:					if	(vTemplates.empty())

				6:					{

				7:									//	Standard	tx,	sender	provides	pubkey,	receiver	adds	

signature

				8:									vTemplates.push_back(CScript()	<<	OP_PUBKEY	<<	

OP_CHECKSIG);

				9:									//	Short	account	number	tx,	sender	provides	hash	of	

pubkey,	receiver	provides	signature	and	pubkey

			10:									vTemplates.push_back(CScript()	<<	OP_DUP	<<	OP_HASH160	<<	

OP_PUBKEYHASH	<<	OP_EQUALVERIFY	<<	OP_CHECKSIG);

			11:					}

			12:					//	Scan	templates

			13:					const	CScript&	script1	=	scriptPubKey;

			14:					foreach(const	CScript&	script2,	vTemplates)

			15:					{

			16:									vSolutionRet.clear();

			17:									opcodetype	opcode1,	opcode2;

			18:									vector<unsigned	char>	vch1,	vch2;

			19:									//	Compare

			20:									CScript::const_iterator	pc1	=	script1.begin();

			21:									CScript::const_iterator	pc2	=	script2.begin();

			22:									loop

			23:									{

			24:													bool	f1	=	script1.GetOp(pc1,	opcode1,	vch1);

			25:													bool	f2	=	script2.GetOp(pc2,	opcode2,	vch2);

			26:													if	(!f1	&&	!f2)

			27:													{

			28:																	//	Success

			29:																	reverse(vSolutionRet.begin(),	vSolutionRet.end());

			30:																	return	true;

			31:													}

			32:													else	if	(f1	!=	f2)

			33:													{

			34:																	break;

			35:													}

			36:													else	if	(opcode2	==	OP_PUBKEY)

			37:													{

			38:																	if	(vch1.size()	<=	sizeof(uint256))

			39:																					break;

			40:																	vSolutionRet.push_back(make_pair(opcode2,	vch1));

			41:													}

			42:													else	if	(opcode2	==	OP_PUBKEYHASH)

			43:													{

			44:																	if	(vch1.size()	!=	sizeof(uint160))

			45:																					break;

			46:																	vSolutionRet.push_back(make_pair(opcode2,	vch1));

			47:													}

			48:													else	if	(opcode1	!=	opcode2)

			49:													{

			50:																	break;

			51:													}

			52:									}

			53:					}

			54:					vSolutionRet.clear();

			55:					return	false;

			56:	}

The	first	parameter	scriptPubKey	contains	either	Script	A	or	B.	Again,	it	is	the
output	script	from	source-transaction	txFrom	in	SignSignature().

The	second	parameter	will	hold	the	output.	It	is	a	vector	of	pairs,	each	pair
consists	of	a	script	operator	(of	type	opcodetype)	and	a	script	operand	(of	type
valtype).

This	function	first	defines	two	templates	(lines	8-10):

Template	A:	OP_DUP	OP_HASH160	OP_PUBKEYHASH	OP_EQUALVERIFY
OP_CHECKSIG.

Template	B:	OP_PUBKEY	OP_CHECKSIG.

It	is	obvious	that	Templates	A	and	B	correspond	to	Scripts	A	and	B	respectively.
For	easy	reference,	a	copy	of	Scripts	A	and	B	is	shown	below:

Script	A:	OP_DUP	OP_HASH160	<your_address_hash160>
OP_EQUALVERIFY	OP_CHECKSIG.

Script	B:	<your_public_key>	OP_CHECKSIG.

What	this	function	does	is	to	compare	the	input	scriptPubKey	with	both
templates:

If	the	input	is	Script	A,	it	pairs	up	OP_PUBKEYHASH	from	Template	A	and
<your_address_hash160>	from	Script	A,	and	puts	the	pair	to
vSolutionnRet.

If	the	input	is	Script	B,	it	extracts	operator	OP_PUBKEY	from	Template	B,
operand	<your_public_key>	from	Script	B,	pairs	them	up,	and	puts	the
pair	to	vSolutionnRet.

If	the	input	script	matches	neither,	this	function	fails	and	returns	false.

2.6.5.	Back	to	Solver()

Let’s	go	back	to	Solver()	with	4	parameters	and	continue	our	analysis	of	that
function.	What	it	does	is	clear	now.	It	executes	one	of	the	two	branches,
depending	if	the	pair	it	gets	from	vSolution	is	obtained	from	Script	A	or	Script
B.	If	it	was	from	Script	A,	item.first	==	OP_PUBKEYHASH;	and	if	from	Script
B,	item.first	==	OP_PUBKEY.

item.first	==	OP_PUBKEY	(Script	B).
In	this	case,	item.second	contains	<your_public_key>.	Global	variable
mapKeys	maps	all	your	public	keys	to	their	corresponding	private	keys.	If
mapKeys	does	not	contain	such	a	public	key,	it	is	an	error	(line	16).
Otherwise,	use	the	private	key	extracted	from	mapKeys	to	sign	the	hash	of
the	newly	minted	transaction	wtxNew	that	is	passed	in	as	the	second
argument	(CKey::Sign(mapKeys[vchPubKey],	hash,	vchSig)	at	line
23).	The	result	is	put	into	vchSig,	which	is	then	serialized	to
scriptSigRet	as	the	returned	value	(scriptSigRet	<<	vchSig	at	line
24).

item.first	==	OP_PUBKEYHASH	(Script	A).
In	this	case,	item.second	contains	<your_address_hash160>.	This
Bitcoin	address	is	used	to	find	the	corresponding	public	key	from	a	global
map	mapPubKeys	(line	30),	which	maps	your	Bitcoin	addresses	to	your
public	keys	that	were	used	to	generate	those	address	(check	function

AddKey()	in	Section	Bitcoin	address	in	this	chapter).	Next,	the	public	key
found	is	used	to	find	the	corresponding	private	key	from	mapKeys.	The
private	key	is	then	used	to	sign	the	second	argument	hash.	Both	the
signature	and	the	public	key	are	serialized	to	scriptSigRet	and	returned
(scriptSigRet	<<	vchSig	<<	vchPubKey	at	line	42).

Keys	are	generated	in	the	following	order:	First	generate	a	private	key	(a
random	number),	then	generate	a	public	key	from	a	private	key.	Hash	the
public	key	to	get	a	hash	code	of	160	bits.	This	hash	code	is	of	type	uint160.	It
can	be	represented	by	an	ASCII	string	using	base58	encoding.	And	this	string	is
a	Bitcoin	address.
A	hash	code	of	type	uint160	and	its	base58	encoding	are	equivalent.	They	can
be	transfered	to	each	other	easily.
To	find	a	public	key	from	its	160	bit	hash,	BA	maintains	a	global	map
mapPubKeys	in	main.cpp.
To	find	a	private	key	from	the	corresponding	public	key,	BA	maintains	another
global	map	mapKeys	in	main.cpp.

2.6.6.	EvalScript()	in	script.cpp

Now	let’s	go	back	to	SignSignature().	After	line	12	of	this	function,
txin.scriptSig,	the	scriptSig	field	wtxNew‘s	nIn-th	input	slot,	is	filled
with	a	signature	that	is

either	vchSig	vchPubKey	(Signature	A	for	Script	A)

or	vchSig	(Signature	B	for	Script	B)

vchSig	will	be	referred	as	<your_signature_vchSig>,	and	vchPubKey	as
<your_pubKey_vchPubKey>	to	emphasize	that	they	are	your	signature	and
your	public	key.

Important Now	it	is	clear	that	the	scriptSig	field	of	the	nIn-th
input	slot	of	a	transaction	will	be	filled	with	a	signature
that	is	generated	based	on	the	hash	of	a	modified
transaction.

Let’s	examine	EvalScript()	now,	which	is	the	last	function	called	by
SignSignature()	at	line	15.	The	three	parameters	of	EvalScript()	take	the
following	values:

The	first	argument	passed	in	is	txin.scriptSig	+
CScript(OP_CODESEPARATOR)	+	txout.scriptPubKey.	It	is

either	Verification	Case	A:
<your_signature_vchSig>	<your_pubKey_vchPubKey>

2.7.	Summary

OP_CODESEPARATOR	OP_DUP	OP_HASH160
<your_address_hash160>	OP_EQUALVERIFY	OP_CHECKSIG,
i.e.,	Signature	A	+	OP_CODESEPARATOR	+	Script	A;

or	Verification	Case	B:
<your_signature_vchSig>	OP_CODESEPARATOR
<your_pubKey_vchPubKey>	OP_CHECKSIG,
i.e.,	Signature	B	+	OP_CODESEPARATOR	+	Script	B.

The	second	parameter	is	the	new	transaction	txTo,	which	is	wtxNew	in
CreatTransaction().

The	third	parameter	is	nIn,	the	index	of	txTo‘s	input	slot	to	be	verified.

An	elaborate	description	on	how	verification	is	done	presented	in	Chapter	Script.
For	now,	it	is	sufficient	to	say	that	EvalScript()	verifies	that	the	newly	created
transaction	wtxNew	contains	the	right	signature	in	its	nIn-th	input	slot.

At	this	point,	we	have	finished	analyzing	function	CreatTransaction().	We
know	that	what	it	does	is	to	construct	a	new	transaction	and	sign	it,	and	we	know
exactly	how	that	is	done.

We	did	not	complete	analyzing	SendMoney()	yet,	there	are	three	more	functions
left	un-covered.	These	three	functions	contain	involve	new	data	structures	and
database	operations.	We	will	cover	them	after	providing	an	explanation	of	these
data	structures	in	Chapter	Block	and	Bitcoin	database	in	Chapter	Database.

3.1.	CDataStream

3.	Serialization
This	chapter	covers	Bitcoin	serialization	functions.	It	provides	necessary
information	to	fill	in	the	details	left	out	in	Chapter	Transaction	I.

All	Bitcoin	serialization	functions	are	implemented	in	a	single	header	file
serialize.h.	Class	CDataStream	is	the	central	data	structure	of	this	file.

Class	CDataStream	holds	a	vector	<char>	that	stores	the	serialized	data.	It
combines	a	vector	and	a	stream	interface	to	serve	the	data.	It	does	so	by
maintaining	the	following	6	member	variables:

				1:	class	CDataStream

				2:	{

				3:	protected:

				4:					typedef	vector<char,	secure_allocator<char>	>	vector_type;

				5:					vector_type	vch;

				6:					unsigned	int	nReadPos;

				7:					short	state;

				8:					short	exceptmask;

				9:	public:

			10:					int	nType;

			11:					int	nVersion;

			12:					//......

			13:	};

vch	stores	the	serialized	data.	It	is	of	type	vector_type,	which	is	just	a
vector<char>	with	a	customized	allocator.	An	allocator	is	called	by	the
implementation	of	vector	to	allocate/de-allocate	memory	when	necessary.
This	customized	allocator	clears	the	memory	content	before	releasing	the
memory	to	the	OS	to	prevent	other	processes	running	in	the	same	machine	to
read	the	data.	This	ensures	the	security	of	the	data	it	stores.	The	source	code
of	this	allocator	is	not	shown	in	here.	Refer	to	serialize.h	for	the
implementation.

nReadPos	is	the	starting	position	in	vch	to	read	data	from.

state	is	an	error	flag.	It	is	set	to	a	value	to	indicate	some	errors	occur	during
the	serialization/de-serialization	process.

exceptmask	is	an	error	mask.	It	is	initialized	to	ios::badbit	|
ios::failbit.	Together	with	state,	it	is	used	to	find	out	what	kinds	of
errors	happened.

nType	takes	a	value	of	SER_NETWORK,	SER_DISK,	SER_GETHASH,

SER_SKIPSIG,	SER_BLOCKHEADERONLY,	which	informs	CDataStream
the	kind	of	serialization	to	carry	out.	These	5	symbols	are	defined	in	an	enum.
Each	symbol	is	an	int	type	(4	bytes)	and	their	values	are	all	powers	of	2.

				1:	enum

				2:	{

				3:					//	primary	actions

				4:					SER_NETWORK									=	(1	<<	0),

				5:					SER_DISK												=	(1	<<	1),

				6:					SER_GETHASH									=	(1	<<	2),

				7:					//	modifiers

				8:					SER_SKIPSIG									=	(1	<<	16),

				9:					SER_BLOCKHEADERONLY	=	(1	<<	17),

			10:	};

nVersion	is	the	version	number.

3.1.1.	CDataStream::read()	and	CDataStream::write()

Member	functions	CDataStream::read()	and	CDataStream::write()	are
low-level	functions	to	serialize	and	de-serialize	data	a	CDataStream	object.

				1:	class	CDataStream

				2:	{

				3:	//......

				4:					CDataStream&	read(char*	pch,	int	nSize)

				5:					{

				6:									//	Read	from	the	beginning	of	the	buffer

				7:									assert(nSize	>=	0);

				8:									unsigned	int	nReadPosNext	=	nReadPos	+	nSize;

				9:									if	(nReadPosNext	>=	vch.size())

			10:									{

			11:													if	(nReadPosNext	>	vch.size())

			12:													{

			13:																	setstate(ios::failbit,	"CDataStream::read()	:	end	

of	data");

			14:																	memset(pch,	0,	nSize);

			15:																	nSize	=	vch.size()	-	nReadPos;

			16:													}

			17:													memcpy(pch,	&vch[nReadPos],	nSize);

			18:													nReadPos	=	0;

			19:													vch.clear();

			20:													return	(*this);

			21:									}

			22:									memcpy(pch,	&vch[nReadPos],	nSize);

			23:									nReadPos	=	nReadPosNext;

			24:									return	(*this);

			25:					}

			26:					CDataStream&	write(const	char*	pch,	int	nSize)

			27:					{

			28:									//	Write	to	the	end	of	the	buffer

			29:									assert(nSize	>=	0);

			30:									vch.insert(vch.end(),	pch,	pch	+	nSize);

			31:									return	(*this);

			32:					}

			33:	//......

			34:	}

CDataStream::read()	copies	nSize	chars	from	CDataStream	to	a	pre-
allocated	piece	of	memory	pointed	by	char*	pch.	Here	is	how	it	works:

Calculates	the	ending	position	of	the	data	to	be	read	from	vch,	unsigned
int	nReadPosNext	=	nReadPos	+	nSize.

If	the	ending	position	is	greater	than	the	size	of	vch,	there	is	no	enough	data
to	read.	In	the	case,	sets	state	to	ios::failbit	by	calling	function
setstate(),	and	copies	all	zeros	to	pch.

Otherwise,	calls	memcpy(pch,	&vch[nReadPos],	nSize)	to	copy	nSize
chars,	starting	at	position	nReadPos	in	vch,	to	a	pre-allocated	piece	of
memory	pointed	by	pch.	Then	moves	forward	nReadPos	to	the	next	starting
position	nReadPosNext	(line	22).

This	implementation	reveals	that	1)	once	a	piece	of	data	has	been	read	from	the
stream,	it	is	gone,	you	can	not	read	it	again;	and	2)	nReadPos	is	the	first	valid
reading	position	to	read	the	data	from.

CDataStream::write()	is	very	simple.	It	appends	nSize	chars	pointed	by	pch
to	the	end	the	of	vch.

3.1.2.	Macros	READDATA()	and	WRITEDATA()

Functions	CDataStream::read()	and	CDataStream::write()	are	used	to
serialize	and	de-serialize	primitive	types	(int,	bool,	unsigned	long,	etc).	To
serialize	data	of	these	types,	pointers	of	these	types	are	casted	to	char*.	Since	the
size	of	these	types	are	known,	they	can	be	read/written	from/to	the	char	buffer	in
CDataStream.	Two	macros	are	defined	as	helpers	to	call	these	two	functions.

				1:	#define	WRITEDATA(s,	obj)			s.write((char*)&(obj),	sizeof(obj))

				2:	#define	READDATA(s,	obj)				s.read((char*)&(obj),	sizeof(obj))

Here	is	an	example	of	using	these	macros.	The	following	function	serializes	a
unsinged	long	type,

				1:	template<typename	Stream>	inline	void	Serialize(Stream&	s,	

unsigned	long	a,		int,	int=0)	{	WRITEDATA(s,	a);	}

Replacing	WRITEDATA(s,	a)	by	its	definition,	here	is	the	expanded	function

				1:	template<typename	Stream>	inline	void	Serialize(Stream&	s,	

unsigned	long	a,		int,	int=0)	{s.write((char*)&(a),	sizeof(a));	}

This	function	takes	a	unsigned	long	argument	a,	gets	its	address,	casts	the
pointer	to	char*	and	calls	function	s.write().

3.1.3.	Operators	<<	and	>>	of	CDataStream

CDataSteam	overloads	operators	<<	and	>>	for	serialization	and	de-serialization.

				1:	class	CDataStream

				2:	{

				3:	//......

				4:					template<typename	T>

				5:									CDataStream&	operator<<(const	T&	obj)

				6:									{

				7:													//	Serialize	to	this	stream

				8:													::Serialize(*this,	obj,	nType,	nVersion);

				9:													return	(*this);

			10:									}

			11:									template<typename	T>

			12:									CDataStream&	operator>>(T&	obj)

			13:									{

			14:													//	Unserialize	from	this	stream

			15:													::Unserialize(*this,	obj,	nType,	nVersion);

			16:													return	(*this);

			17:									}

			18:	//......

			19:	}

The	implementations	of	these	two	operators	are	pretty	simple,	they	call	global
functions	::Serialize(*this,	obj,	nType,	nVersion)	and
::Unserialize(*this,	obj,	nType,	nVersion)	respectively.

3.1.4.	Global	serialization	functions
Global	functions	::Serialize(*this,	obj,	nType,	nVersion)	and
::Unserialize(*this,	obj,	nType,	nVersion)	are	overloaded	with
many	different	versions,	one	for	each	type	of	obj.	For	instance,	if	obj	is	of	type
unsigned	long,	the	serialization	function	is	implemented	as	the	follows	(it	is
used	as	an	example	to	illustrate	how	to	use	macro	WRITEDATA(s,	a)):

				1:	template<typename	Stream>	inline	void	Serialize(Stream&	s,	

unsigned	long	a,		int,	int=0){	WRITEDATA(s,	a);	}

For	type	vector,	the	overloaded	function	is

				1:	template<typename	Stream,	typename	T,	typename	A>	inline	void	

Serialize(Stream&	os,	const	std::vector<T,	A>&	v,	int	nType,	int	

nVersion=VERSION);

Header	file	serialize.h	contains	14	overloaded	versions	of	these	two	global
functions	for	14	primitive	types	(signed	and	unsigned	versions	of	char,
short,	int,	long	and	long	long,	plus	char,	float,	double	and	bool)	and	6
overloaded	versions	for	6	composite	types	(string,	vector,	pair,	map,	set	and
CScript).	So	for	these	types,	you	can	simple	use	the	following	code	to
serialize/de-serialize	the	data:

				1:	CDataStream	ss(SER_GETHASH);

3.2.	How	to	implement	serialization	for	a	class

				2:	ss<<obj1<<obj2;	//serialize

				3:	ss>>obj3>>obj4;	//de-serialize

If	none	of	the	implemented	types	matches	the	type	of	the	second	argument	obj,
the	following	global	function	with	a	generic	type	T	will	be	called.

				1:	template<typename	Stream,	typename	T>

				2:	inline	void	Serialize(Stream&	os,	const	T&	a,	long	nType,	int	

nVersion=VERSION)

				3:	{

				4:					a.Serialize(os,	(int)nType,	nVersion);

				5:	}

In	this	generic	version,	type	T	is	expected	to	implement	a	member	function	with
signature	T::Serialize(Stream,	int,	int).	It	is	called	via
a.Serialize().

Note Indeed,	besides	the	two	that	serialize	and	de-serialize	data,	there
is	another	global	function	that	returns	the	size	of	the	data.	It	is
named	GetSerializeSize().

Note Note	the	third	argument	in	the	above	generic	serialization
function	is	long	nType	instead	of	int	nType.	According	to
Satoshi	Nakamoto:	“int	nType”	is	changed	to	“long	nType”	to
keep	from	getting	an	ambiguous	overload	error.	The	compiler
will	only	cast	int	to	long	if	none	of	the	other	templates	matched.
Thanks	to	Boost	serialization	for	this	idea.

As	mentioned	in	the	preceding	section,	a	generic	class	T	needs	to	implement	the
following	three	member	functions	for	serialization.

				1:	unsigned	int	GetSerializeSize(int	nType=0,	int	nVersion=VERSION)	

const;

				2:	template<typename	Stream>	void	Serialize(Stream&	s,	int	nType=0,	

int	nVersion=VERSION)	const;

				3:	template<typename	Stream>	void	Unserialize(Stream&	s,	int	nType=0,	

int	nVersion=VERSION);

These	three	functions	will	be	called	by	their	corresponding	global	counterparts
with	a	generic	parameter	of	type	T.	These	global	functions	in	turn	will	be	called	by
the	overloaded	operators	<<	and	>>	of	class	CDataStream.

A	macro	IMPLEMENT_SERIALIZE(statements)	is	defined	to	help	an	arbitrary
class	implement	these	three	functions.

				1:	#define	IMPLEMENT_SERIALIZE(statements)				\

				2:					unsigned	int	GetSerializeSize(int	nType=0,	int	

nVersion=VERSION)	const		\

				3:					{																																											\

				4:									CSerActionGetSerializeSize	ser_action;		\

				5:									const	bool	fGetSize	=	true;													\

				6:									const	bool	fWrite	=	false;														\

				7:									const	bool	fRead	=	false;															\

				8:									unsigned	int	nSerSize	=	0;														\

				9:									ser_streamplaceholder	s;																\

			10:									s.nType	=	nType;																								\

			11:									s.nVersion	=	nVersion;																		\

			12:									{statements}																												\

			13:									return	nSerSize;																								\

			14:					}																																											\

			15:					template<typename	Stream>																			\

			16:					void	Serialize(Stream&	s,	int	nType=0,	int	nVersion=VERSION)	

const		\

			17:					{																																											\

			18:									CSerActionSerialize	ser_action;									\

			19:									const	bool	fGetSize	=	false;												\

			20:									const	bool	fWrite	=	true;															\

			21:									const	bool	fRead	=	false;															\

			22:									unsigned	int	nSerSize	=	0;														\

			23:									{statements}																												\

			24:					}																																											\

			25:					template<typename	Stream>																			\

			26:					void	Unserialize(Stream&	s,	int	nType=0,	int	nVersion=VERSION)		

\

			27:					{																																											\

			28:									CSerActionUnserialize	ser_action;							\

			29:									const	bool	fGetSize	=	false;												\

			30:									const	bool	fWrite	=	false;														\

			31:									const	bool	fRead	=	true;																\

			32:									unsigned	int	nSerSize	=	0;														\

			33:									{statements}																												\

			34:					}

Here	is	an	example	that	illustrates	how	to	use	this	macro.

				1:	#include	<iostream>

				2:	#include	"serialize.h"

				3:	using	namespace	std;

				4:	class	AClass	{

				5:	public:

				6:									AClass(int	xin):	x(xin){};

				7:									int	x;

				8:									IMPLEMENT_SERIALIZE(READWRITE(this->x);)

				9:	};

			10:	int	main()	{

			11:									CDataStream	astream2;

			12:									AClass	aObj(200);	//an	AClass	object	with	x=200

			13:									cout<<"aObj="	<<	aObj.x<<endl;

			14:									astream2<<aObj;

			15:									AClass	a2(1);	//another	object	with	x=1

			16:									astream2>>a2;

			17:									cout<<"a2="<<a2.x<<endl;

			18:									return	0;

			19:	}

This	program	serializes	and	de-serializes	an	AClass	object.	It	prints	out	the
following	on	the	screen.

				1:	aObj=200

				2:	a2=200

All	three	serialize/de-serialization	member	functions	of	AClass	is	implemented
in	a	single	line	of	code:	IMPLEMENT_SERIALIZE(READWRITE(this→x);).

Macro	READWRITE()	is	defined	as

				1:	#define	READWRITE(obj)						(nSerSize	+=	::SerReadWrite(s,	(obj),	

nType,	nVersion,	ser_action))

The	expansion	of	this	macro	is	placed	in	all	three	functions	in	macro
IMPLEMENT_SERIALIZE(statements).	Therefore,	it	needs	to	accomplish	three
things	at	once:	1)	return	the	size	of	serialized	data,	2)	serialize	(write)	data	to	the
stream;	and	3)	de-serialize	(read)	data	from	the	stream.	Refer	to	the	three
functions	defined	in	macro	IMPELMENT_SERIALIZE(statements).

To	understand	how	macro	READWRITE(obj)	works,	you	first	need	to	understand
where	symbols	nSerSize,	s,	nType,	nVersion	and	ser_action	in	its
expansion	come	from.	They	all	come	from	the	the	body	of	the	three	functions	in
macro	IMPELMENT_SERIALIZE(statements):

nSerSize	is	an	unsigned	int	initialized	to	0	in	all	three	functions;

ser_action	is	an	object	declared	in	all	three	functions,	but	it	has	three
different	types.	It	is	of	type	CSerActionGetSerializeSize,
CSerActionSerialize	and	CSerActionUnserialize	respectively	in
three	functions;

s	is	defined	as	of	type	ser_streamplaceholder	in	the	first	function.	It	is
the	first	passed-in	argument	in	the	other	two	functions,	with	parametric	type
Stream.

nType	and	nVersion	are	passed-in	arguments	in	all	three	functions.

So	once	macro	READWRITE()	expands	into	macro	IMPELMENT_SERIALIZE(),
all	it	symbols	will	be	resolved,	as	they	already	exist	in	the	body	of	macro
IMPELMENT_SERIALIZE().	+READ

The	expansion	of	macro	READWRITE(obj)	calls	a	global	function
::SerReadWrite(s,	(obj),	nType,	nVersion,	ser_action).	Here	are
the	three	versions	of	this	function.

				1:	template<typename	Stream,	typename	T>

				2:	inline	unsigned	int	SerReadWrite(Stream&	s,	const	T&	obj,	int	

nType,	int	nVersion,	CSerActionGetSerializeSize	ser_action)

				3:	{

				4:					return	::GetSerializeSize(obj,	nType,	nVersion);

				5:	}

				6:	template<typename	Stream,	typename	T>

				7:	inline	unsigned	int	SerReadWrite(Stream&	s,	const	T&	obj,	int	

nType,	int	nVersion,	CSerActionSerialize	ser_action)

				8:	{

				9:					::Serialize(s,	obj,	nType,	nVersion);

			10:					return	0;

			11:	}

			12:	template<typename	Stream,	typename	T>

			13:	inline	unsigned	int	SerReadWrite(Stream&	s,	T&	obj,	int	nType,	int	

nVersion,	CSerActionUnserialize	ser_action)

			14:	{

			15:					::Unserialize(s,	obj,	nType,	nVersion);

			16:					return	0;

			17:	}

As	you	can	see,	function	::SerReadWrite()	is	overloaded	with	3	versions.
Depending	on	the	type	of	the	last	argument,	it	will	call	global	functions
::GetSerializeSize(),	::Serialize()	and	::Unserialize()
respectively;	and	these	are	the	three	global	functions	covered	in	Section	Global
serialization	functions.

If	you	check	the	type	of	the	last	argument	in	the	three	versions	of
::SerReadWrite(),	you	can	see	that	they	are	all	empty	classes.	The	sole
purpose	of	these	types	is	to	be	used	to	differentiate	three	versions	of
::SerReadWrite(),	so	it	can	be	used	in	all	these	functions	defined	in	macro
IMPELMENT_SERIALIZE().

Summary
Let’s	recap	what	we	just	covered.	To	serialize	an	arbitrary	class	AClass,	you	use
macro	IMPLEMENT_SERIALIZE(READWRITE(this→x);)	to	serialize	its
member	variables	x.	If	the	type	of	x	is	any	one	of	the	20	types	(14	primitive	and	6
composite)	for	which	the	corresponding	global	serialization	functions	have	been
implemented,	these	functions	will	be	called.	Otherwise,	if	x	is	an	instance	of	some
class,	then	a	generic	version	of	the	overloaded	global	serialization	function	is
called,	which	in	turn	calls	the	serialization	function	x.Serilaize()	for	object	x.
This	member	function	presumably	is	implemented	using	macro
IMPLEMENT_SERIALIZE(READWRTIE(…);)	as	well,	and	the	calling	chain
recursively	goes	down	until	hits	one	of	the	20	implemented	types.

Comment
This	is	a	nice	scheme	that	cleverly	takes	advantage	of	1)	macro	substitution	and	2)
type	matching	mechanism	of	template	functions,	to	build	a	recursive	calling	chain
for	serialization	functions.	All	serialization	functions	are	resolved	at	compiling
time,	making	the	code	very	efficient.

Note const	int*,	const	int*	const,	int	const*.	Split	the
statement	at	*	sign,	if	the	const	keyword	appears	on	the	left
part	(like	in	const	int	*),	the	pointed	data	cannot	be

changed;	if	it’s	on	the	right	part	(int	*	const	bar),	the
pointer	itself	is	a	constant.

4.1.	enum	opcodetype

4.	Script
Bticoin	has	a	stack-based	scripting	language.	A	script	is	embedded	in	each	output
slot	of	a	transaction.	To	spend	the	coins	a	transaction	carries,	a	recipient	must
provide	his/her	public	key	so	that	the	script	can	be	executed	successfully.

This	chapter	covers	this	scripting	language.	After	finishing	this	chapter,	you	will
understand	how	Signatures	A	and	B	shown	at	the	end	of	Chapter	Transaction	I
are	verify.

All	the	classes	and	functions	covered	in	this	chapter	are	located	in	script.h	or
script.cpp.

The	Bitcoin	scripting	language	defines	a	list	of	operators	like	OP_FALSE,
OP_RIPEMD160,	OP_SHA256,	etc.	Operators	work	on	data	held	on	a	stack.	Output
data	generated	after	applying	an	operator	to	data	held	on	the	stack	are	again
pushed	back	to	the	stack.	There	are	two	types	of	objects	in	the	scripting	language:
operators	and	operands.	Operators	are	listed	in	enum	opcodetype,	one	entry	for
an	operator.	Operands	are	input	data	of	operators.	They	are	of	type	valtype,
which	is	a	vector	of	unsigned	char	(typedef	vector<unsigned	char>
valtype).	An	operator	and	its	operand,	if	there	is	any,	together	are	called	an
instruction.

Note There	are	three	distinct	char	types	char,	signed	char,
unsigned	char	in	C++.	If	you	use	char	types	for	text,	use	the
unqualified	char.	Chars	can	also	be	used	as	number	values,	but
it	is	unspecified	whether	that	value	is	treated	as	signed	or
unsigned.	signed	char	gives	values	from	-128	to	127,	and
unsigned	char,	from	0	to	255.

				1:	enum	opcodetype

				2:	{

				3:					//	push	value

				4:					OP_0=0,

				5:					OP_FALSE=OP_0,

				6:					OP_PUSHDATA1=76,

				7:					OP_PUSHDATA2,

				8:					OP_PUSHDATA4,

				9:					OP_1NEGATE,

			10:					OP_RESERVED,

			11:					OP_1,	//	this	is	decimal	81

			12:					OP_TRUE=OP_1,

			13:					//......

			14:					OP_IF,

4.2.	CScript

			15:					OP_NOTIF,

			16:					OP_VERIF,

			17:					OP_VERNOTIF,

			18:					OP_ELSE,

			19:					OP_ENDIF,

			20:					//......

			21:					OP_CHECKMULTISIG,

			22:					OP_CHECKMULTISIGVERIFY,	//this	is	decimal	175

			23:					//	multi-byte	opcodes

			24:					OP_SINGLEBYTE_END	=	0xF0,

			25:					OP_DOUBLEBYTE_BEGIN	=	0xF000,

			26:					//	template	matching	params

			27:					OP_PUBKEY,

			28:					OP_PUBKEYHASH,

			29:					OP_INVALIDOPCODE	=	0xFFFF,

			30:	};

There	are	106	distinct	operators,	plus	OP_FALSE	and	OP_TRUE,	which	are	alias	of
OP_0	and	OP_1,	respectively.	Operator	codes	are	not	consecutive.	Starting	from
OP_PUSHDATA1	=	76	=	0x4C,	code	values	increase	consecutively	to
OP_CHECKMULTISIGVERIFY	=	175	=	0xAF.	Then	the	next	code	value	is
OP_SINGLEBYTE_END	=	0xF0.	And	the	one	after	that	is
OP_DOUBLEBYTE_BEGIN	=	0xF000.	All	code	values	after	that	occupy	two	bytes.

Class	CScript	holds	a	script	to	be	parsed	and	executed.	A	script	is	nothing	but	a
stream	of	chars,	so	CScript	is	just	a	vector<unsigned	char>.	Scripts	are
inserted	into	CScript	using	the	overloaded	operator	<<.	It	takes	many	different
input	types	(don’t	confuse	it	with	the	operators	of	the	Bitcoin	scripting	language).

4.2.1.	Operator	<<	of	CScript
				1:	class	CScript	:	public	vector<unsigned	char>

				2:	{

				3:	protected:

				4:					CScript&	push_int64(int64	n)

				5:					{

				6:									if	(n	==	-1	||	(n	>=	1	&&	n	<=	16))

				7:									{

				8:													push_back(n	+	(OP_1	-	1));

				9:									}

			10:									else

			11:									{

			12:													CBigNum	bn(n);

			13:													*this	<<	bn.getvch();

			14:									}

			15:									return	(*this);

			16:					}

			17:					//......

			18:	public:

			19:					//......

			20:					explicit	CScript(char	b)											{	operator<<(b);	}

			21:					explicit	CScript(short	b)										{	operator<<(b);	}

			22:					explicit	CScript(int	b)												{	operator<<(b);	}

			23:					explicit	CScript(long	b)											{	operator<<(b);	}

			24:					explicit	CScript(int64	b)										{	operator<<(b);	}

			25:					//......

			26:					explicit	CScript(opcodetype	b)					{	operator<<(b);	}

			27:					explicit	CScript(const	uint256&	b)	{	operator<<(b);	}

			28:					explicit	CScript(const	CBigNum&	b)	{	operator<<(b);	}

			29:					explicit	CScript(const	vector<unsigned	char>&	b)	{	

operator<<(b);	}

			30:					CScript&	operator<<(char	b)											{	return	

(push_int64(b));	}

			31:					CScript&	operator<<(short	b)										{	return	

(push_int64(b));	}

			32:					CScript&	operator<<(int	b)												{	return	

(push_int64(b));	}

			33:					CScript&	operator<<(long	b)											{	return	

(push_int64(b));	}

			34:					CScript&	operator<<(int64	b)										{	return	

(push_int64(b));	}

			35:					CScript&	operator<<(opcodetype	opcode)

			36:					{

			37:									if	(opcode	<=	OP_SINGLEBYTE_END)

			38:									{

			39:													insert(end(),	(unsigned	char)opcode);

			40:									}

			41:									else

			42:									{

			43:													assert(opcode	>=	OP_DOUBLEBYTE_BEGIN);

			44:													insert(end(),	(unsigned	char)(opcode	>>	8));

			45:													insert(end(),	(unsigned	char)(opcode	&	0xFF));

			46:									}

			47:									return	(*this);

			48:					}

			49:					CScript&	operator<<(const	uint160&	b)

			50:					{

			51:									insert(end(),	sizeof(b));

			52:									insert(end(),	(unsigned	char*)&b,	(unsigned	char*)&b	+	

sizeof(b));

			53:									return	(*this);

			54:					}

			55:					CScript&	operator<<(const	uint256&	b)

			56:					{

			57:									insert(end(),	sizeof(b));

			58:									insert(end(),	(unsigned	char*)&b,	(unsigned	char*)&b	+	

sizeof(b));

			59:									return	(*this);

			60:					}

			61:					CScript&	operator<<(const	CBigNum&	b)

			62:					{

			63:									*this	<<	b.getvch();

			64:									return	(*this);

			65:					}

			66:					CScript&	operator<<(const	vector<unsigned	char>&	b)

			67:					{

			68:									if	(b.size()	<	OP_PUSHDATA1)

			69:									{

			70:													insert(end(),	(unsigned	char)b.size());

			71:									}

			72:									else	if	(b.size()	<=	0xff)

			73:									{

			74:													insert(end(),	OP_PUSHDATA1);

			75:													insert(end(),	(unsigned	char)b.size());

			76:									}

			77:									else

			78:									{

			79:													insert(end(),	OP_PUSHDATA2);

			80:													unsigned	short	nSize	=	b.size();

			81:													insert(end(),	(unsigned	char*)&nSize,	(unsigned	

char*)&nSize	+	sizeof(nSize));

			82:									}

			83:									insert(end(),	b.begin(),	b.end());

			84:									return	(*this);

			85:					}

			86:					//......

			87:	}

Overloaded	operator	<<	of	CScript	takes	char,	short,	int,	long,	implicitly
converses	them	to	int64	(an	alias	of	long	long),	and	calls
push_int64(int64	n)	to	put	them	into	CScript‘s	internal	storage.	(Since
CSCript	extends	vector<unsigned	char>,	its	internal	storage	is	that	of	the
latter.	You	can	think	of	it	as	a	dynamic	array	of	unsigned	characters.)	Examining
the	body	of	push_int64(int64	n)	reveals	that	if	n	is	-1	or	an	number	between
1	and	16,	n	is	pushed	in	as	n	+	(OP_1	-	1),	which	is	n	+	(81	-1)	=	n	+
80	(OP_1	=	81	=	0x51).	So	if	n	is	-1+,	n	is	pushed	in	as	a	single	byte	value	79,
which	is	the	code	value	of	operator	OP_1NEGATE.	If	n	is	a	number	from	1	to	16,	it
is	pushed	in	as	a	single	byte	value	between	81	and	96,	which	is	the	code	value	of
an	operator	between	OP_1	and	OP_16.	For	other	values	of	n,	it	is	treated	as	a
CBigNum.	To	summarize:

If	n	is	-1,	n	is	treated	as	operator	OP_1NEGATE	(79).

If	n	is	a	number	between	1	to	16,	n	is	treated	as	an	operator	between	OP_1
(81)	and	OP_16	(96).

Otherwise,	n	is	treated	as	a	CBigNum,	and	the	return	value	of	bn.getvch(),
which	is	a	vector	of	chars,	is	pushed	into	the	internal	storage	(line	12).	For
more	details	about	CBigNum,	see	Section	CBigNum	of	this	chapter.

Overloaded	operator	<<	also	accepts	the	unsigned	versions	of	char,	short,
int,	long,	and	uint64	as	inputs.	Their	corresponding	operator	overload
functions	follow	the	same	logic	as	their	signed	counterparts	do	(not	shown	in	the
source	code	above).

Let’s	examine	the	operator	overload	functions	for	other	input	types.

For	input	type	uint160,	the	size	of	the	input	data	is	first	pushed	into	the
internal	storage	(line	51),	then	the	input	data	itself	(line	52).	The	same
procedure	is	applied	to	input	type	uint256	(line	55).	These	two	types	are
used	to	held	hash	codes.

For	input	type	opcodetype,	i.e.,	the	operator	type,	the	code	value	is	directly
pushed	into	the	internal	storage	(line	39).	If	the	code	value	has	2	bytes,	they
are	pushed	in	one	after	another	(lines	44-45).	Note	that	the	most	significant
byte	is	pushed	in	first	(line	44).	So	code	0xF001	will	be	pushed	in	as	0xF001,
not	0x01F0.	This	is	important,	see	the	following	Section	CScript::GetOp()	for
details.

For	input	type	CBigNum,	a	vector	of	chars	that	represents	the	big	number	is
pushed	in	(line	63).	This	is	consistent	with	the	way	push_int64()	handles
CBigNum.

For	input	type	vector	<unsigned	char>,	the	procedure	is	more
involving:

If	the	size	of	input	b	is	less	than	76	(code	value	of	operator
OP_PUSHDATA1),	the	size	of	b	is	pushed	in	as	a	single	byte	value	first
(line	70),	then	data	b	itself	(line	83).

If	the	size	of	b	is	between	76	and	255	(includsive),	operator
OP_PUSHDATA1	is	pushed	in	first	(line	74),	then	the	size	of	b	as	a	single
byte	value	(line	75),	then	data	b	itself	(line	83).

Otherwise,	operator	OP_PUSHDATA2	is	pushed	in	first	(line	79),	then	the
size	of	b	as	a	two-byte	(short)	value	(lines	80-81),	then	data	b	itself	(line
83).

Overloaded	operator	<<	pushes	instructions	into	CScript,	function
CScript::GetOp()	extracts	them	from	CScript.

Note Keyword	explicit.	In	C++,	the	compiler	makes	implicit
conversion	to	resolve	arguments	to	find	the	right	function	to
call.	For	example,	if	you	call	fun1(2),	where	argument	2	is
an	int,	but	only	fun1(long)	is	defined,	then	the	compiler	will
convert	2	to	long	to	call	fun1().	Keyword	explicit	tells	the
compiler	NOT	to	do	that.

4.2.2.	CScript::GetOp()

Here	is	the	source	code	of	CScript::GetOp().

				1:	class	CScript	:	public	vector<unsigned	char>

				2:	{

				3:	//......

				4:					bool	GetOp(const_iterator&	pc,	opcodetype&	opcodeRet,	

vector<unsigned	char>&	vchRet)	const

				5:					{

				6:									opcodeRet	=	OP_INVALIDOPCODE;

				7:									vchRet.clear();

				8:									if	(pc	>=	end())

				9:													return	false;

			10:									//	Read	instruction

			11:									unsigned	int	opcode	=	*pc++;

			12:									if	(opcode	>=	OP_SINGLEBYTE_END)

			13:									{

			14:													if	(pc	+	1	>	end())

			15:																	return	false;

			16:													opcode	<<=	8;

			17:													opcode	|=	*pc++;

			18:									}

			19:									//	Immediate	operand

			20:									if	(opcode	<=	OP_PUSHDATA4)

			21:									{

			22:													unsigned	int	nSize	=	opcode;

			23:													if	(opcode	==	OP_PUSHDATA1)

			24:													{

			25:																	if	(pc	+	1	>	end())

			26:																					return	false;

			27:																	nSize	=	*pc++;

			28:													}

			29:													else	if	(opcode	==	OP_PUSHDATA2)

			30:													{

			31:																	if	(pc	+	2	>	end())

			32:																					return	false;

			33:																	nSize	=	0;

			34:																	memcpy(&nSize,	&pc[0],	2);

			35:																	pc	+=	2;

			36:													}

			37:													else	if	(opcode	==	OP_PUSHDATA4)

			38:													{

			39:																	if	(pc	+	4	>	end())

			40:																					return	false;

			41:																	memcpy(&nSize,	&pc[0],	4);

			42:																	pc	+=	4;

			43:													}

			44:													if	(pc	+	nSize	>	end())

			45:																	return	false;

			46:													vchRet.assign(pc,	pc	+	nSize);

			47:													pc	+=	nSize;

			48:									}

			49:									opcodeRet	=	(opcodetype)opcode;

			50:									return	true;

			51:					}

			52:	//......

			53:	}

This	function	reads	an	instruction	(an	operator	and	its	operand	if	necessary)	from
pc	and	put	them	into	opcodeRet	and	vchRet	respectively.	Iterator	pc	points	to

a	position	in	the	internal	storage	of	CScript	where	data	should	be	read	from.
Here	is	what	this	function	does:

It	differentiates	1-byte	and	2-byte	operators.	If	the	first	byte	is	greater	than
0xF0	(line	14),	the	next	byte	is	extracted;	and	these	two	bytes	together	form	a
two-byte	operator	(lines	16-17).	This	is	the	reason	why	the	most	significant
byte	of	a	two	byte	operator	is	pushed	in	first.	The	first	byte	of	all	two-byte
operators	is	greater	than	0xF0,	while	all	single	byte	operators	have	code
values	less	than	0xF0.

At	line	20,	if	the	first	byte	is	less	than	or	equal	to	78	(the	code	value
OP_PUSHDATA4),	then	depending	on	the	value,	this	function	differentiates	4
cases:

If	the	code	value	is	76	(code	value	of	OP_PUSHDATA1),	it	reads	the	next
byte	as	the	size	of	the	data	into	nSize	(line	27),	and	then	reads	the
number	of	bytes	indicated	by	nSize	into	vchRet	(line	46).	So	if
nSize=100,	it	reads	the	next	100	bytes	into	vchRet.

If	the	code	value	is	77	(code	value	of	OP_PUSHDATA2),	it	reads	the	next
two	bytes	as	the	size	of	the	data	(line	34),	and	then	reads	the	data	itself
into	vchRet	(line	46).

If	the	code	value	is	78	(code	value	of	OP_PUSHDATA4),	it	reads	the	next
four	bytes	as	the	size	of	the	data	(line	41),	and	then	reads	the	data	itself
into	vchRet	(line	46).

Otherwise,	i.e.,	if	the	code	value	is	between	0	and	75	(inclusive),	this
value	is	treated	as	the	size	of	data	(line	22).	It	reads	the	number	of	bytes
indicated	by	this	value	into	vchRet	(line	46).	You	may	be	wondering
what	the	returned	operator	is	then.	The	returned	operator	code	is	the
extracted	value	that	lies	in	between	0	and	75,	which	is	a
UNKNOWN_OPCODE	(execept	for	value	0,	which	OP_0	or	OP_FALSE).	This
will	not	cause	any	problem	once	you	see	how	this	UNKNOWN_OPCODE	is
handled	when	executing	the	instruction.

Summary
depending	on	its	value,	the	first	byte	of	an	instruction	stored	in	CScript	is
interpreted	differently:	1)	If	it	is	0,	it	is	operator	OP_0	or	OP_FALSE.	2)	If	it	is	a
value	between	1	and	75	(inclusive),	it	is	a	UNKNOWN_OPCODE;	and	the	number	of
bytes	indicated	by	that	value	is	returned	in	vchRet.	3)	If	it	is	76,	77,	or	78,	it	is	a
OP_PUSHDATA#	operator,	and	whatever	number	of	bytes	that	should	be	read	are
returned	in	vchRet.	4)	If	it	is	a	value	between	79	and	175	(0xAF),	it	is	treated	as
an	operator	with	such	a	code	value.	5)	If	it	is	value	greater	than	0xF0,	it	is	the	first
byte	of	a	two-byte	operator.

4.3.	EvalScript()
This	function	evaluates	the	instructions	in	a	given	script	one	after	another.	The
final	result	is	either	true	or	false.	It	extracts	the	instructions	in	the	script	one
by	one	in	a	while-loop	(line	13).	Within	the	loop,	depending	on	the	operator	of	the
current	instruction,	the	execution	flow	switches	to	the	corresponding	branch	to
execute	the	instruction.	Here	is	the	source	code	of	this	function	(some	switch
branches	are	omitted	to	save	spaces).

				1:	bool	EvalScript(const	CScript&	script,	const	CTransaction&	txTo,	

unsigned	int	nIn,	int	nHashType,

				2:																	vector<vector<unsigned	char>	>*	pvStackRet)

				3:	{

				4:					CAutoBN_CTX	pctx;

				5:					CScript::const_iterator	pc	=	script.begin();

				6:					CScript::const_iterator	pend	=	script.end();

				7:					CScript::const_iterator	pbegincodehash	=	script.begin();

				8:					vector<bool>	vfExec;

				9:					vector<valtype>	stack;

			10:					vector<valtype>	altstack;

			11:					if	(pvStackRet)

			12:									pvStackRet->clear();

			13:					while	(pc	<	pend)

			14:					{

			15:									bool	fExec	=	!count(vfExec.begin(),	vfExec.end(),	false);

			16:									//

			17:									//	Read	instruction

			18:									//

			19:									opcodetype	opcode;

			20:									valtype	vchPushValue;

			21:									if	(!script.GetOp(pc,	opcode,	vchPushValue))

			22:													return	false;

			23:									if	(fExec	&&	opcode	<=	OP_PUSHDATA4)

			24:													stack.push_back(vchPushValue);

			25:									else	if	(fExec	||	(OP_IF	<=	opcode	&&	opcode	<=	OP_ENDIF))

			26:									switch	(opcode)

			27:									{

			28:													//

			29:													//	Push	value

			30:													//

			31:													case	OP_1NEGATE:

			32:													case	OP_1:

			33:													case	OP_2:

			34:													case	OP_3:

			35:													case	OP_4:

			36:													case	OP_5:

			37:													case	OP_6:

			38:													case	OP_7:

			39:													case	OP_8:

			40:													case	OP_9:

			41:													case	OP_10:

			42:													case	OP_11:

			43:													case	OP_12:

			44:													case	OP_13:

			45:													case	OP_14:

			46:													case	OP_15:

			47:													case	OP_16:

			48:													{

			49:																	//	(—value)

			50:																	CBigNum	bn((int)opcode	-	(int)(OP_1	-	1));

			51:																	stack.push_back(bn.getvch());

			52:													}

			53:													break;

			54:													//......

			55:													case	OP_IF:

			56:													case	OP_NOTIF:

			57:													case	OP_VERIF:

			58:													case	OP_VERNOTIF:

			59:													{

			60:																	//	<expression>	if	[statements]	[else	

[statements]]	endif

			61:																	bool	fValue	=	false;

			62:																	if	(fExec)

			63:																	{

			64:																					if	(stack.size()	<	1)

			65:																									return	false;

			66:																					valtype&	vch	=	stacktop(-1);

			67:																					if	(opcode	==	OP_VERIF	||	opcode	==	

OP_VERNOTIF)

			68:																									fValue	=	(CBigNum(VERSION)	>=	

CBigNum(vch));

			69:																					else

			70:																									fValue	=	CastToBool(vch);

			71:																					if	(opcode	==	OP_NOTIF	||	opcode	==	

OP_VERNOTIF)

			72:																									fValue	=	!fValue;

			73:																					stack.pop_back();

			74:																	}

			75:																	vfExec.push_back(fValue);

			76:													}

			77:													break;

			78:													case	OP_ELSE:

			79:													{

			80:																	if	(vfExec.empty())

			81:																					return	false;

			82:																	vfExec.back()	=	!vfExec.back();

			83:													}

			84:													break;

			85:													case	OP_ENDIF:

			86:													{

			87:																	if	(vfExec.empty())

			88:																					return	false;

			89:																	vfExec.pop_back();

			90:													}

			91:													break;

			92:													case	OP_VERIFY:

			93:													{

			94:																	//	(true—)	or

			95:																	//	(false—false)	and	return

			96:																	if	(stack.size()	<	1)

			97:																					return	false;

			98:																	bool	fValue	=	CastToBool(stacktop(-1));

			99:																	if	(fValue)

		100:																					stack.pop_back();

		101:																	else

		102:																					pc	=	pend;

		103:													}

		104:													break;

		105:													//......

		106:													case	OP_EQUAL:

		107:													case	OP_EQUALVERIFY:

		108:													//case	OP_NOTEQUAL:	//	use	OP_NUMNOTEQUAL

		109:													{

		110:																	//	(x1	x2	-	bool)

		111:																	if	(stack.size()	<	2)

		112:																					return	false;

		113:																	valtype&	vch1	=	stacktop(-2);

		114:																	valtype&	vch2	=	stacktop(-1);

		115:																	bool	fEqual	=	(vch1	==	vch2);

		116:																	//	OP_NOTEQUAL	is	disabled	because	it	would	be	too	

easy	to	say

		117:																	//	something	like	n	!=	1	and	have	some	wiseguy	

pass	in	1	with	extra

		118:																	//	zero	bytes	after	it	(numerically,	0x01	==	

0x0001	==	0x000001)

		119:																	//if	(opcode	==	OP_NOTEQUAL)

		120:																	//				fEqual	=	!fEqual;

		121:																	stack.pop_back();

		122:																	stack.pop_back();

		123:																	stack.push_back(fEqual	?	vchTrue	:	vchFalse);

		124:																	if	(opcode	==	OP_EQUALVERIFY)

		125:																	{

		126:																					if	(fEqual)

		127:																									stack.pop_back();

		128:																					else

		129:																									pc	=	pend;

		130:																	}

		131:													}

		132:													break;

		133:													//......

		134:													//

		135:													//	Crypto

		136:													//

		137:													case	OP_RIPEMD160:

		138:													case	OP_SHA1:

		139:													case	OP_SHA256:

		140:													case	OP_HASH160:

		141:													case	OP_HASH256:

		142:													{

		143:																	//	(in—hash)

		144:																	if	(stack.size()	<	1)

		145:																					return	false;

		146:																	valtype&	vch	=	stacktop(-1);

		147:																	valtype	vchHash(opcode	==	OP_RIPEMD160	||	opcode	

==	OP_SHA1	||	opcode	==	OP_HASH160	?	20	:	32);

		148:																	if	(opcode	==	OP_RIPEMD160)

		149:																					RIPEMD160(&vch[0],	vch.size(),	&vchHash[0]);

		150:																	else	if	(opcode	==	OP_SHA1)

		151:																					SHA1(&vch[0],	vch.size(),	&vchHash[0]);

		152:																	else	if	(opcode	==	OP_SHA256)

		153:																					SHA256(&vch[0],	vch.size(),	&vchHash[0]);

		154:																	else	if	(opcode	==	OP_HASH160)

		155:																	{

		156:																					uint160	hash160	=	Hash160(vch);

		157:																					memcpy(&vchHash[0],	&hash160,	

sizeof(hash160));

		158:																	}

		159:																	else	if	(opcode	==	OP_HASH256)

		160:																	{

		161:																					uint256	hash	=	Hash(vch.begin(),	vch.end());

		162:																					memcpy(&vchHash[0],	&hash,	sizeof(hash));

		163:																	}

		164:																	stack.pop_back();

		165:																	stack.push_back(vchHash);

		166:													}

		167:													break;

		168:													case	OP_CODESEPARATOR:

		169:													{

		170:																	//	Hash	starts	after	the	code	separator

		171:																	pbegincodehash	=	pc;

		172:													}

		173:													break;

		174:													case	OP_CHECKSIG:

		175:													case	OP_CHECKSIGVERIFY:

		176:													{

		177:																	//	(sig	pubkey—bool)

		178:																	if	(stack.size()	<	2)

		179:																					return	false;

		180:																	valtype&	vchSig				=	stacktop(-2);

		181:																	valtype&	vchPubKey	=	stacktop(-1);

		182:																	//////	debug	print

		183:																	//PrintHex(vchSig.begin(),	vchSig.end(),	"sig:	

%s\n");

		184:																	//PrintHex(vchPubKey.begin(),	vchPubKey.end(),	

"pubkey:	%s\n");

		185:																	//	Subset	of	script	starting	at	the	most	recent	

codeseparator

		186:																	CScript	scriptCode(pbegincodehash,	pend);

		187:																	//	Drop	the	signature,	since	there's	no	way	for	a	

signature	to	sign	itself

		188:																	scriptCode.FindAndDelete(CScript(vchSig));

		189:																	bool	fSuccess	=	CheckSig(vchSig,	vchPubKey,	

scriptCode,	txTo,	nIn,	nHashType);

		190:																	stack.pop_back();

		191:																	stack.pop_back();

		192:																	stack.push_back(fSuccess	?	vchTrue	:	vchFalse);

		193:																	if	(opcode	==	OP_CHECKSIGVERIFY)

		194:																	{

		195:																					if	(fSuccess)

		196:																									stack.pop_back();

		197:																					else

		198:																									pc	=	pend;

		199:																	}

		200:													}

		201:													break;

		202:													//......

		203:													default:

		204:																	return	false;

		205:									}

		206:					}

		207:					if	(pvStackRet)

		208:									*pvStackRet	=	stack;

		209:					return	(stack.empty()	?	false	:	CastToBool(stack.back()));

		210:	}

Here	are	a	few	key	observations	about	this	function:

Iterator	pc	always	points	to	the	next	byte	to	read.

stack	is	the	main	stack	this	function	works	on.	All	operands	extracted	from
input	script	will	be	pushed	into	this	stack.	And	all	results	generated	by
applying	an	operator	to	its	operand	held	in	this	stack	will	be	pushed	back	to
this	stack.

If	script.GetOp(pc,	opcode,	vchPushValue)	returns	true	(line	21),
opcode	will	contains	the	extracted	operator	and	vchPushValue	will	contain
the	operand,	if	there	is	any.

At	line	23,	if	opcode	is	less	than	or	equal	to	78	(code	value	of
OP_PUSHDATA4),	the	data	held	in	vchPushValue	is	pushed	into	stack	at
line	24	(don’t	worry	about	boolean	variable	fExec	for	now,	it	will	be
addressed	later).	Therefore,	if	opcode	is	a	value	between	1	and	75,	i.e.,	a
UNKNOWN_OPCODE,	the	returned	data	in	vchPushValue	will	be	pushed	into
stack.	The	same	thing	will	happen	for	opcode	values	0,	76,	77,	or	78.	So,	the
Bitcoin	scripting	language	is	optimized	for	short	operands:	For	short
operands	less	than	or	equal	to	75	bytes,	you	just	need	to	push	the	size	of	the
data,	and	then	the	data	itself	into	a	CScript.	The	interpretor	will	handle	it
correctly.	For	long	operands,	you	have	to	push	in	an	OP_PUSHDATA#	first.

Operator	OP_1NEGATE	and	operators	between	OP_1	and	OP_16	push	their
corresponding	data	values	into	stack	(line	51).	So,	OP_1NEGATE	(code	value
79)	pushes	-1	into	stack,	+OP_2	(code	value	82)	pushes	2	into	stack,	etc.
This	is	consistent	with	the	way	push_int64()	handles	its	input	data.

The	structure	of	EvalScript()	is	simple	and	clear:	script.GetOP()	extracts
an	instruction	from	script	(line	21).	Depending	on	the	extracted	operator
opcode,	each	case	is	executed	in	a	branch	of	the	switch(opcode)	statement
(line	26).	The	only	puzzling	codes	are	those	involve	variable	fExec	(lines	23	and
25).	Let’s	examine	them	more	closely.

4.3.1.	Nested	OP_IF

Variable	fExec	is	assigned	a	new	value	at	the	beginning	of	each	iteration	(line	15).
If	vector	vfExec	contains	a	single	false,	it	will	be	false.	Otherwise,	if	every
entry	of	vfExec	is	true,	it	will	be	true.

Vector	vfExec	is	a	stack	that	records	the	position	of	the	current	instruction
within	a	nested	OP_IF	statement.	This	position	determines	whether	the	current
instruction	should	be	executed	or	not.	This	may	sound	very	abstract.	Let	me	give
you	an	example	to	illustrate	what	I	mean.	Consider	the	following	script:

				1:	OP_TRUE	OP_IF

				2:					OP_FALSE	OP_IF

				3:									statement1

				4:					OP_ELSE

				5:									statement2

				6:					OP_ENDIF

				7:	OP_ELSE

				8:					statement3

				9:	OP_ENDIF

Let’s	assume	statement1-3	contain	no	operators	between	OP_IF	and
OP_ENDIF,	i.e.,	there	is	no	more	nested	OP_IF	in	these	statements	and	the	whole
script	has	a	nested	OP_IF	statement	with	2	levels.	Let’s	follow	the	execution	of
this	script	to	understand	how	it	is	interpreted	and	executed.

First	operator	OP_TURE:

At	the	beginning,	stack	is	empty.	vfExec	is	empty.	fExec	is	true.

At	line	21,	operator	OP_FALSE	is	extracted	and	held	in	opcode.

At	line	23,	since	OP_TURE	>	OP_PUSHDATA4,	the	execution	flow	goes	to
line	25.

At	line	25,	since	fExec	is	true,	the	flow	continues	to	line	26.

At	line	26,	OP_TURE	held	in	opcode	matches	line	32	(OP_TURE	is	an
alias	of	OP_1).

At	lines	50-51,	value	1	(represented	by	a	vector	<unsigned	char>)
is	pushed	into	stack.

Now	the	first	operator	OP_TURE	has	been	processed.	The	execution	flow
goes	to	line	53,	and	then	starts	the	next	loop	at	line	13.

Second	operator	OP_IF:

In	this	loop,	vfExec	is	still	empty,	and	fExec	is	still	true	(line	15).
opcode	is	OP_IF	(line	21).

At	line	23,	since	OP_IF	>	OP_PUSHDATA4,	the	execution	flow	goes	to
line	25.

At	line	25,	since	fEexc	is	true	and	OP_IF	does	lie	between	OP_IF	and
OP_ENDIF,	the	execution	goes	to	line	26.

At	line	26,	OP_IF	matches	line	55.

At	line	61,	fValue	is	false.	Since	fEexc	is	true,	line	66	is	executed.
stacktop(-1)	returns	the	value	1	pushed	into	stack	in	the	first
iteration.

At	line	70,	value	1	is	casted	to	bool	and	assigned	to	fValue.
CastToBool	casts	any	non-zero	values	to	true	and	zero	to	false	(not
showed	in	the	source	code).

At	line	75,	fvalue,i.e.,	value	true,	is	pushed	into	vfExec.

Now	the	second	operator	OP_IF	has	been	processed.	The	execution	flow
goes	to	line	77,	and	then	starts	the	next	loop	at	line	13.

Third	operator	OP_FASLE:

In	this	loop,	vfExec	contains	a	single	true,	so	fEexc	is	still	true	(line
15).	opcode	is	OP_FALSE.

At	line	23,	since	fExec	is	true	and	OP_FALSE	is	less	than
OP_PUSHDATA4,	OP_FALSE	is	pushed	into	stack	(line	24).

Now	the	third	operator	OP_FALSE	has	been	processed.	The	execution
flow	starts	the	next	loop	at	line	13.

Forth	operator	OP_IF:

In	this	loop,	vfExec	still	contains	a	single	true	and	fExec	is	true	(line
15).	opcode	is	OP_IF.

At	line	23,	the	execution	flow	follows	the	same	path	as	the	second
operator	(which	is	also	OP_IF)	did.	But	since	this	time	stocktop(-1)
will	return	value	0	at	line	66	(the	operator	code	of	OP_FASLE	that	was
pushed	into	stack	in	the	third	iteration),	fValue	will	be	false	(line
70).

This	false	will	be	pushed	into	vfExec	(line	75).

Now	the	forth	operator	OP_IF	has	been	processed.	The	execution	flows
starts	the	next	loop	at	line	13.

Fifth	operator	statement1:

In	this	loop,	vfExec	contains	[true,	false].	So	fExec	is	false
(line	15).

No	matter	what	the	current	operator	opcode	is	extracted	from
statement1,	the	condition	at	line	23	will	be	not	satisfied.

As	for	the	condition	at	line	25,	since	statement1	contains	no	operator
between	OP_IF	and	OP_ENDIF	by	assumption,	it	will	not	be	satisfied
either.

At	this	point,	the	execution	flows	will	go	back	to	line	13	and	starts	a	new
loop.

So	basically	whatever	it	is	in	statement1,	it	is	read	out	and	then
discarded.	And	this	is	the	right	thing	to	do,	since	the	condition	to	execute
this	branch	is	not	satisfied	(the	condition	is	OP_FALSE).

Sixth	operator	OP_ELSE:

In	this	loop,	vfExec	contains	[true,	false].	So	fExec	is	false
(line	15).

At	line	23,	since	fExec	is	false,	the	execution	flow	goes	to	line	25.

At	line	25,	since	OP_ELSE	lies	in	between	OP_IF	and	OP_ENDIF,	the
execution	goes	to	line	26.

At	line	26,	opcode	matches	line	78.

At	line	82,	the	top	element	in	vfExec	is	flipped.	So	now	vfExec
contains	[true,	true].	The	second	true	is	flipped	from	the	previous
value	false.

At	line	84,	the	execution	goes	back	to	line	13	and	starts	the	next	loop.

Seventh	operator	statment2:

In	this	loop,	vfExec	contains	[true,	true].	So	fExec	is	true	(line
15).

At	line	23,	if	opcode	extracted	is	less	than	OP_PUSHDATA4,	the	operand
data	will	be	pushed	into	stack	and	the	execution	will	go	back	to	line	13
and	start	the	next	loop.

Otherwise,	since	fExec	is	true,	the	switch	statement	at	line	26	will
always	be	executed.	This	will	lead	to	the	execution	of	statement2	for
what	it	is.

So	statement2	will	always	be	executed,	no	matter	what	kind	of
instruction	it	is.	And	this	is	the	right	thing	to	do,	since	the	condition	to
execute	this	branch	is	satisfied.

Eight	operator	OP_ENDIF:

In	this	loop,	vfExec	contains	[true,	true].	So	fExec	is	true	(line
15).

At	line	23,	since	OP_ENDIF	>	OP_PUSHDATA4,	the	execution	flow	goes

to	line	25.

At	line	25,	since	OP_ENDIF	lies	in	between	OP_IF	and	OP_ENDIF,	the
execution	goes	to	line	26.

At	line	26,	OP_ENDIF	matches	line	85.

At	line	89,	the	top	element	of	vfExec	is	popped	out.	So	now	vfExec
contains	[true].

At	line	91,	the	execution	goes	back	to	line	13	and	starts	the	next	loop.

Ninth	operator	OP_ELSE:

In	this	loop,	vfExec	contains	[true]	and	so	fExec	is	true.

At	line	23,	since	OP_ELSE	>	OP_PUSHDATA4,	the	execution	flow	goes	to
line	25.

At	line	25,	since	OP_ELSE	lies	in	between	OP_IF	and	OP_ENDIF,	the
execution	goes	to	line	26.

At	line	26,	OP_ELSE	matches	line	78.

At	line	82,	the	value	of	top	element	in	vfExec	is	flipped.	So	now	vfExec
contains	[false].

At	line	84,	the	execution	goes	back	to	line	13	and	starts	the	enxt	loop.

Tenth	operator	statement3:

In	this	loop,	vfExec	contains	[false]	and	so	fExec	is	false.

Again,	not	matter	what	kind	of	instruction	statemen3	is,	it	will	be	read
out	and	then	discarded.

Eleventh	operator	OP_ENDIF:

This	operator	will	pop	the	last	element	of	vfExec	out	at	line	89.	vfExec
will	become	empty	again,	just	like	it	was	at	the	very	beginning.

Therefore,	every	time	the	execution	flow	encounters:	1)	an	OP_IF,	a	bool	value	at
the	top	of	stack	is	pushed	into	vfExec;	2)	an	OP_ELSE,	the	bool	value	at	the	top
of	stack	vfExec	is	flipped;	3)	an	OP_ENDIF,	the	bool	at	the	top	of	vfExec	is
popped	out.

At	any	point	of	time,	elements	in	vfExec	represent	the	position	of	the	current
instruction	within	the	nested	OP_IF	statement.	For	example,	[true,	false]
means	that	the	current	instruction	is	located	in	the	false	branch	of	the	inner
statement,	which	in	turn	is	located	in	the	true	branch	of	the	outer	statement.
This	is	the	reason	why	fExec	is	false	if	there	is	any	false	in	vfExec.	Because
any	false	in	vfExec	indicates	that	the	current	instruction	is	in	some	false

branch	of	the	nested	OP_IF	statement	and	thus	should	not	be	executed.

4.3.2.	A	few	switch	branches

OP_EQUALVERIFY	branch	is	pretty	simple	(lines	106-107),	it	pops	up	the	top
two	items	from	stack	and	compares	them	(lines	113-114).

Hash	operators	are	grouped	together	(lines	137-141).	Outputs	for	operators
OP_RPEMD160,	OP_SHA1	and	OP_HASH160	are	160	bits,	and	for	OP_SHA256
and	OP_HASH256	are	256	bits.	Data	to	be	hashed	are	extracted	from	the	top
of	stack	(line	146),	the	result	is	pushed	back	to	stack	(line	165).

OP_CHECKSIG	branch	is	more	interesting	(lines	174-175).	This	branch	checks
the	signature	of	transaction	txTo	(the	second	argument).	Let’s	use
Verification	Cases	A	and	B	shown	at	the	end	of	Chapter	Transaction	I	as	an
example	to	examine	how	this	operator	is	executed	to	verify	the	signature.

4.3.3.	Execute	OP_CHECKSIG

For	easy	reference,	Let’s	copy	Verification	Cases	A	and	B	in	Chapter	Transaction	I
below:

Verification	Case	A:
<your_signature_vchSig>	<your_pubKey_vchPubKey>
OP_CODESEPARATOR	OP_DUP	OP_HASH160	<your_address_hash160>
OP_EQUALVERIFY	OP_CHECKSIG,
i.e.,	Signature	A	+	OP_CODESEPARATOR	+	Script	A;

Verification	Case	B:
<your_signature_vchSig>	OP_CODESEPARATOR
<your_pubKey_vchPubKey>	OP_CHECKSIG,
i.e.,	Signature	B	+	OP_CODESEPARATOR	+	Script	B.

I’ll	work	out	Verification	Case	B.	You	can	work	out	Verification	Case	A	by	yourself.

First	notice	that	Signatures	B	+	OP_CODESEPARATOR	+	Script	B	is	passed	in
as	the	first	argument	script	to	function	EvalScript().

The	first	instruction	to	read	is	<your_signature_vchSig>,	which	is	a
signature	of	type	vector	<unsigned	char>.	Therefore,	it	will	be	pushed
to	stack	at	line	24.

The	second	instruction	to	read	is	OP_CODESEPARATOR.	At	line	171,	a	local
variable	pbegincodehash	is	assigned	value	pc,	which	points	to	the	next
instruction	to	read,	which	is	<your_pubKey_vchPubKey>.

The	third	instruction	to	read	is	<your_pubKey_vchPubKey>,	which	is	a	65-
bit	public	key,	and	thus	will	be	pushed	into	stack	at	line	24.

The	forth	instruction	to	read	is	OP_CHECKSIG.	The	execution	goes	to	the
OP_CHECKSIG	branch	(lines	174-175).

At	line	180,	<your_signature_vchSig>	is	extracted	from	stack	as
vchSig	=	stacktop(-2).

At	line	181,	<your_pubKey_vchPubKey>	is	extracted	from	stack	as
vchPubKey	=	stacktop(-1).

At	line	186,	instructions	between	pbegincodehash	and	pend	are	read	to	a
CScript	object	scriptCode.	Remember	pbegincodehash	points	to
<your_pubKey_vchPubKey>,	and	pend	points	to	the	end	of	script.	So	all
instructions	starting	at	<your_pubKey_vchPubKey>	(inclusive)	are	read
into	scriptCode,	which	is	<your_pubKey_vchPubKey>	OP_CHECKSIG,
i.e.,	it	is	Script	B.

Line	188	will	have	no	effect	on	scriptCode,	since	it	does	not	contain	any
signature.

At	line	189,	function	CheckSig()	is	called	with	arguments
CheckSig(vchSig,	vchPubKey,	scriptCode,	txTo,	nIn,
nHashType).	Here	is	the	source	code	of	this	function.

				1:	bool	CheckSig(vector<unsigned	char>	vchSig,	vector<unsigned	char>	

vchPubKey,	CScript	scriptCode,

				2:															const	CTransaction&	txTo,	unsigned	int	nIn,	int	

nHashType)

				3:	{

				4:					CKey	key;

				5:					if	(!key.SetPubKey(vchPubKey))

				6:									return	false;

				7:					//	Hash	type	is	one	byte	tacked	on	to	the	end	of	the	signature

				8:					if	(vchSig.empty())

				9:									return	false;

			10:					if	(nHashType	==	0)

			11:									nHashType	=	vchSig.back();

			12:					else	if	(nHashType	!=	vchSig.back())

			13:									return	false;

			14:					vchSig.pop_back();

			15:					if	(key.Verify(SignatureHash(scriptCode,	txTo,	nIn,	

nHashType),	vchSig))

			16:									return	true;

			17:					return	false;

			18:	}

Let’s	examine	this	function:

Its	first	argument	vchSig	is	<your_signature_vchSig>;

The	second	argument	vchPubKey	is	<your_pubKey_vchPubKey>;

The	third	one	scriptCode	is	<your_pubKey_vchPubKey>

4.4.	CBigNum

OP_CHECKSIG.

Function	CheckSig()	calls	function	SignatureHash(scriptCode,	txTo,
nIn,	nHashType)	at	line	15.	If	you	compare	function	SignatureHash()	covered
in	Chapter	Transaction	I,	you	can	see	that	the	input	arguments	are	exactly	the
same.	So	you	will	get	exactly	the	same	hash	code.

Now	go	back	to	continue	tracking	the	execution	of	Verification	Case	B:

At	line	190-191,	the	top	2	elements	of	stack,	i.e.,
<your_signature_vchSig>	and	<your_pubKey_vchPubKey>,	are
popped	out.

At	line	192,	the	return	value	of	CheckSig(),	which	is	true,	will	be	pushed
into	stack.	So	stack	now	contains	a	single	true,	meaning	that	the
execution	is	successful.

Class	CBigNum	is	a	wrapper	around	type	BIGNUM	that	is	defined	in	openssl
library.	Public	key	cryptography	needs	to	handle	very	large	integers.	Standard
data	types	are	not	enough	for	that	purpose.	BIGNUM	can	hold	arbitrarily	large
integers.

The	structure	of	class	CBigNum	is	not	complicated.	It	has	a	bunch	of	constructors
that	construct	big	numbers	from	various	data	types,	including	char,	short,	int,
long,	int64,	int256,	their	unsigned	versions,	and	vector<unsigned
char>,	etc.	It	also	overloads	operators	like	addition,	subtraction,	multiplication,
division,	bit-shifting,	etc.	All	real	work	is	delegated	to	base	type	BIGNUM.	Most	of
the	codes	in	CBigNum	merely	prepare	data	for	BIGNUM	functions.	Some	of	the
data	preparation	codes	look	puzzling	if	you	don’t	know	the	BIGNUM	functions	they
are	calling.	Here	is	an	example.

4.4.1.	CBigNum::setuint64()
				1:	class	CBigNum	:	public	BIGNUM

				2:	{

				3:	public:

				4:					//......

				5:					CBigNum(uint64	n)											{	BN_init(this);	setuint64(n);	}

				6:					//......

				7:					void	setuint64(uint64	n)

				8:					{

				9:									unsigned	char	pch[sizeof(n)	+	6];

			10:									unsigned	char*	p	=	pch	+	4;

			11:									bool	fLeadingZeroes	=	true;

			12:									for	(int	i	=	0;	i	<	8;	i++)

			13:									{

			14:													unsigned	char	c	=	(n	>>	56)	&	0xff;

			15:													n	<<=	8;

			16:													if	(fLeadingZeroes)

			17:													{

			18:																	if	(c	==	0)

			19:																					continue;

			20:																	if	(c	&	0x80)

			21:																					*p++	=	0;

			22:																	fLeadingZeroes	=	false;

			23:													}

			24:													*p++	=	c;

			25:									}

			26:									unsigned	int	nSize	=	p	-	(pch	+	4);

			27:									pch[0]	=	(nSize	>>	24)	&	0xff;

			28:									pch[1]	=	(nSize	>>	16)	&	0xff;

			29:									pch[2]	=	(nSize	>>	8)	&	0xff;

			30:									pch[3]	=	(nSize)	&	0xff;

			31:									BN_mpi2bn(pch,	p	-	pch,	this);

			32:					}

			33:					//......

			34:		}

Function	setuint64(uint64	n)	sets	up	a	big	number	equal	to	n.	It	is	called	in
a	constructor	that	takes	an	input	argument	of	type	uint64.	If	you	examine	the
body	of	this	function,	it	is	not	immediately	clear	what	it	is	doing.	At	the	end	of	this
function,	it	calls	BN_mpi2bn().	Here	is	the	document	of	BN_mpi2bn():

“BN_bn2mpi()	and	BN_mpi2bn()	convert	BIGNUMs	from	and	to	a	format	that
consists	of	the	number’s	length	in	bytes	represented	as	a	4-byte	big-endian
number,	and	the	number	itself	in	big-endian	format,	where	the	most	significant
bit	signals	a	negative	number	(the	representation	of	numbers	with	the	MSB	set	is
prefixed	with	null	byte)”.

Like	the	parking	signs	in	Manhattan,	you	have	to	double-read	this	description
before	you	think	you	understand	it.	Put	it	in	plain	English:	These	two	functions
convert	a	BIGNUM	from	and	to	another	format	called	mpi.	That	format	consists	of
two	parts.	The	first	part	(length-part)	has	4	bytes;	and	it	contains	a	number	that	is
the	length	of	the	second	part.	The	second	part	(data-part)	is	the	actual	big
number.	Both	numbers,	the	big	number	and	its	length,	are	represented	in	the	big-
endian	format	(the	most	significant	byte	in	the	lowest	address).

Now	let’s	go	back	to	function	setuint64().	Here	is	what	this	function	does:

Allocates	a	buffer	pch	of	8+6=14	bytes	(line	9).	Note	n	is	of	type	uint64	and
has	8	bytes.

Pointer	p	points	to	the	4-th	byte	of	pch,	which	is	the	starting	point	of	the
data-part	(line	10).

For	each	byte	of	n,	starting	from	the	most	significant	byte	((n	>>	56)	&
0xff	extracts	the	most	significant	byte),	converts	it	to	a	unsigned	char	c

(line	14).

Moves	the	next	byte	of	n	to	the	most	significant	byte	position	(n	<<=8)	so	it
is	ready	for	the	next	extraction	(line	15).

Now	if	you	just	ignore	lines	16-23,	the	next	step	*p++	=c	simply	puts	c	into
the	position	pointed	by	p,	and	increases	p	by	one	so	it	is	ready	for	the	next
move	(line	24).

Therefore	what	this	function	does	is	to	extract	the	byte	of	n	one	by	one	and
re-arrange	them	in	the	big-endian	format.	The	reason	for	doing	that	is
because	n	is	little-endian	(Windows	is	little-endian).

After	that,	this	function	calculates	the	size	of	the	re-arrangeed	data	.	Clearly,
p-(pch	+	4)	is	the	length	of	the	re-arrangeed	data	since	p	started	at	pch	+
4	(line	26).

It	then	extracts	the	bytes	of	nSize	one	by	one	and	puts	them	in	the	big-
endian	format	from	pch[0]	to	pch[3]	(lines	27-30).

Now	the	mpi	format	is	ready	and	it	calls	BN_mpi2bn().

So	what	does	the	if-block	at	lines	16-23	do	then?	It	turns	out	the	that	the	mpi
format	requires	that	the	data-part	to	ignore	leading	zeros.	A	number	0x7E	takes	1
byte.	It	can	also	takes	2	bytes	and	represented	as	0x007E	with	the	most
significant	byte	be	0x00.	The	second	format	is	not	allowed	in	mpi,	you	have	to
remove	leading	zeros	when	filling	in	the	data-part.	This	is	part	of	what	the	if-block
does.	If	condition	fLeadingZeros	is	true.	The	extracted	char	c	is	checked	if	it
is	zero	(line	18).	If	yes,	c	is	ignored	and	the	procedure	continues	to	extract	the
next	byte.	This	ignores	the	leading	zeros	of	n.

But	then	what	does	the	mysterious	conditional	statement	if	(c	&	0x80)	*p++
=	0	at	line	20	do	then	?	Well,	literally,	it	checks	if	c	is	greater	than	0x80.	If	yes,
the	byte	pointed	by	p	is	filled	with	0	and	p	is	increased	by	one.	So	if	the	most
significant	bit	of	c	is	one	(i.e.,	c	is	greater	than	0x80),	an	extract	null	byte	is
inserted	in	front	of	the	byte	that	will	hold	c.

You	may	be	wondering	“Why	all	this	hassle”?	I	was	wondering	too.	A	quick
experiment	reveals	that	if	you	don’t	do	that,	a	0x8F	input	will	be	interpreted	as	a
negative	number	-0x0F.	So	here	is	the	reason:	In	the	mpi	format,	the	most
significant	bit	of	the	first	non-null	byte	is	interpreted	as	the	sign	of	the	number.	If
you	wish	not	to	do	so,	put	a	zero	byte	before	that	byte.	So	fLeadingZeros	is
initialized	to	true	(line	11).	Once	the	first	non-null	byte	is	extracted,	this	byte	is
checked	against	0x80	to	see	if	its	most	significant	bit	is	1	(line	20).	After	that,
fLeadingZeros	is	set	to	false.	And	the	if-block	will	never	be	activated	again	no
matter	what.

Now	if	you	go	back	and	triple-read	the	quoted	document	text,	you	will	be	amazed
to	realize	that	all	the	details	I	have	just	painstakingly	explained	is	already	in	that
short	paragraph.

Now	let’s	examine	two	member	functions	of	CBigNum	that	import/export	big
numbers	from/to	vector<unsigned	char>.

4.4.2.	CBigNum::setvch()	and	CBigNum::getvch()
				1:	class	CBigNum	:	public	BIGNUM

				2:	{

				3:	//......

				4:					void	setvch(const	std::vector<unsigned	char>&	vch)

				5:					{

				6:									std::vector<unsigned	char>	vch2(vch.size()	+	4);

				7:									unsigned	int	nSize	=	vch.size();

				8:									vch2[0]	=	(nSize	>>	24)	&	0xff;

				9:									vch2[1]	=	(nSize	>>	16)	&	0xff;

			10:									vch2[2]	=	(nSize	>>	8)	&	0xff;

			11:									vch2[3]	=	(nSize	>>	0)	&	0xff;

			12:									reverse_copy(vch.begin(),	vch.end(),	vch2.begin()	+	4);

			13:									BN_mpi2bn(&vch2[0],	vch2.size(),	this);

			14:					}

			15:					std::vector<unsigned	char>	getvch()	const

			16:					{

			17:									unsigned	int	nSize	=	BN_bn2mpi(this,	NULL);

			18:									if	(nSize	<	4)

			19:													return	std::vector<unsigned	char>();

			20:									std::vector<unsigned	char>	vch(nSize);

			21:									BN_bn2mpi(this,	&vch[0]);

			22:									vch.erase(vch.begin(),	vch.begin()	+	4);

			23:									reverse(vch.begin(),	vch.end());

			24:									return	vch;

			25:					}

			26:	//......

			27:	}

setvch()	finds	the	size	of	input	vector	vch	and	reverses	its	order	to	construct	a
CBigNum.	So	vch[0]	=	0x34	and	vch[1]=0x12	is	interpreted	as	0x1234	(the
most	significant	byte	is	the	last	byte	of	vch).	So	vch	is	interpreted	as	in	the	little-
endian	format,	just	like	input	uint64	n	in	setuint64().	Little-endian	is	a
unnatural	format	for	human	to	read.	But	that	is	what	the	Bitcoin	system	adopts.

getvch()	exports	a	CBigNum	to	a	vector	of	chars	in	the	little-endian	format.

5.	Block
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

6.	Database
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

7.	Transaction	II
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

8.	Network
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

9.	Blockchain
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

10.	Mining
The	full	version	of	this	book	can	be	purchased	at

https://ebook.ubiqlink.com/.

https://ebook.ubiqlink.com/

Last	updated	2015-12-11	09:00:21	EST

	Section Bitcoin address
	modified transaction
	Chapter Script
	Chapter Block
	Chapter Database

